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ABSTRACT
With the proliferation of mobile devices and sensors, mobile
situation awareness is becoming an important class of appli-
cations. The key requirement of this class of applications is
low-latency processing of events stemming from sensor data
in order to provide timely situational information to mo-
bile users. To satisfy the latency requirement, we propose
an opportunistic spatio-temporal event processing system
that uses prediction-based continuous query handling. Our
system predicts future query regions for moving consumers
and starts processing events early so that the live situational
information is available when the consumer reaches the fu-
ture location. In contrast to existing systems, our system
provides timely information about a consumer’s current po-
sition by hiding computation latency for processing recent
events. To evaluate our system, we measure the quality of
results and timeliness of live situational information with
various query parameters. Our evaluation shows that we
can achieve highly meaningful query results with near-zero
latency in most cases.

Categories and Subject Descriptors
C.2.1 [Network Architecture and Design]: Distributed
networks; C.2.4 [Distributed Systems]: Distributed ap-
plications

Keywords
mobility; complex event processing; situation awareness

1. INTRODUCTION
The explosive growth of sensors in the environment is en-

abling many future applications. Vehicles and mobile com-
munication devices (i.e., smartphones and tablets) have a
variety of sensors that they lacked only a few years ago [5].
Large scale camera deployments around transportation in-
frastructure, such as airports, seaports, and highways are
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becoming common as well. For example, there are hundreds
of cameras monitoring the highways in the Atlanta metro
area [1]. These sensors could enable applications such as
one that notifies drivers of live road conditions near them,
warning of traffic, accidents, or obstructions on the road.
Such information could also be used in live, adaptive traf-
fic routing applications. Furthermore, urban sensor deploy-
ments can enhance community safety, for example, by noti-
fying police officers of suspicious individuals based on their
behaviors.
These applications, often classified as mobile situation

awareness, provide situational information to mobile users
based on the events from various sensors that are widely
deployed in the environment. Mobile situation awareness is
naturally event-based, processing primitive events from sen-
sors using application-specific algorithms to generate high-
level events including situational information, and finally
either reporting the situational information to a human or
using it for automated decision making. In this context,
events are spatio-temporal in nature – they occur at a par-
ticular place and time – and mobile users typically make
continuous queries about their surroundings, i.e., situational
information based on recent, nearby events.
As a specific example, consider a user who is driving from

New York to Los Angeles. The user may have a vehicu-
lar application to automatically detect driving conditions
along the route (e.g., traffic, accidents, road obstructions, or
construction) and reroute the user around those problems.
However, it is not practical to process the events along this
whole cross-country route for the entire trip. Furthermore,
an accident along the route near LA may not be relevant if
it happens while the user is only just leaving NY. Therefore,
the application should only process events in the vicinity of
the user, according to some reasonable, application-defined
range. Timely delivery of events is critical for this applica-
tion, however, since there is no point in notifying the user’s
vehicle of an accident or bad traffic after the user passes the
last exit on the highway before the problem – it is too late
for the user to do anything useful with that information.
This is an example of an application where an approximate
result is better than a late result.
Complex Event Processing (CEP) is a well-known paradigm

to generate such situational information. To generate situ-
ational information, CEP applications use operator graphs
consisting of multiple operators that perform online pro-
cessing of events. Online processing of events allows asyn-
chronous, low-latency generation of situational information
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since events are processed as they come. In a traditional,
infrastructure-based CEP application, a single operator graph
would take input from all the sensors in the infrastructure
and perform continuous computation to generate live events.
However, for a mobile situation awareness application, it

is not scalable to continuously perform live computation on
all of the sensors everywhere. Furthermore, mobile users are
typically only interested in events occurring within a certain
area around them. Computing events outside that area re-
sults in wasted computation. The reduction in needed com-
putation when only processing events in a range around the
mobile user, vs. processing all events, is substantial [19]. A
naive solution would be to start the operator graph anew
in different locations as the mobile user moves to those lo-
cations. However, processing of some historical events is
typically necessary before live event processing can begin.
Often the user is interested in recent events, not only ones
happening right now. It also may be the case that some
historical context is needed to correctly process new events.
Events must be processed in temporal order, so there is a
processing delay to deal with the historical events before live
event processing begins. Therefore, if the operator graph is
started in a location only when a user moves to that location,
the user will then be in a different location by the time the
operator graph has finished processing the historical events.
This could potentially lead to a situation where the operator
graph is constantly trying to “catch up” to the user, result-
ing in processing events in inappropriate locations and never
actually getting to process any “live” events.
We propose to address this problem by processing the his-

torical events for a location before the mobile user arrives at
that location, so that live event processing begins at the mo-
ment the user arrives, if not before. Two existing technolo-
gies enable this just-in-time computation: future location
predictions for the mobile user placing the query, and pro-
cessing time estimations for the CEP algorithms. Several
location prediction algorithms already exist [32], and pro-
filing techniques can be used to estimate processing time.
Our system treats both of these as black boxes, allowing
different location prediction and processing time estimation
algorithms to be plugged in. However, two important chal-
lenges still remain. First, if the speed of the mobile user
is too fast compared to the processing time, the histori-
cal event processing may take longer than the user takes
to get to the new location. To mitigate this, we propose
using parallel resources to enable pipeline processing of fu-
ture locations in several time- steps look-ahead. Second, the
location predictor may not give a single, accurate location
prediction. To mitigate the imperfection of location predic-
tion algorithms, we propose taking several predictions for
each time-step look-ahead and opportunistically compute
the events for all of those locations, as our parallel resources
allow. When the user arrives at that time, the prediction
among those that is closest to truth (the user’s actual posi-
tion) will be selected and its events returned.
Our research contributions include 1) a system architec-

ture that enables spatio-temporal event processing for mo-
bile situation awareness applications; 2) methods for (a)
starting event processing at predicted future locations in
advance of a mobile user’s arrival, (b) pipelining multiple
future prediction points to allow completion of event pro-
cessing by the time the mobile user arrives, and (c) select-
ing multiple location points from a predictor to opportunis-

tically compute events at future locations; 3) metrics for
assessing the quality of results and timeliness of mobile sit-
uation awareness applications; and 4) an experimental eval-
uation of our system and methods.
The remainder of this paper is structured as follows: Sec-

tion 2 discusses related work. Section 3 presents the system
architecture. Section 4 discusses our opportunistic event
processing method. Section 5 evaluates our system and Sec-
tion 6 discusses future work and concludes.

2. RELATED WORK
Many complex event processing systems [25, 20, 2, 7, 18]

provide methods to efficiently detect interesting patterns on
various sensor data for situation awareness applications. To
reduce latency for processing events, some CEP systems ex-
ploit parallelism [8, 13] while others support adaptive place-
ment of operators [28, 24]. However, these systems are de-
signed to support CEP on a fixed infrastructure of sources.
In contrast, our system supports CEP for mobile devices,
such as smart vehicles, which requires migrating an opera-
tor graph to a new region when a user moves. Koldehofe
et al. [19] propose a system that supports CEP on moving
ranges. However, they do not address the latency of pro-
cessing historical events when an operator graph moves to
another region. We use this work as a baseline for our ap-
proach to prove the efficacy of opportunistic event processing
in terms of timeliness and quality of results.
Research in spatio-temporal databases has developed var-

ious representations of spatio-temporal objects and methods
for querying and storing spatio-temporal objects [9, 23, 10].
These spatio-temporal databases are complementary to our
system since they can serve as a spatio-temporal event stor-
age module in our system. Predictive query handling on
spatio-temporal databases [16, 12] allows answering queries
about the future locations of mobile objects, e.g., the ten
nearest neighbors after five minutes, based on location pre-
diction of mobile objects. In contrast, our system delivers
just-in-time situational information about the recent state of
the current location. Hendawi et al. [12] precompute query
results to improve scalability and reduce the latency of query
handling. However, their work combines on-demand query
results with precomputed query results to provide complete
results with various best-effort latencies. Our system pro-
vides query results with near-zero latency, although query
results may not be complete due to inaccurate location pre-
dictions.
Mobile publish-subscribe systems adapt streaming based

on consumer location changes [15, 22]. Cilia et al. [6] support
pre-subscriptions to new locations before the consumer ar-
rives to improve the bootstrapping process of mobile event-
based applications. Low-latency event delivery is achieved
through exploiting parallelism [31] and adaptation of rout-
ing paths [30]. However, the above work does not deal with
the computational latency for delivering situational informa-
tion since they focus on delivering individual events rather
than complex events that are generated by processing the
individual events.
Large-scale situation awareness [27] is receiving increased

attention due to the proliferation of sensors and advances in
analytics, such as computer vision. Target Container [14] is
a distributed system providing a high-level, handler-based
programming abstraction that helps domain experts write
large-scale surveillance applications on camera networks. SLIP-
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Figure 1: Example operator graph for mobile situa-
tion awareness

stream [26] offers a stream-oriented programming model that
ensures automatic scalability of interactive perception appli-
cations. However, these systems focus on processing live
streams from cameras, which potentially requires a huge
amount of system resources in the large scale. In contrast,
our system performs analysis of sensor data based on user
queries and caches the query results for later use, resulting
in efficient use of system resources.
Meissen et al. [21] present an approach to predict the

future context of a user and efficiently deliver information
based on the knowledge discrepancy between the situation-
awareness system and the user. However, they focus on
identifying knowledge discrepancy based on various opera-
tions, including set and relational algebra. In contrast, we
focus on reducing computational latency with opportunistic
event processing.

3. SYSTEM ARCHITECTURE
In this section, we discuss the details of our system ar-

chitecture including the spatio-temporal event and query
model, the logical modules for event processing, and the
fog-based distributed architecture of our system.

3.1 Spatio-temporal Query Model
To support mobile situation awareness, our system col-

lects various types of sensor data called events from widely
deployed heterogeneous sensors such as smartphones, con-
nected vehicles, and traffic monitoring cameras. Every event
must have a set of required properties including a type, a
location, and a timestamp. A location and timestamp prop-
erty can be either a point or a range, regarding the type
of event. The required properties are set by a producing
sensor, specifying where and when a certain type of event
is generated. Besides the required properties, each event
may have optional application-specific properties for sensor
data, which can be either structured (e.g., integer, string)
or unstructured (e.g., audio or video).
Using events collected from various sensors, our system

provides situational information to mobile users. Situational
information is generated by executing an application-specific
operator graph on the collected events. An operator graph
consists of multiple operators, where each represents a piece

of computation. Each operator takes one or more input
types of events and produces an output type of event. Con-
necting edges between operators define the logical flow of
events. Take Figure 1 as an example of using an opera-
tor graph for mobile situation awareness. In the example,
each car continuously reports location events, including its
identifier and geographical position, to the operator graph.
By consuming speed and location events, two leaf opera-
tors in the operator graph detect speed-patterns and lane
switches of each car. The root operator is an accident de-
tector, which incorporates the speed and lane information
to detect an accident if many cars reduced their speed and
avoided a specific lane at the same time. The final outcome
of this operator graph, accidents, are the situational infor-
mation that our system delivers to mobile users. Note that
a real application may also include heavy-weight operators,
such as computer vision algorithms, and sensor streams may
be unstructured, such as video.
To receive situational information, a mobile user registers

a continuous query with a number of parameters listed in
Table 1. An operator graph as the application-specific situ-
ation awareness logic that generates situational information
from sensor events. The spatial interest and temporal inter-
est defines a space and time range based on a user’s current
location and current wallclock time that define the selection
of interesting events as an input to the operator graph. For
example, a navigation system may want to display all recent
accidents at nearby locations. Detecting such recent events
requires processing both live and historical events, which re-
quire a mobile user to specify her temporal interest based on
the duration from the current wallclock time. The user also
specifies her spatial interest based on her current location
to receive most relevant information.
A mobile user also sets a location sensitivity that indicates

a distance threshold for updating the spatial scope of the
situation awareness based on the user’s current location. For
example, a car navigation system has to show up-to-date
information while a car is moving. It can set the location
sensitivity at 100 meters so it can receive updated situational
information for a new region whenever the user moves more
than one 100 meters.

Temporal Ordering
Note that it’s crucial that our system injects events to op-
erator graphs in a temporal order. If events are not tem-
porally ordered, the application logic of each operator has
to go through past events that are already processed, and
perform its algorithm again to find certain patterns using
updated sequence of events. Take for example an oper-
ator that detects a linear drop in speed values over the
last 30 seconds. If delivered in the right temporal order,
e.g., {speed, t1, l1, 30 km

h
}, {speed, t2, l2, 20 km

h
}, {speed, t3,

l3, 10 km
h
}, it’s a sequential process to just compare the last

two events with every new event arrival. Delivered in the
wrong temporal order {speed, t3, l3, 10 km

h
}, {speed, t2, l2,

20 km
h
}, {speed, t1, l1, 30 km

h
}, means that the operator ei-

ther detects an increase in the speed or has to sort the events
and look at each event again to check if it is now a linear
drop. Our ordering model assumes that live-events from the
same sensor arrive in temporal order over a FIFO channel,
so that a local time-stamp in the arrival order according to
a local clock allows for a total ordering of events for the pro-
cessing of the operator. Historical events that are injected



Query Parameter Description Example
spatial interest a mobile user’s interested region, in terms of distance from the user’s

current location
500 meters from here

temporal interest a mobile user’s interested time duration, in terms of duration from
current wallclock time

recent 5 minutes

operator graph operator graph implementing situation awareness logic Figure 1
location sensitivity distance threshold to update the scope of situation awareness (i.e., Our

system switches to a new operator-graph if the user moves more than
this threshold from the previous location.)

100 meters

Table 1: Query Parameters for Mobile Situation Awareness

to create historical situations are buffered before being col-
lected by the operator and deterministically time-stamped
at that buffer.

Operator Graph Switch
When a user moves to another region, our system needs
to provide updated situational information for the region.
Following the results of [19], it is beneficial to create and
initialize an operator graph on demand based on user mo-
bility, instead of deploying a vast amount of operator graphs
for all possible regions. Consider again the example that a
consumer is interested in accidents that happened in the
last hour in a 5 km perimeter. The current operator graph
already processes up-to-date events from a previous region.
Integrating historical events from the new region that were
not previously detected means that the current operator
graph cannot process these events in the previously estab-
lished temporal order. For example location l1 was not part
of the previous region, suddenly this wrong temporal order-
ing {speed, t2, l2, 20 km

h
}, {speed, t3, l3, 10 km

h
}, {speed, t1, l1,

30 km
h
} is possible. To continuously provide situational in-

formation while a user is moving, our system creates a new
operator graph for the user’s updated spatial interest and
terminates the previous operator graph. The new operator
graph starts processing historical and live events for a new
region and asynchronously delivers situational information
to the user. After processing all historical events, the oper-
ator can provide live situational information by processing
live events from a specific region. In order to distinguish
results, they are stamped with the spatial interest and the
interval of the maximal and minimal time-stamp from events
that are used to generate the situational information.

3.2 Logical Modules for Event Processing
Figure 2 shows the logical structure of our spatio-temporal

event processing architecture. Each client has a query sub-
scriber through which a mobile user registers a continuous
query with a server. The registered query is handled by
the server’s query processor that creates an operator graph
and executes it by injecting relevant spatio-temporal events
matching the continuous query. While running, the oper-
ator graph generates high-level events for situational infor-
mation such as car accidents on highways, which are then
asynchronously delivered to the current user through the
query subscriber.
Our system includes a spatio-temporal event storage that

stores primitive events from sensors as well as high-level
events that are generated from operator graphs to serve
future queries without redundant computation. All events
in the spatio-temporal event storage are indexed by loca-
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Figure 2: Conceptual view of our system architec-
ture: Each component represents a logical module
that is distributed over multiple physical nodes.

tion, time, and type properties. An administrator given
TTL value specifies a lifecycle of the events stored in the
event storage. After an event is expired based on its TTL
value and timestamp, our system removes the event from the
spatio-temporal event storage. By removing old events, our
system efficiently uses its storage space by keeping events
that are more effective for situation awareness.
A query predictor is a key contribution in our system that

allows opportunistic event-processing based on location pre-
dictions. The query predictor runs on the client-side and
sends requests for creating and running operator graphs on
a user’s future locations. Detailed mechanisms of this com-
ponent are discussed in Section 4.

3.3 Fog-based Distributed Event Processing
To serve a large number of continuous queries while each

query potentially involves processing a large number of event
streams, we need to run operator graphs on distributed
computing resources. One design choice can be using the
cloud, since it provides virtualized system resources on de-
mand. Using the cloud, our system can elastically scale up
and down regarding the number of users and sensor streams
for event processing. However, there are two critical draw-
backs for the cloud-based approach. The first problem is
the network latency to deliver situational information from
the cloud to mobile devices. If our system is running in
the cloud, it collects events and delivers situational infor-
mation through the Internet. Satyanarayanan, et al. [29],



show that WAN latencies can be high and that these laten-
cies interfere with interactive applications. We argue that
sensor applications are vulnerable to the same issue due to
the sense-process-actuate loop, as would be any other appli-
cations with feedback loops. In short, WAN latencies pre-
vent our system from providing timely information to mobile
users. Another problem of using the cloud is the core net-
work traffic. Although network traffic is invisible to mobile
users, using geographically centralized cloud can potentially
burden the underlying network infrastructure.
In order to alleviate these problems, we propose deploying

our system on computational resources located near the edge
of the network. Fog computing is a new resource paradigm
proposed by Cisco [4] that supports large–scale, latency–
sensitive applications. The key idea is to maintain highly
available computing and storage resources in the middle
of the network infrastructure, providing resources from the
core to the edge. In contrast to the cloud, these hierarchical
and geographically distributed resources allow applications
to perform low–latency processing near the edge. Although
no commercial fog products are deployed in a production en-
vironment yet, we envision our system running in the edge
network to which mobile users can communicate with low
latency. This may be accomplished using smart routers,
middleboxes, or simply a local cluster, and we shall hence-
forth refer to any computational resources at the edge of the
network as “fog nodes”. On each of the distributed nodes,
we run an instance of the spatio-temporal event storage and
query processor to store events and execute operator graphs
based on the events.
To allow fog-based distributed event processing, sensors

send events to nearby fog nodes after receiving a connection
endpoint (e.g., IP address) from a well-known name server.
The name server maintains a directory including each fog
node and their responsible spatial regions. Similarly to the
sensors, a mobile user can find a nearby fog node through
the name server to register a continuous query. Once an
operator graph is created at the fog node, the mobile user
receives situational information from the fog node that is
running the operator graph. If the operator graph’s region
overlaps the region of multiple fog nodes, events are asyn-
chronously aggregated from the multiple fog nodes to the
node running the operator graph. When a user moves away
from the current operator graph, our system finds a new fog
node to create a new operator graph for a new region.
To select the best fog node to run an operator graph,

our system uses a simple heuristic based on the current and
expected workload of candidate fog nodes. At runtime, our
system monitors the workload at each fog node in terms
of processor utilization, per-event processing time for each
individual operator graph, and event rate for different event
types. The latter is done by monitoring the average event
rates on fine-grained regions in individual grids for different
event types that span the region of a fog node.
Upon a request for creating a new operator graph, our

system finds candidate fog nodes whose responsible regions
overlap with the new operator graph’s region. Among the
candidate nodes, our system first selects a node with high-
est event rate for the operator graph by summing up event
rates for fine-grained regions within the overlap between the
fog node’s region and the operator graph’s region. Once a
fog node is selected, our system estimates how the processor
utilization would change at the selected fog node if it starts
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Figure 3: Examples for predictive query execution:
operator graphs do not match with predicted loca-
tions and may require more time to execute than it
takes to switch from one operator graph to the next

running the new operator graph. The estimated workload
is calculated based on the average per-event processing time
of the operator graph and expected event rate for the entire
region of the new operator graph. If the estimated proces-
sor utilization stays below a certain threshold, our system
selects the fog node to run the new operator graph. Other-
wise, our system selects the fog node with the next highest
event rate for the operator graph and estimates workload
again. The intuition behind this approach is to find a fog
node that minimizes the network utilization for aggregating
events, while ensuring that the node has enough computa-
tional capacity to run the operator graph.

4. OPPORTUNISTIC EVENT PROCESSING
This section details the problem of processing latency for

historical events when switching to a new operator graph
and our solution to minimize the latency using opportunistic
event processing mechanism.

4.1 Problem Description
If a mobile user moves to a new location that is farther

than its distance threshold (location sensitivity), our system
creates a new operator graph with an updated region and
starts processing historical events matching to the mobile
user’s temporal interest (e.g., recent 5 minutes). Although
situational information is asynchronously generated and de-
livered to the user while processing the historical events,
the mobile user can only receive live situational information
after processing all historical events in temporal order. Be-
cause of the processing latency of historical events, switching
to a new operator graph causes a delay before receiving live
situational information. Since low-latency is a key require-
ment in mobile situation awareness, such a delay can be a
significant problem. Another problem caused by the latency
of processing historical events is the meaningfulness of sit-
uational information. By the time when recent situational
information is delivered, a mobile user may already moved
away from the previous location, which makes some situ-
ational information meaningless as they are outside of the
mobile user’s current spatial interest.



4.2 Solution Overview
To give timely situational information, an operator graph

must have processed all historical events when a user switches
to this operator graph. In the ideal case, there may be no
historical events for the operator graph’s region and there-
fore is the processing latency for historical events zero. How-
ever, if the region contains historical events matching to the
user’s temporal interest, we should start the operator graph
earlier before the user switches to the operator graph, giv-
ing enough time to process all historical events. To start
operator graphs earlier, our system performs opportunistic
computing based on the prediction of a mobile user’s fu-
ture locations. A location predictor based on a well-known
prediction techniques, e.g., a linear dead-reckoning or loca-
tions from the navigation system, provides a generic location
model for the predicted future locations. This is a set of pre-
dicted locations associated with a probability that this loca-
tion represents the actual location of a consumer. Using the
predicted locations, our system creates operator graphs for
each future location and starts running the operator graphs
before a mobile user reaches one of the future locations.
The quality and timeliness of the resulting situations de-

tected by the predicted operator graph highly depends on
where and when an operator graph is initialized. The loca-
tion prediction only gives uncertain future locations, which
makes it highly probable that the spatial interest does not
match with the predicted operator graph’ region. Consider,
for example, in Figure 3 the predicted spatial region Ap1
deviates from the actual spatial interest Aact1 and the cir-
cles that indicate those interests only partially overlap with
each other. Since processing of historical events takes time,
it is also possible that the consumer moves faster to new lo-
cations than the operator graph requires to process all his-
torical events. Consider again Figure 3, the temporal axis
shows that a consumer moves within 3 seconds from Aact1
to Aact2 while the processing takes 5 seconds.
In this context we discuss a quality metric that allows a

user to decide if the results of a predicted operator graph are
meaningful, in spite of the partial overlap with the actual
spatial interest. Furthermore, we discuss how the process-
ing time of an operator graph can be anticipated. Both
metrics are based on the number of events that are con-
tained in this overlapped region (see Subsection 4.3). To
maximize the probability that the consumer receives timely
results, we describe the basic query prediction mechanism.
To avoid the problem of late processing in face of fast move-
ments we extend that algorithm by pipelining future oper-
ator graphs for not only the next predicted location, but
for more subsequent locations (see Subsection 4.4). We also
provide a method to maximize the probability that a user
gets results with a desired quality from the system, based on
over-provisioning of operator graphs (see Subsection 4.5).

4.3 Metrics

Quality of Results
We break the quality of results down to two metrics, the
completeness and the effectiveness. The completeness indi-
cates how many events covered by the spatial interest of a
consumer are not included in the processing of results, and
therefore describes the event-loss. The effectiveness indi-
cates how many events are included in the processing but
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Figure 4: Quality of Results

not covered by the spatial interest of a consumer, and there-
fore describes the noisiness.
Since imprecise location predictions lead to overlaps in the

actual spatial interest and the predicted operator graph’s
region, not all events that lie in the spatial interest are in-
cluded in the resulting situation. For example event e1 in
Figure 4 is not included in the area of the predicted operator
graph. An interesting observation, however, is that most of
the relevant events in this example lie within the overlap.
Our metric captures such an inhomogeneous event distribu-
tion by giving a value close to one if most of the relevant
events are in the overlap, and close to zero if most of the
events are not in the overlap. More formally, let Vov be the
number of events in the overlap and Vi be the number of
events in the spatial interest of the consumer:

completeness = Vov

Vi
(1)

The effectiveness considers that events can be included in
the processing of resulting situations of an operator graph
that are not relevant to the consumer. For example, event
e2 in Figure 4. The effectiveness is therefore represented by
a value of the domain [0, 1], where 1 is the ideal case where
all events that are processed lie within the overlap. More
formally, let Vov be the number of events in the overlap and
Vp be the number of events in the predicted operator graph’s
region:

effectiveness = Vov

Vp
(2)

The involved actual spatial interest of the consumer and
the operator graph’s region can have a low overlap, but the
resulting situations may still be meaningful to the consumer
when the effectiveness and completeness are close to 1.
We can estimate the effectiveness and completeness for

two circular regions Aq1 , Aq2 under the assumption of spa-
tially evenly distributed events. Let α be the overlap of
those areas, and er be the average event rate. Observe that
the estimation is independent of the event rate:

E(completeness) = er ∗ α
er ∗Aq1

= α

Aq1
(3)

and

E(effectiveness) = er ∗ α
er ∗Aq2

= α

Aq2
(4)



1: P ← ∅ // set of predicted locations
2: qcurr ← initial_query // current operator graph
3: Q← ∅ // set of predicted operator graphs

4: upon locationUpdate(Location currentLoc )
5: if currentLoc - previousLoc > location_sensitivity then
6: stopOperatorGraphs(qcurr)
7: switchToNewOperatorGraph(currentLoc,Q)
8: P ← getNextPredictedLocations(currentLoc)
9: Q ← generateQueries(P )
10: startOperatorGraphs(Q)
11: previousLoc← currentLoc
12: end if
13: end

14: function switchToNewOperatorGraph(Location currentLoc,
Set-of-operator-graphs QL)

15: qcurr ← selectNext(QL)
16: discardOperatorGraps(QL − qcurr)
17: deliverHistoricEvents(qcurr)
18: initiateLiveNotification(qcurr)
19: end

Figure 5: Basic Query Prediction

Timeliness
The time an operator graph takes to process historical events
depends on the complexity of the algorithm that is realized
with the operator graph, the available resources of the ex-
ecuting platform and the number of input events. In order
to approximate the processing time for a given platform and
number of events the operator graph can be profiled on dif-
ferent platforms. The time in between those sampling points
can then be interpolated. Let Ci() be the function to deter-
mine this interpolated time, T be the temporal interest, R
be the spatial region of the operator graph and ev(R) be an
average value of events per second in the spatial range es-
timated from the historical events already available in that
area, then the anticipated processing time computes Tc to:

Tc = Ci(ev(R) ∗ T ) (5)

Note that if another operator graph for the same spatial
region is already deployed for another consumer, this result
can be reused. Reusing effectively reduces the processing
time on historical events, for the consumer specific operator
graph that reuses results, to zero.

4.4 Query Prediction
We now outline an algorithm for the predictive query sys-

tem. To explain the basic principles of the algorithm, we
first describe how the system predicts future locations and
initializes the next operator graph each time the mobile user
moves farther than the location sensitivity user-defined pa-
rameter (Algorithm 5). Thereafter, we extend the algorithm
to initialize operator graphs for destinations that are farther
away, to deal with fast moving consumers (Algorithm 6).

Predicting the next operator graph
An initial operator graph is deployed when the consumer
initiates its query at its initial location (initial_query).
Henceforth, the system keeps track of the operator graph
that currently processes events on behalf of the consumer
Qcurr and set of future operator graphs Q that already pro-
cess events for the next expected location of the consumer.
With every location update from the consumer, the query

processor compares the current location (currentLoc) of the
consumer with the location that was reported the last time
the consumer switched to a new operator graph (previousLoc).
If these locations deviate more than the location_sensitivity,
the system stops the processing for the current operator
graph and releases its resources (Line 5-6).
In the next step (Line 7) the system selects one operator

graph from the set of future operator graphs. Policies to se-
lect the next operator graph qcurr — specified by the domain
expert that designed the operator graph — are to switch to
the operator graph which has process on an area of interest
that has the highest overlap with the current spatial interest
of the consumer, the highest completeness, or effectiveness.
Operator graphs that are not selected are stopped and their
resources are freed (Line 15-16). The system delivers then
all historical situations from the spatio-temporal event stor-
age that have been detected so far and afterward delivers
live-situations detected by this operator graph (Line 17-18).
At last the system selects and initializes future operator

graphs (Line 8-9). The system retrieves a set of future lo-
cations from the location predictor, representing possible
locations for the center of the future region of the operator
graph the consumer will switch to, and initialize the opera-
tor graph at each of that locations (Line 15-17). The number
of retrieved locations is a system parameter that is set by a
system administrator prior to the deployment of an opera-
tor graph. In Section 4.5 we address a more sophisticated
solution for the operator graph selection (Line 18).

Pipelining
When the consumer moves with a high frequency from one
location to another it can happen that the processing of
historical events takes longer than moving further than the
threshold location_sensitivity. In such a case it is use-
ful to pipeline more than one set of operator graphs. This
means that operator graphs are not only processing for the
next possible switch of operator graphs due to an move-
ment beyond the threshold location_sensitivity, but also
for a sequence of movements to new operator graphs that
are further away.
Algorithm 6 presents the extended algorithm to consider

this issue. The basic idea is to maintain an eagerness pa-
rameter that dictates how many predicted locations we look
ahead. This can be set by a system administrator or dynam-
ically adjusted according to the expected processing time Tc

(see Equation 5).
The basic difference to Algorithm 5 is that iteratively

more operator graphs are added (Line 11-19). With every
new step of this iterative process, the location predictor is
called, however, with the predicted locations of the previous
prediction as input. The intuition is that those locations
represent the next actual locations (Line 11). Note, that
this exponentially increases the number and uncertainty of
predicted locations for a high eagerness, which is traded-off
for a timely delivery of results.
For each step until the eagerness is reached the operator

checks, if an operator graph is already deployed due to a
previous location update. In such a case (Line 13), the sys-
tem selects and initializes a new set of operator graphs at
each of the predicted location (Line 16-17). Moreover, if an
operator graph is already deployed through a previous lo-
cation update, the system checks if the predicted locations
deviate beyond a threshold (e.g., 100m) from the previous



1: P ← ∅ // set of predicted future locations
2: qcurr ← initial_query // current operator graph
3: Q[]← ∅ // set of predicted operator graphs
4: currStep← 0

5: upon locationUpdate(Location currentLoc )
6: if currentLoc - previousLoc > location_sensitivity then
7: stopOperatorGraphs(qcurr)
8: switchToNewOperatorGraph(currentLoc,Q[currStep])
9: P ← currentLoc
10: for step ∈ [currStep + 1, currStep + eagerness] do
11: P ← getNextPredictedLocations(P)
12: if notExists(Q[step])
13: ∨ locationDeviates(Q[step], P ) then
14: stopOperatorGraphs(Q[step])
15: Q[step]← generateQueries(P )
16: startOperatoGraphs(Q[step])
17: end if
18: end for
19: inc(currStep)
20: end if
21: end

Figure 6: Opportunistic Query Prediction

predictions. In this case the operator graphs that already
process for that step will be stopped and their resources will
be freed (Line 14), before a new set of operator graphs is
initialized.

Reuse of Results
Situational information of operator graphs can be reused,
since it is buffered in the spatio-temporal event store. Which
applies if multiple consumer deploy the same operator graph
for the same spatial-interest. The main idea is to use a
reference-counting mechanism for operator graphs that match
in the spatial interest and overlap in the temporal interest.
When initializing operator graphs (Line 8 of Algorithm 6)
the system has then to check if other operator graph for
the same spatial interest already exist. If this is the case a
reference associated with the trees is increased. Moreover,
instead of instantly releasing resources of operator graphs,
the system decides according to the reference count if other
consumers still require the operator graph.

4.5 Opportunistic Prediction
We now focus on the opportunistic algorithm to select

a set of operator graphs for each predicted location. Its
task is to select future operator graphs, s.t. the probability
is maximized that the next time the location_sensitivity
is exceeded an operator graph can be found that ensures a
consumer-defined completeness and effectiveness. The method
of choice to achieve the desired qualities is an over-provisioning
of operator graphs. This means, that instead of only one op-
erator graph, multiple-operator graphs process at the same
time on historical data for slightly different areas of spatial
interests. Which raises the problem that, depending on the
number of over-provisioned operator graphs, the required re-
sources and the overall time to process all operator graphs
increases. Therefore it’s crucial to stay below a specific max-
imal resource cap smax, which express the maximum toler-
able number of events that can be processed in parallel.
Selecting all predicted locations as centers for the areas

of interest of operator graphs is one opportunity. However,

1: function generateQueries( Locations PL )
2: QL ← ∅
3: stot ← 0
4: S ← calcInitialCosts(PL, S)
5: while PL 6= ∅ do
6: p← selectAndRemoveNext(PL)
7: if @q ∈ QL : canExecute(OperatorGraph(p)) then
8: if stot + S[p] ≤ smax then //stop if resource cap
9: QL ← QL

⋃
{OperatorGraph(p)}

10: stot = stot + S[p]
11: end if
12: end if
13: end while
14: return QL

15: end

Figure 7: Query Generation

dependent on the number of retrieved queries, the overhead
in terms of processing all events can be large.
To find a good approximation that selects a set of oper-

ator graphs from that set of predicted locations and stays
below a resource limit smax, we’ll first discretize the prob-
lem and then reduce it to a set coverage problem. For the
discretization we assume that only the predicted locations
are valid future locations of the consumer, which is true if
the number of predicted locations is infinite. The universe
U for the set coverage problem is the set of events that is
covered by all interest areas of the operator graph selected
by the simple approach. The interest areas of those operator
graphs represent the subsets G ⊂ U . The problem is then
to select a minimum number of subsets G′ ⊂ G, s.t., all el-
ements of U are covered. However, we have to consider two
additional constraints to the classical set coverage problem:
i) all areas of not selected subsets N ⊂ G must overlap with
areas of selected subsets G′ ⊂ G, s.t., completeness and ef-
fectiveness for all sets in N are expected to be ensured, and
ii) the overall expected resource usage stot stays below smax.
The first constraint strives to ensure the quality, while the
second one strives to ensure the resource limits.

Constraint Set Cover Algorithm
We adapted the greedy Johnson’s Algorithm [17] to solve
the set coverage problem (see Algorithm 7) to consider our
constraints. It computes a set of operator graphs Q that
have a high probability to ensure the results quality. It does
this on the basis of a set of selected probabilistic locations P
and a map S where the resource requirement of individual
operator graphs, with the area of interest centered at each
p ∈ P is maintained. The algorithm starts out by receiving
a set of predicted locations PL and estimating the resource
requirement of the operator graphs as if at each of those
locations we center the area of interest of an operator graph
and only this operator graph would process historical events
(Line 2-3).
Henceforth, the algorithm tries to add sequentially for

each predicted location p ∈ PL a new operator graph (Line
4-14). Which p is selected next depends on a policy that
an domain-expert specified while developing the situation
aware application with the operator graph. Choosing the
next predicted location of PL with the highest probability,
will favor operator graphs that have a high probability for
an overlap with the actual location, possibly only selecting
few operator graphs. Choosing the operator graph with the



lowest expected cost S[p], will deploy many operator graphs,
possibly at unlikely locations. Choosing the lowest cost fac-
tor (1−p)∗S[p], will trade-off the benefits of the previously
described policies (Line 5).
An operator graph is said to be executable at the next se-

lected location p if no other operator graph q ∈ Q is already
selected that satisfies the consumers requirements on com-
pleteness and effectiveness, which can be checked according
to Equation 1 and Equation 2 (Line 6-7). The algorithm
stops if the overall expected costs stot exceed the limit smax

or all point p ∈ P are covered.

5. EVALUATION
In this section, we evaluate our system by measuring the

timeliness and quality of results, based on realistic spatio-
temporal events and user mobility. Timeliness is a delay
between switching to a new operator graph and receiving live
situational information after processing historical events. Our
system predicts future locations and starts running operator
graphs on the locations before user arrival, therefore pro-
vides near-zero latency for receiving live situation updates
when switching to the new operator graphs. Quality of re-
sults are measured in terms of completeness and effectiveness
as defined in Section 4. In our approach, the quality of re-
sults can degrade if location predictions are inaccurate. To
compensate such prediction errors, we opportunistically de-
ploy multiple operator graphs for future locations, increasing
chances to find a better operator graph with higher quality
of results. As provided in the subsequent subsections, our
system outperforms on-demand query processing that starts
operator graph after user arrival both in terms of timeliness
and quality of results.

5.1 Experimental Setup
To evaluate our system, we conducted simulations using

SUMO [3], a well-known traffic simulator that generates re-
alistic mobility patterns of vehicles on a real road network.
Our simulations monitored the traffic in the downtown area
(3.791 km x 2.872 km) of Atlanta for 20 minutes based on
the road network obtained from Open Street Map [11]. We
originally simulated 1000 vehicles for each simulation but
the random trip generator of SUMO automatically pruned
out some invalid routes after generating trips, which resulted
in 884 vehicles per simulation on average. For each simu-
lation, we observed 282,951 events on an average, meaning
each vehicle reported about 320 events on an average.
During the simulation, we recorded each vehicle’s geo-

graphical location at every second, which is used in two
different ways in subsequent experiments. In one case, we
treated the location reports as anonymous spatio-temporal
events that are used by operator graphs to generate situa-
tional information. In the other case, we use the trajectory
of individual vehicles to simulate mobile users receiving sit-
uational information through continuous queries.
When measuring the quality of results and timeliness,

we use four different event processing mechanisms, namely
zero, eager-oracle, eager, and lazy. Zero represents an ideal
case for both opportunistic event processing and on-demand
event processing, which assumes zero computing cost for
event processing. In this case, location sensitivity, a user-
given parameter for the operator graph switch, is ignored
and an operator graph is created upon every fine-grained
location update. At each location, the created operator

graphs provide up-to-date situational information immedi-
ately since the cost to process historical events is zero, re-
sulting in perfect quality of results at any given time and
location.
Eager-oracle is an ideal case for our opportunistic event

processing that assumes an oracle predictor that knows the
exact future locations of all mobile users. Since our system
knows the exact future locations, it can run operator graphs
on the exact locations before user arrival. However, unlike
the zero case, operator graphs are created at coarse-grained
locations defined by location sensitivity since the comput-
ing cost is not zero. While a mobile user is keep moving,
the user’s spatial interest may be slightly different from the
current operator graph region at each moment, resulting in
degrades in quality of results. In the following experiments,
zero provides perfect completeness and effectiveness while
eager-oracle provides an upper bound quality of results for
our opportunistic event processing mechanism.
Eager represents opportunistic event processing with a

realistic location predictor, called dead-reckoning. Dead-
reckoning is a process of predicting future locations based
on the current location, estimated speed, and estimated di-
rection. We used simple linear dead-reckoning, using the
last ten location histories to estimate future direction and
speed, and predict future locations based on this estimate.
To compensate for decreased completeness due to the erro-
neous nature of location prediction, we create four oppor-
tunistic operator graphs for each prediction.
The last case, lazy, represents on-demand event processing

that creates an operator graph and starts processing histor-
ical events upon user arrival. Because of processing latency
for historical events, a user cannot immediately receive up-
to-date situational information, which results in degradation
of both timeliness and quality of results.

5.2 Quality of Results Comparison
This section compares different event processing mecha-

nisms by measuring the quality of results. We measured
two metrics, completeness and effectiveness, at each fine-
grained location of individual vehicles based on the overlap-
ping events between the mobile user’s actual spatial interest
and the current operator graph’s region. Although both
metrics are measured, we only present completeness in this
paper since they show the same trend. We also vary user-
given parameters as well as processing latency for historical
events in order to investigate each parameter’s impact on
the quality of result. For each experiment, the following
default parameters are used, except one parameter that is
selected as a control variable.

Location Sensitivity = 100 meters
Spatial Range = 500 meters
Temporal Range = 60 seconds
Processing Latency = 4 seconds

Figure 8 shows completeness for different event process-
ing mechanisms while varying location sensitivity. In this
experiment, smaller location sensitivity means more fine-
grained, and more frequent operator graph switches while
a user is moving. As shown in the figure, both eager and
eager-oracle provide better quality of results as location sen-
sitivity decreases because the distance between two succes-
sive operator graphs depends on the location sensitivity, and
the quality of service degrades as operator graphs are spread
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Figure 8: Completeness of query result with differ-
ent location sensitivity
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Figure 9: Completeness of query result with differ-
ent processing latency

farther apart. Eager shows a steeper decrease in quality of
results since the prediction error also increases when predict-
ing far-away future locations. In contrast to opportunistic
event processing mechanisms, on-demand event processing,
or lazy, shows that it achieves peak completeness at 150 me-
ters of location sensitivity. At small location sensitivities,
we observed that an operator graph cannot catch up to the
fast-moving vehicles since the vehicles moves away from the
operator graph’s region before the operator graph finishes
processing historical events. On-demand event processing
cannot handle such fast-moving vehicles with a small loca-
tion sensitivity, thus showing the necessity of opportunis-
tic event processing. At large location sensitivities, lazy
shows a similar trend to eager-oracle because the quality of
results decreases between two subsequent operator graphs
while there is no uncertainty of future location involved.
Figure 9 presents completeness while varying historical

event processing latency. When a user switches to a new
operator graph, the operator graph should process recent
historical events to provide up-to-date situational informa-
tion. In realistic scenarios, processing latency for historical
events depends on the number of events and complexity of
operators. However, we used processing latency as a control
variable in this experiment to show the impact of process-
ing latency on the quality of results. As shown in Figure 9,
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Figure 10: Completeness of query result with differ-
ent spatial interest

eager and eager-oracle are not affected by historical event
processing latency because they process events in advance
through our opportunistic event processing mechanism. The
difference in quality of results between the two is due to
the imperfect location predictions in eager. However, lazy
shows decreasing completeness when historical event pro-
cessing latency increases. The decreased completeness is
caused by user mobility, since a requesting mobile user can
be far away from the requested location by the time a new
operator graph is ready to begin “live” processing.
Figure 10 shows changes in the completeness when the

range of a mobile user’s spatial interest changes. In this
experiment, all event processing mechanisms show the same
trend that wider spatial interest yields a better quality of
results. Although quality of service decreases between two
subsequent operator graphs because of missing events and
unnecessary events, the number of events that are missed
or unnecessarily included can be negligible at large spatial
interest.

5.3 Timeliness Comparison
This section compares the timeliness of situational in-

formation between opportunistic event processing and on-
demand event processing. We compare timeliness by mea-
suring the delay between a mobile user’s arrival at a new lo-
cation and receiving live situational information about that
location. In on-demand event processing, the delay is ex-
actly the same as the historical event processing latency
since live situational information is only available after pro-
cessing all the historical events. In the opportunistic event
processing mechanism, however, the new operator graph
might already be created and have processed all the his-
torical events. In this case, the delay for live situational
information is zero since the mobile user can immediately
receive the information.
In this experiment, we used a dummy operator graph that

takes a uniform random latency from one to three seconds
to process historical events, while both the server and client
modules are running on the same local machine. In a re-
alistic scenario, timeliness will be also affected by network
latency between a mobile user and a server that is running
an operator graph. For opportunistic event processing, we
use the dead-reckoning predictor to predict future locations
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Figure 11: Timeliness of Opportunistic and On-
demand Event Processing

while four operator graphs are opportunistically created at
each prediction.
Figure 11 shows the cumulative distribution function (CDF)

for the timeliness of both on-demand and opportunistic event
processing mechanisms. On-demand event processing, la-
beled as lazy, creates an operator graph after user arrival and
therefore it suffers from poor timeliness caused by the his-
torical event processing latency. The delay for receiving live
situational information is uniformly distributed between one
to three seconds, following the distribution of event process-
ing latency. However, our approach of opportunistic event
processing (labeled as eager) provides zero latency in more
than 70% of time because the operator graphs have already
been created and the historical events processed when the
user arrives at the future location. In few cases, our system
has to create operator graphs on demand, which causes the
same amount of delay with the on-demand event processing.
Another cause of delay in opportunistic event processing is
that a vehicle moved too fast and therefore the operator
graph did not process all historical events yet.

6. CONCLUSION
The abundance of sensors in the environment enables many

exciting new applications. Mobile situation awareness ap-
plications are one such class of applications that are fur-
thermore spatio-temporal event-based as well as latency-
sensitive. Event-based applications are typically programmed
using a complex event processing (CEP) model, however
there are challenges when the system includes mobile con-
sumers with an interest in nearby, recent situational infor-
mation that must be addressed.
It is necessary to update the spatio-temporal range of op-

erator graphs as mobile users move through time and space
in order to keep the results relevant, as well as to allow the
application to scale and avoid wasted computation. How-
ever, mobile situation awareness applications often require
recent historical events as well as current, live events. The
processing of these recent historical events each time the
location of the query changes causes a delay to delivering
query results and processing live events.
In this paper, we have proposed a system and method to

address the problems caused by this delay. The metrics of
interest that we improved are the timeliness and quality of

results for mobile spatio-temporal queries. Our contribu-
tions include: 1) the system architecture, 2) the method for
eager computation of historical events, including a pipelin-
ing method to look several steps into the future and an op-
portunistic computing method to compensate for partially
inaccurate location prediction results, and 3) a simulation
evaluation that shows that our system and method achieve
the near-zero latency goal, as measured by the timeliness
metric, while improving the quality of results over an on-
demand computation method.
There are two significant areas of future work. The first is

to develop an actual mobile situation awareness application
and use its operator graph to simulate our method using
real algorithms and workloads. The second, as fog comput-
ing technology develops and testbeds become available, is
to create a real implementation of our system using a fog
computing platform.
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