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Abstract—In this paper, we analyze the outage probability and
diversity order of opportunistic relay selection in a scenario based
on decode and forward and where the available channel state in-
formation (CSI) is outdated. The study is conducted analytically
by obtaining a closed-form expression for the outage probability,
which is dened as the probability that the instantaneous capacity
is below a target value. We derive high-SNR approximations
for the outage probability. By doing so, we demonstrate that
the diversity order of the system is reduced to 1 when CSI is
outdated, being this behavior independent of the level of CSI
accuracy. A physical explanation for this extreme loss of diversity
is provided along with numerical results to support the analytical
study.

Index Terms—Cooperative communications, opportunistic re-
lay selection, outdated CSI, diversity gain.

I. INTRODUCTION

COOPERATIVE diversity has been shown to be an ef-
cient way to combat wireless impairments using low

complexity terminals [1]–[3]. Basically, these schemes allow
for the exploitation of spatial diversity gains without the
need of multi-antenna technology. Different spatial paths are
provided by sending/receiving the information to/from a set of
cooperating terminals working as relays. By doing so, most
of the advantages of multiple-input multiple-output (MIMO)
techniques [4] can be extracted while keeping the complexity
of the individual terminals reduced.

Among the set of cooperative techniques, opportunistic
relay selection (ORS) is a useful strategy for practical imple-
mentation [5], [6]. This is because ORS is a low complexity
strategy consisting only in activating the best relay (in accor-
dance to a given performance metric). Apart from the inherent
simplicity of the proposed technique, this strategy avoids the
need of synchronization (needed by most distributed space-
time coding schemes) and reduces the power consumption of
the terminals.

When ORS is implemented in a real system, however, there
may exist a delay between the instant when the relay selection
process is encompassed and the actual transmission of data
from the selected relay. In other words, the channel state of the
selected relay at the selection decision instant can substantially
differ from the actual channel during data transmission and,
as a result, system performance is affected.

Manuscript received July 11, 2008; revised November 17, 2008; accepted
February 27, 2009. The associate editor coordinating the review of this letter
and approving it for publication was Y.-C. Ko.

The authors are with the Universitat Autonoma de Barcelona (UAB),
08193 Bellaterra, Spain (e-mail: vicario@ieee.org; {albert.bel, jose.salcedo,
gonzalo.seco}@uab.es).

This work was supported by the Spanish Government Project TEC2008-
06305/TEC.

Digital Object Identier 10.1109/TWC.2009.081561

The study of the impact of outdated channel state infor-
mation (CSI) on ORS has been addressed in some works.
For instance, it was shown in [7] that a selection relaying
mechanism based on localization knowledge can outperform
an opportunistic scheme with instantaneous information. The
reason for that was that the system may work better when
decisions are made based on location information instead
of instantaneous but outdated CSI. The viability of using a
cooperative scheme in WiMAX networks was addressed in [8],
showing that ORS-based cooperation causes a performance
loss when the available CSI is outdated and the number of
relays is low.

In this paper, we concentrate our efforts on the analytical
study of the behavior of ORS when CSI is outdated and the
relaying strategy is based on decode and forward. To do so, we
derive the exact expression for the outage probability. Since
the provided expression is barely tractable, we also provide
an approximation for the high-SNR regime. By doing so, we
prove that the diversity order of the system is always equal
to 1 when available CSI is not exact, regardless the degree of
accuracy.

II. SYSTEM MODEL

Consider a wireless network where one mobile unit (source)
sends information to the base station (destination). In order
to improve system performance, a cooperative mechanism is
considered. In particular, an ORS strategy is adopted in a
scenario with K mobile units of the network working as
relays. For the sake of notation simplicity, we dene an
arbitrary link A-B between two nodes A and B. Node A can
be the source (A=S) or the k-th relay (A=k), while node B
can correspond to the k-th relay (B=k) or to the destination
(B=D). With this model in mind, the received signal in the
link A-B can be written as follows:

rB = hA,BxA + nB

where xA ∈ C is the transmitted symbol from node A
with power PA = E

[
|xA|2

]
, nB ∈ C is AWGN noise

with zero mean and variance σ2
n (independent of the value

of B), hA,B ∈ C is the channel response between nodes
A and B modeled as hA,B ∼ CN (0, 1) (Rayleigh fading).
For mathematical convenience, we assume a block-fading
channel where the channel response remains constant during
one time-slot and that the different channels (for changing
A or B) are independent and identically distributed (i.i.d.).
Concerning power allocation, we consider that total transmit
power of the system, P , is evenly distributed among the source
and the selected relay, k∗, i.e. PS=Pk∗=0.5P . We denote
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Fig. 1: Cooperative communications scheme based on ORS with DF.

by γA,B = PA|hA,B|2/σ2
n the instantaneous signal-to-noise

ratio (SNR) experienced in the link A-B in a given time-
slot and by γ̄A,B = PA/σ2

n its long-term average. Thanks to
the homogenous nature of the proposed system, we unify the
notation in the sequel by denoting the average SNR per link
as γ̄ = 0.5P/σ2

n .
Concerning the relaying procedure, we consider a half-

duplex two-hop decode and forward (DF) protocol as relaying
strategy [3]. When using DF in an ORS scheme, only the
best relay is allowed to cooperate with the source [6]. More
specically, the subset of relays able to decode the information
is named as the decoding subset DS and, from that subset,
the relay with the best relay-to-destination channel quality
retransmits the information (see gure 1). In particular, the
relay maximizing the SNR in the link k-D is selected:

k∗ = arg max
k∈DS

{γ̂k,D}

where γ̂k,D is the SNR available at the selection instant,
which can differ from the actual SNR γk,D during information
retransmission due to channel variations1. Indeed, we assume
that γ̂k,D are obtained from ĥk,D (i.e., γ̂k,D=|ĥk,D|2γ̄), which
is an outdated version of hk,D. Then, these two random
variables are jointly Gaussian and, hence, hk,D conditioned
on ĥk,D follows a Gaussian distribution [9]:

hk,D|ĥk,D ∼ CN (ρkĥk,D, 1 − ρ2
k)

where parameter ρk is the correlation coefcient between the
envelopes of hk,D and ĥk,D, having different expressions
according to the channel model2. For the sake of mathemat-
ical tractability, we assume in the sequel a scenario where
parameter ρk is the same for all the relays (i.e., ρk = ρ ∀k).

From the above discussion, it is straightforward to show
that the actual SNR, γk,D, conditioned on its estimate, γ̂k,D ,
follows a non-central chi-square distribution with 2 degrees
of freedom, whose probability density function (pdf) takes the

1Further details concerning the characteristics of the time delay between the
instants when the selection process is encompassed and the actual transmission
of data from the selected relay takes place can be found in [8].

2Under the assumption of a Jakes’ model, for instance, the correlation
coefcient takes the value ρk = Jo(2πfdk

TDk
), where fdk

stands for the
Doppler frequency, TDk

is the delay between relay selection and information
retransmission instants, and Jo(·) denotes the zero-order Bessel function of
the rst kind.

following expression [9]:

fγk,D|γ̂k,D
(γk,D|γ̂k,D) =

1
γ̄(1 − ρ2)

e
−(γk,D+ρ2γ̂k,D)

γ̄(1−ρ2)

·I0

(
2
√
ρ2γk,Dγ̂k,D

γ̄(1 − ρ2)

)

with I0(·) standing for the zero-order modied Bessel function
of the rst kind.

III. OUTAGE PROBABILITY

We dene the outage probability as the probability that the
instantaneous capacity of the system is below a predened
value R. Since we consider a two-hop DF scenario, we should
start the analysis by studying the decoding subset DS, i.e., the
subset of relays able to decode the information transmitted by
the source in the source-to-relay link:

DS = {k : log2 (1 + γS,k) ≥ 2R} =
{
k : γS,k ≥ 22R − 1

}

Note that we have considered that relays are able to decode
the source’s information in the rst hop when instantaneous
capacity is higher than 2R, with this consideration also
adopted in the relay-to-destination link. By doing so, the re-
sulting end-to-end spectral efciency is R as the proposed two-
hop scheme requires two time-slots to transmit the information
from the source to the destination.

For each combination of relays in the decoding set, the
probability that the selected relay is not able to retransmit the
source’s information to the destination must be computed to
obtain the outage probability of the system. By dening now
DS l

p as the p-th element of the set of all possible decoding
subsets with l relays (i.e., DS l

p is the p-th decoding subset of
the

(K
l

)
possible subsets of l relays taken from the K relays),

we can easily compute the outage probability as [6]:

Pout ! Prob(outage) =
K∑

l=0

(K
l )∑

p=1

Prob(outage|DS l
p)Prob(DS l

p)

(1)
where Prob(outage|DS l

p) is the probability of outage condi-
tioned on that the decoding subset is DS l

p, Prob(DS l
p) is the

probability of that subset and Pout has been dened for the
sake of notation simplicity.

Now, the outage probability of the proposed scenario can be
obtained according to the following Theorem (where param-
eter y has been dened as y = 22R − 1 and the dependance
of Pout on y has been included for notation convenience).

Theorem 1: Consider a relay scenario as described in Sec-
tion II where the actual channel state and its estimate can be
related with parameter ρ. Then the outage probability of the
system can be expressed as follows:

Pout(y) =
(
1 − e−

y
γ̄

)K

+
K∑

l=1

l
l−1∑

m=0

(
l − 1
m

)
(−1)m

m + 1

(
1 − e

−y m+1
γ̄(1+m(1−ρ2))

)

·
(

K

l

) (
1 − e−

y
γ̄

)K−l
e−

yl
γ̄ (2)
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Proof: The proof is provided in the Appendix.
From the above expression, however, it is difcult to analyze

the behavior of the system. In order to gain some insight, we
consider the asymptotic high SNR regime in the next section.

IV. ASYMPTOTIC ANALYSIS

Before starting to analyze the scheme with outdated CSI, it
is worth noting that one can easily verify after some algebra
that when ρ = 1 (ideal scenario) the outage probability
derived in the previous section simplies to the well-known
expression:

Pout(y) =
(
1 − e−

2y
γ̄

)K

which can be expressed as follows for the asymptotic SNR
regime (γ̄ → ∞):

Pout(y) =
(

2y

γ̄

)K

+ o

((
1
γ̄

)K
)

(3)

By dening diversity order as
d=limγ̄→∞ − log(Pout)/ log(γ̄), one can easily check
that the proposed scheme attains diversity order K when the
CSI knowledge is perfect. However, for ρ < 1 the diversity
of the system is substantially penalized as shown below.

Theorem 2: Let a scenario with asymptotic high SNR.
Then, the outage expression can be expressed as:

Pout,ρhigh(y) = K!
y

γ̄
(1 − ρ2)K−1 + o

(
1
γ̄

)
(4)

for high values of ρ (ρ → 1−), whereas for low values of ρ
(ρ → 0+) the outage approximation amounts to:

Pout,ρlow (y) =
y

γ̄

(
1 + ρ2

(
1 −

K∑

k=1

1/k

))
+ o

(
1
γ̄

)
(5)

Proof: The proof is provided in the Appendix.
It is worth noting that we have only analyzed the cases

ρ ≈ 1 and ρ ≈ 0 for the ease of mathematical tractability.
As we will show later, however, the study is very relevant
as it shows that the loss of diversity gain is independent of
the level of CSI accuracy. In the rst case, we observe that
outage probability decays exponentially as a function of the
number of relays. In the case that ρ ≈ 0, however, we observe
that using more relays reduces the outage capacity following
the well-known selection gain term

∑K
k=1 1/k. However, the

sensibility of such reduction in terms of the number of relays is
substantially lower than in the previous case. This effect comes
from the fact that the selection tends to be random when ρ
is close to 0 and, then, selection gains cannot be efciently
exploited. As a nal remark, it can be clearly observed that
in both cases the diversity order is the same, as expressed by
the following Corollary.

Corollary 1: The diversity order of the proposed relay
selection mechanism can only take two possible values:

d =
{

1 if ρ <1
K if ρ =1

Proof: For the cases ρ = 1, ρ = 0, ρ ≈ 1 and ρ ≈ 0,
the corollary immediately results from applying the diversity
denition, d=limγ̄→∞−log(Pout)/ log(γ̄), to (3)-(5). For the

remaining values of ρ, the proof can also easily derived
as follows. Clearly, the outage probability is a decreasing
function in ρ. Therefore, by dening ρ′ as an arbitrary value
of ρ (different from the cases ρ = 1, ρ = 0, ρ ≈ 1 and ρ ≈ 0),
the following expression can be written:

Pout,ρhigh(y) ≤ Pout,ρ′(y) ≤ Pout,ρlow (y)

By applying now the diversity denition in the expression
above, one can verify that the following inequalities hold:

dρlow ≤ dρ′ ≤ dρhigh

Since the diversity order is the same for the extreme cases
(dρlow = dρhigh = 1), one can conclude that the diversity
order is always equal to one when ρ < 1.

Although the behavior of the diversity gain could seem
surprising at rst sight (specially for ρ≈1), the observed effect
has a logical physical interpretation. When ρ *= 1 there exists a
non-zero probability that the worst relay is chosen. This relay
contributes with a 1/γ̄ term to the outage probability (i.e.,
diversity gain of order 1). As the SNR grows this effect is
emphasized, becoming in the asymptotic regime the dominant
term of the outage probability expression (as proven in the
Appendix).

V. NUMERICAL EVALUATION AND DISCUSSION

As far as the numerical evaluation is concerned, we consider
a scenario with K=5 relays and target rate R = 1 bit/s/Hz. In
Figure 2, we present outage probability results obtained for
values of ρ=1, 0.995 and 0.1. To facilitate the comparison,
we also provide results related to the case with a single relay
(K=1). As observed in the gure, the theoretical expression
given by (2) completely agrees with the simulated curves.
Concerning the derived high SNR approximations, these are
quite accurate for SNRs beyond 15 and 35 dB for low and
high ρ values, respectively. As expected, better results are
obtained by increasing ρ but, even in the case ρ=0.995, the
diversity gain is always one when ρ *=1. This can be clearly
observed in the gure as the curves obtained for outdated
CSI are parallel to the case with K=1. It is worth noting that
an additional gain is obtained with ρ=0.1 when compared to
the single relay case. Apart from the selection gain discussed
in the previous section, this effect is motivated by the fact
that the reliability of the source-to-relay link improves with
K as there exist more candidates for the decoding subset.
Finally, one can observe a similar behavior for the slope of
the curves associated with ρ=0.995 and ρ=1 in the medium
SNR range. This is because the impact of a possible wrong
relay selection on system performance is emphasized in the
high-SNR region. Therefore, a deeper study in the medium
SNR regime is necessary as practical systems usually work
there. Nonetheless, this issue is out of the scope of this paper
and is left for future research.

APPENDIX

In this appendix we provide the proofs of Theorems 1 and
2.
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Fig. 2: Outage probability vs. system SNR, P/σ2
n, for different

values of ρ (K=5 relays, R=1 bit/s/Hz. Symbol: simulation, solid
curves: theoretical, dashed curves: high SNR approximation).

A. Proof of Theorem 1

We start the proof by noting that both the values of
Prob(DS l

p) and Prob(outage|DSl
p) in (1) are the same for

a given value of l. In other words, these probabilities are
independent of the combination of relays forming the decoding
subset, DS , when the number of active relays is xed. The
reason for that is that we assume an homogenous scenario
where all the channels are i.i.d.. As a consequence, these
probabilities only depend on the number of active relays (i.e.,
the cardinality of DS, card(DS)) and we can rewrite (1) as:

Pout(y)=
K∑

l=0

Prob(outage|card(DS)=l)Prob(card(DS)=l)

(6)
where Prob(card(DS)=l) is the probability that the decoding
subset has l relays. By recalling the Rayleigh fading assump-
tion, one can obtain this probability as follows:

Prob(card(DS)=l) =
(

K

l

) (
1 − e−

y
γ̄

)K−l
e−

yl
γ̄ (7)

Notice that the above expression does not depend on the
correlation parameter ρ. This is because a node belongs to
the decoding set if it has perfectly decoded the information,
which is independent of relay selection decisions.

Concerning Prob(outage|card(DS)=l), this is the probabil-
ity that the selected relay (out of l relays in DS) is in outage.
Clearly, this probability is equal to one when there are no
relays to retransmit the information (i.e., card(DS)=0). For
l>0, Prob(outage|card(DS)=l) can be obtained by noticing
that this is a similar problem to that observed in a multi-
user scenario where the user with the highest SNR is selected
for transmission but available CSI is subject to delays [9].
With this in mind, we can use the cumulative density function
(CDF) of the scheduled user’s SNR obtained in [9, Eq. 8] to
compute the probability that the selected relay is in outage

(i.e., its SNR is lower than y = 22R − 1):

Prob(outage|card(DS)=l) = l
l−1∑

m=0

(
l − 1
m

)
(−1)m

m + 1

·
(
1 − e

−y m+1
γ̄(1+m(1−ρ2))

)
l > 0 (8)

Finally, by plugging (8) and (7) into (6) and noting that the
rst term is related to the case that l=0, one can easily verify
that expression (2) holds.

B. Proof of Theorem 2

In the asymptotic high SNR regime, we have that 1/γ̄ → 0.
Then, we can use the Taylor series of the exponential function
centered at 0 (i.e., ex = 1+x+x2/2!+x3/3!+ ...) to rewrite
(8) as:

Prob(outage|card(DS)=l) = l
l−1∑

m=0

(
l − 1
m

)
(−1)m

m + 1

·
[

K∑

s=1

ys(−1)s−1

s!
I(s, l) + o

((
1
γ̄

)K+1
)]

(9)

where we have dened I(s, l) as follows:

I(s, l) =
(

1
γ̄

)s l−1∑

m=0

(
l − 1
m

)
(−1)m

m + 1

(
m + 1

(1 + m(1 − ρ2))

)s

(10)

From the above expressions, one can observe that the problem
is reduced to compute I(s, l). According with the value of ρ
the behavior of such an expression differs and, for that reason,
we have divided the proof in two parts:

• High ρ region (ρ → 1−):
In this case, 1 − ρ2 → 0 and we can resort to the Taylor

series centered at x=0 of 1/(1 + mx)s:
1

(1 + mx)s
=1 − smx

+
s(s + 1)m2x2

2!
− s(s + 1)(s + 2)m3x3

3!
+ ...

to rewrite (10) as follows (x = 1 − ρ2):

I(s, l) =
(

1
γ̄

)s l−1∑

m=0

(
l − 1
m

)
(−1)m(m + 1)s−1

·
(

1 − sm(1 − ρ2) +
s(s + 1)m2(1 − ρ2)2

2!

− s(s + 1)(s + 2)m3(1 − ρ2)3

3!
+ ...

)
(11)

Notice that due to the asymptotic high SNR regime assumption
(1/γ̄ → 0), the dominant terms in (9) are those depending on
I(s = 1, l). Therefore, we can focus our attention on obtaining
the value of I(1, l) which can be computed with the help of
the following equalities [10]:

N∑

k=0

(−1)k

(
N

k

)
kn−1 = 0 1 ≤ n ≤ N

n∑

k=0

(−1)k

(
n

k

)
kn = (−1)nn! n ≥ 0 (12)
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as follows:

I(1, l) =
(

1
γ̄

) [
(l − 1)!(1 − ρ2)l−1 + o

(
(1 − ρ2)l−1

) ]

By plugging the above equation in (9), we have that:

Prob(outage|card(DS)=l) =
(

y

γ̄

)
l!(1 − ρ2)l−1

+ o
(
(1 − ρ2)l−1

)
o

(
1
γ̄

)

Now, by substituting the above expression in (2) and by also
considering the Taylor series centered at 0 of the terms coming
from (7) (i.e., Prob(card(DS) = l) =

(
K
l

)
(y/γ̄)K−l(1 −

y/γ̄)l + o((1/γ̄)K−l)), we can obtain the following result:

Pout(y) =
(

y

γ̄

)K

+ o

((
1
γ̄

)K
)

+
K∑

l=1

[((
y

γ̄

)
l!(1 − ρ2)l−1 + o

(
(1 − ρ2)l−1

γ̄

))

·
((

K

l

) (
y

γ̄

)K−l(
1 − y

γ̄

)l

+ o

((
1
γ̄

)K−l
))]

=
(

y

γ̄

)K

+
K∑

l=1

(
K

l

) (
y

γ̄

)K−l+1

· l!(1 − ρ2)l−1

(
1 − y

γ̄

)l

+ o

(
1
γ̄

)
(13)

We can observe in (13) that the predominant term is that
depending on 1/γ (i.e., the term l=K in the summation). By
focusing on this term and by considering that 1− y

γ̄ ≈ 1, result
given by (4) is then obtained.

Before introducing the case ρ ≈ 0, let us introduce some
remarks on the obtained approximation. Notice that for K = 1,
the summation in (13) has two terms and both of them depends
on 1/γ̄. As a consequence, none of these two terms can be
neglected, thus obtaining the expression given by (3). By using
the derived approximation in (4), the approximation would not
be valid as a 3 dB gain would be observed. On the other hand,
in the case that ρ is exactly equal to 1, the approximated result
given by (4) is equal to 0, which is not true. The problem with
that expression resides in the fact that equation (11) for ρ = 1
would be reduced to:

I(s, l) =
(

1
γ̄

)s l−1∑

m=0

(
l − 1
m

)
(−1)m(m + 1)s−1

After some algebra and with the help of expressions in (12),
one can easily check that I(1, l)=I(2, l)=...=I(l−1, l)=0 and
only terms s ≥ l are different from 0. Hence, one can then
prove that Prob(outage|card(DS)= l) = (y/γ̄)l + o((y/γ̄)l)
(details are omitted here for brevity). By using this new
expression in (13), one should observe that all the terms
depend on 1/γK . As a consequence, there are no dominant
terms in the summation, being the resulting approximation
equal to (3)). It is worth noting, however, that these are the
only problems appearing with the proposed approximation.

This last afrmation is supported by the numerical results
provided in Section V.

• Low ρ region (ρ → 0+):
The procedure developed in this case is quite similar to the

previous one. The main difference is that (since 1 − ρ2 ≈ 1)
Taylor series of 1/(1+mx)s in (10) is now developed centered
at x = 1. By doing so, we can express I(1, l) as:

I(1, l) =
(

1
γ̄

) l−1∑

m=0

(
l − 1
m

)
(−1)m

·
(

1
1 + m

+
mρ2

(1 + m)2
+ o

(
ρ2

)
)

After some manipulations and with the help of [10, Eq.
0.155.4] one can verify that the following result holds:

Prob(outage|card(DS)=l) =
y

γ̄

(
1 + ρ2

(
1 −

l∑

m=1

1/m

))

+ o
(
ρ2

)
o

(
1
γ̄

)

Now, by following the same approach as carried out to obtain
(13), one would observe that the term l = K is again the
dominant term. As a result, one can readily verify that (5)
holds. Notice, however, that the obtained approximation would
fail for K = 1. This is motivated again by the fact that
some terms cannot be neglected when K = 1 and, then, the
reasoning discussed for the previous case ρ ≈ 1 is also valid
here.
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