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Abstract—Unlike classical routing algorithms, quantum rout-
ing algorithms make use of entangled states—a type of resources
that have a limited lifetime and need to be regenerated after
consumption. In a nutshell, quantum routing algorithms have to
use these resources efficiently, while optimizing some objectives
such as the total waiting time. Current routing algorithms tend
to keep a routing request waiting until all of the resources on
its path are available. In this paper, we introduce a new way of
managing entanglement resources in an opportunistic fashion:
a request can move forward along its path as soon as possible
(even if some resources on its path are not ready). We show
that this opportunistic approach is fundamentally better than
conventional approaches. In particular, our results indicate that
this new approach achieves a 30-50% improvement in the average
total waiting time and average link waiting time compared with
several state-of-the-art routing algorithms. As a by-product of
this work, we develop a new simulator for quantum routing,
which can be used to evaluate various design choices under
different scenarios.

I. INTRODUCTION

Quantum systems are able to offer superior advantages for
certain applications (e.g., [1]–[6]). These applications either
do not have a classical solution, or their classical solutions
have significantly worse performance. The spectacular laws of
quantum mechanics allow quantum systems to be inherently
more suitable for certain complex problems.

An indispensable part of most of these quantum systems is
a quantum network. Quantum networks are used to transfer
quantum information between quantum computers, and this
information is conveyed through qubits, which are the quantum
counterparts of bits. The promising performance and applica-
tions of quantum networks serve as the building ground for a
future quantum Internet [7].

Unfortunately, the same laws of quantum mechanics also
create spectacular challenges specific to quantum systems (see,
e.g., [8]). These challenges make quantum networks funda-
mentally different than their classical counterparts, and require
new methods to deal with them. Technological limitations,
noise, and interaction with the environment are also among
the main reasons for these challenges [9]–[12]. Specifically,
the state of a quantum network is constantly changing. This
is partly due to the fact that the links of a quantum network
have finite lifetimes, and partly because their generation is
probabilistic.

The highly dynamic nature of quantum networks makes
routing in such networks highly non-trivial. Traditional (clas-
sical) routing algorithms rely on the robustness of the network

to a great extent, and then design recovery procedures in which
changes in the state of the links and the nodes are effectively
handled. In quantum networks, the state is constantly chang-
ing, so we need routing algorithms that deal with this inherent
dynamism as the main issue rather than a side case. The basis
of such algorithms would be an efficient approach towards
allocating the limited and temporary resources of a quantum
network to the incoming requests, while managing the constant
regeneration of the resources.

Most of the existing quantum routing algorithms, such
as [9], [13], [14], make a design choice that adversely affects
the overall performance. Basically, existing routing algorithms
wait for all of the resources (i.e., links) a request needs to be
ready and then start to forward the request on its selected
path. This design choice is conservative and leads to ineffi-
cient usage of the network resources. We argue that a more
opportunistic approach better suits the unique characteristics
of quantum networks. In particular, we believe that a request
should be forwarded along the path as soon as it is possible
to move forward, even if it is a single hop. As we will show
in this paper, such opportunism increases the efficiency of any
routing algorithm by decreasing the average total time required
for a group of requests to reach their destinations.

To the best of our knowledge, we are the first to demonstrate
and analyze opportunism in quantum networks. In particular,
we have implemented three existing routing algorithms and
demonstrated the fundamental superiority of opportunism by
using both theoretical analysis and simulations. Moreover, we
have shown that opportunism can be added to almost any
routing algorithm as an add-on. Finally, we have designed and
implemented a simulator that can serve as a common ground
for implementing several routing algorithms with various de-
sign choices. In fact, all three of the mentioned algorithms have
been implemented with this simulator. We will open-source
our simulator, making it a useful tool for quantum routing
research. Our simulator has integrated the essential design
choices of quantum routing, such as multipath routing [14],
[15], having recovery paths [13], and having contention-free
paths.

In summary, our contributions are as follows:
• We introduce and analyze opportunism as a new perspec-

tive for managing quantum networks, and demonstrate its
superiority with both theoretical analysis and simulations.

• We provide a simulator that can be used to implement
different quantum routing protocols since it provides
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common functionalities and many design choices. It can
also be used to compare state-of-the-art protocols through
different metrics and setups.

The rest of the paper is organized as follows. Section II
provides an overview of quantum networks and quantum
routing. Section III delves into opportunistic routing. Sec-
tion IV describes our system model. Section V presents our
theoretical analysis. The simulation results, together with a
brief explanation of our simulator, are presented in Section VI.
Finally, the related work, and conclusion and future work are
presented in Sections VII, and VIII, respectively.

II. QUANTUM NETWORKS

In this section, we review some basics of quantum networks.

A. Components

Similar to many other networks, a quantum network con-
sists of nodes and links. The nodes of a quantum network
are quantum computers, which are connected through both
classical and quantum channels (such as fiber optics).1 The
links of a quantum network are entangled qubit pairs (between
two nodes), because they play a crucial role in quantum
communication as explained below.

The quality of qubit transmission over physical links de-
grades exponentially as the length of the link increases [10],
[11], [17]–[19]. Therefore, quantum teleportation [20] is used
to “transfer” quantum information. More specifically, during
quantum teleportation, an entangled qubit pair between two
nodes is consumed to teleport a qubit between them. This
qubit is not sent via a physical link but is obtained at the
destination through a series of measurements and classical
communication.

Generalizing quantum teleportation, entanglement swap-
ping [21] enables qubit transfer between two arbitrarily distant
nodes by using a chain of intermediate nodes which perform
a series of measurements and operations. Basically, a simple
swapping protocol consumes entangled qubits between two
nodes with an intermediate node to establish entanglement
between these two nodes. Fig. 1 illustrates a simple swapping
scenario. Several protocols have been proposed for entangle-
ment swapping (e.g., [11], [22], [23]).

To sum up, entangled pairs indeed play a crucial role
in quantum networks, serving as the basic unit of resource
required for successful quantum communication. This explains
why they are considered as links of a quantum network.
Throughout this paper, we will use the terms “generating” or
“establishing” a link to refer to creating a pair of entangled
qubit pairs between two adjacent nodes.

B. Limitations

Quantum networks are generally hard to manage due to the
following limitations.

1The nodes of a quantum network may also include quantum repeaters [16],
which facilitate long-distance quantum communication. For simplicity, we
assume quantum computers have this functionality as well.

1) Nodes: Current prototypes for quantum computers have
rather limited storage capacity for qubits [24]. This limits the
number of entanglements (i.e., links) they can establish with
other nodes in the network.

2) Qubits: Qubits have different quality metrics, such as
fidelity [25]. Generally, the quality of a qubit decreases over
time (due to noise and interaction with the environment). A
qubit may become useless after a certain threshold, which de-
pends on the application (e.g., entanglement distillation [26]).
In other words, qubits, and therefore links, have finite life-
times.

3) Links: As explained before, links of a quantum network
have finite lifetimes. Moreover, the process of generating a
link is probabilistic [9], [10], [13]. In each attempt, there is a
probability of failure.

4) Swapping: Similar to link generation, each swapping
attempt is also probabilistic with a certain failure probabil-
ity [11].

C. Quantum Routing

With quantum teleportation and swapping, quantum com-
munication can be carried out in a line network. However,
a quantum network may have a more complicated topology,
making the transfer of qubits nontrivial. To cope with such
complexity as well as the dynamic nature of a quantum
network as explained in Section II-B, a typical quantum
routing algorithm contains the following stages [13]:

1) Reception: First, a number of routing requests are
generated in the network.

2) Path Selection: Based on certain rules (see, e.g., [27]),
several paths are selected for every request, either of-
fline [13] or on the fly. The links of these paths are
usually reserved for the corresponding request.

3) Generation: Then, links are generated along the paths
for every request.

4) Forwarding: Finally, once all of the required links
are ready along a path, the corresponding request is
forwarded based on a certain swapping pattern.

Indeed, most existing routing algorithms follow the above
order with few exceptions having a little modification. For
example, the algorithm proposed in [14] performs the “Path

Fig. 1: A simple swapping step. The big circles are quantum
nodes, and the little circles are qubits. Lines represent entan-
glement (i.e., links).



Selection” stage after the “Generation” stage (whereas many
other algorithms do the opposite).

Unlike most of the existing algorithms, our proposed ap-
proach is not related to specific details like how the paths are
selected, and is instead more related to efficient management
of the resources. We achieve this by proposing a new forward-
ing stage for any type of routing algorithms. Specifically, as
explained in Section III and demonstrated in Section VI, our
proposed approach, which is opportunistic in nature, can be
used as an add-on to many existing routing algorithms.

III. OPPORTUNISTIC ROUTING

In this section, we give a high-level overview of our oppor-
tunistic routing. Our key observation is the following: Most
existing routing protocols conduct the forwarding stage rather
conservatively. More specifically, a typical routing algorithm
(e.g., [9], [13], [14]) often waits until all of the links in a
path are ready and then forwards the request by initiating
the swapping process. We believe that such a conservative
approach fails to exploit the highly dynamic nature of quantum
networks for the following reasons.

First, since links have finite lifetimes, it is inefficient to
wait for all of the links of a particular path to get established.
For example, some already established links may time out
even before the remaining links get established, leading to
a waste of resources. Second, when a request reserves the
links of its path, these links cannot be reserved by other
requests. Third, since swapping is also probabilistic and it
takes time to finish, by waiting for all of the links to get
generated, we unnecessarily lose the opportunity to do some
of the swappings while the generation is still not finished.
Therefore, by being less conservative, we can enable two types
of gain. By leveraging the resources more efficiently, we can
allow every request to reach its destination faster, and at the
same time prevent it from being a hindrance to other requests.

Based on the above explanations, we propose a modified
forwarding stage as follows:

4) Forwarding: The request is forwarded along the path
as soon as it is possible, even if it is only a single hop.

Fig. 2 shows an example of being opportunistic in a simple
scenario. The blue (pink) request is going from the leftmost
(rightmost) node to the rightmost (leftmost) node. At each step,
a random number of links are generated (green links), and then
the requests consume the generated links, restoring them to the
non-generated (black) state. Instead of waiting for all of the
links to be ready, the requests take the opportunity of moving
forward when they can. For simplicity, the intermediate steps
in which links consecutively fail to get generated are omitted.

The gain caused by being opportunistic is worth more ex-
planation. To this end, imagine a scenario in which N requests
want to go from the same source to the same destination. Fig. 3
shows such a scenario. With an ordinary, non-opportunistic
routing algorithm, each one of these requests has to wait for
all of the links of the path to be ready, and then it gets
forwarded. This means that the requests have to wait N times
the time needed for a single request, on average. However,

Fig. 2: A simple opportunistic routing example. The green
color on a link means that it is generated. Note that links
support two-way qubit transfer.

by acting opportunistically, we can exploit the generated links
as soon as it is possible for a request to move forward, and
then regenerate the consumed links for the other requests. This
clearly demonstrates the two-fold gain of opportunism: 1) each
request reaches the destination sooner because a part of the
waiting time for the link generation is used to perform some
of the swappings, and 2) resources are freed more quickly,
resulting in less waiting time for requests which are waiting
for the prior requests to complete transmission. We call the
first gain as the swapping gain and the second one as the
reservation gain.

Fig. 3: Another example for opportunistic routing. The swap-
ping and reservation gains can be seen in this figure. The green
color on a link means that the link is generated.

There is a subtle point about the forwarding stage, which is
worth mentioning. Forwarding a request can be interpreted in
two ways. First, the request may actually be forwarded along
the path, as a continuation of the swapping process. That is,
as soon as a swapping step is successful along the path, the
request can be forwarded to the corresponding intermediate
node using teleportation. Alternatively, the request can wait
until the swapping process is completely finished, and then
it can be sent from the source to the destination using a
single quantum teleportation step. Both of these approaches
can be considered opportunistic in the sense explained in



the previous paragraphs, as long as the swapping process
is started as soon as it is possible. Indeed, this perspective
suggests that opportunism can be leveraged in two layers: first
in leveraging the generation time for a part of swapping, and
then in acting opportunistically during the swapping process.
Both of these “forwarding” methods have their advantages and
disadvantages. With the former method, the request does not
need to start from the beginning if a part of the swapping
process fails, while on the other hand, it will consume a part
of the corresponding intermediate node’s memory, possibly
harming the routing of other requests. With the latter method,
no extra resources are used for serving the request, but it has
to start from the beginning every time a part of the swapping
process fails. For a neat illustration, the figures of this paper
demonstrate the former method, so that requests are actually
moving forward as more links are generated. However, we
have chosen the latter method for swapping in the simulations,
and requests have to start from the beginning if their swapping
process is not successful.

As a final consideration, as explained in Section II-C,
opportunism is an approach targeting the general management
of quantum networks, and it can be used in any algorithm
since it does not depend on specific details. Details like how
the resources are allocated and the paths are selected are
not important at this level. The point is to treat the links
of a network as precious resources and use them as soon as
possible. This mindset can even be extended to be an integral
part of a quantum network layer protocol (e.g., [28]).

A. k-opportunism

The opportunism discussed in this section is somewhat
greedy and extreme: a request moves as soon as it can move.
This may not be harmful in networks with a low number of
requests, but the more the requests get, the harder it gets for the
network to manage the resources. On a large scale, forwarding
a request as soon as a link is available may decrease the
efficiency of routing for some other request. Additionally,
requests may have different degrees of priority. Therefore, the
opportunistic approach needs to have a degree of flexibility to
provide dynamic routing means for a highly dynamic quantum
network.

To this end, we introduce k-opportunism. Recall that the
proposed forwarding stage required a request to move forward
once it is possible, even for one hop. We can change this stage
as follows:

4) Forwarding: The request is forwarded along the path
as soon as the first k immediate and consecutive hops
are available.

Fig. 4 shows an example of a 2-opportunistic approach,
in which a request is going from the leftmost node to the
rightmost node. Here, the request does not move forward
unless the two immediate and consecutive links are ready.
Intuitively, this new opportunism provides us with a spectrum
of choices, allowing us to impose a distributed control over
every request’s greediness. Indeed, the extreme opportunism
introduced at the beginning of Section III is a 1-opportunistic

Fig. 4: An example of a 2-opportunistic approach. The green
color on a link means that the link is generated.

approach. Now, this spectrum of opportunism, obtained by
changing k, which we call the degree of opportunism, provides
natural means for managing requests with different priorities.
That is, we can assign lower values of k for requests with
higher priorities. In this way, high-priority requests will be
able to leverage the links of the network sooner than the other
requests, and the higher k gets for a request, the lower its
chances are to use a link for its transmission.

IV. SYSTEM MODEL

A. Network, Nodes, and Links

We model a quantum network as a graph. The nodes of the
graph are quantum computers, and the edges of the graph are
the links (i.e., entangled pairs). For simplicity, we assume that
at most one link can exist between any two adjacent nodes,
because such a simple setup is sufficient to demonstrate the
advantage of our opportunistic routing. Unlike [9], [29], we do
not use virtual links, i.e., entanglement between non-adjacent
nodes, as a primary resource. The reason for this choice is
also similar. We want to demonstrate that links are precious
resources and have to be consumed opportunistically, and it
does not matter if they are between adjacent or non-adjacent
nodes.

We use (s, d) to denote a request. Here, s is the source and
d is the destination. When it is clear from the context, we
may also use r for a single request, and {ri}ni=1 for a group
of requests.

We denote the lifetime of an entangled pair (i.e., a link) as
L. We assume that quantum nodes have infinite memories.

B. Entanglement Generation and Swapping

We assume that every entanglement generation attempt
between adjacent nodes succeeds with probability pGEN = p.
Entanglement generation for a link is continuously attempted
until the link is generated. Furthermore, once a link is con-
sumed or timed out, it starts the generation process again.
Finally, we assume that every swapping attempt succeeds with
probability pSWAP.



C. Waiting Time

We divide the waiting time of a request into two parts as
follows.
• Swapping: It is the time required for a swapping process

over a given number of links.
• Generation: It is the amount of time it takes for all of the

links required for the path of the request to get generated.
We consider a discrete-time model, in which every time step is
equal to the time it takes to attempt an entanglement generation
between two adjacent nodes. Furthermore, we also assume that
a single swapping step takes place at the end of each time
slot. That is, each request has a chance of one swapping step
at the end of each slot. The waiting times are explained in the
following sections.

1) Swapping waiting time: Different algorithms have been
suggested for entanglement swapping (e.g., [22]). Any algo-
rithm can be selected for this process, and each would lead
to a certain formula for the waiting time. We denote the total
time it takes to swap over M links as tSWAP(M).

2) Generation waiting time: We denote the amount of
time required for a path with M links to be generated as
W (M,p). We also denote the time required for link i of
this path to get established by Ti. Note that {Ti} are i.i.d.
and they follow a geometric distribution with parameter p.
Note also that W (M,p) is a random variable, and we denote
R(M,p) = E{W (M,p)}. It is shown in [10], [30] that, if
L =∞,

R(M,p) =

M∑
k=1

(
M

k

)
(−1)k+1

1− (1− p)k
. (1)

Also, note that W (M,p) = maxi{Ti}.

V. ANALYSIS

We focus on the swapping and reservation gains in this
section. Our goal is to show that the opportunistic approach
improves performance by decreasing the average total waiting
time. We also show the spectrum property of opportunism by
analyzing k-opportunism.

To make our analysis tractable, we mainly focus on a line
network here (which will be relaxed in the simulation section).
More specifically, we assume a number of quantum nodes in
a single line, in which every node has two neighbors (except
the endpoints, which have one). We will call the endpoints of
this network as A and B throughout the paper. We assume
that this line network has M links.

In addition, we introduce several simplifying assumptions
for our analysis. First, we assume L =∞. That is, a generated
link remains intact forever, until a request consumes it, after
which the link has to be regenerated. Second, following [9],
[11], [30] we assume that pSWAP = 1. Finally, we have used a
simple swapping algorithm in which the swapping operations
are carried out on a one-by-one basis, starting from the source
towards the destination. For this simple scheme, we have
tSWAP(M) = M − 1.

A. A Single Request

When sending a single request, the opportunistic approach
helps to reduce the total waiting time by mixing the swapping
and generation waiting times. In the conventional approach,
the request has to wait for the generation to finish, then it
can begin the swapping process. The opportunistic approach
enables swapping and generation to happen simultaneously,
leveraging the time the request has to wait for link generation
to do a part of swapping. This is the swapping gain mentioned
in Section III. For this part, let us show the waiting time
of a single request in the non-opportunistic and opportunistic
settings with Q and QOPP, respectively.

We consider a single request r = (A,B). With the oppor-
tunistic approach, r will be somewhere in the middle of the
network2 once all of the links have been generated (i.e, after
W (M,p)). The number of links r has been able to swap along
the way until all of the links are generated is how opportunism
shows itself, and indeed this number can be interpreted as
the swapping gain caused by opportunism. Let us denote the
position of r after W (M,p) by K. We are interested in E{K}.

Let us use W to show W (M,p), for brevity. Furthermore,
let us define Wi = maxj≤i{Tj}. To calculate E{K}, we have
E{K} =

∑M
k=1 P (K ≥ k). Note that K ≥ k implies that

the first k − 1 links were not the last links to get generated,
and W ≥ k since every swapping attempt takes one time
step. We thus have P (K ≥ k) = P (W > Wk−1,W ≥ k).
Let us define W̃ = maxi>k−1{Ti}. W > Wk−1 implies
W̃ > Wk−1, and vice versa. Therefore, it is easy to see that
P (W > Wk−1,W ≥ k) = P (W̃ > Wk−1, W̃ ≥ k). We can
decompose this event as follows P (W̃ > Wk−1, W̃ ≥ k) =∑∞
i=k P (W̃ > Wk−1, W̃ = i), which can further be expressed

as P (W̃ > Wk−1, W̃ ≥ k) =
∑∞
i=k P (Wk−1 < i, W̃ = i).

Now, since Wk−1 and W̃ are related to two disjoint sets
of links, they are independent of each other, and we have
P (W̃ > Wk−1, W̃ ≥ k) =

∑∞
i=k P (Wk−1 < i)P (W̃ = i).

We can now evaluate each part separately. First, we have
P (Wk−1 < i) = P (∩k−1j=1{Tj < i}) =

∏k−1
j=1 P (Tj < i) =

P (T1 < i)k−1. Here we have used the fact that the Tj are
i.i.d. It is easy to see that P (T1 < i) = 1 − (1 − p)i−1, and
letting q = 1 − p, we have P (Wk−1 < i) = (1 − qi−1)k−1.
Now, we have P (W̃ = i) = P (W̃ ≤ i) − P (W̃ < i), which
can be calculated very similar to the procedure above, and one
would have P (W̃ = i) = (1− qi)M−k+1− (1− qi−1)M−k+1.
Combining these results leads us to P (K ≥ k) =

∑∞
i=k(1−

qi−1)k−1[(1− qi)M−k+1 − (1− qi−1)M−k+1]. Therefore, we
have

E{K} =

M∑
k=1

∞∑
i=k

(1− qi−1)k−1

[(1− qi)M−k+1 − (1− qi−1)M−k+1].

(2)

Now, we have P (K > 0) > 0. Furthermore, r has to swap
along M − K links after W (M,p), and tSWAP(M − K) <

2The request is actually in the source, but the swapping process has reached
the middle of the network. See Section III.



tSWAP(M). We have QOPP = R(M,p) + E{tSWAP(M − K)}.
Thus it is easy to see that QOPP < Q = R(M,p) + tSWAP(M).
This proves the following theorem.

Theorem 5.1: For a single request S = {(A,B)}, we have
QOPP < Q.

B. A Group of Requests in the Same Direction

Here, we demonstrate the reservation gain caused by op-
portunism. To do this, we will assume N requests going from
A to B. Note that to show opportunism decreases the total
waiting time in this scenario, all one has to do is to leverage
the swapping gain, as explained in Section V-A, for every
request. However, as discussed in Section III, opportunism
enables another gain, which we call the reservation gain, and
this gain has a different nature than the swapping gain.

To fully demonstrate the reservation gain, we will assume
that swapping takes no time (i.e., tSWAP(M) = 0). This way,
a request can perform as many swapping steps as it can in a
single time step. In this new setting, the swapping gain will
vanish, and in the case of a single request, opportunism will
not improve the performance. However, when having multiple
requests, we can show that opportunism decreases the total
waiting time, thus demonstrating the existence of what we
call the reservation gain.

Let us use Tij (where i ≤ M and j ≤ N ) to show the
time it takes to generate the i-th link for the j-th time (i.e.,
for the j-th request), once it has been consumed for the (j −
1)-th request. Each Tij follows a geometric distribution with
parameter p, and Tij are independent. Furthermore, changing
the notation for a bit, let us show the amount of time required
for N requests to reach their destinations using opportunism
with WN .

Let us express {Tij} in a more compact matrix form:

D =


T11 T21 . . . TM1

T12 T22 . . . TM2

...
...

. . .
...

T1N T2N . . . TMN

 . (3)

Note that Dij = Tji. This allows us to have the links on the
rows of the matrix, making it look similar to a line network.
In particular, each row j of D shows the j-th generation times
for the links of the network.

In order to analyze WN , we need to introduce a few
intermediate variables. Let us define:

Wij =

{
maxk≤i Tkj j = 1

maxk≤i{Wk,j−1 + Tkj} j > 1
(4)

This recursive structure allows us to have the following
proposition.

Proposition 5.1: The total waiting time in the opportunistic
setting is WN = WMN .

Proof: Let us show the N requests with {ri}Ni=1. First,
we show that the proposition holds for N = 2. Link i
will start generation for r2 once it has been generated and
consumed by r1. It will be consumed once all of the first i

links are generated for r1, so that r1 can take the opportunity
(remember that swapping takes no time). Hence, link i can
start its generation for r2 at time Wi1 = maxk≤i Tk1. Once
this generation has taken place, now link i takes Ti2 time
steps to get generated for r2, which means r2 should wait a
total amount of Wi1 + Ti2 time slots for the i-th link to get
generated. Since there is no swapping gain, we thus conclude
that the total waiting time is equal to maxi≤M{Wi1 + Ti2},
which is the formula for WM2. This means that W2 = WM2.

We now assume that the lemma is true for i ≤ N − 1,
and prove it is also true for N . The proof is similar. Request
rN has to wait for rN−1 to consume link i, and then link i
can start the generation process for the N -th time. Request
rN−1 can consume link i once it can consume all of the first
i links, and this takes Wi,N−1 by the induction hypothesis.
It takes TiN time slots for the N -th generation of link i to
succeed. Thus, link i is ready for rN at time Wi,N−1 + TiN ,
which means rN will have all of the links ready and reach the
destination at time maxi≤M{Wi,N−1 + TiN}. This is exactly
the definition of WMN , and leads us to WN = WMN .

We also have the following lemma, which proves to be
useful in the proofs.

Lemma 5.2: Wij are ascending for every fixed j. That is, if
k < i, then Wkj ≤Wij .

Proof: This lemma is an immediate result of the fact that
for two finite sets U ⊂ V and a function f on these sets, we
have maxu∈U f(u) ≤ maxv∈V f(v).

We can proceed and prove that opportunism indeed de-
creases the total waiting time. In the following, W UP

N is the
total waiting time in the non-opportunistic approach.

Proposition 5.2: Opportunism decreases the total waiting
time. That is, we have WN ≤W UP

N .
Proof: In the non-opportunistic approach, each request

has to wait for all of the links to get established. Therefore,
the j-th request has to wait for maxi Tij steps. After each such
step, all of the links are consumed, and the next request starts
from scratch. We thus conclude that:

W UP
N =

∑
j≤N

max
i≤M

Tij . (5)

We now use induction on the number of requests to prove the
theorem. if N = 1, then the two waiting times coincide, since
a single request has to wait for all of the links, no matter what.
Now, assume that the claim holds for N − 1. The induction
hypothesis then tells us that WN−1 ≤W UP

N−1. We have:

WN = max
i≤N
{Wi,N−1 + TiN} ≤ max

i≤N
Wi,N−1 + max

i≤N
TiN

(i)
= WM,N−1 + max

i≤N
TiN

(ii)

≤ W UP
N−1 + max

i≤N
TiN

(iii)
= W UP

N

in which equality (i) comes from Lemma 5.2, inequality (ii)
is based on the induction hypothesis and Proposition 5.1, and
equality (iii) is just Equation (5).

As explained in Section III, it turns out that opportunism has
a spectrum of degrees, leading all the way to non-opportunism.
Put simply, instead of forwarding a request as soon as an



immediate link is available, we can forward the request once
there are k immediate and consecutive links available. In
order to analyze k-opportunistic settings in a coherent way,
we define the following variables:

W k
ij =

{
maxm≤min{i+k−1,M} Tmj j = 1

maxm≤min{i+k−1,M}{W k
m,j−1 + Tmj} j > 1

(6)
Note that Equation (4) is a special case of Equation (6)
for k = 1. Based on this definition, we also denote the
total waiting time in the k-opportunistic setting by W k

N . The
following proposition is a straightforward generalization of
Proposition 5.1.

Proposition 5.3: The total waiting time in the k-
opportunistic setting is W k

N = W k
MN .

Similarly, Lemma 5.2 can also be extended. The proof is
exactly the same, and is omitted for brevity.

Lemma 5.3: W k
ij are ascending for fixed j and k. That is,

if m < i, then W k
mj ≤W k

ij .
The important point about opportunism is the fact that

the waiting times form an ascending order based on the
opportunism degree. This is captured by the next proposition.

Proposition 5.4: We have W k
N ≤W

k+1
N .

Proof: Similar to the proof of Proposition 5.2, we use
induction on the number of requests. For N = 1, the claim
follows immediately from the fact that both of the waiting
times are equal to maxm≤M{Tm1}. We now assume that the
claim is true for N−1. This means that W k

M,N−1 ≤W
k+1
M,N−1.

Since the number of links is irrelevant, this has to be true for
every m ≤M , and we have W k

m,N−1 ≤W
k+1
m,N−1. The proof

proceeds as follows:

W k
N = max

m≤min{M,i+k−1}
{W k

m,N−1 + TmN}

(i)

≤ max
m≤min{M,i+k}

{W k
m,N−1 + TmN}

(ii)

≤ max
m≤min{M,i+k}

{W k+1
m,N−1 + TmN} = W k+1

N

in which (i) holds since the set over which we take the
maximum is enlarged, and (ii) is based on the induction
hypothesis.

Although WN is itself lower than W UP
N , opportunism has a

lower bound and cannot arbitrarily decrease the total waiting
time. Indeed, a simple lower bound W LOW

N for WN can be
achieved as follows.

Proposition 5.5: The opportunistic waiting time is bounded
from below, and we have W LOW

N = maxi≤M
∑
j≤N Tij ≤

WN .
Proof: If we replace maxm≤i{Wm,j−1 + Tmj} with

Wi,j−1 + Tij in the definition of Wij in Equation (4), this
will not increase the value of WMN , since we shrink the set
we take the maximum on. We therefore define W̃ij as follows:

W̃ij =

{
Tij j = 1

W̃i,j−1 + Tij j > 1
(7)

We define W LOW
N = W̃MN . Based on the definition above,

we have W̃MN = maxi≤M
∑
j≤N Tij . Since this procedure

cannot increase the waiting time, we have W̃MN ≤ WMN ,
which means W LOW

N ≤WN .
Just as the k-opportunistic settings form a spectrum between

1-opportunism and non-opportunism, i.e., WN and W UP
N , one

can wonder if there is such a spectrum between W LOW
N and

WN . It turns out that such a spectrum exists, and W LOW
N and

WN are the two extremes of it. We can demonstrate this
spectrum with the following new definition:

Ŵ r
ij =

{
maxmax{0,i−r}≤k≤i Tkj j = 1

maxmax{0,i−r}≤k≤i{Ŵ r
k,j−1 + Tkj} j > 1

(8)

We now define Ŵ r
N = maxi≤M Ŵ r

iN . Note that for r = 0
we have Ŵ 0

N = WLOW, and for r = M we have ŴM
N =

WN , which shows that WLOW and WN are members of the
same family, with parameter r. Since this parameter specifies
how many links we go back when searching for the maximum
value, we call it the search depth.

We now show that, similar to k-opportunism, the new family
of Ŵ r

N form an ascending order based on r.
Proposition 5.6: We have Ŵ r

N ≤ Ŵ
r+1
N .

Proof: We use induction on the number of requests, N ,
to show that for every i we have Ŵ r

iN ≤ Ŵ r+1
iN . This way,

since Ŵ r
N = maxi≤M Ŵ r

iN and Ŵ r+1
N = maxi≤M Ŵ r+1

iN ,
the claim is proved. First assume that N = 1. In this case, the
induction claim follows from the fact that taking maximum
over a larger group does not decrease the maximum value.
Therefore, since when we go back r + 1 links to search for
maximum in calculating Ŵ r+1

i1 , while we go back only r links
when calculating Ŵ r

i1, the claim is proved.
Let us now assume that the induction claim is true for N−1.

We have:

Ŵ r
iN = max

max{0,i−r}≤k≤i
{Ŵ r

k,N−1 + TkN}

≤ max
max{0,i−(r+1)}≤k≤i

{Ŵ r
k,N−1 + TkN}

(i)

≤ max
max{0,i−(r+1)}≤k≤i

{Ŵ r+1
k,N−1 + TkN} = Ŵ r+1

iN

Inequality (i) follows from the induction hypothesis.
We have now established two families of “waiting times”,

and have shown that WN is in fact sandwiched between
these two families. From below, it is bounded by the different
search depths, and from above it is bounded by degrees of
opportunism. Note that, in contrast to degrees of opportunism,
different search depths do not have a real counterpart in the
algorithm, and are mere mathematical tools to have a better
understanding of the mathematical structure of the problem.
We can gather the results of this section in the following
theorem.

Theorem 5.4: In a line network, depths of search and
degrees of opportunism sandwich the total waiting time in



the opportunistic setting from below and above, respectively:

max
j≤N

∑
i≤M

Tij =Ŵ 0
N ≤ Ŵ 1

N · · · ≤ ŴM
N

= WN

= W 1
N ≤W 2

N · · · ≤WM
N =

∑
j≤N

max
i≤M

Tij

C. Transmission Rate

A natural question to ask is the effect of opportunism on the
transmission rate between A and B. The rate of interest is the
number of requests sent from A to B per step. To characterize
this rate, we define the random variable NT to be the number
of requests delivered from A to B up to time T ∈ N. Based
on this definition, we define the transmission rate between A
and B to be:

R = lim
t→∞

E{Nt}
t

(9)

The first thing we have to do is to prove such a limit exists.
In order to do so, we will use the following lemma [31].

Lemma 5.5: (Fekete’s Lemma) For every superadditive
(subadditive) sequence {an}, the limit limn→∞

a{n}
n is equal

to sup an
n (inf ann ).

To use this lemma, we need to prove the following propo-
sition.

Proposition 5.7: The sequence E{Nt} is superadditive. That
is, for two integers t1 and t2 we have E{Nt1+t2} ≥ E{Nt1}+
E{Nt2}.

Proof: Without loss of generality, let us assume t1 ≤ t2.
After t1 time steps have passed, a total of Nt1 requests have
been sent to B. Let us show the number of requests sent in
the remaining t2 time steps with X . Then we have Nt1+t2 =
Nt1 +X , which means E{Nt1+t2} = E{Nt1}+E{X}. Now,
note that after t1 time steps, some of the links of the network
are already established, and some of the pending requests are
somewhere between A and B. Therefore, if we compare X to a
situation in which the network starts from scratch and runs for
t2 seconds, we can see that in expectation, E{X} ≥ E{Nt2}.
This leads us to E{Nt1+t2} ≥ E{Nt1}+E{Nt2}, and finishes
the proof.

We can now prove the existence of R as defined in Equa-
tion (9).

Proposition 5.8: The limit R = limt→∞
E{Nt}
t exists and

is finite.
Proof: The existence follows immediately from

Lemma 5.5 and Proposition 5.7. To show that R is finite, note
that for every t ∈ N we have Nt ≤ t. This is true because
the only case in which we can have Nt = t is when all of
the links succeed consecutively in generation, up until time
t, so that in each step a single request is able to use all of
the links to reach B. Therefore, no more than t requests can
be sent, since this is the best case. We can thus see that for
every t ∈ N we have E{Nt}

t ≤ 1, which means R ≤ 1.
Although the convergence of E{Nt}

t to a constant is de-
sirable enough, it would be better if we could say more,
specially about the dynamics of Nt

t . In fact, using the standard

bounded difference method [32], we show that Nt

t converges
almost surely to R. We need to introduce some more structure
before proving this claim. The following construction is a
straightforward application of the procedure described in [32].

We start by introducing a new group of random variables,
based on an idea from [33]. Let us show the state of link
j ∈ {1, . . . ,M} at time i ∈ {1, . . . , t} by Xji ∈ {0, 1},
where Xji = 1 (Xji = 0) means that link j is generated
(not generated) at time i. Notice that {Xji} are not inde-
pendent. Based on these variables, let Fji be the sigma-field
generated by the Xab variables up to a = j and b = i,
i.e., Fji = σ(X11, X21, . . . , Xji). Note that these sigma-fields
“grow” based on a lexicographic order.

We define dji = E{Nt|Fji} − E{Nt|Fα(j,i)}, in which
α(j, i) gives the previous (j′, i′) in the lexicographic order,
i.e., α(j, i) = (j − 1, i) if j > 1 and α(1, i) = (M, i − 1).
The purpose of this formality is to ensure the dji grow
based on the order of the Fji. Note that we have Nt =
Nt(X11, X21, . . . , XMt), which means E{Nt|FMt} = Nt.
This leads us to

∑
i,j dji = Nt − E{Nt}.

We now proceed to prove that the {dji} are bounded. Let
us introduce a new set of variables {N (ji)

t }. For every j and
i, N (ji)

t is the same as Nt, except that it forgets the actual
value of Xji, and assumes Xji = 1. That is, we have:

N
(ji)
t (X11, X21, . . . , Xji, . . . XMt)

= Nt(X11, X21, . . . , 1, . . . XMt) (10)

The following lemma is essential to our path towards the
convergence of Nt

t .
Lemma 5.6: For every i and j we have:

|Nt(X11, X21, . . . , Xji, . . . XMt)

−N (ji)
t (X11, X21, . . . , Xji, . . . XMt)| ≤ 1

Proof: If Xji = 1, then based on Equation (10) we have
Nt − N (ji)

t = 0. If Xji = 0, then the best case scenario is
when all of the links are consecutively generated, except for
link j at time i. In this case, flipping Xji to one allows one
more request to pass, and increases Nt by one. Therefore,
having a link active at a certain time can increase Nt by at
most one amount, which means |Nt −N (ji)

t | ≤ 1.
We now use Lemma 5.6 to bound ||dji||∞. This will

allow us to leverage a version of Azuma’s inequality [32].
We start with showing that E{Nt|Fji} ≤ E{N (ji)

t |Fα(j,i)}.
Because of the discrete nature of the problem, we can think of
E{Nt|Fji} as a function of a tuple (x11, . . . , xα(j,i), xji), in
which xab is a realization of Xab [34]. We can take each one of
such tuples and change it to (x11, . . . , xα(j,i), 1), which is in
a bijective correspondence with the tuple (x11, . . . , xα(j,i)).
In order to use this, we name G = E{Nt|Fji}, H =

E{N (ji)
t |Fα(j,i)}, and H ′ = E{N (ji)

t |Fji}. This allows us
to form a bridge between G and H , as follows. First, note
that given the knowledge of Fα(j,i), N

(ji)
t is totally decoupled



from Xji, and the future state of the links is independent from
this variable. Therefore, we have:

H(x11, . . . , xα(j,i)) = H ′(x11, . . . , xα(j,i), xji) (11)

Second, based on the reasoning in the proof of Lemma 5.6,
we see that:

G(x11, . . . , xα(j,i), xji) ≤ H ′(x11, . . . , xα(j,i), xji) (12)

Since Equation (12) holds for every tuple
(x11, . . . , xα(j,i), xji), we conclude that G ≤ H , which
means:

E{Nt|Fji} ≤ E{N (ji)
t |Fα(j,i)}. (13)

Quite similarly, if we define G′ = E{Nt|Fα(j,i)}, we have:

G′(x11, . . . , xα(j,i)) ≤ H(x11, . . . , xα(j,i))

= H ′(x11, . . . , xα(j,i), xji) (14)

which means:

E{Nt|Fα(j,i)} ≤ E{N
(ji)
t |Fji} (15)

Combining Inequalities (13) and (15) we achieve:

E{Nt −N (ji)
t |Fji} ≤ dji ≤ E{N (ji)

t −Nt|Fα(j,i)} (16)

Now, we know from Lemma 5.6 that |Nt−N (ji)
t | ≤ 1. We also

know that conditional expectation cannot increase the ||.||∞
norm. Therefore, from Inequality (16) we conclude that for
every i and j we have ||dji||∞ ≤ 1. We are now ready to
prove our claim.

Proposition 5.9: With probability one, Nt

t converges to R.
Proof: Using a version of Azuma’s inequality [32], we

can establish the following tail bound. Note that we have
replaced

∑
i,j dji with Nt − E{Nt}:

P (|Nt − E{Nt}| ≥ λ) ≤ 2 exp

(
−λ2

2
∑
i,j ||dji||2∞

)
(17)

Using the fact that for every i and j we have ||dji||∞ ≤ 1,
we can change this inequality to:

P (|Nt − E{Nt}| ≥ λ) ≤ 2 exp

(
−λ2

2Mt

)
(18)

For every t ∈ N, and a fixed 0 < ε ∈ R let us define
λt =

√
2Mt(log t)(1 + ε), and the corresponding event At =

{|Nt − E{Nt}| ≥ λt}. Using Inequality (18) we have:∑
t

P (At) ≤
∑
t

1

t1+ε
<∞. (19)

Therefore, based on the Borel-Cantelli lemma we have
P (At, i.o.) = 0. This means that with probability one we have

Nt − E{Nt} = O(
√
t log t), or Nt

t −
E{Nt}
t = O(

√
log t
t ).

Therefore, since E{Nt}
t tends to R as t → ∞, we conclude

that Nt

t should also tend to R.
Based on the analysis of the waiting time in Section V-B,

we can readily obtain a lower and an upper bound for R. To

see this, first notice that based on the definition of Nt, we
have the following equality:

Nt = max{n ∈ N |Wn ≤ t}. (20)

Let us define N LOW
t and N UP

t in a similar fashion:

N UP
t = max{n ∈ N |W UP

n ≤ t} (21)
N LOW
t = max{n ∈ N |W LOW

n ≤ t} (22)

Now, since we know W LOW
n ≤ Wn ≤ W UP

n , we can see that
N LOW
t ≥ Nt ≥ N UP

t . This allows us to have the following
proposition, which we just proved.

Proposition 5.10: Let us define (notice the reversal of the
LOW and UP subscripts):

RLOW = lim
t→∞

E{N UP
t }
t

(23)

RUP = lim
t→∞

E{N LOW
t }
t

(24)

We then have RLOW ≤ R ≤ RUP.
The same reasoning can be used to define the corresponding

rates for the k-opportunistic waiting times, as well as the dif-
ferent search depths. Thus, the spectrum shown in Theorem 5.4
can be directly turned into a spectrum of rates. We do not
repeat the process for brevity.

It turns out that there exists another interesting upper bound
for R. This upper bound stems from a slightly different
definition for the transmission rate in the opportunistic setting.
Let us define:

R̃ = lim
n→∞

n

E{Wn}
. (25)

Similar to Proposition 5.8, one first has to show R̃ exists and
is finite. This can be done in the same manner, as can be seen
from the next proposition.

Proposition 5.11: The limit R̃ = limt→∞
n

E{Wn} exists and
is finite.

Proof: The procedure is very similar to that of Propo-
sition 5.8. We first show that the sequence E{Wn} is sub-
additive. Assume two integers n1 ≤ n2, and let us start
with Wn1+n2 . After the first n1 requests have been sent,
Wn1

time steps have passed. Let us show the remaining
time steps until all n1 + n2 requests have been sent with
Y . We thus have Wn1+n2

= Wn1
+ Y . After Wn1

time
steps, some of the links are established and some requests
are already travelling through the network. Therefore, E{Y }
cannot be more than the case in which the network starts from
scratch, leading to E{Y } ≤ E{Wn2

}. We thus conclude that
E{Wn1+n2

} ≤ E{Wn1
}+ E{Wn2

}.
The existence of R̃ follows immediately from Lemma 5.5.

To see that R̃ is also finite, it is sufficient to note that for
every n ∈ N we always have n ≤Wn. This happens because
the lowest Wn can get is when all of the links succeed
consecutively in generation, up until request n, so that in each
step a single request is able to use all of the links to reach
B. Therefore, we always have n

E{Wn} ≤ 1, which means R̃
is finite.



Although quite similar in nature, simulations indicate that
R and R̃ are different, and we have R ≤ R̃. We do not have a
proof for this yet, and postpone a demonstration of this curious
point to the simulations in Section VI.

D. Further Investigation
Let us get back to the matrix D, defined in Equation (3). As

explained in Section V-B, we can introduce different degrees
of opportunism and searching depths when analyzing the
waiting times. There is a mathematical waiting time associated
with every one of these cases. Thinking of these waiting times
as mere functions of matrices, it turns out that they have an
interesting property. Put simply, these waiting times act as
norms for general matrices. Furthermore, the ||.||∞ matrix
norm is a natural member of this family of norms, as we will
show here.

To analyze the waiting time functions as norms, we need
to define them in a different, more systematic manner. The
following definition introduces the building blocks of such a
systematic approach.

Definition 1: For every 0 ≤ r ≤M and 1 ≤ k ≤M , and for
vectors a, b ∈ RM , we define the function Θk

r : RM ×RM →
RM as follows:

Θk
r (a, b) = (v1, . . . , vM )

vi = max
max{0,i−r}≤j≤min{i+k−1,M}

{|aj |+ |bj |}

Based on this definition, we have the following lemma.
Lemma 5.7: For every 0 ≤ r ≤ M and 1 ≤ k ≤ M , every

α ∈ R, and for vectors a, b ∈ RM , the function Θk
r (a, b)

satisfies the following two properties:
1) If Θk

r (a, b) = 0, then a = 0 and b = 0.
2) Θk

r (αa, αb) = Θk
r (−αa, αb) = Θk

r (αa,−αb) =
|α|Θk

r (a, b).
Proof: We first prove the first property. Based on Def-

inition 1, Θk
r (a, b) = 0 means that for every i and every

j between max{0, i − r} and min{i + k − 1,M}, we have
|aj |+ |bj | ≤ 0, which means aj = bj = 0. Since we can cover
all 1 ≤ j ≤M by sliding i, we conclude that a = b = 0.

We now prove the second property. Assuming Θk
r (a, b) =

(v1, . . . , vM ) and Θk
r (αa, αb) = (u1, . . . , uM ), for every i we

have:

ui = max
max{0,i−r}≤j≤min{i+k−1,M}

{|αaj |+ |αbj |}

= max
max{0,i−r}≤j≤min{i+k−1,M}

{|α|(|aj |+ |bj |)}

= |α| max
max{0,i−r}≤j≤min{i+k−1,M}

{|aj |+ |bj |}

= |α|vi
We thus conclude that Θk

r (αa, αb) = |α|Θk
r (a, b). The other

equalities are proved in the exact same way.
Let us show the standard basis vectors for RM with

{ei}1≤i≤M . That is, ei is the vector with a one in its i-th
coordinate, and a zero in the rest. For a given matrix D, we
define the vectors Di as follows:

Di = Θk
r (Di−1, e

T
i D) (26)

With the initial vector D0 = (0, . . . , 0). We are now ready for
the following theorem.

Theorem 5.8: For any matrix D ∈ RN×M , and every 0 ≤
r ≤M and 1 ≤ k ≤M , the following function is a norm:

Λkr (D) = ||DN ||∞ (27)

In which DN is based on Equation (26).
Proof: We prove this theorem by checking the three

conditions a real function on matrices should satisfy in order
to be a matrix norm. First, we show that if Λkr (D) = 0, then
D is the zero matrix. Since Λkr (D) = 0, then ||DN ||∞ = 0.
This means that DN = 0. Now, based on Lemma 5.7, we have
eTND = 0 and DN−1 = 0. The first equality means that the last
row of D is equal to the zero vector, and the second equality
can be used in a recursive manner (based on Definition 1).
Each step i reveals that the i-th row of D is the zero vector.
Therefore, we have D = 0.

We now show that, for any α ∈ R, we have Λkr (αD) =
|α|Λkr (D). Let us denote D̂ = αD. By using induction,
we show that for every i we have D̂i = |α|Di. This way,
we have D̂N = |α|DN , which directly leads to Λkr (αD) =
|α|Λkr (D). For i = 1, based on Lemma 5.7 we have D̂1 =
Θk
r (0, αeT1D) = |α|Θk

r (0, eT1D) = |α|D1. Now, assuming the
claim is true for i, we have:

D̂i+1 = Θk
r (D̂i, αe

T
i+1D) = Θk

r (|α|Di, αe
T
i+1D)

= |α|Θk
r (Di, e

T
i+1D) = |α|Di+1

in which we have used the induction hypothesis and
Lemma 5.7.

Finally, we have to prove that Λkr satisfies the triangle
inequality. We will do so by showing that for the two matrices
C and D we have Λkr (C+D) ≤ Λkr (C)+Λkr (D). Let us name
G = C + D. Also, let us show the j-th element of a vector
Ci with (Ci)j . In order to do prove the triangle inequality,
we first use induction to prove that for every i and j we have
(Gi)j ≤ (Ci)j + (Di)j . Once we have proved this, we have:

Λkr (G) = ||GN ||∞ = max
j
{(GN )j} ≤ max

j
{(CN )j + (DN )j}

≤ max
j
{(CN )j)}+ max

j
{(DN )j}

= Λkr (C) + Λkr (D)

Which is the triangle inequality. Now, in order to prove our
claim based on induction, we first start with the base case of
i = 1. Let us show the element in the i-th row and the j-th
column of a matrix C with Cij . We have:

(G1)j = max
max{0,j−r}≤s≤min{j+k−1,M}

{|G1s|}

= max
max{0,j−r}≤s≤min{j+k−1,M}

{|C1s +D1s|}

≤ max
max{0,j−r}≤s≤min{j+k−1,M}

{|C1s|+ |D1s|}

≤ max
max{0,j−r}≤s≤min{j+k−1,M}

{|C1s|}

+ max
max{0,j−r}≤s≤min{j+k−1,M}

{|D1s|}

= (C1)j + (D1)j



Now we assume that our claim is true for i− 1. We have:

(Gi)j = max
max{0,j−r}≤s≤min{j+k−1,M}

{|(Gi−1)s|+ |Gis|}

= max
max{0,j−r}≤s≤min{j+k−1,M}

{|(Gi−1)s|+ |Cis +Dis|}

≤ max
max{0,j−r}≤s≤min{j+k−1,M}

{(|Gi−1)s|+ |Cis|+ |Dis|}

(i)

≤ max
max{0,j−r}≤s≤min{j+k−1,M}

{|(Ci−1)s|+ |(Di−1)s|

+ |Cis|+ |Dis|}
≤ max

max{0,j−r}≤s≤min{j+k−1,M}
{|(Ci−1)s|+ |Cis|}

+ max
max{0,j−r}≤s≤min{j+k−1,M}

{|(Di−1)s|+ |Dis|}

= (Ci)j + (Di)j

This finishes our proof. We have thus proved that the function
Λkr is indeed a matrix norm.

VI. SIMULATIONS

We will demonstrate our experimental results in this section.
These results can be divided to two main categories, each
serving its own purpose. We will first present simulation
results for the line network analyzed in Section V, in which
we demonstrate the proved claims numerically. Second, using
the simulator we have built, we present the effect of oppor-
tunism on a more complex network, under different design
choices. Our simulation setup in the second part is much more
general than our analysis setup in V. For instance, we use
the grid topology for simulation, which automatically covers
many complex routing scenarios. We have also relaxed the
assumptions of the analysis section in the second part of the
simulations.

A. Numerical Simulations for Line Networks

We start with verifying our analytical results. The analysis
in Section V has three main themes. The first is the fact that
opportunism induces a spectrum of choices and correspond-
ing waiting times. The main point here is that opportunism
decreases the total waiting time. We postpone demonstrating
these to Section VI-C, in which we use a much more complex
network. The second theme is about the asymptotic behavior
of the transmission rate, whether in expectation or as a
random variable. Finally, the last theme is about bounding
the transmission rate from above and below. In the numerical
simulations of this section, we focus on the transmission rate,
and demonstrate the second and third themes of our analysis.

Figure 5 shows the transmission rate when we have M =
20, for two values of pGEN. Here, we have Rt = E{Nt}

t ,
RUP
t =

E{N LOW
t }
t , RLOW

t =
E{N UP

t }
t , and R̃t = t

E{Wt} . We
can see that for every t, Rt is more than RLOW

t . Now, we
know from Equations (21) and (23) that RLOW

t corresponds
to non-opportunism, which means that in a line network,
opportunism increases the transmission rate when compared
to non-opportunism. As we mentioned in Section V, R̃t seems
to act as an upper bound to Rt, and we can see this as well
in Figure 5.
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Fig. 5: Transmission rate and its different bounds. In the
figures on the left and the right we have pGEN = 0.3 and
pGEN = 0.7, respectively.

We now demonstrate the behavior of Rt based on the two
main variables of the setting in our analysis, which are pGEN

and M . We first fix the size of the network at M = 20, and
plot the transmission rate Rt for different values of pGEN. The
result is shown in Figure 6, in which the value of pGEN ranges
from 0.1 to 1. Similarly, we can fix pGEN = 0.8, and plot the
transmission rate for different network sizes. The results are
demonstrated in Figure 7, in which M ranges from 11 to 20.

These figures suggest that M has a linear effect on the
transmission rate, while pGEN has a nonlinear one. We can
verify these observations by plotting the rate based on these
variables, and not based on the time. To do this, we select a
time in which the rate has safely converged, and plot the rate in
that time based on varying M and pGEN values. The resulting
plots are shown in Figure 8. This figure also shows that the
rate is not very sensitive to the length of the line. This is
intuitively correct, because once enough requests have entered
the network, the rate with which they reach the destination
is not much related to the length of the network, and the
generation probability is the main factor.

We finally demonstrate the stochastic behavior of the trans-
mission rate. As we proved in Section V, the transmission rate
almost surely converges to the limit of its expectation. Figure 9
shows this convergence for a number of simulated runs.

B. QNS-Lite

Before presenting the evaluation results, we first provide
a brief explanation of the simulator we developed during
our research on opportunism, QNS-Lite [35]. We do so by
explaining the logical, modular structure of the simulator,
shown in Figure 10. We go through the modules one by one:

• Graph: This module provides the necessary abstractions
(e.g., nodes and links) for the topology of the network.

• Quantum: The Quantum module captures the quantum
behaviour of the system. This is done through a number
of mathematical abstractions that represent the physical
behaviour of the system. For instance, every generation
attempt is modeled by a biased coin toss.

• Request: The necessary components of a simulated re-
quest are packed in the Request module.
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Fig. 6: Transmission rate for different values of pGEN. These
values are specified in the legend. We have M = 20.
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Fig. 7: Transmission rate for different values of M . These
values are specified in the legend. We have pGEN = 0.8.
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figure on the right is 20.
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Fig. 9: The stochastic convergence of the transmission rate.
The values of M and pGEN are 20 and 0.7, respectively.

• Config: This module contains the generic parameters of
the system (e.g., pGEN), and allows the designer to specify
these parameters in one place.

• PathFinder: The functionality of the PathFinder module
is to find a number of (recovery) paths for the requests,
based on different design choices. Different routing algo-
rithms can have different PathFinder modules.

• Profile: This is the main module of the system. Here,
a network topology and a specific routing algorithm
are determined, and the simulation starts to run. Each
combination of different networks and routing algorithms
gives a different profile, and this module enables the
common functionalities (e.g., forwarding) required for
such algorithms to run.

• Benchmarker: The Benchmarker module handles the
creation of the requests, and then runs the profile module.
Furthermore, the metrics of the simulation are gathered
by this module.

Following the existing literature on quantum routing
(e.g., [9], [13]), we have adopted the practice of dividing
time into time slots, and furthermore, based on the structure
explained in Section II-C, each time slot is divided to several
stages. Because of our focus on demonstrating the essential
superiority of opportunism, we have kept some aspects of
the design simple, and improving these aspects is a part of
our future work. This being said, most of the design choices
required for creating and fine-tuning a quantum routing al-
gorithm are crafted into the simulator, hence making it a
suitable tool for research and development. Finally, to have
a more realistic evaluation, we have relaxed the assumption
that swapping takes no time. At the end of each time slot, we
allow every request a single swapping opportunity. We use an
ordinary chain swapping from the source to the destination.
Note that, although there are better swapping methods, this



choice does not harm our goal of demonstrating the superiority
of opportunism.

C. Evaluation

In order to provide and explain our experimental results, we
first explain our setup, metrics, and methodology, as follows.

1) Setup: In our setup, the source and the destination
of each request are randomly selected, based on a uniform
distribution on the nodes. Once the requests are generated, the
runtime of the simulator starts, and it finishes when all of the
requests have reached their destinations. This can be thought
of as giving an impulse as the input to a system and measuring
its impulse response. All of the metrics are measured during
the runtime.

Each configuration of interest for this paper can be shown
as the tuple (pGEN, pSWAP, L,N,M, k), in which pGEN is the
generation success probability, pSWAP is the swapping success
probability, L is the lifetime of a link, N is the number of
requests, M is a parameter determining the size of the network,
and k is the opportunism degree. In a grid network, the nodes
are arranged in an M ×M mesh.

2) Metrics: The main metric for our evaluations is the aver-
age total waiting time for requests, as explained in Section V.
The lower this metric becomes, the sooner (on average) the
requests reach their destinations, and the higher the average
throughput of the network. In addition to this metric, we briefly
evaluate the average link waiting time. The lower this metric
gets, the more efficient resource consumption becomes. We
only demonstrate that in all of the implemented algorithms,
opportunism helps reduce these metrics, and we do not provide
a full comparison of the algorithms.

3) Methodology: For every (pGEN, pSWAP, L,N,M, k) con-
figuration, we first generate N requests in the network and
then run each algorithm 100 times. We measure each metric
in every runtime and calculate its average across the 100
iterations. Then, we repeat this procedure another 50 times,

Config

Benchmarker

Graph PathFinder

Profile Quantum

Request

Fig. 10: The modular structure of our simulator.

each time with a different set of requests. Each one of these
outer iterations produces an average total waiting time for its
corresponding N requests, and an average link waiting time
for the links. We calculate the average of these average values,
and then compare them across the different algorithms we
have implemented. This allows us to assess the essence of
the overall effect of opportunism on the performance of a
given network, by including many groups of requests in many
scenarios.

D. Results

We have implemented three state-of-the-art algorithms
alongside their opportunistic versions. These algorithms are
Modified Greedy (MG) [9], Nonoblivious Local (NL, we have
chosen this name for this algorithm for ease of use) [14], and
QPASS (QP) [13]. It is worth mentioning that our version of
the QP protocol is slightly modified, and to be more exact,
it is a combination of the QPASS and QCAST algorithms
from [13]. Furthermore, the original QP algorithm in [13]
uses a novel metric, EXT, when finding paths for requests
in arbitrary networks. Due to the complete homogeneity of
the grid topology, the EXT metric is equivalent to the hop
distance, in terms of the preference it induces on different
paths. Thus we have used the ordinary hop distance for our
path selection, in all of the three algorithms. In all of the
figures, NOPP and OPP correspond to the non-opportunistic
and opportunistic approaches, respectively.

Opportunism is Better. We start by fixing M = 5, N = 20,
L = 30, k = 1, and pSWAP = 1, and compare the average total
waiting time based on pGEN. Fig. 11 shows the result of this
comparison. The figure on the right shows the ratio of the
improvement caused by opportunism to the non-opportunistic
approach, which is obtained by dividing their difference by
the non-opportunistic values. It is clear that opportunism has
improved the performance of the network by almost 30%, and
up to 45%. Furthermore, it can be seen that the QP algorithm
provides better performance in this setup.

We now change the setup to another configuration, in which
M , N and k stay the same, while we have L = 6 and
pSWAP = 0.8. This new setup has much more dynamism
than the previous one. The results of comparing the average
total waiting time of the three algorithms, based on pGEN,
is shown in Fig. 12. We can see that in a high dynamism
of the quantum network’s state, the opportunistic approach
enables significantly better performance, and this improvement
is around 50%.

Now we increase the network size and analyze the effect
of opportunism in bigger networks. Fig. 13 shows the average
total waiting time based on the network size, for the three
algorithms, in a grid network. The setup is N = 20, L = 30,
k = 1, pSWAP = 0.8, and pGEN = 0.8. This setup is somehow an
intermediate setup that is neither stable nor highly dynamic.
We can see that just like small networks, opportunism sig-
nificantly improves performance in bigger networks as well.
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Fig. 11: Average total waiting time in a grid network, with
the fixed scenario M = 5, N = 20, L = 30, k = 1, and
pSWAP = 1. The figure on the right shows the ratio of the
improvement caused by opportunism to the non-opportunistic
approach.
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Fig. 12: Average total waiting time in a grid network, with
the fixed scenario M = 5, N = 20, L = 6, k = 1, and
pSWAP = 0.8. The figure on the right shows the ratio of the
improvement caused by opportunism to the non-opportunistic
approach.

We finally present Table I, in which we have shown the
effect of opportunism on the average link waiting time. The
bottom row shows the improvement with respect to the non-
opportunistic approach. Due to lack of space, we have only
included the MG algorithm. Nonetheless, the improvement
is similar in the other two algorithms. The results clearly
demonstrate the fact that opportunism decreases the average
link waiting time, thus increasing the efficiency of resource
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Fig. 13: Average total waiting time in a grid network, with
the fixed scenario N = 20, L = 30, k = 1, pSWAP = 0.8,
and pGEN = 0.8. The figure on the right shows the ratio of the
improvement caused by opportunism to the non-opportunistic
approach.
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Fig. 14: Average total waiting time in a grid network across
different opportunism degrees, with the fixed scenario N = 20,
L = 30, pSWAP = 0.8, and pGEN = 0.8. The number after OPP
is the opportunism degree.

TABLE I: Average link waiting time in the MG algorithm

pGEN 0.1 0.3 0.5 0.7 0.9

NOPP 12.9 8.8 7.18 6.3 5.3

OPP 11.5 6.15 4.16 3.6 3.13

Improv. 11% 30% 41% 43% 41%

consumption. The setup in this part is N = 20, M = 10,
L = 30, pSWAP = 1, and k = 1.

Degrees of Opportunism. In this part, we demonstrate
the effect of changing the degree of opportunism. The results
verify our analysis, and as we can see in Fig. 14, opportunism
has a spectrum of choices for algorithm design. Due to space
limitations, we have only included the MG protocol here. In
Fig. 14, the number after OPP is the opportunism degree.

VII. RELATED WORK

Opportunism, as studied in this paper, is related to several
lines of work in quantum networks. In terms of fundamental
analysis, there are a series of works analyzing the limits
of quantum communication, without examining the effect of
opportunism. Below are several examples. Pirandola et al. [17]
analyze the fundamental limits of repeaterless communications
using local operations and classical communication. Bäuml et
al. [36] study fundamental limitations on quantum broadcast
networks by using multipartite entanglement instead of bipar-
tite entanglement. Patil et al. [23] show that by leveraging
n-qubit GHZ projective measurements, entanglement can be
generated between two endpoints at a rate independent of the
distance between them. Khatri et al. [10] and Bernardes et
al. [30] analyze the average total waiting time for a group
of links with infinite lifetimes, and Coopmans et al. [37]
provide analytical bounds on delivery times of long-distance
entanglement in different protocols. Praxmeyer [38] analyzes
the average total waiting time for a group of links with finite
lifetimes.



Routing in quantum networks has gained significant atten-
tion in the past few years. For example, Schoute et al. [29]
analyze virtual links (i.e, entanglement between non-adjacent
nodes) as primary resources for entanglement routing, in ring
and sphere topologies. Chakraborty et al. [9] modify the
greedy routing algorithm with regards to quantum networks,
while also analyzing on-demand and continuous resource
generation schemes. Pant et al. [14] introduce a multipath
routing algorithm, utilizing local link information, in a grid
topology. Van Meter et al. [27] present several link costs and
use Dijkstra’s algorithm for calculating the cost of a path of
links. Shi et al. [13] propose using recovery paths in routing,
present a nonlinear path cost function, and introduce an ex-
tended version of Dijkstra’s algorithm for this function. Dai et
al. [39] use linear programming to optimize the entanglement
distribution rate between two endpoints, using repeaters with
probabilistic swapping. However, none of these algorithms
consider opportunism as we did in this paper.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we introduced opportunism in quantum net-
works and provided theoretical and experimental analysis
with regard to its better performance when compared to
the non-opportunistic approach. We demonstrated the two
inherent mechanisms by which opportunism increases effi-
ciency, namely the swapping and reservation gains. The results
indicated that opportunism can decrease the average total
waiting time up to 50% in different setups and network
dynamism. Furthermore, we showed that opportunism is inher-
ently flexible by introducing k-opportunism and demonstrating
the spectrum of choices it provides. Due to the importance of
efficient resource allocation in quantum networks, the results
of this paper demonstrate the need for a consistent approach
towards integrating opportunism in the management layer
of such networks (e.g., by including opportunism as a key
functionality in the network layer of a quantum networking
stack).

Opportunism can be further analyzed in several directions.
The effect of opportunism on the fundamental entanglement
distribution rate between two endpoints of a repeater chain
needs further study. Our analysis of the swapping and reserva-
tion gains does not include the finite lifetime and probabilistic
swapping regime, and extending the results to include these
assumptions would provide useful insight for designing new
algorithms. Furthermore, our analysis can be extended to more
graph-theoretic results (including different topologies). Finally,
our simulator is currently supporting only grid networks and
does not include the finite memory assumption. Extending the
simulator to cover these areas is also an interesting future
work.
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