
1
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Abstract—Classical routing strategies for mobile ad hoc net-
works operate in a hop by hop “push mode” basis: packets are
forwarded on pre-determined relay nodes, according to previ-
ously and independently established link performance metrics
(e.g., using hellos or route discovery messages). Conversely, recent
research has highlighted the interest in developing opportunistic
routing schemes, operating in “pull mode”: the next relay can
be selected dynamically for each packet and each hop, on the
basis of the actual network performance. This allows each packet
to take advantage of the local pattern of transmissions at any
time. The objective of such opportunistic routing schemes is to
minimize the end-to-end delay required to carry a packet from
the source to the destination.

In this paper, we provide upper bounds on the packet propaga-
tion speed for opportunistic routing, in a realistic network model
where link conditions are variable. We analyze the performance
of various opportunistic routing strategies and we compare them
with classical routing schemes. The analysis and the simulations
show that opportunistic routing performs significantly better.
We also investigate the effects of mobility and of random
fading. Finally, we present numerical simulations that confirm
the accuracy of our bounds.

Index Terms—Opportunistic routing; Wireless; Ad hoc; Infor-
mation propagation speed.

I. INTRODUCTION

Conventional routing strategies for mobile ad hoc networks
operate in “push mode”: depending on the destination, packets
are forwarded on a per hop basis to pre-determined relay
nodes, based on previously established link performance statis-
tics. The next hop relays can be determined by a simple short-
est path algorithm, or by more complicated optimizations, tak-
ing into account the channel conditions and the performance
of the network links. In link state protocols, such as OLSR [8],
the next relay is determined by a route calculation relying on
measurements on the average link performance (e.g., based
on statistics of hello messages). In reactive protocols, such as
AODV [18], routes between nodes are computed on demand
with route request and route reply messages, as desired by
the source nodes, and they are maintained as long as they
remain active. Similarly, in DSR [15], even though the route
computation is performed by broadcasting a route discovery
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message, the actual forwarding of packets uses source routing.
When the performance of a link deteriorates (triggering a link
break event), the routes are updated with route maintenance
mechanisms, while packets are possibly kept in cache to
avoid losses. However, once the route is re-established, packets
continue to be forwarded to the next hop which is determined
by the route maintenance mechanism.

On the other hand, recent research has highlighted the
interest in developing opportunistic routing schemes, where
the next relay is selected dynamically for each packet and each
hop. As a result, these opportunistic strategies operate in “pull
mode”, since the relays can be selected (eventually even self-
selected) based on the actual network performance, in contrast
to classical routing protocols. Therefore, each packet can take
advantage of the local pattern of transmissions at each hop
and at any time. The general aim of such opportunistic routing
schemes is to minimize the end-to-end delay required to carry
a packet from the source to the destination, and maximize in
this sense the throughput in the network.

Several strategies have been proposed, based on geographic
routing and/or time-space opportunistic routing. Geographic
routing strategies [3], [6], [16] use the positions of the nodes
to determine the route to the destination, while they try
to optimize geographic criteria, such as the distance to the
destination. In time-space opportunistic routing [4], [5], the
selection of each relay takes advantage not only of the local
topology but also of the current MAC and channel conditions.
However, performance evaluations are often limited to com-
parative simulations (e.g., [4], [19], [20]) or measurements
(e.g., [5]) as a complete understanding of what one can expect
for optimal performance (e.g., through theoretical bounds) is
still missing. In this context, our objective in the present
paper is to evaluate the maximum speed at which a packet
of information can propagate in a multi-hop wireless network,
using any possible opportunistic routing strategy.

In terms of related work on the information propagation
speed in mobile ad hoc networks, the problem has been studied
in unit disk graph models [13], [14], [17]. Kong and Yeh [17]
showed that the information propagation latency scales linearly
with the distance (i.e., the information propagation speed tends
to a constant) under a critical node density threshold, while
the latency scales sub-linearly in the super-critical case where
the network is percolated. The articles [13], [14] present the
first analytical upper bounds on the achievable information
propagation speed in unbounded and bounded networks, re-
spectively. In contrast, here, we use a realistic interference
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model based on stochastic geometry.
In an interference-based model, the authors of [21] have

showed that there is a unified upper bound on the maximum
information propagation speed in large multi-hop wireless net-
works. This case is similar to our analysis of classical routing,
the main difference being that we assume a fixed required
signal-to-noise ratio for correct reception of packets (as is the
case in current protocols), while [21] uses a capacity bound
on the information transmission rate. However, our main focus
here is opportunistic routing and the evaluation of upper
bounds on the information propagation speed. Baccelli et
al. [4] presents some analytical results on optimizing specific
time-space opportunistic routing strategies, and comparing
them to classical routing (in addition to a detailed simulation
study). In this paper, we use the framework of [4] in order
to compare our analysis with simulation measurements, but
our objective is different: we wish to determine the best
possible packet propagation speed using any opportunistic
routing strategy. Our main contributions are the following:
• we propose a new probabilistic model of space-time paths

of packets of information; we upper-bound the optimal
performance, in terms of delay, that can be achieved using
any opportunistic routing algorithm, in a realistic network
model where link conditions are variable; we derive
theoretical bounds on the packet propagation speed with
generic opportunistic routing strategies and we investigate
the effects of random fading and mobility;

• we verify the accuracy of our bounds in numerous scenar-
ios using numerical simulations: we compare them with
the performance of an optimized time-space opportunistic
routing scheme [4];

• we also compare opportunistic and classical routing;
the analysis and the simulations show that opportunistic
routing performs significantly better, even when classical
routing schemes are optimized based on an absolute
knowledge of the statistics of the channel conditions.

In Section II, we describe the network model and we present
our first result, i.e., an upper bound on the propagation speed
using a classical routing strategy. We then adopt a didactic
approach. In Section III, we overview the methodology for
the analysis of opportunistic routing. We present our main
theorems and theoretical bounds on the packet propagation
speed in Section IV. In Section V, we verify the accuracy of
our bounds using numerical simulations, and we compare them
with the performance of an optimized time-space opportunistic
scheme, introduced in [4]; we also present a comparison
with classical routing. We investigate the performance of
opportunistic routing with node mobility in Section VI. We
conclude and we discuss some possible directions for further
research in Section VII.

II. MODEL AND CLASSICAL ROUTING

A. Network and propagation model

We use the model developed in [2]. We consider a network
on an infinite 2-D map, with a constant density of ν nodes
per square area unit, dispatched according to a Poisson distri-
bution. We assume that time is slotted, and at each slot, each

node has a packet to transmit with probability λ
ν , with λ < ν.

Therefore, the distribution of the number of active transmitters
per slot is Poisson; the rate of transmitters per square area unit
and per slot is λ. Therefore, λ corresponds to the overall traffic
density, including all generated and relayed data, as well as
eventual protocol packets.

We assume that all nodes transmit at the same nominal
power. We take a simple power attenuation function, with
attenuation coefficient α > 2: the signal level received at
distance r from the transmitter is W = exp(F )

rα , where F
is a random fading of mean 0. Fading is an alteration of
the signal which is due to factors other than the distance
(obstacles, co-interferences with echoes, and so on). Therefore,
F is a random variable, i.i.d. for each node. With this general
fading distribution model, we do not need to distinguish in the
analysis whether the fading is permanent (for a given node)
or changes at every slot. In both cases, the total power of all
transmissions at a given slot follows the same distribution: the
traffic density is Poisson in time and space, while each packet
is transmitted at the same nominal power. Whether, the fading
is fixed in time for each node or not, this does not affect
our analysis, since we are interested in the distribution of the
signal-over-noise ratio (SNR).

A packet can be successfully decoded if its signal-over-noise
ratio is greater than a given threshold K. By noise, we mean
the sum of powers received from all other transmissions in the
same slot.

Let us denote W (λ) the total power received by a node at
a random slot, when transmissions are distributed according
to a 2-D Poisson process with intensity of λ transmitters per
slot and per square area unit. Quantity W (λ) is then a random
variable. According to [2], the Laplace transform of W (λ) can
be calculated exactly, assuming w.l.o.g. that all transmitters
emit at unit nominal power. The Laplace transform S̃(θ, λ) =
E(e−W (λ)θ) has the following expression:

S̃(θ, λ) = exp
(
−λπΓ(1− 2

α
)E(e

2
αF )θ

2
α

)
, (1)

where the expectation E(.) indicates the average with respect
to the random fading factor F .

We note that the random variable W (λ) is invariant by
translation, i.e., it does not depend on the node location.
Moreover, we notice from (1) that W (λ) follows a Levy-Stable
distribution ([22]). For general α, there is no closed formula
for the probability function P (W (λ) < x). However, we have
the following series expansion and asymptotic behavior [12]
(we denote γ = 2

α and C = πΓ(1− γ)EF (eγF )):

• P (W (λ) < x) =
∑
n≥0(−Cλ)n sin(πnγ)

π
Γ(nγ)
n! x−nγ ,

• − logP (W (λ) < x) = Θ(x
γ
γ−1 ) when x→ 0.

Therefore, a silent node will correctly receive (with SNR
at least K) a packet from another node at distance r with
probability p(r) = P (W (λ) < eF

K r−α). By substitution in the
series expansion, we obtain the probability p(r) as a function
of the distance r:

p(r) =
∑
n≥0

(−Cλ)n
sin(πnγ)

π

Γ(nγ)
n!

E(e−γF )Knγr2n. (2)
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Notice that p( rK
− 1
α√
λ

) is an invariant.
When we take α = 4 (i.e., in the case corresponding to

the reflection-absorption model of wave propagation over an
infinite plane), we obtain the following closed formula:

p(r) = 1− E
(

erf(
1
2
λπ

3
2K

1
2 e−

F
2 r2)

)
,

where erf() is the error function; the expectation E(.) indicates
the average with respect to the random fading factor F .

B. Classical Routing Bound

Based on the model and the previous analysis, we can
establish a first upper bound on the packet propagation speed,
when a classical routing strategy is employed, i.e., when
packets are forwarded in “push mode” to the next relay on
a hop by hop basis. For the analysis, we consider that the
distribution of the signal to noise ratio is exactly known
and that classical routing is optimized to achieve the fastest
propagation speed under this distribution.

We notice that the propagation delay is caused by the fact
that packets must be retransmitted several times until a correct
reception occurs. For instance, the probability of successful
transmission in one hop of length r is p(r), which we com-
puted from the signal distribution in Section II. Therefore, the
average number of retransmissions needed until the packet is
received correctly is 1

p(r) , and the corresponding average delay
is (at best) 1

p(r) slots. Clearly, a compromise can be achieved
between the length of each hop in a route and the average delay
that will result from the necessary packet retransmissions.
Indeed, the maximum speed at which a packet can propagate
in one hop will be equal to maxr≥0{rp(r)}. Hence, this
quantity is an upper bound on the packet propagation speed.
We formalize and refine this result in the following theorem.

Theorem 1: In classical routing (i.e., when all packets from
a source to a destination follow the same route) the packet
propagation speed is bounded from above by the quantity (1−
λ
ν ) maxr≥0{rp(r)}.

Proof: We assume w.l.o.g. that the source is at position 0
and the destination at position z. Let us suppose that the chain
of relays between the source and the destination is made of n
nodes. We denote zi the position of node i, with z1 = 0 and
zn = z. The probability of correct reception between node i
and node i + 1 is p(|zi+1 − zi|)(1 − λ

ν ); the term (1 − λ
ν )

corresponds to the probability that the receiver is idle (i.e., it
is not transmitting simultaneously). Therefore, the delay for a
correct transmission is on average

(
p(|zi+1 − zi|)(1− λ

ν )
)−1

.
As a result, when |z| → ∞ and n→∞, we can deduce from
the strong law of large numbers that the optimal packet speed
is almost surely:

(1− λ

ν
)

|z|∑
i

1
p(|zi+1−zi|)

.

This quantity is smaller than (1 − λ
ν )
∑

i
|zi+1−zi|∑

i

1
p(|zi+1−zi|)

(from

the triangle inequality), which in turn is smaller than (1 −
λ
ν ) maxr≥0{rp(r)}.

III. METHODOLOGY

As we discussed in the previous section, in optimal classical
routing, each node selects as next relay the node that offers
the best compromise between its routing delay towards the
destination and its probability to receive the packet. This
compromise can be achieved according to the average perfor-
mance, sampled over a link state approach (for example with
OLSR [8]). On the other hand, opportunistic routing consists
in selecting the best chain of relays in terms of actual delay
(for each packet, at each hop and time slot).

In wireless networks, the quality of a signal reception can
vary greatly due to the variation of the Signal-over-Noise Ratio
(SNR). In particular, variations occur in time but also in space.
Indeed, the closer is the receiver, the better is the SNR, as
we saw in Section II. These variations provide substantial
possibilities for improvement of the routing performance,
when opportunistic strategies are employed. In the following
sections, we evaluate the maximum speed at which a piece of
information can propagate in the network with opportunistic
routing, and compare it with classical routing. We establish
generic upper bounds, but we do not analyze specific algo-
rithms. In terms of algorithms, our upper-bound would be
attainable if all SNR variations in the network were known
in advance. Our aim is to compute the fastest possible packet
propagation without predictive knowledge. Equivalently, we
aim to find the “foremost” path in time ([7]) that connects a
source to a destination; this is achieved because our analysis
unfolds all possible paths.

We note here that, in the upper bound derivations, we do
not consider the delays experienced by packets in the queues.
This does not affect the validity of our analysis, since we are
interested in upper bounds for the packet propagation speed.

We investigate the performance of two generic strategies,
which we call “store-forward”, and “store-hold-forward”. In
the first strategy, nodes attempt to forward packets immedi-
ately. The second strategy is more general: each relay has the
choice to either immediately transmit the packet or to wait for
better signal propagation conditions (requiring a store-hold-
and-forward routing model). The reception of each packet can
be performed on the basis of a self-selection rule (see [4]).

We decompose paths into segments, using language theory
and symbolic combinatorial methods (as described in [10] for
generating functions), and we evaluate the Laplace transforms
of the path probability density. From the Laplace transforms
and complex analysis based on the saddle point method, we
are able to establish an upper bound on the average number
of paths arriving to a point z before a time t, where z is a 2D
space vector. Using this approach, we prove our main theorems
and theoretical bounds on the packet propagation speed.

We will show that, with the store-forward strategy, the
propagation speed drastically collapses (i.e., equals zero) when
the node density is below a certain value, known as the
percolation threshold [9] (our work gives a lower bound
for this value). The store-hold-and-forward strategy does not
collapse, since in fact the variations in the signal to noise
ratio always guarantee connectivity; however, as expected,
the propagation speed tends to zero when the node density
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diminishes. In Section VI, we will investigate the performance
of opportunistic routing when nodes move according to a basic
random walk model. We will show that, in this case, the
propagation speed does not collapse to zero when the density
is small; it tends to a constant value, which depends on the
random walk parameters.

A. Path Probability Density and Laplace Transform

Formally, a path is a space-time trajectory of the packet
between the source and the destination. We assume that time
zero is when the source transmits, and we will check at what
time t the packet is received at coordinate z = (x, y). We will
only consider simple paths, i.e., paths which never return twice
through the same node. As we will discuss in Section IV, this
does not affect the validity of our final results.

Let C be a simple path. Let Z(C) be the terminal point. Let
T (C) be the time at which the path terminates. Let p(C) be the
probability of path C. In the following, we will in fact consider
a path as a discrete event in a continuous set and, therefore,
the probability weight should be converted into a probability
density. We call p(z, t) the average number of paths that arrive
at z before time t:

p(z, t) = lim
r→0

1
πr2

∑
|z−Z(C)|<r,T (C)<t

p(C) .

We now express the probability q(z, t) that there exists at least
one path that arrives at the destination node before time t
(p(z, t) is not conditioned on the existence of a node at z).

Lemma 1: The probability q(z, t) that there exists at least
one path that arrives to a destination node, located at z, before
time t, satisfies:

q(z, t) ≤ Ap(z, t),

where p(z, t) is the average density of paths arriving at z
before time t, and A is a finite positive number.

Proof: See appendix.
In the next sections, we calculate when the probability

q(z, t) becomes 0. Therefore, we compute when the proba-
bility of reaching a given distance in space, before a given
amount of time tends to zero; the smallest ratio of distance
over time with this property provides us with an almost sure
bound on the propagation speed. For the calculations, we make
use of Laplace transforms.

Let ζ be a space vector with components expressed in
inverse distance units, and θ a scalar in inverse time units.
We denote w(ζ, θ) the path Laplace transform:

w(ζ, θ) = E(exp(−ζ · Z(C)− θT (C)))
=

∑
C p(C) exp(−ζ · Z(C)− θT (C)),

defined for a domain definition for (ζ, θ). Notice that ζ ·Z(C)
is the dot product of two vectors, and that this product is a
pure scalar without units.

By virtue of the inverse Laplace transform, we have:

p(z, t) = (
1

2iπ
)3

∫ ∫
w(ζ, θ)eζ·z+tθdζ

dθ

θ
,

where the integration domains are planes parallel to the
imaginary plane in the definition domain. In this case, quantity

p(z, t) is the average density of paths that arrive at z before
time t.

In the following, we split the path into segments C =
(s1, s2, . . . , sk), such that p(C) = p(s1)p(s2) · · · p(sk). Note
that each segment is a space-time vector.

Based on the decomposition, we can compute the Laplace
transform of the path, using the Laplace transforms of the
individual segments. For the example above, the path C is
described as a cartesian product of the segments s1, s2, ...;
therefore, the Laplace transform of the path C can be expressed
as the product of the Laplace transforms of the segments.
Equivalently, a union (i.e., a choice to use one OR another
segment to obtain the path) translates into a sum of Laplace
transforms. Similarly, if we express a path as an arbitrary
sequence of the same type of segments s (i.e., using regular
expression notation: C = s∗), the path Laplace transform
has the expression: w(ζ, θ) = 1

1−l(ζ,θ) , where l(ζ, θ) is the
Laplace transform of segments s. This is the equivalent of the
formal identity 1

1−y = 1 + y+ y2 + y3 + ..., which represents
the Laplace transform of an arbitrary sequence of random
variables with Laplace transform y.

More generally, we can use notation from language theory to
express a path with any regular expression which characterizes
all permitted combinations of different types of segments.
Again, we can automatically deduce the Laplace transform
of the path, based on the expressions for individual segments,
and using the above constructions/translations (see [10]). We
will show how to use this methodology in detail in Section IV.

IV. OPPORTUNISTIC ROUTING

We first develop our methodology in the simplified frame-
work of the store-forward strategy; we then apply the same
techniques to prove our main theorem on the packet propaga-
tion speed with the more general store-hold-forward strategy.

A. Opportunistic Store-forward

This is the most basic opportunistic routing scheme, since,
in this strategy, nodes always attempt to transmit the packets
immediately.

a) Routing path segmentation: The routing path is made
only of “emission segments”. In other words, a routing path
is a sequence of emission segments taken in the alphabet {se}
and is of the form s∗e . An emission segment se is a space time
vector; the time component corresponds to the duration of one
slot and the space component describes the distance traveled
by the packet in one emission. For instance, according to the
model in Section II, we can calculate the probability of such
a segment as a function of this distance.

Our aim is to find the earliest path that arrives to a given
destination at coordinate z = (x, y). We note again that we
consider only simple paths, i.e., paths that never loop on the
same node. However, in a store and forward strategy, a simple
path may not be the earliest path that arrives to the destina-
tion z, since the earliest path may in fact loop on a node A
(thus potentially encountering more favorable transmission
conditions). In an equivalent simple path, node A would need
to hold the packet during a certain time before retransmitting
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it. Anyhow, the equivalence between earliest path and earliest
simple path will be true for the next more interesting strategy:
store-hold-forward. The store-forward strategy is only devel-
oped as a methodology introduction.

b) Path Laplace transform: Let w(ζ, θ) be the path
Laplace transform, i.e., the Laplace transform of quantity
p(z, t):

w(ζ, θ) = E(exp(ζ · z− θt)).

In the following lemma, we compute w(ζ, θ).
Lemma 2: In the store-forward strategy, the path Laplace

transform has the expression:

w(ζ, θ) =
1

1− (ν − λ)Ψp(|ζ|)e−θ
,

where Ψp(x) = 2π
∫∞

0
p(r)I0(xr)rdr, and I0() is a modified

Bessel function of order 0 (see [1]).
Notice that I0(x) =

∑
k≥0(x2 )2k 1

(k!)2 . Developing with the
expression for p(r) in (2), we get:

Ψp(ρ) = π
∑
k≥0

1
γΓ((k + 1)γ)k!

E(e(k+1)γF )
(CKγ)k+1

(ρ
2

)2k

.

We also note that, when we take F = 0, K = 1 and α = 4,
we have the specific formula:

Ψp(ρ) =
2
π
H

(
[
1
2
,

1
2

],
ρ4

64π3

)
+

ρ2

2π2
H

(
[1,

3
2

],
ρ4

64π3

)
,

where H([p, q], x) are hypergeometric functions.
Proof: In the store-forward model, a path is only made

of successful emission segments se. An emission segment is
a space time vector (z, 1) where z is a space vector and we
assume that 1 is the slot time unit. An emission segment is
successful if it ends on a mobile node (with density ν), if the
receiver is not transmitting simultaneously (with probability
1− λ

ν ) and if the transmission is successful (with probability
p(|z|)). Therefore, the density probability of emission seg-
ments is p(|z|)ν(1 − λ

ν ) in space (which corresponds to the
previously stated conditions) and is a Dirac measure on 1 in
time (i.e., the duration is always one slot).

We denote the space vector z = (r cosφ, r sinφ), where
r is the segment length and φ ∈ [0, 2π] is the direc-
tion. Consequently, the emission segment Laplace transform
ge(ζ, θ) = E(exp(−ζ · z− θt)) is obtained by averaging on r
and φ:

ge(ζ, θ) = e−θ
∫ ∞

0

ν(1− λ

ν
)p(r)rdr

∫ 2π

0

e−|ζ|·r cosφdφ

= 2πe−θ(ν − λ)
∫ ∞

0

p(r)I0(|ζ|r)rdr.

Since the path is equivalent to a sequence emission segment,
expressed as s∗e with the language wording (see Section III),
we have: w(ζ, θ) = 1

1−ge(ζ,θ) .
c) Maximum propagation speed: Recall that q(z, t) is the

probability that there exists at least one path that arrives to the
destination node before time t. We will prove that q(z, t) =
O (exp(−ρ0|z|+ θ0t)), for some (ρ0, θ0). This implies that
q(z, t) vanishes very quickly when t is smaller than the value
such that −ρ0|z| + θ0t = 0, i.e. when z

t = θ0
ρ0

. Therefore

(as shown in [13]), quantity θ0
ρ0

is an asymptotic propagation
speed upper-bound. Namely for all v > θ0

ρo
:

lim
|z|→∞

q(z,
|z|
v

) = 0.

Let D(ρ, θ) = (ν − λ)Ψp(ρ)e−θ. The path Laplace trans-
form has a denominator 1−D(|ζ|, θ). The key of the analysis
is the set K of pairs (ρ, θ) such that D(ρ, θ) = 1, called the
Kernel. We show that a path Laplace transform of this form
implies the following asymptotic estimate of the path density.

Lemma 3: When |z| and t tend both to infinity we have:

p(z, t) = O (exp(−ρ0|z|+ θ0t)) ,

where (ρ0, θ0) is the element of the kernel K that minimizes
−ρ|z|+ θt.

Proof: See appendix.
We can now prove the following theorem concerning the

maximum packet propagation speed.
Theorem 2: In the store-forward strategy, the packet prop-

agation speed is upper-bounded by the smallest ratio θ
ρ of the

elements of K = {(ρ, θ) : D(ρ, θ) = 1}, where:

D(ρ, θ) = (ν − λ)Ψp(ρ)e−θ,

with Ψp(ρ) = 2π
∫∞

0
p(r)I0(ρr)rdr, and I0() is a modified

Bessel function of order 0.
The Kernel K is made of the tuples (ρ, θ) with θ = log((ν−

λ)Ψp(ρ)). The minimum ratio θ0
ρ0

is attained for the element of

the Kernel such that:
Ψ′p(ρ0)

Ψp(ρ0) = log((ν−λ)Ψp(ρ0))
ρ0

, where Ψ′p(ρ)
is the derivative of Ψp(ρ) with respect to variable ρ. Thus,
θ0 = ρ0

Ψ′p(ρ0)

Ψ(ρ0) .
Proof: The Kernel of the path Laplace transform is the

root of the denominator, i.e., the set of pairs (ρ, θ) such that
D(ρ, θ) = 1. Therefore, following the asymptotic analysis
of the average number of journeys (from Lemma 3) and
Lemma 1, the propagation speed upper bound is given by the
minimum ratio θ

ρ of (ρ, θ) ∈ K.

B. Store-hold-forward Strategy

This strategy differs from the store-forward strategy by the
fact that nodes can either transmit the packet immediately, or
hold it and attempt to transmit on a later slot.

Lemma 4: In the store-hold-forward strategy, the path
Laplace transform has the expression:

w(ζ, θ) =
1

1− (ν − λ)Ψp(|ζ|)e−θ − e−θ
.

Proof: In this case, a path is made of an arbitrary
sequence of emission and “hold segments”. A hold segment is
a space-time vector expressing the situation where the packet
stays in a node’s memory during one slot. Since we assume
that all nodes do not move, a hold segment is the vector (0, 1),
where 0 is the space component and 1 corresponds to the slot
duration. Hence, the hold segment Laplace transform is simply
gh(ζ, θ) = e−θ.

A path is now a sequence in {se + sh}∗, since each node
can either emit or hold the packet. Therefore, the path Laplace
transform is: w(ζ, θ) = 1

1−(ν−λ)Ψp(|ζ|)e−θ−e−θ .
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Fig. 1. Store-forward (red - top), store-hold-forward (blue - top) packet
propagation speed upper-bounds (in meters per slot) versus the node density ν,
compared to classical routing (green - bottom). The network traffic density is
fixed (λ = 1). The dots correspond to measured values obtained via simulation
of a classical and an opportunistic protocol.

Equivalently to Theorem 2, we have the theorem for the
packet propagation speed, by substituting the new path Laplace
transform.

Theorem 3: In the store-hold-forward strategy, the packet
propagation speed is upper-bounded by the smallest ratio θ

ρ of
the elements of K = {(ρ, θ) : D(ρ, θ) = 1}, where:

D(ρ, θ) = (1 + (ν − λ)Ψp(ρ)) e−θ,

with Ψp(ρ) = 2π
∫∞

0
p(r)I0(ρr)rdr, and I0() is a modified

Bessel function of order 0.
The Kernel is made of tuples (ρ, θ) such that: θ = log(1 +

(ν − λ)Ψp(ρ)), and the minimum ratio θ0
ρ0

is attained on:
θ0

1−exp(−θ0) = ρ0
Ψ′p(ρ0)

Ψ(ρ0) .

V. SIMULATIONS

In this section, we present simulations illustrating the packet
propagation speed upper bounds proved in Theorem 1 concern-
ing conventional routing, and Theorems 2 and 3 concerning
opportunistic routing strategies (store-forward and store-hold-
forward respectively).

First, in Figure 1, we plot the theoretical propagation speed
bounds as a function of the node density ν, obtained from the
theorems when the traffic density is fixed: λ = 1. The bounds
express the maximum speed in meters per slot at which a
packet can propagate in the network. The traffic load per node
equals λ

ν , hence as ν increases, the load of the nodes is smaller
and the packets can propagate faster.

For this numerical example, we take a required signal to
noise ratio K = 1 and a power attenuation coefficient α = 4;
we do not consider yet the effect of random fading. However,
we note that our analysis provides bounds for any combination
of values for λ, ν, K and α.

Notice that the upper bound for the store-forward strategy
collapses to a zero speed for a value of ν ≈ 2.47... (below

the percolation point, i.e., when the network becomes dis-
connected); however, the collapse has an infinite slope at the
critical point, meaning that the speed bound increases abruptly
for slightly larger values of the node density. On the other
hand, the store-hold-forward strategy upper bound remains
non-zero until the node density ν reaches its minimal value:
ν = λ (recall that λ ≤ ν). In this case, the speed bound
decreases with a sharp but finite slope. This illustrates the
fact that the variations in the signal to noise ratio always
guarantee connectivity, as long as the nodes can hold the
packets for the transmission possibilities to change. We also
notice that, when the node density increases, i.e., when the per
node traffic density diminishes, the two opportunistic speed
bounds converge.

In Figure 1, we also compare our theoretical bounds with
measured values obtained via simulation of a classical and an
opportunistic routing scheme (dots). The network simulator
is self-developed. For the measurements, we perform the
simulations following the framework of [4].

We implement the network model described in Section II.
According to the model, nodes are randomly distributed fol-
lowing a Poisson distribution. For the simulations, we consider
a finite square network domain, such that the node density is ν
nodes per square area unit. We also consider that time is slotted
and the overall traffic density is λ packets per slot per square
area unit; in practice, each node independently transmits a
packet with probability λ

ν at each slot (we assume that all
nodes always have a packet to send). For the propagation
speed measurements, we select a source and a destination,
positioned at opposite locations of the network; we obtain
the propagation speed by measuring the average packet delays
for different sources and destinations, and taking the ratio of
the source-destination distance over the delay. All nodes in
the network except for the source-destination pair generate
background traffic. We implement the signal attenuation and
interference model, exactly as described in Section II; a packet
can be successfully decoded if its signal over noise ratio is
greater than a certain threshold K, while all background traffic
is considered as noise.

For the measurements, routing is optimized and the relays
are determined by a centralized algorithm, which has an ab-
solute knowledge of the network state at any time. Therefore,
we do not simulate specific protocol message exchanges (we
consider that the protocol overhead is included in the overall
traffic density λ). We compare a classical routing algorithm
and and an opportunistic routing algorithm, following the
simulation framework in [4]:
• The classical routing strategy is based on a Dijkstra

algorithm. We fix a maximum transmission range, which
is optimized according the channel conditions, as dis-
cussed in Section II-B. The packets are then forwarded
following the shortest path (in hops) from the source to
the destination but using the optimized MAC protocol
described in [3].

• We also simulate an opportunistic routing algorithm, pre-
sented in [4], which is based on time-space opportunistic
radial routing. At each hop and each slot, the next relay
is the node that is closest to the destination, among the
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Fig. 2. Propagation speed versus required signal to noise ratio K, for ν = 25,
for α = 4, and λ = 1. Comparison of theoretical bounds on opportunistic
routing (blue - top) and classical routing (red - bottom), as well as simulations
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Fig. 3. Propagation speed versus signal attenuation factor α, for ν = 25,
K = 1, and λ = 1. Comparison of theoretical bounds on opportunistic routing
(blue - top) and classical routing (red - bottom), as well as simulations (dots).

nodes that capture the packet successfully (for a detailed
description, see [4]).

The plots confirm the accuracy of our theoretical bounds on
the opportunistic packet propagation speed. They also show
that radial time-space routing achieves a close to optimal
performance. Our classical routing bound is too optimistic
(albeit still valid). This is expected since we proved the bound
in a simpler framework: the optimal performance is achieved
when each hop has a length exactly equal to the optimal
transmission range (which is obviously not true in practice).
However, when the node density increases, the performance
of the simulations converges to the theoretical bound. It is
important to note that, in all cases, the opportunistic routing
performance is significantly better.

In Figure 2, we illustrate the behavior of the upper bounds
and the simulation measurements, for different values of the
signal to noise ratio K. We fix the node density to ν = 25
and the traffic density to λ = 1; this means that each node
has a packet to transmit with probability λ

ν = 0.04 at each
slot. We also take α = 4. From now on, we refer to oppor-
tunistic routing in general, since for the given densities both
strategies analyzed in the paper show the same performance.
Interestingly enough, the simulated classical routing protocol
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Fig. 4. Theoretical propagation speed bounds (opportunistic routing in blue
- top, and classical routing in red - bottom) versus the traffic density λ, for
α = 4, K = 1, and λ

ν
= 0.2.

almost collapses under the given traffic conditions, while
opportunistic routing yields a packet propagation speed well
above 0.

In Figure 3, we plot the theoretical upper bounds and the
simulation measurements, for different values of the power
attenuation factor α. We fix the node density to ν = 25 and
the traffic density to λ = 1; for the required SNR ratio, we
take K = 1. Again, we notice that opportunistic routing offers
a significant improvement.

Remark: The derived upper bounds assume a given
overall traffic density (in packets per slot per square area unit),
denoted λ; this traffic density includes the protocol overhead
as well. Since we are interested in fundamental performance
limits, in Figures 1, 2 and 3, we evaluate and compare the
propagation speed using classical and opportunistic routing
for the same overall traffic density λ (implying a similar
protocol overhead in both cases). In practice, depending on the
protocols in use, the actual overhead may vary; however, com-
paring specific protocol solutions is outside the scope of this
paper. Moreover, we did not consider the delays experienced
by packets in the queues, because we are interested in upper
bounds on the best possible information propagation speed.
In practice, the propagation speed is scaled down because of
these delays.

Furthermore, it is worth noting that our analysis of the
packet propagation speed can be used as an estimate of the
network capacity in number of packets that can be transported
per square area unit and per slot. In fact, if we fix the per node
traffic density λ

ν and we vary the network traffic density λ, the
analysis shows that the packet propagation speed follows an
inverse square root law; equivalently, the network capacity is
O( 1√

λ
) bit-meters per second, in accordance with the result

of [11]. This is illustrated in Figure 4, where we fix the
probability that a node has a packet to transmit in a slot:
λ
ν = 0.2, and we plot the theoretical packet propagation speed
versus the traffic density λ; we observe a square root de-
crease for both classical and opportunistic routing propagation
speeds. Therefore, in Figure 4, we can compare classical and
opportunistic routing under variable overall traffic conditions.
Conversely, from the scaling results of Gupta and Kumar [11],
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Fig. 5. Classical (bottom) and opportunistic (top) routing upper bounds of
the packet propagation speed versus the node density ν, with random fading
(blue) and no fading (red).

we could deduce that the average information propagation
speed must scale at most in O( 1√

n
), where n is the number

of nodes (distributed uniformly at random) in the network.
However, since our speed analysis is more specific, we derive a
precise upper-bound on the packet propagation speed (not just
a scaling law on the average speed) and we can differentiate
between classical and opportunistic routing.

A. Effect of Fading

In this section, we investigate the impact of random signal
fading on the routing performance. To fix ideas, we assume
that the random factor F (introduced in Section II) is a random
variable uniformly distributed on an interval [−a, a], for some
a > 0. Then, when we take a power attenuation coefficient
α = 4, we get closed formulas for p(r) and Ψp(r), based on
hypergeometric functions (for other values of α or different
fading distributions, we can use the infinite series expansions).

In Figure 5 we compare the propagation speed bounds
with fading (a = 1), as opposed to no fading (a = 0); the
bounds are derived from Theorems 1 and 3, for classical and
opportunistic routing respectively. We assume a signal-over-
noise ratio K = 1. Interestingly enough, the upper-bound
on classical routing decreases when compared to the no-
fading case, while the upper-bound on opportunistic routing
increases. This hints to the fact that opportunistic routing can
take advantage of variations of the signal-over-noise ratio and
improve the packet propagation speed; on the other hand,
these variations cause the performance of conventional routing
strategies to deteriorate.

VI. NODE MOBILITY

In this section, we will adapt the analysis from Section IV to
account for node mobility. Every node follows an i.i.d. random
trajectory, so that the nodes are distributed with constant
Poisson density ν. The mobility model is the random walk: at

each slot a mobile node changes direction with probability τ .
The motion direction angles are uniformly distributed between
0 and 2π. The nodes keep a constant speed between direction
changes, which we denote by s.

A. Path and Movement Decomposition

Again, we consider a store-hold-forward routing scheme.
However, the nodes can now move while they hold the packets.
We will decompose the path in the following three kinds of
segments:

1) emission segments se;
2) move-to-turn segments st;
3) move-to-emit segments sm.
Emission segments are defined in the same manner as in

Section IV. The move-to-turn and move-to-emit segments
substitute the hold segments. The “move-to-turn” segment
corresponds to the straight line that a mobile node follows until
it changes direction; it represents one step of the random walk.
The “move-to-emit” segment is similar, but now the mobile
node emits the packet before the next change of direction; in
other words, it corresponds to an incomplete random step.

More precisely, the move-to-turn segment is a space-time
vector (k · us, k) where u is a unitary vector (marking the
direction of the movement) and k is the number of slots during
which the mobile has moved without turning. The segment has
a duration of k slots with probability τ(1− τ)k−1 and k > 0.
The Laplace transform of a move-to-turn segment is:

gt(ζ, θ) = 1
2π

∑
k>0 τ(1− τ)k−1

∫ 2π

0
E(ecos(φ)|ζ|ks−kθ)dφ

=
∑
k>0 τ(1− τ)k−1E(I0(|ζ|ks))e−kθ.

The expectation E(.) indicates the average value with respect
to the speed factor s.

Similarly, the move-to-emit segment is a space-time vector
(k · us, k), where k is the number of slots during which the
mobile has moved. However, we now have a duration of k
slots with probability (1− τ)k−1, since there is no change of
direction. This leads to a Laplace transform equal to:

gm(ζ, θ) =
∑
k>0

(1− τ)k−1E(I0(|ζ|ks)e−kθ).

Notice that gt(ζ, θ) = τgm(ζ, θ).
A path is made of segments according to the following

rules that describe the node movement as well as the packet
transmissions:

1) an se segment is followed by any segment;
2) an st segment is either followed by an st segment or an

sm segment;
3) an sm segment is always followed by an se segment.

Therefore, a path is a word in the alphabet {se, st, sm}, fol-
lowing the regular expression s∗e(s

∗
t smses

∗
e)
∗(1 + s∗t sm); this

expression decomposes a path according to the three previous
rules. According to the approach described in Section III,
we can directly deduce the path Laplace transform from the
regular expression:

w(ζ, θ) = 1
1−ge(ζ,θ)

(
1 + gm(ζ,θ)

1−gt(ζ,θ)

)
1

1− gm(ζ,θ)
1−gt(ζ,θ)

ge(ζ,θ)
1−ge(ζ,θ)

= 1−(1−τ)gm(ζ,θ)
1−ge(ζ,θ)−τgm(ζ,τ)−(1−τ)gm(ζ,τ)ge(ζ,θ)
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Notice that, when the speed is s = 0, we have gm(ζ, θ) =
e−θ

1−(1−τ)e−θ
, and we find, as expected, the result of the previous

section, where there is no mobility.
With the new path Laplace transform, we can again apply

the saddle point technique, and derive an upper bound on the
packet propagation speed. If we assume that the destination
node is not moving, the analysis follows directly the method-
ology of Section IV.

If we consider the fact that the destination is also moving
according to the same mobility model as the relay nodes,
this does not affect the analysis. The destination’s movement
implies that we need to multiply the quantity w(ζ, θ) with
the Laplace transform of the journey of a moving node. The
journey can be described by the regular expression s∗t sm,
i.e., an arbitrary sequence of random steps (the last step
is incomplete). This yields a Laplace transform: gm(ζ,θ)

1−gt(ζ,θ) .
Notice that this modification does not change the saddle point
optimization since it only adds to the kernel tuples (ρ, θ′)
such that θ′ < θ, for some (ρ, θ) belonging in the original
kernel. In other words, the packet propagation speed upper
bound remains unchanged, whether we take into account the
destination’s mobility or not. This is expected because of the
random walk model: the average drift of the destination node
is zero.

B. Analysis

We will investigate in detail the realistic case where the
speed is small, that is: s� 1. Indeed, s is expressed in meters
per slot, and wireless transmissions are expected to occur faster
than physical node motions.

Using the expansion I0(ρ) = 1 +
(
ρ
2

)2 +O(ρ4), we get:

gm(ζ, θ) =
∑
k>0(1− τ)k−1e−kθ(1 + k2

(
|ζ|
2

)2

E(s2)
+O(|ζ|4E(s4))

= e−θ

1−(1−τ)e−θ
+
(
|ζ|
2

)2

σ2
(1+(1−τ)e−θ)e−θ

(1−(1−τ)e−θ)3

+O(σ4)

where σ2 and σ4 are the second and fourth moments of the
speed s, respectively.

We take ρ = |ζ| to simplify the notation. The denominator
of the modified path Laplace transform is:

eθ − 1− (ν − λ)Ψp(ρ)− g(ρ, θ)σ2 +O(σ4),

where:

g(ρ, θ) = (τ+(1−τ)(ν−λ)Ψp(ρ)e−θ)
(
ρ

2

)2 (1 + (1− τ)e−θ)e−θ

(1− (1− τ)e−θ)2
.

Denoting f(ρ) = 1 + (ν − λ)Ψp(ρ), we have a kernel
set (ρ, θ) such that:

θ = log(f(ρ)) + σ2
g(θ, ρ)
f(ρ)

+O(σ2
2 + σ4).

As a result, when we apply the saddle point analysis of
Section IV, the maximum packet propagation speed is:

log f(ρ0)
ρ0

+ σ2
g(ρ0, log f(ρ0))

f(ρ0)ρ0
+O(σ2

2 + σ4),
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Fig. 6. Improvement in the propagation speed upper bound (with oppor-
tunistic routing) versus the node density ν, with traffic density λ = 1, mobile
speed s = 0.1 and direction change probability τ = 0.1 .

where ρ0 is the root of f ′(ρ)
f(ρ) −

log f(ρ)
ρ .

When ν → λ, then we have f(ρ) → 1 and θ → 0.
Therefore, the residual propagation speed upper bound tends
to:

log
(

1 + (2− τ)
ρ2

0

4
σ2

τ

)
,

where ρ0 is now the root of ρ
Ψ′p(ρ)

Ψp(ρ) − 1.
Notice that the propagation speed upper bound is larger

than zero, as long as σ2
τ tends to a positive constant. This

is equivalent to say that the random walk has a constant
standard deviation rate per time unit. Conversely, we showed in
Section IV that, when the nodes do not move, the propagation
speed tends to zero when the node density decreases.

In Figure 6, we plot the difference of the propagation
speed bounds when nodes move as opposed to when they
stay still. We see that mobility causes a small improvement
in the propagation speed. However, this improvement enables
the propagation speed to remain larger than zero, even when
the node density tends to its minimal value (i.e., ν → λ).

VII. CONCLUSION

We characterized the optimal performance, in terms of
delay, that can be achieved using any opportunistic routing
algorithm, in a realistic network model where link conditions
are variable. We derived analytical upper bounds on the packet
propagation speed with generic opportunistic routing strategies
in Theorems 2 and 3. Our analysis is sufficiently general to
provide bounds depending on the node and traffic densities
in the network, as well as the signal propagation conditions.
Such theoretical bounds are useful in order to evaluate and/or
optimize the performance of specific opportunistic routing
algorithms.

Furthermore, we compared opportunistic and classical rout-
ing; we showed that opportunistic routing performs signifi-
cantly better, even when classical routing schemes are opti-
mized based on an absolute knowledge of the statistics of the
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channel conditions. We presented numerical simulations that
confirm the accuracy of our bounds in numerous scenarios:
we simulated a classical routing algorithm and an optimized
time-space opportunistic routing scheme.

We also investigated the effects of random fading and node
mobility. We showed that random fading in fact improves
the performance of opportunistic routing strategies, which can
take advantage of the random signal variations; conversely,
the performance of classical routing deteriorates. Similarly,
opportunistic store-hold-forward schemes can take advantage
of the node mobility.

An interesting direction for further research consists in
designing lower bounds for the packet propagation speed.
Moreover, it should be possible to refine our classical routing
analysis, in order to derive bounds regarding the relative gain
of opportunistic strategies.
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APPENDIX

Proof of Lemma 1

We denote f(z, t) the density of paths starting from the
origin at time 0 and ending on z at time t. Therefore, the
average number of paths starting at (0, 0) and ending in a
space area B at time t is

∫
B
f(z, t)dz, with the integral being

multi-dimensional.
Furthermore, the number n(z, t) of paths that start on (0, 0)

and arrive on a node at point z at time t is exactly:

n(z, t) =
∫
dz′p(|z′ − z|)f(z′, t− 1)

≤ Af(z, t− 1),

with A ≥
∫∞

0
earp(r)2πrdr.

Notice that A is finite if f(z, t) grows at most exponentially,
i.e., if f(z′,t)

f(z,t) ≤ ea|z
′−z| (from (2) in Section II, we already

know that p(r) has a super-exponential decay with r). This
condition is true, as it is shown in Section IV (from Lemma 3
and since f(z, t) ≤ p(z, t)).

Let q(z, t) be the probability that there exists a path that
arrives to point z before time t. We have q(z, t) ≤ N(z, t)
where N(z, t) is the average number of paths that end on
a node located at z before time t. We have q(z, t) ≤
A
∫ t

0
f(z, t)dt ≤ Ap(z, t).

Proof of Lemma 3

We use the methodology introduced in [13] to prove the
following more detailed result; the Lemma follows.

When |z| and t tend both to infinity we have:

p(z, t) = (1 +O(
1√
t
))

exp(−ρ0|z|+ θ0t)

2πθ0

√
DθDρ
ρ0
∇2D(t, |z|)

,

where (ρ0, θ0) is the element of K that minimizes −ρ|z| +
θt. We denote Dρ = ∂

∂ρD, Dθ = ∂
∂θD and ∇2D(x, y) =

x2 ∂2D
∂ρ2 + y2 ∂2D

∂θ2 + 2xy ∂
2D

∂ρ∂θ .
Proof: We extract p(z, t) using the inverse Laplace trans-

form:

(
1

2iπ
)3
∫ ∫

w(ζ0+iζ, θ0+iθ)e〈(ζ0,θ0),(z,t)〉+i〈(ζ,θ),(z,t)〉dζ
dθ

θ0 + iθ
,

where the integration domain consists of real planes.
For positive (ρ, θ), the function 1 − D(ρ, θ) has a simple

root at:
θ(ρ) = log((ν − λ)Ψp(ρ)).

Notice that (ρ, θ(ρ)) describes the kernel set K.
Therefore, the residues analysis gives: p(|z|, t) = I(z, t) +

R(z, t), where:

I(z, t) =
1

(2iπ)2

∫
exp〈(ζ, θ(|ζ|)), (z, t)〉
θ(ρ)Dθ(ρ, θ(ρ))

dζ,

with Dθ = ∂
∂θD.
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Quantity R(z, t) is the integral of exp(〈(ζ,θ),(z,t)〉)
(1−D(|ζ|,θ))θ . There-

fore, R(z, t) = O(e−BtI(z, t)) for some B > 0. The
evaluation of I(z, t) is obtained via the saddle point technique.

Let ζ0 be the value that minimizes (ζ, z+θ(|ζ|)t). We have
ζ0 = − ρ0

|z|z with ρ0 that minimizes −ρ|z|+ θ(ρ)t. Let θ′ and
θ′′ be the first and second derivatives of θ(ρ) respectively.
We already know that θ′ = |z|

t . Since D(ρ, θ(ρ)) = 1, by
derivation with respect to ρ we have Dρ +Dθθ

′ = 0 and, by
second derivation, ∇2D(1, θ′) +Dθθ

′′ = 0 at ρ = ρ0.
We get (cf. [13]):

I(z, t) = exp(−ρ0|z|+θ0t)
(2π)2

∫ ∫ exp( 1
2 (θ′′x2+ θ′

ρ0
y2))

θDθ
dxdy

×(1 +O(t−1/2))
= exp(−ρ0|z|+θ0t)

2πθ0Dθ
√

θ′θ′′
ρ0

(1 +O(t−1/2)) .
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