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Abstract — This paper provides the experimental results of a 

system utilising only the sensors available on a smartphone to 

provide an indoor positioning system that does not require any 

prior knowledge of floor plans, transmitter locations, radio signal 

strength databases, etc. The system utilises a Distributed Particle 

Filter Simultaneous Localisation and Mapping (DPSLAM) 

method to provide constraints on the drift of a simple hip-

mounted Inertial Measurement Unit (IMU) integrated into the 

smartphone and providing the core information on the movement 

of the user. This system was developed during a project 

investigating methods of providing relative positioning systems to 

a team operating for extended periods without GPS. The paper 

concentrates on the DPSLAM positioning technique suitable for 

use by an individual with no prior knowledge of the area of 

operation before deployment. As with all SLAM systems, the user 

is simply required to revisit locations periodically to enable IMU 

drifts to be observed and corrected. 

Opportunistic radio positioning, SLAM, indoor navigation 

I. INTRODUCTION (HEADING 1)

Over recent years there has been increasing interest in 
ubiquitous positioning, or the ability to determine a location in 
any environment, outdoors and indoors. We have all become 
used to the availability and performance of Global Navigation 
Satellite Systems (GNSS) for accurate outdoor radio 
positioning with a reasonable degree of reliability and 
availability. However radio indoor positioning is more 
challenging since GNSS signals do not penetrate buildings 
well, and indoor positioning therefore relies typically on local 
infrastructure and other support to aid the user. Indoor radio 
positioning is available today to the general public in 
conurbations via WiFi and cellular measurements, by 
exploiting a database of signal strength fingerprints managed 
and provided by a third party provider such as Skyhook [1]. 
The user can access this database via a cellular or WiFi data 
connection. These systems therefore have two clear constraints:  
the area must already have been surveyed, and the user must 
have a data connection available to them. 

An ideal system would not rely on these constraints, but would 
develop its own database during operation. Such a system is 
described and demonstrated here. The benefits of this system 
are significant - it can provide situational awareness and asset 
tracking in new and unknown environments for the military, 
emergency services, lone workers, security personnel and 

autonomous vehicles. This method does not require a data link 
to function, nor any prior surveying of the radio environment, 
nor any other prior knowledge such as a floor plan or map. The 
system can also be used however to quickly and easily generate 
maps of the radio environment or floor plans, which can be 
beneficial for organisations wishing to provide positioning 
services to the public using a simpler positioning method - i.e. 
this method can be used to rapidly survey an area and generate 
a signal fingerprint database for others users to exploit.  

II. INDOOR POSITIONING

A. GNSS challenges 

The problems with GNSS availability indoors are well 
documented. The weak signals cannot easily penetrate 
building materials, especially not through multiple floors. 
While high sensitivity receivers exist [2] that can provide 
indoor signal tracking with degraded positioning performance, 
they have not provided a viable solution to the indoor 
positioning problem.  

B. ZUPTS benefits and challenges 

An existing indoor positioning technique that does not rely on 

any infrastructure or prior knowledge is the Zero Velocity 

Updates (ZUPTS) method. In this method, an inertial 

measurement unit (IMU) is attached to the foot of a user and a 

strap-down IMU solution [3] tracks the movement of the user 

as they walk. A typical strap-down solution using low-cost 

and highly-portable IMU sensors would normally suffer rapid 

degradation in positioning performance with no external 

assistance from GNSS or other sensors. The ZUPTS method 

can however exploit a particular feature of pedestrian motion 

to constrain inertial drift. Each foot is regularly static during 

normal walking motion during the periods when the users 

exploit the friction between their foot and the ground to propel 

their body. Since an IMU mounted to the foot must also be 

known to be static during this short period, the IMU 

accelerometer and gyroscope biases are observable during this 

short period with every step. The regular observations of the 

IMU biases permit much more accurate inertial navigation 

than would be possible if these biases were not regularly re-

estimated. The accumulation of error associated with the 

ZUPTS location estimate is therefore reduced, but not 
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removed completely without further constraints. Extended 

operations indoors or in GNSS-denied locations will still 

result in a user’s positioning estimate degrading with time. 

Mounting a device specifically to a foot may also not be an 

attractive solution for some applications, e.g. military 

personnel, casual consumer users navigating a shopping 

centre, etc. 

C. Deployed beacons 

Indoor navigation and tracking can be provided by deploying 

dedicated tracking beacons in the area of operation [4]. The 

benefit of this approach is the ability to exploit positioning 

measurements from a well-known and carefully designed 

system. The drawbacks are the issues of signal penetration 

through multiple walls when systems are constrained to 

operating within legal broadcast limits and the practicalities of 

rapid beacon deployment with good signal geometry in a new 

area of operation. Typically any system exploiting the license-

free Industrial, Scientific and Medical (ISM) bands are limited 

by the maximum permitted broadcast power, resulting in a 

system with a maximum usable distance of a few tens of 

metres if there are multiple interior walls or other dense 

objects between the user and the beacons. This problem can be 

reduced by using low frequency signals [5] or by only 

operating in fixed environments with permanent indoor 

positioning needs, such as airports or warehouses, but is a 

significant problem for a system that must be capable of rapid 

deployment in new unknown environments (e.g. for military 

operations, rescue operations conducted by emergency 

services, etc). 

D. Opportunistic radio positioning benefits and challenges 

An alternative method of indoor radio navigation exploits 
pervasive opportunistic radio signals such as television, 
commercial radio and cellular broadcasts. These signals are 
typically received at much higher signal strengths than GNSS 
signals and so are capable of penetrating deeply into buildings. 
Much work has already been performed by various authors and 
companies in the field of outdoor opportunistic radio 
positioning exploiting standard radio positioning methods 
employing timing measurements to infer range between a given 
transmitter and the receiver or to assist GNSS signal 
acquisition [6 - 8]. However, the signal environment is highly 
complicated indoors, with rapid fading variations and highly-
variable multipath interference corrupting these simple, 
traditional positioning methods [9 - 10] The only feasible 
method of accurate opportunistic radio positioning in difficult 
signal environments is signal fingerprinting, where the pattern 
of signal strength measurements gathered at a particular 
location is assumed to be repeatable and unique [11]. This 
method is currently provided by pre-mapped databases of 
signal fingerprints which users access via a network 
connection. An obvious and desirable extension to this concept 
is the automatic generation of this database as a user explores a 
new, unknown area. This can be achieved by developing a 
Simultaneous Localisation and Mapping (SLAM) technique, 
and such a method is described and demonstrated in this paper. 

III. RADIO SIGNAL STRENGTH MAPPING

First it is important to test the hypothesis that radio signal 
strength maps in indoor environments exhibit high spatial 
variation, but low temporal variation (i.e. each map is complex, 
but does not vary significantly over time). To do this we use a 
Gaussian Processes regression scheme.  

A. Gaussian Processes 

A thorough discussion of Gaussian Processes (GP) is available 

in [12] and a discussion of its use for generating radio signal 

strength heat maps is given by Ferris [13]. The Gaussian 

Processes technique is a well-known multi-dimensional 

regression method that takes a set of training data and user-

defined Kernels to generate multidimensional Gaussian 

mixture models for the states of interest. 

The BAE Systems Advanced Technology Centre Research 

Facility provided the indoor environment for this study. This 

two storey building is roughly 100 metres by 50 metres in 

dimension, with a dense structure of multiple rooms, 

computers, servers, laboratories, and other objects. The 

building is located on the outskirts of a large town, and so 

enjoys a good coverage of opportunistic radio signals. Signal 

strength maps generated using training data and Gaussian 

Processes methods are given below in Figures 1, 2 and 3 for 

VHF signals (FM public broadcast radio), cellular signals 

(GSM 900) and WiFi (2.4 GHz) signals. The WiFi maps are 

shown as both GP mean value maps, and GP variance maps, 

demonstrating the ability of the Gaussian Processes method to 

not only provide a prediction of the estimated signal strength 

at an un-surveyed location, but to also provide an estimate of 

the error associated with the prediction. 

The aim of this set of measurements was to determine the 

complexity of these signal strength maps, and to determine 

their variation with time. Due to the range in opportunistic 

transmitter locations, frequencies and transmit powers there is 

a stark difference between maps. The most significant 

contributing factor to this is likely to be the variety of 

transmitter locations, resulting in signals entering the building 

from different directions. 

A simple experiment provided a useful test of the validity of 

Gaussian Processes for generating signal strength maps from 

training data while also testing the temporal variation in the 

maps. A set of GP signal strength maps was generated on a 

given day and then a week later the building was surveyed 

again. The new measurements were made at arbitrary 

locations within the building within the same regions (i.e. the 

same rooms and corridors) but no attempt was made to record 

new measurements at the exact old survey locations. The 

predictions extracted from the old GP maps at these new 

survey locations were then compared to the new survey data. 

The results are shown in Figure 4. It was determined that the 

new measurements typically agreed with the predicted values 

to within a few dBm, and within the error estimate of the 

Gaussian Process prediction. Large changes to the structure of 

the building or its contents are of course expected to cause 

more significant variations, and so ideally signal strength 

maps generated from previous visits to an area should only be 
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Figure 1: Gaussian Process mean signal strength maps for a number of VHF frequencies. The black crosses show the locations of the training data measurements 

used to generate the maps. The green dashed line marks the edge of the main building. The units of the image axes are pixel number. The colour bar scale is dBm.

Figure 2: Gaussian Process mean signal strength maps for a number of GSM 900 frequencies, given by Absolute Radio Channel Frequency Number (ARFCN). 

The black crosses show the locations of the training data measurements used to generate these maps. The units of the image axes are pixel number, and the colour 

bar scale is dBm. 
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Figure 3: Gaussian Process mean signal strength (left) and variance (right) maps for two WiFI routers in the test area. The black crosses show the locations of the 
training data measurements used to generate these maps. The green dotted outline shows the main building outer wall. The units of the image axes are pixel 

number, and the colour bar scales are in dBm. 
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Figure 4: Examination of the predictive capability of Gaussian Processes regression (see main text for discussion). The figure shows the results of two 

experiments, provided by the two columns. The top image in each column provides a comparison of the predicted values at each location (black circles) and the 
measured values at those locations (red squares) for two opportunistic VHF public radio broadcast frequencies. The lower plots show the residuals between those 

measurement sets. The x-axis provides the sample number through the surveys. 
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used as a coarse guide. The variance of Gaussian Process 

signal strength maps could grow over time, or “age” to reflect 

a reduction in confidence regarding the structure or contents of 

a given building. Ideally a system should not have to rely on 

any prior surveying of an environment at all, which is the 

great benefit of the SLAM method described by this paper.     

IV. OPPORTUNISTIC RADIO SLAM 

Previous authors have considered WiFi SLAM using Gaussian 
Processes Latent Variables [14] and an efficient extension in 
the form of GraphSLAM [15]. These methods utilize an 
iterative process to converge upon a SLAM solution. Here we 
utilize a method based on Distributed Particle SLAM 
(DPSLAM) [16]. The advantage of this method is that it 
provides a continuous “online” SLAM solution, a continuous 
representation of the current user location probability density 
function, and also provides a flexible core navigation engine to 
permit fusion of other sensors and constraints when available 
(e.g. GNSS data, road-snapping, indoor floorplans, etc).   

A. Occupancy Grid 

The occupancy grid is a simple concept. As the user moves 

through the indoor environment and makes radio 

measurements, the spatial resolution for storing these radio 

measurements defines a grid of permitted locations. For 

example, there is no point choosing to store fingerprints on a 

millimetre scale, or on a kilometre scale, when aiming to 

provide metre-level positioning indoors. A metre-scale 

occupancy grid is much more sensible. As a user moves 

through an environment, the particle cloud providing an 

estimate of the Probability Density Function (PDF) of position 

will be spread across a number of cells in the occupancy grid. 

At each measurement epoch the user will record the signal 

fingerprint at their current true location and each particle will 

enter their identity and the current time into the cell they 

currently occupy in the occupancy grid. When a particle 

revisits a cell in the occupancy grid, it can “look up” if it has 

been in that cell before and compare the current and old set of 

signal strength measurements. This provides the basis for the 

SLAM loop closure, as discussed below. 

B. DPSLAM 

Distributed Particle Simultaneous Localisation and Mapping is 

a particle-filter-based SLAM method [16]. DPSLAM exploits 

efficient databases via pointers and binary trees to maintain a 

history of the states of interest for each particle over time. The 

particle cloud states are initialized by some primary 

positioning system (e.g. GNSS signals outdoors before a user 

enters a building, or via signal fingerprinting from a prior map 

in a region where a prior map database is available, etc). 

While operating in a new GNSS-denied region, all positioning 

updates are provided by inertial measurements alone (e.g. 

ZUPTS or the simple step-and-compass method used here), 

resulting in a gradual decrease in the certainty of the user’s 

true location (i.e. the particle cloud disperses as the PDF 

expands). When the user is provided with some positioning 

constraint (e.g. GNSS availability) the particle cloud is 

reweighted (particles near the GNSS location estimate are 

given a high probability of representing the true user location) 

and resampled in the usual manner. The particle cloud then 

collapses accordingly, representing improved confidence in 

the user location. In this way, low probability particles and 

their history (including their entries into the occupancy grid) 

are “pruned” from the particle database, and high probability 

particles are duplicated to maintain a high density of particles 

around the maximum of the probability density function. The 

history of the particle cloud can also be updated at this point 

by reweighting the history of all particles, resulting in the 

track of the user being updated as well as the current location. 

This method extends to a SLAM framework when the 

positioning update is not via an external aiding mechanism, 

but is provided by the user revisiting locations and re-

observing “landmarks”, in this case making signal fingerprint 

measurements in revisited locations within the occupancy 

grid. If the signal environment is complex and varied, as is 

typical indoors, then signal fingerprints can vary measurably 

on short length scales (e.g. a few metres). When a user revisits 

a location, this will be reflected in the signal fingerprint 

measurements and the particles can be reweighted 

accordingly. A particle that revisits a cell in the occupancy 

grid and retrieves its old signal fingerprint, only to find that 

the current measured fingerprint is completely different, will 

be given a low probability weighting (it is unlikely that the 

user is really revisiting an old location, else the fingerprints 

would be similar). However a particle that revisits a cell, 

retrieves its old fingerprint and discovers that it is similar to 

the current fingerprint measured by the user will be given a 

high probability weighting, i.e. it is plausible that this particle 

represents the current user location because the old and new 

fingerprints match. As the user continues to move, if this 

particle continues to make a sequence of similar fingerprint 

measurements, then its probability weighting will stay high, it 

will spawn new particles at every epoch and the particle cloud 

will collapse onto it (low probability particles will be removed 

and high probability particles will be duplicated).   

C. Method 

The indoor tracking experiments discussed here were all 

performed using data gathered on a “smartphone” cellular 

telephone. The data was then processed offline using Matlab, 

although the processing time was much faster than the length 

of the experiments. The computational overhead was 

dominated by the number of particles (1500) used in the 

particle filter, which in turn is affected in part by the 

resolution of the occupancy grid (1m) and the performance of 

the inertial measurement unit. The availability of ZUPTs 

would greatly reduce the number of particles required. 

1) Smartphone measurements 

A simple Android program was written to log all sensor data 

from the smartphone to a file. The data included 

accelerometer, compass, GPS, WiFi, and cellular 

measurements. The WiFi measurements could be polled every 

second, but cellular measurements could not be polled by the 

user and were returned by the device at a varying  update rate 

of approximately 0.1 – 0.25 Hz. It seemed that the device only 
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returned cellular measurements when a change in power level 

was recorded. 

2) Pedestrian motion estimation 

A foot-mounted IMU method (ZUPTS) was not employed for 

a variety of reasons, including the lack of a gyroscope within 

the smartphone used. The inertial measurement process was 

relatively simple, with accelerometer thresholds used to 

determine that the user had made a stepping motion, and the 

compass used to provide an estimate of the direction of this 

motion. When walking with a hip-mounted IMU, the total 

accelerometer magnitude varies dramatically, typically 

registering a sudden but characteristic spike from around 0.8g 

to around 1.5g as the torso drops towards the ground with the 

leading leg, then is suddenly arrested as the leading foot hits 

the ground, as shown in Figure 5. A simple moving window 

across the streaming accelerometer data can therefore be used 

to register and count steps. The compass data was low-pass-

filtered to remove the high frequency perturbations caused by 

the user stepping motion. The IMU (smartphone) was 

mounted on the hip of the user during use. Aspects such as 

detecting motion types (walking and running, moving up and 

down stairs, sidestepping, etc) were also investigated. For the 

experiments described here the user walked around the ground 

floor of the indoor environment. In future a MEMS barometer 

may be useful in detecting floor changes to permit 3D indoor 

tracking. 

Figure 5: Stepping motion is easily detected from accelerometer data using 

thresholds (shown by the dotted horizontal lines) 

3) Navigation Engine 

The navigation engine utilized a particle filter to track the step 

length, compass bias, latitude and longitude of the user. The 

engine was initialized outdoors with an initial position 

estimate and uncertainty provided by GPS. This defined the 

initial size and position of the particle cloud. The engine was 

also initialized with an expected range in possible user average 

step length and compass bias. When the engine was initialised, 

each particle was allocated a randomly chosen step length and 

compass bias within this range. As the user moved, the 

accelerometer thresholds triggered each step event and the 

low-pass-filtered compass reading was passed to the engine. 

Each particle propagated their step length in the direction of 

the compass heading, with each particle’s slightly different 

step length estimate and compass bias setting resulting in the 

particle cloud growing over time. Each particle was also 

perturbed by a small randomly-generated amount to represent 

the small random variations in a user’s step length at each 

pace, and also to represent the measurement noise on the 

magnetic compass measurement. The particle filter could be 

constrained via GNSS measurements or DPSLAM processing. 

The user step length and compass bias became observable 

during periods of GNSS availability and whenever DPSLAM 

loop closure occurred. To further account for variations in step 

length and compass bias during the course of the tracking 

process, whenever GNSS measurements or a loop closure 

caused the particle cloud to collapse, the new particles 

generated by the reweighting and repopulating process were 

each given a small perturbation in step length and compass 

bias to the values originally allocated to their parent particle.  

D. Experimental results 

The results of a typical experiment are provided here in the 

form of images at various stages in the process (see Figure 6). 

The first image (marked A) shows the initial position of the 

user (represented by the particle cloud), provided by an 

outdoor GPS measurement. The red arrows visible on the map 

show the true path taken by the user. The floor plan itself is 

not available to the navigation engine, i.e. there is no 

knowledge of walls, rooms, outdoor regions, indoor regions 

etc. The next image (B) demonstrates the short path taken by 

the user to enter the building. Two paths are now visible. The 

blue path is the result of using the step detection and heading 

measurements alone, with no radio information provided. The 

green path represents the output of the full navigation engine 

fusing inertial measurements with opportunistic radio and GPS 

data. In these first few seconds of the journey, the availability 

of GPS provides some constraint on the step length of the 

user, and compass bias of the device, such that the navigation 

engine is partially calibrated when the user enters the building. 

The distance covered by the user by this stage is 

approximately 50 metres.  

With no prior knowledge of the opportunistic radio signal 

behaviour inside the building the positioning estimate is 

provided only by the step detection and magnetic compass 

estimates, and so the accuracy degrades with time. The 

particle cloud grows accordingly as the user moves through 

this new environment (image C). However by image D, the 

user has revisited a region encountered earlier on in the 

journey, when the true location of the user was known more 

accurately. Some of the particles in the cloud (the ones best 

representing the real path taken by the user) also revisit cells 

in the occupancy grid that they have populated before. The 

current radio measurements are compared to the old radio 

measurements stored in these occupancy grid locations, and 

the particles are reweighted according to how well their past 

and current measurements match. The new particle weights  
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Figure 6: These images show the first loop closure for an indoor positioning experiment using Opportunistic Radio DPSLAM. The red arrows show the true user 

motion during the whole experiment (see Figure 7). The blue line is the track from only the step detection and compass measurements. The green line represents 

the DPSLAM track. The information represented by the green circle is discussed in the main text. During images A and B, GNSS measurements allow the step 
length and compass bias to be observed. Image C demonstrates the growth of the particle cloud when using dead reckoning alone. Image D demonstrates the 

collapse of the particle cloud caused by the user moving through a previously-visited corridor such that the current radio fingerprints match those stored by the 

user earlier in the journey. The floor plan is provided as a visual aid here, but was not available to the navigation engine.  

A B

C D
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are applied to both the current particle cloud, and the history 

of the track. As the user continues to operate in the 

environment the system is able to constrain the drift on the 

user’s position while generating a map of the signal strength 

fingerprints within this building.  By the end of the 15 minute 

walk around the building the user’s final position error is only 

4 metres, compared to the error on the uncorrected inertial 

measurement estimate of 86 metres. The final user track is 

shown in Figure 7. 

Figure 7: The entire track produced by this fifteen minute indoor walk. The 

final position error for the unassisted IMU track (blue line) is 86 metres. The 
final position error for the Opportunistic Radio DPSLAM solution is 4 metres. 

The largest error at any point along the Opportunistic Radio DPSLAM 

solution track is 12 metres. It should be noted that during the system operation 
the instantaneous error can be larger than this, but that the history of the user 

motion is updated and improved whenever the user revisits locations or when 

GNSS measurements become available. 

The images in Figure 6 also contain a green circle which 

varies in size. This circle represents the overall global position 

error at this point. At early stages of the journey, before any 

particle re-weightings occur, the size of this circle is set by the 

size of the particle cloud and is stored at each epoch by each 

particle in the occupancy grid. This is critical for later particle 

cloud collapses as it maintains the history of the error 

associated with the dead-reckoned sections of track. The 

particle cloud can collapse down onto a previous section of 

track quite well, seemingly suggesting that the user’s location 

is well known. However that section of track may itself carry a 

large global error, as it may have been created after a 

significant period of dead reckoning. When a particle cloud 

collapse occurs due to a DPSLAM loop closure therefore, the 

particles extract the error circle size associated with that 

section of track history, and display that error estimate to the 

user as the error circle. The user may therefore see a tight 

particle cloud demonstrating that the user location is well 

known along its own historical path, but a large error circle 

demonstrating that the global estimate of the user location is 

not as well known. These historical error estimates could be 

corrected by the user generating a nearby GNSS estimate at 

some time in the future or by sharing Gaussian Process signal 

strength maps or training data amongst other users.  

V. CONCLUSIONS AND FURTHER WORK

A new method of indoor radio positioning has been developed 

that exploits opportunistic radio positioning and the DPSLAM 

technique. The flexible multi-sensor navigation engine 

provides indoor and outdoor radio positioning capabilities 

without any prior surveying or knowledge of the signal 

environment. The opportunistic signal source locations do not 

need to be known, nor do the signals need to be demodulated, 

decoded, or contain any specific structure. The only critical 

assumption is that the opportunistic transmissions maintain a 

fixed power output, and the use of signals populating known 

radio bands such as VHF FM, cellular, television, etc, will 

allow the user to confidently make that assumption. The user’s 

indoor position estimate is provided primarily by a simple 

inertial measurement unit, but the associated errors that 

normally increase with time can be corrected and bounded by 

opportunistic radio measurements within the SLAM 

framework.  

The indoor global positioning accuracy is dependent on the 

initial calibration of the system and so factors such as the 

accuracy of the initial GNSS position estimates while 

operating outdoors, and the calibration of the user step length 

estimate and initial compass bias during initial periods of 

GNSS availability. The indoor system accuracy is also 

dependent on the user periodically revisiting previous 

locations, to allow the user’s error to become observable and 

to be corrected.  

A powerful capability of this system lies in the ability to 

generate signal strengths maps for an area quickly and easily 

using this DPSLAM approach and Gaussian Process 

regression methods, rather than through a slow manual 

surveying approach.  

Current on-going work includes the addition of a simple 

wideband radio scanner to the sensor set to allow the 

incorporation of other radio bands than those recorded by a 

smartphone. Since this DPSLAM positioning system can 

exploit any signal that is broadcast with fixed power from a 

static transmitter, even the broadcasts from GNSS jammers 

could provide useful underlying indoor signal strength maps 

for this this system to exploit. This system therefore not only 

provides a navigation aid when GNSS is denied by difficult 

signal environments, the indoor positioning performance can 

actually improve in the presence of GNSS jammers.  

Magnetic anomaly measurements can also provide a useful 

fingerprinting metric to add to the set of opportunistic radio 

measurements. It will also be desirable to combine the 

Gaussian Processes regression methods with the occupancy 

grid to enable particles to be sensitive to measurements stored 

in nearby occupancy grid cells. This should permit the system 

to function with a sparse particle cloud, and may permit useful 
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loop closures to occur when the user moves to locations 

nearby to sections of historical track, rather than having to 

revisit exact previous locations. 
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