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Abstract—This paper explores the execution of planned AUV
missions where opportunities to achieve additional utility can
arise during execution. The missions are represented as tempo-
ral planning problems, with hard goals and time constraints.
Opportunities are soft goals with high utility. The probability
distributions for the occurrences of these opportunities are not
known, but it is known that they are unlikely so it is not worth
trying to anticipate their occurrence prior to plan execution.
However, as they are high utility, it is worth trying to address
them dynamically when they are encountered, as long as this
can be done without sacrificing the achievement of the hard
goals of the problem. We formally characterise the opportunistic
planning problem, introduce a novel approach to opportunistic
planning and compare it to an on-board replanning approach
in the domain of autonomous underwater vehicles performing
pillar expection and chain following tasks.

Note to Practitioners—This paper concerns high level intelli-
gent automation of unmanned vehicle operations in the context of
undersea inspection and maintenance. The objective is to provide
a robust long-term autonomy, enabling the vehicle to make its
own decisions about how to prioritise goals and use its resources.
Plans to achieve large numbers of goals over time are constructed
autonomously by a planning system using models of activity and
resource consumption. In order to avoid running up against
resource bounds in a way that would compromise robustness,
models of resource consumption are conservative. An important
aspect of long-term autonomy concerns how unused resources,
that accumulate over time because of conservative assumptions,
can be used to increase overall utility. The approach we describe
is deterministic: we do not model uncertainty or allow the planner
to reason with contingencies. Instead, we focus on how to exploit
resource intelligently to obtain the best available utility, in a
way that does not undermine the reliability or predictability of
operational behaviour.

Index Terms—Planning, Enhanced Execution, Autonomous
Underwater Vehicles,

I. INTRODUCTION

There are many examples of long-horizon control prob-
lems [1], [2] in which the goal is to complete specific tasks
under time and resource constraints [3], [4]. To do so requires
goal-achieving activities to be planned. An executive system
then executes the resulting plan in the physical world to bring
about the desired goals. This picture is complicated by the
fact that most physical environments are dynamic, leading to
uncertainty about the effects of actions [5]. One way to handle
this uncertainty is to build a plan as a policy (a mapping from
states to actions), allowing reactive control during execution,
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but the current Reinforcement Learning-based approaches to
policy construction [6]–[9] do not scale to handle long-horizon
tasks. It is computationally most efficient to plan without
taking uncertainty into account. When large parts of a plan can
be expected to execute without incident, it is more efficient to
exploit the strategy of replanning on failure, rather than to
try to plan ahead for contingencies. During the execution of
a plan, execution activity will divert from the original plan
when failures occur and actions to achieve the original goals
are replanned from the resulting unexpected state.

Another motivation for diverting from an original plan
arises when unforeseen opportunities to achieve additional
utility present themselves. Replanning on failure is a widely
recognised technique, but responding to opportunities demands
a different behaviour. In contexts in which these opportunities
are unlikely, and might arise without warning during execution
of a plan, the construction of a policy or a contingent plan that
can exploit them is generally impractical [10]. An example of
a domain in which opportunities can arise is in the pursuit
of planetary space science, where an unexpected high-value
science phenomenon might occur during the execution of
a long traverse. Instead of missing the phenomenon and
having to be directed back by human experts (as was the
case when the Mars rover, Opportunity, missed Block Island
in 2009), the intelligent vehicle should autonomously detect
the phenomenon and determine, without recourse to human
advice, whether there are resources available to devote to it.

In this paper we present an alternative strategy to exploit
opportunities in long horizon missions. Our hypothesis is that
it is more efficient following the approach presented in this
paper, to merge an opportunistic plan into an existing plan, as
opposed to replanning for every goal. Moreover, this approach
yields a higher expected value in terms of goals achieved.

The domain we consider in this paper is the autonomous
inspection and maintenance of underwater installations. We
begin, in Section II, by briefly introducing the field of Auto-
mated Planning, the technology we have exploited to address
opportunistic planning [11]. In Section III, we then describe
the operational context, introducing the relevant concepts and
explaining the planning problem. In Section IV we explain
what we mean by opportunistic planning, and in Section V we
formalise this problem. In Section VI we discuss probabilistic
approaches to similar problems. In Section VII we explain
how we have addressed opportunistic planning within a de-
terministic planning framework. We then present results for a
number of experiments and discuss future work directions.
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II. AUTOMATED PLANNING

Planning is the process of considering and organising
actions to achieve goals, before starting to execute them.
In planning, the actions that must be performed are not
predetermined by the goals, but are selected, from amongst
a typically large number of alternative actions. The choice
is guided by an effort to achieve the goals whilst optimising
various metrics [12]. Ordering choices and resource allocations
are made, and evaluated, as part of the selection process. The
selection of a particular action affects choices that can be made
subsequently, so has an important impact on the quality of the
eventual plan [12]. The consequence of this approach is that
neither the number of actions in a plan, nor the makespan
or resource allocation of the plan, are predetermined. This
distinguishes planning from scheduling, where the actions to
be performed are predetermined but the timing of actions, and
the allocation of resources to them, are not [13]–[15].

Planning relies on the use of a model of the available actions
to support both prediction of their effects on a state and the
identification of states from which the actions are applicable.
A standard modelling language used to represent actions for
this purpose is the Planning Domain Description Language
(PDDL), originally developed in 1998 by a committee led
by Drew McDermott [16], but later extended through several
variants, including PDDL2.1 [17], PDDL2.2 [18], PDDL3 [19]
and PDDL+ [20]. The extensions of most relevance to us here
are PDDL2.1 and PDDL2.2, which introduced actions with
duration and the opportunity for concurrency and management
of deadlines. In this language, a planning problem is formally
described by providing two files: the domain and the problem.
The problem file consists of two parts: the initial state and the
goals.

Definition 1: A state is a set of known true facts consisting
of boolean and numeric variables. A Boolean variable is
expressed as a proposition consisting of a predicate and a
vector of typed arguments, which is assigned the value True
or False. A numeric variable is expressed as a function applied
to a vector of typed variables, which is assigned to a numeric
value.

Definition 2: An action is a tuple 〈P, eff +, eff −〉, repre-
senting a function from state to state, described in terms of
its preconditions, P , and effects, eff + ∪ eff −. The Boolean
effects in eff + are the facts that are added by the action, while
the Boolean effects in eff − are the facts that are removed by
the action. The numeric effects in eff + ∪ eff − are to increase
or decrease a numeric variable by some numeric quantity, or
to assign a value to a numeric variable. An action may be
applied in any state in which the preconditions are true, and
it produces a state in which the effects are true.

Definition 3: A planning problem is a tuple, 〈Dom, I, G〉,
where Dom is the domain file specifying the types, functions
and predicates required to describe the problem, and contain-
ing the set of action schemas available to the planner. I is the
initial state, consisting of all the facts that are known to be true
when planning begins. G is the goal state, consisting of the
hard goal conditions that must be achieved by the planner. The
problem instance description varies, depending on the problem

to be solved, while the domain is a fixed description of what
the planner can do to change the state of the world.

A temporal planning problem is an extension of a planning
problem in which actions have duration. An action, A, is
specified as having a start and an end, and the temporal
constraint, that the start precedes the end (Astart < Aend), is
always enforced. The duration of an action might be flexible,
so that the planner can choose it dynamically. Durative actions
can specify invariant conditions that must hold over their
entire interval. When durative actions are present, the planner
must maintain a simple temporal network [21] to enable the
enforcement of temporal consistency during planning.

The actions used to model a domain usually encapsulate
a behaviour that is managed, in execution, by one or more
controllers, handling sensing and actuation to achieve a spe-
cific effect. The planner is concerned not with the execution of
actions, but their organisation into larger collections in order to
efficiently achieve a collection of goals. Thus, an action to nav-
igate between waypoints will be implemented by controllers
that attempt to use motors and localise via sensing [22]–[24],
while the planner is concerned with deciding which locations
to visit, for what purpose and in what order.

III. THE OPERATIONAL CONTEXT: UNDERWATER
MAINTENANCE AND INSPECTION TASKS

In this paper, we focus on long-term maintenance and
inspection of underwater installations, using an Autonomous
Underwater Vehicle (AUV) [25]. This work was carried out
in the EU FP7 project, PANDORA1. The PANDORA project
explored the achievement of persistent autonomy, through
planning, task learning, plan execution within resource limits
and adaptive response to unanticipated events.

The PANDORA project considers an underwater oil instal-
lation, consisting of manifolds, pipelines, valves and welds,
requiring regular inspection and maintenance. The installation
must be maintained over long periods, such as days or weeks,
without human intervention. Because of energy and time
constraints, mission plans must ensure that the best use is made
of limited resources such as on-board energy. The situation is
complicated by the fact that environmental conditions (such as
currents and marine life) might affect how long tasks take to
complete, and when they are available for completion. There
is also uncertainty, both in the layout of the installation and
the condition of its components (both of which might have
changed since the construction of the installation).

The overall objective of the PANDORA project is for a
suitably equipped AUV to: (i) construct long-term mission
plans to ensure an effective monitoring of the site over time,
and (ii) to execute the operations in these mission plans whilst
managing uncertainty and responding to unexpected events.
The AUV we use is the Girona 500 [26]. It is equipped with
a retractable gripper for turning valves, and a water jet for
cleaning.

The daily operations to be performed by the AUV include:
inspecting pillars, manifolds, welds and pipelines, reading
valve-sensors, turning valves, cleaning components exposed to

1http://persistentautonomy.com/
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bio-fouling, and updating the mapped layout of the site [27].
This latter task involves investigating objects that appear in
unexpected locations, such as collapsed pillars, buried chains
and pipeline segments, and other phenomena that could affect
the welfare of the installation.

IV. OPPORTUNISTIC PLANNING

During the execution of a plan by an AUV, unexpected
events might occur that provide opportunities for the vehicle to
increase the overall utility of its operations [28]. An example
is that a part-submerged section of an anchor chain, or other
structure, might be spotted during the execution of a mis-
sion [2], [29]. This event provides an opportunity to perform
an unplanned inspection, or chain-following [30], [31] activity,
provided that resources permit the execution of the necessary
extra actions. Opportunities are not modelled or anticipated
by the planner, and they can be managed without requiring
the planner to reason with probabilities. They can be treated
as dynamically occurring soft goals. These are distinguished
from the goals specified in the problem instance description,
which are treated as hard goals that must be satisfied.

To manage unexpected opportunities within a determin-
istic planning framework, we use a conservative planning
approach [32]. Conservative planning is a method that seeks to
exploit the classical planning framework, while simultaneously
recognising the underlying, but unknown, stochastic behaviour
of the execution environment. This means that well-researched
methods in temporal-metric planning can be exploited [33].
In this approach, rather than seeking to produce a plan with
optimal utility, we seek to produce a robust plan, in which we
can have very high confidence that the goals will be achieved
within the time and energy budget of the vehicle. We then
use opportunities to increase the utility of the plan during its
execution.

To construct the mission plans, we use the POPF plan-
ner [34], which takes planning domain models written in
the temporal planning language PDDL2.2 [18]. A temporal
planner is required because the valve-turning tasks impose
temporal constraints. They are constrained to be turned within
specified time windows. For example, in a given mission
it might be necessary to reset a valve within a one-hour
window timed to occur six hours into the future from the
start of the plan. These constraints necessitate reasoning with
deadlines and synchronisation of activities. Thus, although we
consider only a single AUV executing actions in sequence,
and therefore no concurrent activity, these deadlines raise
synchronisation issues which make online methods such as
the online receding horizon approach [35], [36] impractical.

Figure 1 depicts the PDDL domain file used in our experi-
ments. Figure 2 lists an example problem file, which contains
four valves that need to be turned within certain time windows.
Valves v0 and v1 need to be turned in the interval [0, 300] and
valves v2 and v3 need to be turned in the interval [400, 800].
Finally, Figure 3 depicts a valid plan for this problem.

We assume that opportunities are rare, but offer high utility
gain when they are spotted and exploited. Thus, opportunities
in this framework are somewhat similar to high impact, low

(define (domain pandora)

(:requirements ...)

(:types waypoint inspectionpoint pillar
panel valve chain vehicle)

(:predicates
(waypoint_not_occupied ?wp - waypoint)
(connected ?wp1 ?wp2 - waypoint)
(at ?v - vehicle ?wp - waypoint)
(near ?v - vehicle ?wp - waypoint)
(not_illuminating ?v - vehicle)
(cansee ?v - vehicle ?wp - waypoint ?ip - inspectionpoint)
(cansee_pillar ?v - vehicle ?wp - waypoint ?p - pillar)
(observed_pillar ?p - pillar)
(pillar_illuminated ?p - pillar)
(canexamine ?v - vehicle ?wp - waypoint ?p - panel)
(canreach ?v - vehicle ?wp - waypoint ?p - panel)
(examined ?p - panel)
(on ?a - valve ?p - panel)
(valve_blocked ?a - valve)
(valve_free ?a - valve)
(chainat ?c - chain ?wp - waypoint)
(chain_examined ?c - chain)

)

(:functions
(arm_calibration ?auv - vehicle)
(observed ?ip - inspectionpoint)
(obs ?ip - inspectionpoint ?wp - waypoint)
(distance ?wp1 ?wp2 - waypoint)
(valve_goal ?va - valve)
(valve_state ?va - valve)
(valve_goal_completed ?va - valve)

)

(:durative-action do_hover_controlled ...)

(:durative-action do_hover_fast ...)

(:durative-action correct_position ...)

(:durative-action observe_inspection_point ...)

(:durative-action illuminate_pillar ...)

(:durative-action observe_pillar ...)

(:durative-action examine_panel ...)

(:durative-action turn_valve ...)

(:durative-action recalibrate_arm ...)

(:durative-action follow_chain ...)
)

Figure 1: A fragment of the PDDL domain file, with the
action bodies omitted for space, for autonomous underwater
missions. The hover actions are the movement actions for the
AUV, it has two movement speeds. High speeds necessitate
the AUV to correct its position after moving. The AUV can
inspect and observe manifolds (including pillars) and use its
on-board lights to illuminate manifolds for better vision. It can
examine a panel and turn valves. After using the arm, it needs
to be recalibrated. Finally, the AUV can follow a chain if it
finds one.

probability events (HILPs) [37], [38], although in this setting
we are considering rare events with a positive value, while
HILPs are typically treated as risks that threaten execution. We
further assume that the probability density function governing
the distribution of these opportunities in the physical space is
unknown, so we cannot plan to anticipate them or determine
their expected utility.
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(define (problem valve_turning-task)

(:domain pandora_valve_turning)

(:objects
auv - vehicle
p0 - panel
v0 v1 v2 v3 - valve
w0 wp_strat_p0 - waypoint

)

(:init
(connected w0 wp_strat_p0) (= (distance w0 wp_strat_p0) 2)
(connected wp_strat_p0 w0) (= (distance wp_strat_p0 w0) 2)
(at auv w0)
(canreach auv wp_strat_p0 p0)

(on v0 p0) (valve_free v0)
(on v1 p0) (valve_free v1)
(on v2 p0) (valve_free v2)
(on v3 p0) (valve_free v3)

(= (valve_goal v0) 0) (= (valve_state v0) 0)
(= (valve_goal_completed v0) 0)

(= (valve_goal v1) 0) (= (valve_state v1) 0)
(= (valve_goal_completed v1) 0)

(= (valve_goal v2) 0) (= (valve_state v2) 0)
(= (valve_goal_completed v2) 0)

(= (valve_goal v3) 0) (= (valve_state v3) 0)
(= (valve_goal_completed v3) 0)

;; time window 1 [0--300]
(at 0 (= (valve_goal v0) 45))
(at 0 (not (valve_blocked v0)))
(at 0 (valve_free v0))
(at 0 (not (valve_goal_unchecked v0)))

(at 300 (valve_blocked v0))
(at 300 (not (valve_free v0)))

(at 0 (= (valve_goal v1) 180))
(at 0 (not (valve_blocked v1)))
(at 0 (valve_free v1))
(at 0 (not (valve_goal_unchecked v1)))

(at 300 (valve_blocked v1))
(at 300 (not (valve_free v1)))

;; time window 2 [400--800]
(at 400 (= (valve_goal v2 270))
(at 400 (not (valve_blocked v2)))
(at 400 (valve_free v2))
(at 400 (not (valve_goal_unchecked v2)))

(at 800 (valve_blocked v2))
(at 800 (not (valve_free v2)))

(at 400 (= (valve_goal v3) 10))
(at 400 (not (valve_blocked v3)))
(at 400 (valve_free v3))
(at 400 (not (valve_goal_unchecked v3)))

(at 800 (valve_blocked v3))
(at 800 (not (valve_free v3)))

)

(:goal (and
(>= (valve_goal_completed v0) 1)
(>= (valve_goal_completed v1) 1)
(>= (valve_goal_completed v2) 1)
(>= (valve_goal_completed v3) 1)

)))

Figure 2: An example problem file. The AUV is tasked to turn
four valves within two distinct time windows. Valves v0 and
v1 need to be turned in the time interval [0, 300] and valves
v2 and v3 need to be turned in the time interval [400, 800].
Each valve has target angle it needs to be turned to.

0.000: (correct_position auv wp0) [10.000]
10.001: (do_hover_controlled auv wp0 wp_strat_p0) [33.532]
43.534: (turn_valve auv wp_strat_p0 p0 v0) [120.000]
163.535: (correct_position auv wp_strat_p0) [10.000]
173.536: (turn_valve auv wp_strat_p0 p0 v1) [120.000]
293.537: (correct_position auv wp_strat_p0) [10.000]
293.537: (recalibrate_arm auv wp0) [180.000]
473.538: (turn_valve auv wp_strat_p0 p0 v2) [120.000]
593.539: (correct_position auv wp_strat_p0) [10.000]
603.540: (turn_valve auv wp_strat_p0 p0 v3) [120.000]

Figure 3: A solution to the planning probled listed in Figure 2.

Our conservative planning strategy is based on the assump-
tion that, when executed, the actions in a plan will have
durations that are normally distributed around their means,
and that actions will in fact take much longer than their mean
durations. To build a robust plan we therefore use estimated
durations for the actions that are longer than the means.
For example, to have 95% confidence, we use 1.65 standard
deviations from their means as the estimated durations of
the actions. 1.65 standard deviations from the mean is the
95th percentile of the Gaussian distribution. The approach is
applicable in the case of any kind of distribution, as long as
a maximum duration can be estimated with 95% confidence.

As a plan containing multiple actions is executed, the use
of the 95th percentile as an estimate for the nominal execution
time of each action leads to an accumulating expected error.
So, if k actions all with independently distributed mean
execution times m and standard deviations s are executed in
sequence, the sum of the estimated durations will yield a total
time for execution of k(m+1.65s). The time actually required
to achieve the 95th percentile for the combined sequence of
actions is only km+1.65s

√
k, showing that the estimate based

on individual 95th percentiles yields a 1.65s(k −
√
k) over-

estimate of the time required for 95% confidence in execution
of the entire sequence. Our proposed opportunistic planning
method is designed to exploit this over-estimate for other tasks
that arise opportunistically.

As a practical example, suppose that navigating the traverse
between two waypoints on the installation has a mean time
of 11,507 seconds (3.2 hours), and a standard deviation of
925 seconds (about 15 minutes). If 5 successive traverses
between waypoints are to be executed, the use of the nominal
time estimates will yield an estimated duration of 65,166
seconds (about 18 hours). The 95th percentile for the estimated
duration of the combined sequence is 60,948 seconds, so using
the 95th percentile for nominalisation will lead to an expected
overestimate for the execution time of 4,218 seconds: just over
an hour, which is about 7% of the 95th percentile time for the
execution of the complete sequence.

Opportunities can only be spotted and exploited during the
execution of preemptible actions, or at points between the
execution of actions. In our application, the only preemptible
actions are the navigation actions (of different types, cor-
responding to different modes of movement). We consider
opportunities that are physically located in space, so it is
generally the case that they will arise during movement
between locations, when large areas are scanned as part of
the navigation action.
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With these points in mind, the opportunistic planning prob-
lem is as follows:
• The problem is a temporal planning problem, with deter-

ministic actions and a collection of hard goals specified
in the problem instance description.

• The problem exists in a 3-dimensional space, with tasks
requiring the executive to perform actions at particular
locations and actions allowing the executive to move
between locations (possibly in more than one way).

• The initial state is uncertain in a limited way: there
is a possibility that, at random locations, instances of
objects exist that offer high reward if certain actions
are performed at their locations, but their existence and
locations are not known to the planner. There is also
uncertainty about whether these objects will be observed,
even if the executive passes close to them.

• Although the probability distribution of opportunities is
unknown, it is assumed that they are rare and it is
therefore entirely likely that the plan for the original goals
will be completely executed without an opportunity ever
being encountered.

• The executive is required to satisfy the hard goals of
the original problem, and to collect as much reward as
possible from opportunities, given that the hard goals are
achieved.

Since the durations of actions can be longer than expected,
the goals might not be achieved when executing a plan that
is expected to satisfy them, due to failure to meet deadlines.
In fact, during execution actions can fail for various reasons
and the goals might become unachievable as a consequence. In
this paper we do not focus on what happens when actions fail.
Instead, we are interested in the possibility that a conservative
assumption about the time required to execute actions used in
the original plan might lead to slack time that can be used to
pursue opportunities.

In this paper we formalise the opportunistic planning prob-
lem, we propose a way to obtain good quality solutions to
it and we compare the proposed approach with the simple
alternative to replan whenever the observed state diverges from
the predicted state during execution.

V. THE OPPORTUNISTIC PLANNING MODEL

We present a formal description of the opportunistic plan-
ning problem. We assume that P is a temporal planning
problem, consisting of a domain and a problem instance,
expressible in PDDL2.2 [18]. The domain provides a finite,
enumerated type representing locations, W , in a 3-dimensional
space. In the PDDL family of languages, the members of this
type are all explicitly named in the definition of the planning
problem instance. We suppose that P represents a problem in
which goals are associated with locations (for example, pillars
are located at waypoints), so that the executive must visit
those locations in order to complete the achievement of the
goals. We further suppose that the domain file of P contains
at least one action schema that allows an executive to move
between locations (possibly subject to accessibility constraints,
restricting which pairs of locations are directly connected).

Definition 4: An opportunity is a tuple, 〈T,Og, U〉, where
T is the name of a PDDL enumerated type in P , Og is a goal,
with at least one free variable, v of type T , and U is a utility
value in R. The goal Og[v] is called an opportunistic goal.

An opportunity is a soft goal schema that is associated with
objects of a particular type, T , appearing in the domain of
P . The idea is that instances of T can be discovered and
added to the world during plan execution, each leading to the
creation of a new soft goal by instantiation of free variable
v in the opportunistic goal, Og. For example, Og might be
an inspection goal, and v might be instantiated by the object
“pillarA” of type Pillar, resulting in a new soft goal to have
inspected pillarA. In this work, we assume that soft goals
always correspond to performing operations on single objects.
An opportunistic planning domain consists of the original
domain, P , and a collection of opportunities.

In a real world situation, opportunities are distributed in
some way around the physical area being explored. In a
simulation, they can be placed randomly around in the space.
In both cases, they exist to be discovered, but are not modelled
by the planner. They arise when new objects are identified
at locations that may have been previously unmapped and
inaccessible. If an opportunity is present, it can only be
discovered if the executive passes within sensing distance of its
location (a distance dependent on the type and effectiveness of
sensors available) and with some associated probability, which
is unknown.

The modelling language PDDL2.2 provides a feature called
Timed initial literals (TILs) which record, in the problem
instance description, time windows during which goals are
achievable.

Definition 5: An opportunistic planning problem is a tuple
〈P,A,Opps,R〉, where P is a temporal planning problem
(as described above), I is the initial state (including timed
initial literals that determine deadlines for goals), G is a set
of hard goals (they must all be achieved in any goal state), A
is a distinguished subset of actions in P that are preemptible,
Opps is a set of opportunities, and R is a function giving the
mean and standard deviation of the duration of any grounded
instance of an action in P . The durations of action instances
are specified at the 95th percentile of the distributions whose
parameters R reports.

If an opportunity is discovered, replanning is initiated and
an extended initial state is constructed. If the opportunity is
discovered at time t, the TILs in the extended initial state must
be displaced by t (to allow for the time that has passed since
the start of execution). Any TILs with time earlier than t are
discarded and those later than t have their times reduced by
t. We call these time-corrected TILs.

Definition 6: A monotonic extension of an initial state
description, I ′, extends I with a new collection of objects and
waypoints, O = {o : T} ∪ {w : W} and facts F , such that
each f ∈ F includes at least one object in O, and new soft
goals Og, formed by grounding the opportunities associated
with type T using objects in O. Connectivity is added, linking
the new waypoints so that the newly added opportunity can be
reached. The extended initial state, I ′, adds O to the objects
in I and records the opportunity utility as a reward for actions
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achieving goals in Og. I ′ contains all the facts and time-
corrected TILs in I as well as facts F .

The extended initial state will locate discovered opportu-
nities at new locations and new paths will be available by
which they can be accessed. According to the topography of
the space, some paths might require additional intermediate
locations to have been added to the state. Waypoints are gen-
erated using an RRT algorithm [30]. The minimum distance
between waypoints is 1 meter and the maximum is 5 meters.
When an opportunity is observed a new set of waypoints, W ,
is created (see Definition 6). We invoke an RRT algorithm to
connect the existing set of waypoints of the temporal planning
problem to W . The number of intermediate waypoints added
by the RRT algorithm will depend on how easily these two
sets of waypoints can be connected and the distance between
them.

Definition 7: An opportunistic plan fragment in state S
is a plan constructed to achieve a grounded opportunistic goal
from state S.

Our approach integrates opportunistic plan fragments with
the original plan, in order to exploit an opportunity within the
context of achieving the hard goal set. Hence, an opportunistic
plan fragment is only valid if it does not make the hard goals
unreachable. Opportunistic plan fragments, once integrated
with a plan, can be visualised as sub-plans (which might be
long chains of actions) that branch off from the main plan
trajectory, finally returning to the main plan at a point enabling
its continued execution to result in the achievement of the hard
goal set. The means by which this integration is achieved is
discussed in Section VII.

VI. RELATIONSHIP TO OTHER PROBABILISTIC MODELS

Earlier work [39], [40] explores a different model of op-
portunities in which the opportunities and their locations are
known in advance of starting the execution of the plan. Op-
portunistic plan fragments are computed offline, and executed
online if their resource requirements are met. Woods et al. [41]
assume that the types of opportunities that can arise are known,
and that all opportunities of the same type can be exploited
by the same opportunistic plan fragment. Plan fragments are
precomputed and stored in a plan library. The relevant plan
fragment is then inserted into the plan whenever an opportunity
of its type is identified, and resources allow.

The opportunistic planning problem can be seen as a spe-
cial case of a Partially-Observable Markov Decision Problem
(POMDP), with an infinite state space (due to the continuous
3-dimensional distribution of locations of possible opportuni-
ties). A general solution to such a problem is a policy, mapping
each possible state to an action. If the probability distribution
over the opportunity space were known, the problem could
be modelled as an explicit POMDP [42]. Whether or not to
pursue an opportunity in a certain belief state amounts to
whether the expected utility of pursuing the opportunity, in
addition to achieving the hard goal set, all within the resource
envelope available, exceeds the expected utility of completing
the current plan under execution with lower resource pressure.
The problem can be modelled but, even with recent work

on improving efficiency [9], [36], [43], the decision-theoretic
approach will not scale to the sizes of problems that arise in
practical applications. Moreover, the offline decision-theoretic
reasoning cannot be done at all in the absence of knowledge
about the probability distribution over the opportunity space.
A further problem in creating a POMDP model is that states
must record histories in order to capture the fact that repeated
observations of a part of the physical space do not have inde-
pendent probabilities of leading to discovery of an opportunity:
if nothing is seen on one observation, then the probability
that there is anything there to be seen is much lower. Finally,
the continuous space presents a very significant challenge in
representing the state space, since we cannot know in advance
which locations are of interest, or, therefore, which areas of
the space might be observed or even become accessible.

Although a POMDP model appears very difficult to re-
alise and a full policy impossible to achieve with current
approaches, a partial policy might be more tractable. One
possible partial policy structure is a contingent plan in which
alternative branches are built explicitly into the plan struc-
ture [44], [45]. Contingent planning is very expensive, so var-
ious methods have attempted to limit the number of contingent
branches constructed. In particular, Coles [10] considers over-
subscription planning with resource uncertainty. In her ap-
proach, the configuration of the world and all goals, including
opportunities and their locations, are known in the initial state,
which makes it unsuitable for tackling the problem we have
characterised.

Burns et al [35] use an online receding horizon approach
to consider anticipatory on-line planning in which plans take
into account goals that are likely to arise, in order to be better
prepared for achieving them efficiently. This is a relevant idea,
but the difficulty in applying it to the problem we present
is that, in our model, opportunities are assumed to be rare,
making it unlikely that investment of resource in searching
for an opportunity, rather than in simply completing the main
mission goals, will pay dividends.

All of these approaches rely on some knowledge of the PDF
over opportunities. By contrast, replanning does not require
any knowledge about probability distributions, either over the
opportunity space or over the use of resources by actions. In
a reactive online method, a replanning strategy responds to an
opportunity by throwing away the plan under execution, and
building a new, conservative, plan for the union of the hard
goal set and the opportunity. It then executes this plan instead,
whenever its available resources are sufficient to achieve the
new goal set.

Replanning is therefore a plausible approach to our problem.
However, we hypothesise that replanning will be unnecessarily
expensive, because it will replan parts of the problem for
which there is already a detailed, and resource-valid, plan
structure in place.

VII. THE PROPOSED APPROACH

We propose an approach to solving the opportunistic plan-
ning problem (Definition 5) as described in Section V. Our
approach tackles opportunities (Definition 4) by inserting
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opportunistic plan fragments (Definition 7) into an existing
robust plan, generated using conservative planning.

In our implementation of opportunistic planning, we con-
sider the distributions of the action durations and plan at the
95th percentiles of these distributions. This provides a stable
baseline for robust confidence in the completion of the plan.
Conservative planning seems an inefficient way of allocating
time to tasks, but this apparent inefficiency is offset by the fact
that plan utility is likely to be improved upon at execution
time. The executive may decide to use any resource gained
during execution to carry out extra tasks, such as pursuing
opportunities, on top of the basic plan.

We manage execution of an opportunistic plan via the use
of an execution stack. When a decision is made to pursue an
opportunity, the tail of the executing plan is pushed onto the
stack. The initial state is monotonically extended (Definition 6)
and the opportunistic goals are constructed, including a new
goal to return to the main plan. Specifically, the location
where the AUV has to return is the final position at the
end of navigation action(s) that were pruned (see Figure 6).
Replanning is initiated so that an opportunistic plan fragment
is constructed. As long as this successfully completes within
the planning time bound, and the resulting plan fragment
can be executed within allocated resources, execution of the
opportunistic plan fragment begins. When the opportunistic
plan fragment has finished executing, the remainder of the
main plan is popped off the stack, and its execution is then
resumed. With this execution method, it is possible for an
opportunistic plan fragment under execution to be suspended
and stacked, if a new opportunity is detected during its
execution. This is illustrated in figure 5.

When an opportunistic plan fragment is incorporated, some
steps from the main plan might become redundant. In this case,
some reasoning is needed to return to the latest possible state
on the main plan trajectory (obviating as many redundant steps
as possible). In particular, when an opportunity is planned, the
main plan suffix is pruned by removing all of the navigation
actions (or more generally ”support actions”) at the front of the
suffix. Figure 4, part (a), shows an opportunistic plan fragment
that has been inserted into the plan, while part (b) shows the
structure of a contingent branching plan. It can be seen that, in
principle, opportunistic planning explores many fewer states.

A. The Implementation

In our implementation, the types of opportunities that can
be identified are inspections and investigations. In particular,
we restrict our attention to pillar inspections and a particular
kind of investigation called chain-following. New objects of
types Chain and Pillar are detected during AUV operations.
When a new object is spotted, a new opportunity is created, by
instantiating the corresponding opportunistic goal, as described
in definition 4. The consequent construction processes, by
which the extended initial state and the new soft goal are
set up, are described in Definition 6. Our implementation of
the Opportunistic Planning method behaves as follows, and is
detailed in Algorithm 1:

Algorithm 1: opportunisticPlanningMethod
input : timelimit : Int, missionID : Int, missionEndPoint : Waypoint
output : boolean

1 problem ← generateProblemFile(now(), missionID,
missionEndPoint);

2 plan ← makePlan(problem);
3 planStack ← ∅;
4 replanRequested ← false;
5 freeTime ← 0;
6 if plan.duration() > timelimit then
7 return false;
8 end
9 else

10 while plan.duration() > 0 do
11 currentAction ← plan.pop();
12 dispatchTime ← currentAction.dispatchTime;
13 if not canDispatchEarly(currentAction) and now() <

dispatchTime and not replanRequested then
14 wait();
15 end
16 while currentAction.AUV.isBusy() and not

replanRequested do
17 wait();
18 if now() > currentAction.timeout then
19 dispatch(cancelAction);
20 replanRequested ← true;
21 end
22 if opportunistic plan requested then
23 opportunistic plan requested ← false;
24 currentEndPoint ← currentLocation();
25 prunedActions ← {};
26 while plan.first() == ”do hover*” do
27 currentEndPoint ← plan.first().destination;
28 prunedActions.push_back(plan.pop());
29 end
30 planStack.push_back(plan);
31 if not

opportunisticPlanningMethod(freeTime,
opportunisticMissionID, currentEndPoint) then

32 planStack.insert(prunedActions, 0);
33 end
34 planStack.pop(plan);
35 end
36 end
37 if not replanRequested then
38 dispatch(currentAction);
39 freeTime ← now() - dispatchTime;
40 end
41 else
42 replanRequested ← false;
43 problem ← generateProblemFile(now());
44 plan ← makePlan(problem)
45 end
46 end
47 end
48 return true

• construct a sequential strategic plan to achieve the goal
set (top level missions) within a conservative resource
bound;

• start executing that plan under operational control, keep-
ing track of unspent resources;

• branch off the plan to handle an opportunity within the
unspent resource bound, storing the plan suffix (this is
recursive);

• return to the plan suffix as soon as possible.

The execution of this algorithm, showing the management
of the plan stack, is shown in Figure 6.
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Figure 6: The execution of the algorithm, showing how plan suffixes are stacked. We start at the currently executing plan. When
an opportunity is detected, the support actions are pruned and the plan suffix is stacked. Then we plan for the opportunity. If
the opportunistic planning is successful, then the opportunistic plan becomes the new currently executing plan, otherwise the
support actions are executed.

(a)

(b)

Figure 4: (a) The main plan with an opportunistic plan
fragment attached. The fragment rejoins the plan suffix at the
first necessary point for completion of the hard goal set. (b)
The structure of a contingent plan. Each branch leads to a
different goal set, depending on resource availability at the
branch nodes.

A limitation of our approach so far is that we treat navi-
gation actions as different from any other actions. They are
only needed to move the AUV to places where tasks can be
done. They can therefore always be safely removed from the
suffix, without invalidating the remaining plan, as long as we
can reach the next interesting waypoint after completion of an
opportunistic plan fragment. The next interesting waypoint is
the location at which the next non-navigation action is planned
to be performed. When the opportunistic planning problem is
created, a goal is included to return to this location.

Integrating opportunistic plan fragments becomes more
complex if other actions are preemptible, and we will consider

Figure 5: Plan execution with opportunity insertion. Actions
2, 3, and 4 of the main plan are navigation actions (or
more generally ”support actions”) which are subsumed by the
opportunistic plan fragment. The opportunistic plan achieves
the preconditions of the tail end of the main plan, while
adhering to the deadline constraints.

such extensions in our further work.
In Algorithm 1:

• input: time limit in seconds, missionID identifies the
mission goals;

• line 1: now() is the current time. (at AUV MissionEnd-
Point) is included as a goal. The opportunistic problem
is generated (see Defintion 5);

• line 3: replanRequested can be set true by external
processes;

• line 12: We set by hand which actions can dispatch early
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(all except for turn valve);
• line 16: An AUV is busy while still executing an action;
• line 18: An action’s default timeout can be chosen per

operator, either as duration*T for some T, or duration+T
for some other T;

• line 22: opportunistic plan requested is a communication
variable that is declared and initialised externally, and
then set true by an external process;

• lines 26-29: These lines find the finishing location for
the opportunistic plan, and remove the do hover actions
from the parent plan (see Figure 1);

• lines 31-33: If the opportunistic mission was not possible,
then the do hover actions are reinserted at the start.

A final point about the implementation is that we do not
currently use the utility component of an opportunity. This
is because we have restricted the system to detecting and
considering only one opportunity at a time, and an opportunity
will always be pursued if time and resources allow. However,
in general there might be several opportunities available, in
which case a means is required for distinguishing them. Utility
provides a way in which opportunities can be ranked for con-
sideration. One approach would be to rank the opportunities
by utility, then execute the first one in the ranking that fits
into the available time and resources. Again, this is a topic for
future work [12], [46].

VIII. EXPERIMENTS

Our hypothesis is that the opportunistic planning approach,
just described, is more efficient than replanning the entire hard
and soft goal set every time a new soft goal is identified.
This might seem to be a “straw man” comparison, because
it might seem obvious that replanning is apparently facing a
much harder challenge than that of planning to achieve a local
opportunity within a well-defined context. However, this is not
always the case. When replanning, the planner throws away
all of the constraints of the defunct plan and has complete
freedom about the timing of activities, as long as they fit within
their respective time windows. This allows the planner to
optimise activity around deadlines. By contrast, opportunistic
planning has to fit all activity into the free time envelope
of the global plan, which necessitates a myopic approach to
opportunities (now or never), and might be over-constraining.

We therefore contrast our approach with a replanning
method, to identify whether we gain any significant advantage,
in terms of overall plan utility and resources spent planning,
from the opportunistic approach.

In the case where no opportunity is observed during exe-
cution, the replanning strategy and the opportunistic planning
strategy will both simply execute the main plan to achieve
the hard goals, with no deviation (except in response to plan
failure, which we ignore here). Therefore, the differences
lie only at the point where an opportunity is discovered.
In the replanning case, we construct a new initial state and
replan for the entire goal set. In the opportunistic planning
case, we plan only for the opportunity, together with a goal
to return to the start of the plan suffix. Both approaches
begin by constructing the monotonically extended initial and

goal states. The opportunistic approach benefits from what is
usually a simpler planning problem in exchange for losing
the possibility of finding a better plan by exploiting the
remaining resources to achieve the opportunity and original
goals together. Our experiments consider the situation at a
point at which an opportunity has been discovered.

We perform the comparison by setting up a main mission,
with hard goals, and an opportunity. The main mission is
taken to be a valve-turning mission, possibly involving many
valves, and the opportunity mission is an inspection (we do
not consider investigations in this experiment). In the valve-
turning mission, the AUV is required to approach and set two
valves within a deadline. The effect of setting a deadline is to
bound the resource available for exploiting opportunities. The
inspection mission is not time-limited. When it arises as an
opportunity, a plan to exploit it must fit within the available
free time envelope and respect the deadlines for valve turning.
Inspection missions are of several sizes, ranging between 2 and
32 inspection points.

In our simulation, the main mission elements and the
opportunities are located within an area 50m by 50m and
set at least 5m apart. We are considering seabed facilities,
hence the goals are distributed within 20m from the seabed.
They are positioned successively, with uniform probability
over the available area. The deadlines for valves are set
to different values, making the planning problems harder
as the deadlines are tightened. The opportunistic planning
strategy requires the opportunity to be exploited within the
free resource window, before the completion of other mission
components. The replanning strategy does not require this, but
both strategies require the overall plan to be completed by the
mission deadline.

We used POPF2 as our planner on a PC running Ubuntu
14.04 with an iCore5 3550 3.3Ghz processor and allowed 8
GiB of RAM.

In Table I we report our results for a collection of randomly
generated problem instances. The opportunistic planner is
given 10 seconds to solve the problem. In general, the window
of opportunity is short, partly because it is most often the
case that we will discover an opportunity while navigating,
in which case we do not want to stop the vehicle unless we
decide to pursue the opportunity, and partly because the energy
and computational resources on board the AUV is limited. It
is also important that the time taken evaluating an opportunity
should not be significant compared with execution time of
actions, otherwise we endanger the main mission itself by
wasting resources on multiple opportunity evaluations. This
latter problem arises if the signal processing that leads to
recognition of an opportunity is unable to determine that
multiple sightings of the same object are actually not distinct
opportunities.

The replanning strategy was allowed 30 minutes of CPU
time to generate a best possible plan. We report the best
plan found in that time, with the time it took to find that
plan (POPF2 uses an anytime strategy of plan improvement,
reporting plans as they are found).

The bolded results are the cases in which the combined
mission is solvable with a higher quality solution within
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the 30 minute bound. In four of these cases, the replanning
strategy would outperform the opportunistic strategy, but in
the bold and italicised case, the plan takes so long to find that
the combined planning and execution time exceeds the time
available for the complete plan. Indeed, in almost all cases, the
complete plan is so much longer than the opportunistic plan
that it would not be possible to complete within the duration
of the intended mission time for the whole problem.

Part of the difficulty for the replanning strategy arises from
the forward search paradigm of POPF2. The existence of
deadlines leads to the planner pushing activity later along the
time line than is appropriate and it fails to search the parts of
the search space in which the short plans exist. In future work
we will explore alternative temporal planning strategies in
order to better understand the impact of this planning artefact
on the quality of the plans.

In one of our test cases the opportunistic planner failed
to find a plan within 10 seconds, so the plan reverts to the
main mission plan. In this case, the replanning strategy takes
3 minutes to find a plan that is far too long to be used in
place of the main mission plan, so this represents a waste of
the time spent in this attempt.

These results show very clearly that the planning time of
a complete replan is much higher than the time it takes to
plan for an opportunity alone. On average, planning for the
opportunity takes 3.2% of the time for a complete replan. Even
though planning for the combined mission should offer, in
principle, a chance to find a better quality solution than the
one found by simply linking the opportunistic plan fragment to
the front of the existing plan, the reality is that it is very hard to
achieve this. Table I shows that, on average, the opportunistic
approach leads to mission durations 60% of those obtained by
a complete replan. A more capable planning strategy might
be more successful in finding better plans, but the time taken
to do so would certainly be far greater than the time required
to find the opportunistic plan. Each such plan construction
attempt spends the very resource that is required to exploit the
opportunity itself, so it is an impractical approach to repeatedly
evaluate opportunities by using a full replanning approach.

IX. CONCLUSIONS AND FUTURE WORK

In this paper we have defined the concept of opportunistic
planning, a method for robust planning and plan execution
under limited uncertainty. We have presented a fully imple-
mented method for opportunistic planning of missions and
the interleaving of mission execution with utility-increasing
opportunities. The results of our experiments show that op-
portunistic planning is a good compromise between scalability
and robustness, allowing the practical management of uncer-
tainty. We have demonstrated that, in terms of time to plan
and resulting plan utility, opportunistic planning significantly
outperforms a replanning method.

Our current approach to opportunistic planning demon-
strates improvements over a replanning strategy, but has some
limitations. In particular: we do not evaluate the expected gain,
in terms of accumulated resource, of reducing our confidence
in achievement of the hard goal set. For example if, at some

point p, into the execution of a plan, we are willing to reduce
our confidence in successful execution of the plan suffix to
the 94th percentile, how much resource could we save for
spending on an opportunity spotted at p?

As an alternative to allowing the expected accumulation of
resources following the execution of a sequence of actions it
would be possible to adjust the sum of the nominal durations
to account for the length of the sequence. So, for k actions
each with identical mean and standard deviation, the nominal
durations can be reduced to m+ 1.65s√

k
.

More generally, where several actions are sequenced to
achieve a goal it is possible to discount the sum of the nominal
durations to allow for the expected accumulated benefits of
using the 95th percentile as the nominal durations of the
individual components.

In our future work we intend to experiment with trading
off confidence against utility, by doing this reasoning online
at the point at which we have evaluated an opportunity. The
actions in the plan suffix are not changed, but the confidence
in completing it successfully is traded for the benefits of the
opportunity. For a very high value opportunity it might even
be worth, in order to free up more resource, requesting the
sacrifice of a component mission from the command level
planner.
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