
Opportunistic Overlays: Efficient Content
Delivery in Mobile Ad Hoc Networks

Yuan Chen and Karsten Schwan

College of Computing, Georgia Institute of Technology, Atlanta GA 30332, USA
{yuanchen, schwan}@cc.gatech.edu

Abstract. Current content-based publish/subscribe systems assume
network environments with stable nodes and network topologies. For mo-
bile environments, one resulting problem is a mismatch between static
broker topologies and dynamic underlying network topologies. This mis-
match will result in inefficiencies in event delivery, especially in mobile
ad hoc networks where nodes frequently change their locations. This pa-
per presents a novel middleware approach termed opportunistic overlays,
and its dynamically reconfigurable support framework to address such
inefficiencies introduced by node mobility in publish/subscribe systems.
The opportunistic overlay approach dynamically adapts event dissemi-
nation structures (i.e., broker overlays) to changes in physical network
topology, in nodes’ physical locations, and in network node behaviors,
with the goal of optimizing end-to-end delays in event delivery. Runtime
adaptations include the dynamic construction of broker overlay networks
and changes of mobile clients’ assignments to brokers. Experimental re-
sults demonstrate that the opportunistic overlay approach is practically
applicable and that the performance advantages attained from the use
of opportunistic overlays can be substantial.

1 Introduction

Publish/subscribe is a widely used method for providing anonymous, inherently
asynchronous group communications in distributed settings. Past work has cre-
ated numerous publish/subscribe systems, in industry and in academia [1, 7]
With the increased availability of powerful mobile computing devices like laptops
and PDAs, and the widespread deployment and use of wireless data communica-
tions, there is a pressing need to extend such middleware to the mobile computing
domain. Moreover, certain features of publish/subscribe make it well-suited to
mobile environments, including asynchronous event delivery, anonymity, mul-
tipoint communication and content-based routing [8, 10] Current systems tar-
geting Internet-based communications, however, commonly assume distributed
execution environments in which clients do not move and where the network
topology remains relatively stable. Stated more technically, they assume stati-
cally deployed broker networks (i.e., overlays) mapped to static network topolo-
gies. A resulting problem for mobile environments is a mismatch between static
broker topologies and dynamic underlying network topologies. This mismatch
will result in inefficiencies in event delivery, a simple example being a shortest

G. Alonso (Ed.): Middleware 2005, LNCS 3790, pp. 354–374, 2005.
c© IFIP International Federation for Information Processing 2005

Opportunistic Overlays: Efficient Content Delivery 355

path in the original overlay and physical network turning into an inefficient path
when the same logical overlay is used with a different physical network topol-
ogy. Another example is when a node’s movement (either a client, or a broker
or an intermediate node) affects the underlying network topology and changes
the distance between a mobile client and its assigned broker, hence resulting in
sub-optimized event delivery.

This paper proposes the opportunistic overlay approach to managing overlays
for mobile nodes in mobile ad-hoc networks. The idea is to dynamically opti-
mize content-based event delivery by adapting event dissemination structures
(i.e., broker overlays) to changes in physical network topology, in nodes’ physi-
cal locations, and in network node behaviors. The term ‘opportunistic’ denotes
the fact that the solution is one in which each broker opportunistically acts to
improve its relations with both other brokers and with its clients. The key points
characterizing opportunistic overlays may be summarized as follows: (1) dynam-
ically constructing broker network topologies to match the underlying physical
network, (2) dynamically changing a mobile client’s broker assignment based on
the client’s physical location and the broker’s current capabilities, and (3) when
broker topologies or clients’ home brokers change, recalculating overlay routing
paths and then using the newly computed paths.

Opportunistic overlays are implemented with the JECho Java-based pub-
lish/subscribe infrastructure [7]. A unique attribute of this implementation is
that with JECho, dynamic topology adjustments can be coupled with runtime
techniques for event filtering, thereby also permitting the system to match event
rates and sizes to the currently available levels of bandwidth of physical com-
munication channels.

The performance evaluations reported in this paper use actual hardware, to
assess basic performance properties and penalties, and they use emulation and
simulation, to assess the effects of mobility and to better understand the scal-
ability of our approach. Results demonstrate that the performance advantages
attained from the use of opportunistic overlays can be substantial. For instance,
simulation results indicate that the delay of sending a message can be improved
by up to 100%. In a set of emulation experiments, the opportunistic overlay
approach is able to both optimize path lengths and address broker overloads.
Measurements on a small testbed comprised of three laptops running the AODV
protocol [11] show more than a sixfold improvements in the end-to-end delays
experienced by events in the flood watch application.

The remainder of this paper is organized as follows. We present the system
model, protocols, and algorithms used by opportunistic overlays in Section 2.
The prototype architecture and some implementation details are discussed in
Section 3. Section 4 presents evaluation results. Related work appears in Sec-
tion 5, followed by conclusions and future work in Section 6.

2 The Opportunistic Overlay Approach

We first outline the system model assumed by opportunistic overlays, followed by
descriptions of the adaptation protocols and algorithms underlying the approach.

356 Y. Chen and K. Schwan

2.1 System Model

Our system model adopts an overlay network approach. As illustrated in
Figure 1, an event system consists of producers, consumers, and a broker net-
work. The latter is an overlay across the physical network, composed of broker
processes connected via links. Each overlay link is a network path between a bro-
ker node pair in the physical network. Each producer/consumer (mobile client)
connects to one of the brokers (usually the nearest one) via one or multiple
wireless links. This broker is called the client’s home broker. A consumer also
provides a content-based subscription function termed modulator, which operates
on event contents to dynamically tailor them to the consumer’s current needs.
A consumer’s modulator executes in an intermediate broker’s address space on
behalf of the consumer. The intermediate broker can be any broker(typically
its home broker) on the overlay path between producers and the consumer. An
event generated by a producer is first sent to the producer’s home broker, then
routed from the producer’s home broker to the consumer’s home broker, pro-
cessed using the consumer’s modulator, and then delivered to the consumer via
some wireless network links.

An event system with four broker nodes (A, B, C and D), one producer M1,
and two consumers (M2 and M3) in a wireless ad hoc network is depicted in
Figure 2. Since a broker can reside on the same nodes as producers/consumers
or on separate nodes, in general, a link in the broker network is a multi-hop
wireless path on the underlying physical wireless network. Similarly, a produc-
er/consumer connects to its home broker via a multi-hop wireless path.

2.2 Basic Idea

The idea behind opportunistic overlays is to continually optimize event delivery,
by dynamically changing both broker networks and mobile clients’ home brokers.
Updates occur in response to changes in physical network topology and in nodes’

producer
broker

consumer

broker network

modulator

Fig. 1. System Model

broker

mobile consumer

wireless link

modulator

Physical Network

Overlay Network

A

B

D

C

M1

M2

M3

A

B

D

C

M1

M2

M3

Fig. 2. A Sample Event System in Mo-
bile Ad Hoc Networks

Opportunistic Overlays: Efficient Content Delivery 357

physical locations. Potential broker overloads are avoided by judiciously choosing
clients’ home brokers. The key points characterizing opportunistic overlays may
be summarized as follows:

Resource awareness. An opportunistic overlay is aware of the underlying net-
work topology used for transporting events from producers to consumers. It is
also aware of the respective locations of both and of their current state (e.g.,
CPU Load, Memory availability).

Dynamic construction of broker overlay networks. Dynamic broker net-
work topology construction uses a global state routing protocol [12]. Each broker
maintains a local view of the broker network topology. At runtime, an oppor-
tunistic overlay dynamically monitors client location, physical network topology,
and resources (e.g. latency, bandwidth, broker computation load). Periodically,
each broker updates its local view of broker network topology, by changing its
neighboring brokers and by propagating changes to its neighbors. Neighbor bro-
ker information is acquired by querying the network protocols’ routing tables
or via neighbor discovery operations [13]. When a broker receives propagated
information from its neighbors, it updates its broker topology accordingly.

Dynamic change of home broker. A mobile client periodically checks the
brokers in its vicinity via a ‘nearest broker search’. It identifies to its home broker
a found candidate broker that is closer to its current physical location. Upon
receiving such a report from a client, the home broker initiates a broker selection
protocol. This protocol uses an approach that combines shortest path selection
with load balancing methods. Specifically, the home broker first calculates the
path length from the producer to the candidate broker, and then determines
whether or not to change the client’s home broker based on both the network
distance and the candidate broker’s current capabilities. Preference is given to
the closer broker unless that broker is currently overloaded.

Dynamic overlay routing. Changes in broker network topology and in mobile
clients’ home brokers will result in rebuilding broker-level routing tables. Oppor-
tunistic overlays use source routing for event delivery. Whenever a broker’s local
view of broker topology changes or whenever a client receiving events from a
broker changes its home broker, new event paths are calculated using a shortest
path algorithm. We next discuss some of these protocols in more detail.

2.3 Dynamic Construction of Broker Networks

Broker network topologies are kept congruent with the underlying physical net-
work topology by periodically re-constructing global knowledge about the broker
network, using a global state routing protocol [12]. Toward this end, each broker
maintains its knowledge about the current broker network topology in a topology
table T. Periodically, each broker receives its neighboring broker’s T, updates
its own T, and then propagates found topology updates to its neighbors. Each
broker keeps track of the other brokers in its vicinity by querying the routing

358 Y. Chen and K. Schwan

table maintained by the wireless network routing protocol used in each broker
machine, or via a neighbor discovery protocol like the Expanding Ring Search
described in [13].

The broker topology update protocol can be summarized as follows.

Step 1: Broker Neighbor Discovery. Each broker periodically updates its
neighboring brokers using the Expanding Ring Search. If a neighbor broker moves
too far away from a broker, then the original overlay link between the broker
and that neighbor is removed from the broker network. If a broker moves into
the vicinity of another broker, a new broker link between them is created.

Step 2: Broker Topology Propagation. Once a broker completes updating
its topology table by neighbor discovery, the broker sends to its neighbors those
items in its topology table that have changed since the prior propagation period.
A sequence number is associated with each such update.

Step 3: Broker Topology Update. When a broker receives updated infor-
mation from its neighbor, it compares the sequence number of the incoming
message with its topology table’s corresponding items, replaces old items with
new ones, and marks the items changed if the incoming items have a higher
sequence number.

Step 4: Broker Routing Table Rebuilding. A broker’s topology table T
changes either due to its own execution of the periodic neighbor update or due
to the receipt of topology propagation from its neighbors. When such changes
occur, the broker rebuilds its routing table by recalculating its shortest path to
other brokers henceforth uses the new routing table for delivering events.

Figure 3 depicts an example. At the beginning, all four brokers (A, B, C and
D) have the same view of the global broker network topology A—B, B—C and
B—D. At some point, node 2 moves away from B and 1, and closer to C. As a
result, two old wireless links 2—B and 2—1 are removed and one new wireless

D

3

A

Broker Network

A 1
2

4

7

Physical Network

6

B

C

C

D

B

3A 1

2

4

5

7

Physical Network

6

B

Broker Network after C’s Update Period

5

A
B

D A

B

D A

B

D
A

B

D

A’s View B’s view C’s view D’s view

C
CC

C

D

C

opportunistic path

static path

3A 1

2

4

5

7

Physical Network

6

B

Broker Network after B’s Update Period

A

B

D A

B

D A

B

D
A

B

D

A’s View B’s view C’s view D’s view

C
CC

C

D

C

opportunistic path

static path

Initial Topology Topology after Node 2’s Movement Topology after Node 2’s Movement

move

Fig. 3. An Example of Dynamic Broker Network Construction

Opportunistic Overlays: Efficient Content Delivery 359

link 2—C is created. Let’s assume C is the first to start its update period. C
adds D’s as its new neighbor. Then C updates it topology table accordingly
and propagates the change to its neighboring brokers B and D. After receiving
updated information from C, each of B and D updates its topology table by
adding the broker link C—D. B, C and D will rebuild their overlay routing
tables based on the new broker network topology A—B, B—C, B—D and C—
D. As a result of C’s routing table update, opportunistic overlays deliver events
from C to D using the wireless path C→2→3→D, compared with the static
broker approach’s C→5→B→5→C→2→3→D. Let’s assume B is the next to
start its update period. B removes D from its neighbor list and updates its
broker topology knowledge accordingly. B then sends its changes since previous
period to its neighbors A and C. Upon receiving updated information from B,
both A and C update their topology knowledge by removing broker link B—D.
A also adds the broker link C—D to its topology table. At this time, each of A,
B and C has the latest broker topology knowledge. D’s topology knowledge is
outdated, and D’s topology table will be updated either through C’s propagation
or via D’s own running of the neighbor updates protocol, whichever comes first.

Our current protocol assumes reliable network communication channels. We
leave it to future work to deal with issues like network partition, temporary
broker disconnection, reconnection, and related reliability issues.

2.4 Dynamic Home Broker Change

End-to-end latency depends (1) on the network distance between a producer’s
home broker and a consumer’s home broker, and also (2) on the distance between
producers/consumers and their home brokers. By dynamically constructing a
broker network, we aim to optimize the former. By dynamically changing home
brokers, we improve the latter. Toward these ends, opportunistic overlays act as
described next.

When a client subscribes to a broker network for the first time, it must
connect to some home broker that receives events (via the broker network) on
behalf of the client and delivers received events to the client via some wireless
network link. Intuitively, we should choose the nearest broker as the client’s home
broker, thereby optimizing the delay between the client and its home broker. In
ad-hoc mobile environments, therefore, home brokers must be chosen repeatedly,
whenever nodes substantially change their locations. The procedure used by
opportunistic overlays may be described as follows. Each client periodically (or in
response to changes indicated by the underlying physical network protocol [14])
executes a protocol that searches for the broker nearest its current location. If
the nearest broker is not its home broker, it notifies the current home broker of
its discovery. Upon receiving this news from its client, the home broker selects
new home broker based on average path length between producers and the client
and the cpu load of candidate brokers. If the home broker must be changed, the
modulator relocation protocol is performed.

An interesting aspect of our approach is overload control, which is important
because end-to-end event delay from a producer to a consumer depends not only

360 Y. Chen and K. Schwan

on the length of the network path, but also on event processing times at brokers.
Processing times are determined by how fast modulators can be executed on
home brokers which in turn depends on the home brokers’ loads and capabilities.
In mobile ad-hoc networks, with clients changing locations, broker loads are
subject to substantial runtime variation. One reason would be the sudden arrival
of large numbers of local users, exemplified by many mobile units converging at
a meeting. Another reason is the use of complex modulators by ’thin’ clients,
such as modulators that implement the flexible data transcoding required by
such clients [7]. In fact, the processing time of a modulator on moderately to
highly loaded brokers can exceed network delays by an order of magnitude.

The protocol followed to change home brokers can be summarized as follows.

Step 1: Nearest Broker Search. Each client searches the broker nearest to
its location, periodically, using the same algorithm in broker neighbor update as
described in Section 2.3. When a client finds the nearest broker that is not its
current home broker, it shares with its current home broker the newly discovered
broker along with its distance to that broker.

Step 2: Home Broker Selection. A client’s home broker is selected from its
current home broker and the newly discovered broker based on their distances
to the client and their CPU load.

Step 3: Modulator Relocation. The relocation protocol relocates a client’s
modulator from its current home broker (source broker) to a new broker (desti-
nation broker), asks all producers’ home brokers to compute paths to the new
home broker, and switches event delivery from the old to the new paths. The
relocation protocol guarantees event order, prevent event duplication or event
loss, and ensure consistent event state. For applications that do not need such
strict semantics, lighter weight protocols are used to loosen the requirements

A

consumer

producer

C

B

modulator

C

A

B
producer 1

2

4

6

5

3

C

consumer

modulator

Physical Network

Broker Network (B becomes consumer’s home broker)

Topology After Node 6’s Movement

A

consumer

producer

C

B

modulator
C

A

B
producer 1

2

4

6

5
3

C

consumer
modulator

Physical Network

Broker Network (C is consumer’s home broker)

Initial Topology

move

opportunistic path

static path

Fig. 4. An Example of Dynamic Home Broker Change

Opportunistic Overlays: Efficient Content Delivery 361

of event state consistency or modulator consistency or both. Additional detail
about the relocation protocols appears in [15].

An example of dynamic home broker change is shown in Figure 4. A consumer
originally receives events from broker C via the path producer→A→C→consumer
corresponding to the physical network path producer→A→2→C→6→consumer.
Broker C is the consumer’s home broker. The consumer’s modulator is also placed
on C and executes there. At some point in time, with node 6 moving away from
the consumer and node 5, during the consumer’s nearest broker discovery period,
it discovers that it is closer to B than C. When the consumer detects this, it sends
a home broker change request along with B’s information to C. C will choose
B as the consumer’s new home broker, since A→B→consumer is shorter than
A→C→consumer under the new network topology. C then performs the modu-
lator relocation protocol. After the change, the event delivery path from producer
to consumer becomes producer→A→1→B→3→5→consumer. In contrast, with-
out changing home brokers, the old overlay path producer→A→C→ consumer
corresponds to the physical network path producer→ A→2→C→4→B →3→5→
consumer, which is 2 hops longer than the path used by opportunistic overlays.

3 Software Architecture and Selected Implementation
Detail

3.1 Overview of JECho

Opportunistic overlays are realized with the JECho distributed event system [7].
JECho implements a publish/subscribe communication paradigm, providing ser-
vices to distributed, concurrently executing components via event channels. Us-
ing JECho’s modulators, individual event consumers can dynamically tailor event
flows to their own needs, thereby adapting to runtime changes in component
behaviors and needs and/or changes in platform resources. Modulators are im-
plemented as Java objects, executed in a source’s or broker’s address space on
behalf of clients.

3.2 Overview of Software Architecture

Opportunistic overlays are implemented as depicted in Figure 5. The architecture
makes it easy to implement alternate adaptation methods, and the architecture
itself is easy to reconfigure and extend.

The basic component layer provides the lower level functionalities of resource
monitoring and broker information management necessary for implementing dif-
ferent adaptations. Event-driven adaptations are implemented by defining a set
of actions to react to specific events received from basic components. By us-
ing services provided by basic components, adaptation code focuses on high
level protocol only without needing to handle lower level details. The interac-
tion between basic component layer and adaptation layer uses a set of consistent
program interfaces and system events. As a result, it is easy for different brokers
to define different adaptations based on their capabilities and requirements. In

362 Y. Chen and K. Schwan

OS and Network Protocols

Concentrator Modulator Manager

Broker
Manager

Client
Manager

BNT BIT BTT BRT
CIT

Resource
Monitor

System
Channel

Modulator Relocation

broker
topology
adaptor

home broker
adaptor

JECho

Basic Components

Adaptors

events

events

horizontal
migration

upstream
migration

downstream
migration

broker load
adaptor

call

OS/Network

call

call

Application Code

OS and Network Protocols

Concentrator Modulator Manager

Client
Manager

CIT
Resource
Monitor

System
Channel

events

events

Broker Client

Fig. 5. Opportunistic Overlays Software Architecture

fact, the implementation of an adaptation protocol within the current system is
straightforward, as exemplified by the home broker change adaptation that has
less than 50 lines Java code. It is also easy to reconfigure and extend the system
with new adaptations, such as those needed to handle physical network partition.
For future work, we are considering adding a policy layer that permits users to
define high-level policies concerning the adaptations being carried out [15].

3.3 Basic Component Layer

The basic component layer layer is composed of a resource monitor, broker man-
ager, and client manager. Components in this layer provide the core functionality
implementing the adaptation protocols described in Section 2.2. Each compo-
nent in this layer defines a set of program interfaces for other components to
access its services (i.e., a set of ‘get’ and ‘set’ functions). Each component noti-
fies other components and high level protocols by sending events containing the
relevant information to an internal ‘system’ channel. Other components receive
this information by registering their interests about certain events.

Resource Monitor. The Resource Monitor collects, aggregates, processes, and
delivers data about local resource availability and about its communication costs
to other brokers. Local resource information includes CPU load, memory avail-
ability, and modulator execution time.

Broker Manager. The Broker Manager maintains four tables, which are the
Broker Neighbor Table (BNT), the Broker Information Table (BIT), the Broker
Topology Table (BTT), and the Broker Routing Table (BRT). The set of pro-
gram interfaces provided by the Broker Manager to higher level protocols include
functions for accessing and changing broker-related information, and operations
that propagate its broker topology to neighboring brokers. The Broker Manager

Opportunistic Overlays: Efficient Content Delivery 363

is also responsible for sending notifications to higher level components when it
receives them.

Client Manager. The Client Manager maintains information about each client
for which the broker is currently acting as home broker, including its name,
IP address, physical location, as well as related path information (e.g., current
routing path and communication overhead of the path). This information is
stored in the Client Information Table (CIT).

3.4 Modulator Relocation Layer

Layered above the basic component layers are three modulator relocation oper-
ations: horizontal relocation, upstream relocation, and downstream relocation.
Relocation operations perform the task of relocating a client’s modulator from
current broker to another broker, and of changing event delivery paths accord-
ingly. Relocation operations are the basic functionality needed to support home
broker changes and dynamic load balancing.

3.5 Adaptation Protocol Layer

The adaptation protocol layer implements a variety of protocols, including ‘dy-
namic broker network construction’ and ‘dynamic home broker change’. Each
such protocol is implemented with a Java object called an adaptor. An adaptor
can register with the system event channel by specifying its interests in certain
events delivered by the Resource Monitor, Broker Manager, and Client Manager.
For the broker topology adaptor, interesting events are a time event and a bro-
ker propagation event. The interesting event for the home broker adaptor is a
broker discovery message received from a client. The code in the adaptor is im-
plemented in the event handler method “process()”, which is invoked whenever
an interesting event is received. This code implements changes, such as recon-
figuring the broker network, changing the home broker, or rebuilding a routing
table. Using adaptors and the services provided by basic components, system
developers can create potentially complex adaptation policies. Our prototype
implementation has three adaptors: a broker topology construction adaptor, a
home broker change adaptor and a broker load balancing adaptor. Each adaptor
performs the task for which it is named.

3.6 Client Component

The final element of opportunistic overlays are client-resident components that
interact with the broker overlay. These include a Resource Monitor and Client
Manager.

4 Performance Evaluation

4.1 Simulation

Simulation techniques are used to evaluate the opportunistic overlay approach
under various wireless network configurations. In all experiments reported in

364 Y. Chen and K. Schwan

this section, the network consists of 100 mobile nodes that randomly roam in
a 1000 x 1000 meter square. The random waypoint mobility model [16] is used
with a pause time of 10 seconds. The radio transmission range of each node is
250 meters. Each simulation spans 600 seconds of simulated time.

Currently, our simulation study is limited to high level overlay routing, for
which link layer details and physical layer characteristics are not modeled ex-
plicitly. Since aspects like control overheads or link contention are not taken into
account, a high routing packet load, for instance, does not interfere as much with
data transmissions as it might in reality. Also, there are no transmission errors
and delays associated with overlay routing packets (i.e., broker network topology
propagation and broker neighbor discovery). Future work should address these
limitations by constructing a more comprehensive simulator with a MAC layer
model (e.g., IEEE 802.11 MAC). The point of this section’s simulation results
is to compare the relative performance of the opportunistic approach to overlay
routing vs. static approaches.

Performance of the Broker Network. The first set of experiments evaluate
the average lengths of network paths across broker overlays with vs. without op-
portunistic overlay protocols. Measurements consider only brokers, not clients.
40 nodes among 100 nodes are randomly chosen as brokers. We vary the experi-
mental configurations with different broker topology update intervals. The path
length from broker B1 to broker B2 is the corresponding physical network dis-
tance of the shortest broker path between B1 and B2, which is computed based
on B1’s local knowledge of current broker topology. The average path length
from each broker to all other brokers is computed and averaged over all brokers.
In order to establish a basis for comparison, we also measure the average length
of the physical network path between each pair of brokers. In addition, the over-
heads of broker topology update with different update intervals are evaluated.

Timeline of Path Length. Figure 6 shows how path length changes in a
simulation with an update interval of 50 seconds and mobility speeds between 1

 1

 2

 3

 4

 5

 6

 7

 8

 0 100 200 300 400 500 600

P
at

h
Le

ng
th

Time(second)

Static
Opportunistic

Network

Fig. 6. Timeline of Path Length among
Brokers

 1

 2

 3

 4

 5

 6

 7

 10 20 30 40 50 60 70 80 90 100

A
ve

ra
ge

 P
at

h
Le

ng
th

Update Period(second)

Static
Opportunistic

Network

Fig. 7. Average Path Length among
Brokers versus Update Period

Opportunistic Overlays: Efficient Content Delivery 365

m/s and 20m/s. As shown in the figure, the opportunistic approach can deliver
events more efficiently than the static approach at almost all time points. At the
beginning, both the static and the opportunistic approaches have similar path
lengths, since the initial broker network matches physical network topology. As
time passes, the path lengths of the static approach increase rapidly because
the initial broker topology cannot reflect changes in physical network topology
caused by node mobility. Compared with the static approach’s 6.06 hops and
the network’s 2.36 hops, the opportunistic approach has an average path length
of only 4.17 hops.

Average Path Length versus Broker Update Period. Figure 7 shows the
average path length versus the update interval, the latter varying from 10 to 100
seconds. As expected, with increased update intervals, path length increases since
larger update intervals imply slower reactions to changes in physical network
topology. However, as shown in the figure, the change in path length is not rapid
with the increase of update periods, e.g. 4.43 hops with an interval of 100 seconds
versus 3.32 hops with one of 10 seconds. Even with a relatively low update period
of 100 seconds, the opportunistic approach still outperforms the static approach
significantly, 4.43 hops vs. 6.06 hops.

Update Overhead versus Broker Update Period. The overheads of bro-
ker network updates are shown in Figure 8. Overhead is computed as the aver-
age bandwidth requirement of each broker for propagating its broker topology
knowledge to its neighbors, the argument being that network resources tend to
be scarce in pervasive systems. As shown in the figure, a total of 2.4 Kbps band-
width is used with an update period of 50 seconds. This constitutes moderate
bandwidth usage in modern network infrastructures.

Performance of Event Delivery between Mobile Clients. Most relevant
to our work, of course, is the end-to-end performance experienced by end users,
i.e., clients. In the following experiments, we randomly choose 20 brokers, 10
event producers, and 60 event consumers from 100 mobiles nodes. In this set of

 0

 2

 4

 6

 8

 10

 12

 14

 10 20 30 40 50 60 70 80 90 100

A
ve

ra
ge

 U
pd

at
e

O
ve

rh
ea

d(
K

bp
s)

Update Period(second)

Fig. 8. Update Overhead versus Update
Period

 4

 5

 6

 7

 8

 9

 10

 11

 12

 0 100 200 300 400 500 600

P
at

h
Le

ng
th

Time(second)

Static
Static-Opportunistic

Opportunistic-Opportunistic
Best

Fig. 9. Timeline of Average Path Length
between Producers and Consumers

366 Y. Chen and K. Schwan

experiments, the broker network update interval is fixed at 20 seconds, and we
vary mobile clients’ home broker discovery periods as well as mobility speed. Four
different approaches are evaluated in terms of the resulting average path lengths
between each pair of producer and receiver: (1) the static approach changes
neither the broker network topology nor the home broker of mobile clients; (2)
the static-opportunistic approach change mobile client’s home broker only; (3)
the opportunistic-opportunistic changes both the broker network topology and
mobile client’s home broker; and (4) the best approach keeps updating the broker
network whenever the physical network changes and calculates shortest broker
paths based on up-to-date physical network topology data. Although the best
approach is not practical, we have included it to establish a basis for comparison.

Timeline of Path Length. Figure 9 shows the performance results of a sim-
ulation with a home broker discovery period of 10 seconds. We can see that the
opportunistic-opportunistic approach performs best among the three realistic
approaches, shortening the delivery paths up to 5 hops compared with the static
approach. Even the static-opportunistic approach can improve event delivery
significantly compared with the static approach.

Average Path Length versus Nearest Broker Discovery Period. Studies
assessing path lengths versus home broker discovery periods are reported in
Figure 10. With increased closest broker discovery periods, path lengths increase
slightly. As discussed in Section 2, the mobile client can find the nearest broker by
querying its routing table or by using an expanding ring protocol. Either way, the
costs are small compared with the overheads of broker update operations. More
frequent closest broker discovery results in more frequent home broker changes,
hence more frequent modulator relocations. Additional simulation results not
reported here due to space limitations demonstrate the fact that modulator
relocation costs are much smaller than the overheads of broker topology change
(see [15] for more detail).

 3

 4

 5

 6

 7

 8

 9

 10

 11

 10 20 30 40 50 60 70 80 90 100

A
ve

ra
ge

 P
at

h
Le

ng
th

Nearest Broker Discovery Period(sec)

Static
Static-Opportunistic

Opportunistic-Opportunistic
Best

Fig. 10. Average Path Length between
Producers and Consumers versus Near-
est Broker Discovery Period

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 20 15 10 5 1

A
ve

ra
ge

 P
at

h
Le

ng
th

Mobility (m/s)

Static
Opportunistic-5

Opportunistic-50
Opportunistic-100

Optimal

Fig. 11. Average Path Length be-
tween Producers and Consumers versus
Mobility

Opportunistic Overlays: Efficient Content Delivery 367

Average Path Lengths versus Mobility. Average path lengths at different
mobility speeds is shown in Figure 11. The figure shows that more frequent
nearest broker discovery achieves shorter event delivery paths. In particular,
when the nodes move at a very fast speed, increasing the discovery frequency
can improve the performance significantly.

Simulation Conclusions. Multiple insights result from the simulation exper-
iments described in this section. First, client or broker mobility in ad-hoc net-
worked systems demand dynamic changes to the overlay networks used for event
propagation. Without runtime overlay adjustments, event delivery paths and
therefore, average event delays increase substantially and may not remain viable
for realistic systems and applications. Interestingly, even relatively ‘slow’ over-
lay adjustments performed by the opportunistic overlay approach attain much
improved results compared to static solutions (e.g., with 100 second update in-
tervals, the opportunistic approach results in an average of 4.43 hops for packets
vs. the static approach’s 6.06 hops). Second, end-to-end delays in packet deliv-
ery to clients are improved further when overlay adjustments are complemented
with changes in the assignment of home brokers to clients. Since it is cheaper
to change home brokers than to reconfigure broker overlays, the former changes
can be (and should be) more frequent than the latter. Finally, change frequencies
are strongly correlated with mobility speeds.

4.2 System Emulation

In order to evaluate the effects of load balancing, we have conducted a set of ex-
periments on an ad-hoc wireless network emulator. The mobility emulator runs
on a Linux cluster of 20 nodes with MobiEmu [17] running on each node. The
cluster network is a gigabit Ethernet switch. MobiEmu is a software platform for
testing and analyzing ad-hoc network protocols and applications. With control
software running on each node, MobiEmu mimics dynamic connectivity among
nodes by dynamically installing or removing packet filters for specific MAC ad-
dresses. Since we focus on load balancing in this set of experiments, we use the
‘best-case’ ad-hoc routing provided by MobiEmu software. These protocols al-
ways deliver packets via shortest network paths. More detail about this system
appears in [17].

The emulated mobile network consists of 20 mobile nodes, of which 5 nodes
are event brokers, 5 are event producers and 15 are event consumers (5 brokers
reside at event receiver nodes). In our experiments, mobile nodes move in a
space of 750m x 500m and use random waypoint mobility with a pause time
of 30 seconds and speeds between 1m/s and 20m/s. Due to the relatively small
network size, the broker update period is set to 5 seconds and the nearest broker
discovery period to 1 second. We vary the average load of the broker network
and measure the maximum load during execution.

Results appear in Figure 12. As shown in the figure, when broker load is
relatively light (i.e., less than 30%), there are no overloaded brokers and both
approaches behave the same, where the nearest broker to a mobile client is al-
ways chosen as the client’s home broker. With increased system load, without

368 Y. Chen and K. Schwan

0%

50%

100%

150%

200%

250%

300%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

M
ax

 B
ro

ke
r

Lo
ad

Average Load

Opportunistic w/o Overload Control
Opportunistic with Overload Control

Fig. 12. Maximum Broker Load versus
Average System Load

 3

 3.5

 4

 4.5

 5

0% 20% 40% 60% 80% 100%

A
ve

ra
ge

 P
at

h
Le

ng
th

Average Load

Static
Opportunistic with Overload Control

Fig. 13. Path Length versus System
Load

overload control, some brokers become overloaded. The load balancing algorithm
ameliorates this problem, because a client’s home broker will not be moved to
an overloaded node, even if that node is closer than the old one. The positive
outcomes of load management reported in these measurements are moderate,
of course, since in random waypoint mobility, nodes move independently. Load
balancing is more important and will have more significant effects when nodes
move in groups, as exemplified by conference participants moving from one pre-
sentation venue to another, for instance.

Figure 13 depicts path length versus system load. When system load is less
than 70%, the opportunistic approach always chooses the nearest broker as home
broker, and the delivery path can be more than 1 hop shorter than in static
approach. With increased system load, load balancing selects broker with lighter
loads on relatively longer paths, resulting in increased path lengths. However,
the opportunistic approach continues to outperform the static approach even
when system load reaches 100%.

The simple conclusion from these measurements is that realistic implementa-
tions of dynamic overlay networks for MANET should not ignore broker loads,
especially when overlays perform meaningful application-level processing actions.

4.3 Testbed

The last set of experiments demonstrate the practical utility of our approach, by
running a sample application on an actual wireless testbed. The testbed consists
of 3 laptops A, B and C. Wireless connectivity is provided by Orinoco 802.11b
cards. These cards are set to ad-hoc mode on channel 8. No WEP encryption
is used. All three laptops use the UoB JAODV version 0.2, an AODV imple-
mentation in Java [11]. In order to simulate network connectivity changes, we
dynamically set filters at the MAC layer. In a network consisting of 3 nodes A,B
and C, there are four possible network topologies without network partitions:
A-B-C, A-B-C-A , A-C-B and B-A-C.

The experiments being performed run a flood watch application on the
testbed, comparing the event delivery latency of the opportunistic with the static

Opportunistic Overlays: Efficient Content Delivery 369

A B C

A

B C

A C B

B A C

A B C

A B C

A

C

A C B

B A C

B

A-B-C(0-200) A-B-C-A(200-400) A-C-B(400-600) B-A-C(600-800)

ph
ys

ic
al

st
at

ic
op

po
rt

un
is

tic

static path
opportunistic path

presend client

A B C A B C A B C

Fig. 14. Experiment Configuration

0

1000

2000

3000

4000

5000

6000

7000

ABC ABCA ACB BAC

Network Topology

L
a
t
e
n
c
y
(
m
s
)

Static

Opportunistic

Fig. 15. Average Latency (100% data)

0

200

400

600

800

1000

1200

ABC ABCA ACB BAC

Network Topology

L
a
t
e
n
c
y
(
m
s
)

Static

Opportunistic

Fig. 16. Average Latency (10% data)

approach using the 4 different network topologies. The application consists of
two programs and works as follows. PreSend reads precipitation data from a
file and places normalized precipitation data on event channel. A client program
subscribes to the channel and provides a modulator that calculates water depth
from precipitation data and terrain topology data using a runoff model. The
client is typically interested in flood information in some specific area, which
can be defined by a two-dimensional bounding box. Flood data that is outside
the bounding box will be filtered (i.e., removed) before data is sent to the chan-
nel. The output of full-size flood data is a double array of 100 x 100.

In our experiment, PreSend is running on laptop A and the client program
runs on laptop C. Broker programs run on both A and B. The physical net-
work topology changes every 200 time units. Experiment configuration is shown
in Figure 14. The initial physical network topology is A-B-C. B is C’s home
broker. Both approaches use the same event delivery path A→B→C. After 200
time units, the network topology changes to A-B-C-A, so that the opportunis-
tic approach chooses A as C’s home broker and relocates its modulator from B

370 Y. Chen and K. Schwan

to A, hence resulting the shorter delivery path A→C. During the time interval
of 400 to 600, the network topology is A-C-B, where the opportunistic overlay
approach still uses A→C as delivery path corresponding to the same physi-
cal network path A→C. The corresponding physical network path of A→B→C
used by static approach becomes A→C→B→C. In the final interval, the network
topology changes to B-A-C, where the opportunistic approach still uses the same
path A→C, and the static approach’s path A→B→C now corresponds to the
physical network path A→B→A→C, with overlap at A.

Figure 15 shows the latency comparisons with four topologies when the client
is interested in all data. As shown in the figure, the opportunistic approach can
deliver data up to 6 times faster than the static approach. The static approach
has its worst performance in the configuration of B-A-C (6000ms compared
with to the opportunistic approach’s 1000ms), where data delivery following
the path A→B→A→C results not only in a longer path but also in additional
network bandwidth usage at A, since at the physical layer, every event is actually
delivered twice at A.

When a client is interested in only 10% of the area data, the opportunistic
approach coupled with its use of modulators shows additional improvements.
Results depicted in Figure 16 show that by relocating C’s modulator from B to
A, the opportunistic approach not only delivers data following a shorter path
but also delivers less data, hence improving the application’s performance signif-
icantly: the average latency is less than 200ms under all network configurations.

The key result of the testbed experiments presented here is that it is impor-
tant to dynamically adjust the middleware overlays used in pervasive systems.
The opportunistic overlay approach described and evaluated in our research is
one method for runtime overlay management and by using it, significant perfor-
mance improvements can be attained compared to non-adaptive approaches.

5 Related Work

5.1 Content-Based Event Systems

Publish/subscribe systems [1, 18, 4–7] have been investigated for many years, but
most implementations have focused on systems where nodes don’t move, broker
networks remain fixed, and broker network topologies are defined at deployment
time. As a result, their fixed event dissemination structures make them unsuit-
able for applications in mobile environments where physical network topology
and node locations change continuously. In addition, most publish/subscribe
systems perform event filtering with predicate-based subscriptions; they do not
support the general event processing needed for the complex data conversions
occurring in multimedia, business, or scientific applications. Opportunistic over-
lays are realized with the JECho pub/sub infrastructure [7]. JECho generalizes
the capabilities of other event systems, by using consumer-provided functions,
termed event modulators [7]. The intent is to address the severe resource lim-
itations existing in many mobile and embedded systems, by permitting event

Opportunistic Overlays: Efficient Content Delivery 371

consumers to deploy application-specific functions that manipulate event con-
tent into event sources and/or brokers, so as to precisely meet their current
needs, and to avoid needless data transfers. Generic function-based subscription
makes the opportunistic overlay system more feasible for developing applications
in pervasive systems and mobile environments.

Previous research on event-based middleware for wireless networks has ad-
dressed applications in which mobile nodes make use of the wireless network to
connect to a fixed network infrastructure [19, 20, 10, 21, 14, 10, 8, 14]. The oppor-
tunistic overlays presented in this paper differ from these systems in that they are
designed for mobile ad hoc networks, support dynamic reconfiguration of event
event dissemination structure and offer behaviors transparent to applications.

[22] presents an algorithm for topological reconfiguration in content-based
publish/subscribe due to changes in underlying connectivity. Compared with
opportunistic overlays, reconfiguration in [22] involves only link removal or in-
sertion, and no details are given on how to apply the proposed approach to
handle changes in mobile environments. In addition, the approach assumes a
tree-based topology between dispatchers, which makes it hard to achieve robust-
ness, since a single link failure partitions the tree. Another approach to dynamic
broker network configuration is described in [23]. The idea is to place ‘close’
to each other brokers that manage similar subscriptions. This is complementary
to our work, which focuses on resource awareness, where reconfiguration in the
opportunistic overlays is based on nodes’ physical locations and the underlying
physical network topology. Similar to the approach in [22], the topology used in
[23] must remain acyclic, whereas the opportunistic overlay approach supports
general broker overlay topologies.

5.2 Content-Based Event Systems in Mobile Ad-Hoc Networks

Steam [24] is an event-based middleware service designed for ad-hoc wireless
networks. It targets application scenarios where nodes are more likely to interact
when they are in close proximity to each other. We consider more general uses
of publish/subscribe in ad-hoc networks. Further, Steam uses an implicit event
model without intermediate broker nodes.

[25] presents a distributed protocol to construct optimized publish/subscribe
trees in ad-hoc wireless networks. The protocol builds multicast trees directly on
top of lower level radio broadcast primitives. Our work relies on the underlying
network infrastructure’s ability to provide basic network connectivity. Another
difference is that their approach assumes a relatively stable environment with
occasional reconfigurations followed by periods of stability. Opportunistic over-
lays do not make that assumption, and they can actually handle high levels of
mobility as shown by our experimental results.

[26] proposes a publish/subscribe system for MANET that integrates an ex-
tended ODMRP (On-Demand Multicast Routing Protocol [27]) with content-
based subscriptions. Similar to [25], ODMRP-PUB/SUB delivers events by cre-
ating multicast groups. The difference is that ODMRP-PUB/SUB uses a mesh-
based approach instead of the tree-based one used in [25]. Since a consumer’s

372 Y. Chen and K. Schwan

subscription is a general function applied to events in our system, the approach
of combining a multicast protocol and subscription aggregation/match is not
readily applicable in our case. Further, ODMRP-PUB/SUB focuses on the rout-
ing between brokers and does not address the issue of delivery from brokers to
producers/consumers. The purpose of ODMRP- PUB/SUB is to optimize net-
work throughput, while our opportunistic method focuses on providing timely
event delivery.

5.3 Overlay Multicast Protocols in Mobile Ad-Hoc Networks

AMRoute [28] and PAST-DM [13] are two ad-hoc multicast protocols that use
the overlay approach. AMRoute uses a static virtual mesh and has low efficiency
due to the increasing mismatch between virtual topology and physical network
topology, as shown in [13]. PAST-DM addresses the efficiency problem by dy-
namically adapting the virtual topology to changes in the physical network.
That brokers need to process events distinguishes our system from multicast
systems where nodes perform data routing and participate as relays. Although
opportunistic overlay approach uses a similar dynamic virtual overlay construc-
tion technique as PAST-DM [13], the dynamic routing path in opportunistic
approach involves not only path changes in event routing, but also subscription
code relocation, which makes the existing dynamic delivery technique in PAST-
DM is not readily applicable to our system. In addition, the processing of events
will consume a broker’s computational resources, which implies that brokers’
computational capabilities need to be taken into account.

Finally, in PAST-DM, all member nodes are considered to be equivalent
peers and participate in overlay routing. In contrast, opportunistic overlays con-
ceptually divide nodes into brokers which are organized into an overlay broker
network, and clients(producers/consumers) which send/receive events via the
broker network. This model is more suitable for content-based routing since over-
lay routing through ‘thin’ nodes with very limited resources will present burden
on such nodes and may result in inefficiency of content delivery in mobile sys-
tems. Dynamic reconfiguration using by opportunistic overlays adapts both the
overlay broker network and the connections between brokers and clients.

6 Conclusions and Future Work

This paper presents an approach to optimizing content-based event delivery in
mobile ad-hoc networks. In response to changes in physical network topology and
to node mobility, the opportunistic overlay approach dynamically changes bro-
ker network topology, clients’ assignments to brokers, and event delivery paths,
with the goal of optimizing end-to-end delays in event delivery. Opportunistic
overlays are prototyped with the JECho pub/sub system [7]. Comprehensive
performance evaluations are performed via simulation, emulation, and with rep-
resentative applications on a physical testbed. Experimental results for mobile
ad hoc networks demonstrate that the opportunistic overlay approach can signif-
icantly improve event delivery delays compared to static approaches, even with

Opportunistic Overlays: Efficient Content Delivery 373

high levels of mobility. Results also show that the overheads of dynamic adap-
tation are moderate. Using a flood watch application and a wireless testbed,
the opportunistic overlay approach is practically applicable in an actual ad hoc
wireless network.

Future work should address some deficiencies of our current implementation,
as well as generalize upon the basic concept of opportunistic overlays. First, our
current implementation assumes a reliable network environment and therefore
does not consider dynamic disconnection, reconnection, and network partition.
Future work will add application-specific failure recovery to broker overlays. Sec-
ond, we will extend the opportunistic approach to optimize performance metrics
other than end-to-end latency, including network bandwidth and power usage.
We may also explore optimizing multi-dimensional performance metrics. A fi-
nal topic of interest is a performance study that uses a more comprehensive
simulator with a MAC layer model (e.g., IEEE 802.11 MAC).

References

1. Strom, R., Banavar, G., et.al: Gryphon: An information flow based approach to
message brokering. Technical report, IBM TJ Watson Research Center (1998)

2. Carzaniga, A., Rosenblum, D.S., Wolf, A.L.: Achieving scalability and expressive-
ness in an internet-scale event notification service. In: Proceedings of the Nine-
teenth Annual ACM Symposium on Principles of Distributed Computing(PODC
2000), Portland, Oregon (2000) 219–227

3. Cugola, G., Nitto, E.D., Fuggetta, A.: The ”jedi” event-based infrastructure and
its application to the development of the opss wfms. In: IEEE Transactions on
Software Engineering in 2001. (2001)

4. Segall, B., Arnold, D.: Elvin has left the building: A publish/subscribe notification
service with quenching. In: Proceedings of A UUG97. (1997)

5. Fiege, L., Mühl, G., Gärtner, F.C.: A modular approach to build structured event-
based systems. In: Proceedings of the 2002 ACM Symposium on Applied Comput-
ing (SAC’02). (2002) 385–392

6. Eisenhauer, G., Bustamante, F.E., Schwan, K.: Event services in high performance
systems. Cluster Computing 4 (2001) 243–252

7. Zhou, D., Schwan, K., Eisenhauer, G., Chen, Y.: Supporting distributed high
performance application with java event channels. In: Proceedings of the 2001 In-
ternational Parallel and Distributed Processing Symposium (IPDPS 2001). (2001)

8. Huang, Y., Garcia-Molina, H.: Publish/subscribe in a mobile environment. In:
Proceedings of the 2nd ACM International Workshop on Data Engineering for
Wireless and Mobile Access (MobiDE’01). (2001) 27–34

9. Cugola, G., Jacobsen, H.A.: Using Publish/Subscribe Middleware for Mobile Sys-
tems. ACM SIGMOBILE Mobile Computing and Communications Review 6
(2002) 25–33

10. Fiege, L., Gärtner, F.C., Kasten, O., Zeidler, A.: Supporting mobility in content-
based publish/subscribe middleware. In: ACM/IFIP/USENIX International Mid-
dleware Conference (Middleware 2003). (2003) 103–122

11. : Uob-jadhoc aodv implementation, rfc 3561. http://www.aodv.org/ (2004)
12. Chen, T.W., Gerla, M.: Global state routing: A new routing scheme for ad-hoc

wireless networks. In: Proceedings of IEEE ICC’98. (1998)

374 Y. Chen and K. Schwan

13. Gui, C., Mohapatra, P.: Efficient overlay multicast for mobile ad hoc networks.
In: Proceedings of IEEE Wireless Communications and Networking Conference.
(2003)

14. Chen, Y., Schwan, K., Zhou, D.: Opportunistic channels: Mobility-aware event de-
livery. In: ACM/IFIP/USENIX International Middleware Conference (Middleware
2003). (2003) 182–201

15. Chen, Y.: Opportunistic Overlays: Efficient Content Delivery in Mobile Environ-
ments. PhD thesis, Georgia Institute of Technology (2005)

16. Johnson, D.B., Maltz, D.A.: Dynamic source routing in ad hoc wireless networks.
Mobile Computing 353 (1996)

17. Zhang, Y., Li, W.: An integrated environment for testing mobile ad-hoc networks.
In: Proceedings of the Third ACM International Symposium on Mobile Ad Hoc
Networking and Computing (MobiHoc’02). (2002)

18. Carzaniga, A., Rosenblum, D.S., Wolf, A.L.: Design and evaluation of a wide-area
event notification service. ACM Transactions on Computer Systems 19 (2001)
332–383

19. Cugola, G., Nitto, E.D., Picco, G.P.: Content-based dispatching in a mobile envi-
ronment. In: Proceedings of WSDAAL 2000. (2000)

20. Sutton, P., Arkins, R., Segall, B.: Supporting disconnectedness - transparent in-
formation delivery for mobile and invisible computing. In: CCGrid 2001 IEEE
International Symposium on Cluster Computing and the Grid. (2001)

21. Caporuscio, M., Inverardi, P., Pelliccione, P.: Formal analysis of clients mobil-
ity in the siena publish/subscribe middleware. Technical report, Department of
Computer Science, University of L’Aquila (2002)

22. Picco, G.P., Cugola, G., Murphy, A.L.: Efficient content-based event dispatching
in the presence of topological reconfiguration. In: Proceedings of the 23rd Interna-
tional Conference on Distributed Computing Systems (ICDCS 03). (2003) 234–243

23. Virgillito, A., Beraldi, R., Baldoni, R.: On event routing in content-based publish/-
subscribe through dynamic networks. In: Proceedings of the Ninth IEEE Workshop
on Future Trends of Distributed Computing Systems (FTDCS 2003), IEEE (2003)
322–328

24. Meier, R., Cahill, V.: Steam: Event-based middleware for wireless ad hoc networks.
In: In Proceedings of the 1st International Workshop on Distributed Event-Based
Systems (DEBS’02). (2002)

25. Huang, Y., Garcia-Molina, H.: Publish/subscribe tree construction in wireless ad-
hoc networks. In: Proceedings of the 4th International Conference on Mobile Data
Management(MDM 2003). (2003) 122–140

26. Yoneki, E., Bacon, J.: An adaptive approach to content-based subscription in
mobile ad hoc networks. In: Proceedings of The First International Workshop on
Mobile Peer-to-Peer Computing (MP2P’04). (2004) 92–97

27. Lee, S.J., Su, W., Gerla, M.: On-demand multicast routing protocol in multihop
wireless mobile networks. MONET 7 (2002) 441–453

28. Liu, M., Talpade, R.R., McAuley, A.: AMRoute: Adhoc Multicast Routing Pro-
tocol. Technical Report 99, The Institute for Systems Research, University of
Maryland (1999)

	Introduction
	The Opportunistic Overlay Approach
	System Model
	Basic Idea
	Dynamic Construction of Broker Networks
	Dynamic Home Broker Change

	Software Architecture and Selected Implementation Detail
	Overview of JECho
	Overview of Software Architecture
	Basic Component Layer
	Modulator Relocation Layer
	Adaptation Protocol Layer
	Client Component

	Performance Evaluation
	Simulation
	System Emulation
	Testbed

	Related Work
	Content-Based Event Systems
	Content-Based Event Systems in Mobile Ad-Hoc Networks
	Overlay Multicast Protocols in Mobile Ad-Hoc Networks

	Conclusions and Future Work
	References

