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ABSTRACT 

We present a mobile platform for body sensor networking based 

on a smartphone for lightweight signal processing of sensor mote 

data.  The platform allows for local processing of data at both the 

sensor mote and smartphone levels, reducing the overhead of data 

transmission to remote services. We discuss how the smartphone 

platform not only provides the ability for wearable signal 

processing, but it allows for opportunistic sensing strategies, in 

which many of the onboard sensors and capabilities of modern 

smartphones may be collected and fused with body sensor data to 

provide environmental and social context.  We propose that this 

can help refine data reduction at the local level.  We describe 

three examples related to health and wellness, to which our system 

has been applied. 

Categories and Subject Descriptors 

J.3 [Computer Applications]: Life and Medical Sciences-health, 

medical information systems. 

General Terms 

Design, Experimentation, Human Factors 

Keywords 

Wireless sensors, body area networks, opportunistic sensing, 

health monitoring, wearable computing, energy expenditure, 

physical activity 

1. INTRODUCTION 
Wireless body sensor networks (BSN) have numerous 

applications to health and wellness monitoring.  The typical usage 

scenario involves an individual wearing a sensor layer – wireless 

sensors that monitor various aspects of vital signs, physiology, 

and/or motion at multiple locations on the body.  Data from the 

sensor layer are transmitted to a network layer, which is 

responsible for transmitting the data (e.g., through WLAN, 

cellular, GPRS, or 3G wireless network) to a third, service layer.  

The remote service layer could be simply a database or more 

complex server application (e.g., an electronic medical records 

(EMR) system) at a healthcare provider’s facility, which is tasked 

with processing the data into quality information that will be used 

to provide better patient care.  A number of research projects 

follow this paradigm (e.g., MIThril, CodeBlue, ActiS) [5, 9 , 12] 

Managing large volumes of data from BSN remains a challenge 

for practical applications of this technology – particularly those 

which require continual monitoring of individuals.  It is inefficient 

to transmit raw sensor data to, and maintain data at the service 

level.  Moreover, such an approach presents problems due to 

limited wireless bandwidth, the need to conserve power, 

considerable noise in raw sensor data, and the need for 

maintaining reliable and secure communication. This has 

motivated lightweight signal processing strategies, in which some 

processing of sensor data can be done locally to reduce many of 

the inherent problems associated with sending large amounts of 

raw sensor data to be remotely processed.   

In this paper we describe our experience with integrating 

components into a heterogeneous BSN platform, and the 

hierarchical system of lightweight signal processing employed in 

our platform.  At the lowest level of our system, raw sensor 

signals are processed by sensor motes before being sent to a 

mobile coordinator, which conducts further processing before 

sending information on to higher service-level applications.  We 

present the latest developments of our BSN platform, which is 

now based on a smartphone running the Android operating 

system.  We propose that the use of a smartphone as a BSN 

coordinator allows for an opportunistic sensing approach, in 

which many of the onboard sensors and capabilities of modern 

smartphones can provide useful environmental and social context 

to other BSN data, which allows for further data refinement. 

2. SYSTEM ARCHITECTURE 
At the outset, our research goal was to have BSN platform which 

was robust enough to be applied to numerous applications (e.g., 

patient monitoring, telemedicine, tele-rehabilitation, personal 

wellness, emergency response, studies of exposures to 

environmental hazards) and use by different populations (e.g., the 

elderly, children, patients with pre-existing conditions).  This 

required a system architecture that could support a heterogeneous 

set of sensors that could be dynamically configured over-the-air 

for different application needs, and be appropriate for long-term 

monitoring applications in both indoor and outdoor environments 

[11]. 
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Figure 1 illustrates the 3-layer hierarchy of our system, which we 

call DexterNet.  At the body sensor layer (BSL) are sensor motes, 

which can consist of a combination commercially-available or 

custom sensor boards attached to motes (e.g., TelosB, Shimmer) 

worn on the body.  These sensor motes communicate with the 

personal network layer (PNL), which consists primarily of a 

mobile base station (e.g., a PDA, Internet Tablet, or smartphone) 

that acts as a higher-level data and communications coordinator, 

and allows for user-interaction with the BSN.  The base station 

coordinates communication with higher level application services 

that lie at the global network layer (GNL). 

 

Figure 1. Three-layer architecture of the DexterNet system 

with example hardware, communication and software 

implementation. 

2.1 Hardware 
We have integrated various hardware devices to realize the BSN 

system. For motion classification research, we have integrated a 

custom-made sensor board with triaxial accelerometer and biaxial 

gyroscope on a TelosB mote.  The mote has a 802.15.4 radio for 

wireless communication to a base station.  For physical activity 

and health monitoring research, we have collaborated with 

researchers from the Tampere University of Technology to 

integrate a sensor board for heart ECG and electrical impedance 

pneumography for breathing measurements [14].  Most recently 

we have integrated the Intel SHIMMER mote and its associated 

motion and physiology sensors, via the Bluetooth radio. 

At the personal network layer, we have collaborated with 

researchers from the University of Texas Dallas, to integrate the 

Nokia N800/N810 Internet Tablet as the base station for our 

system.  The tablet has allowed the fusion of GPS measurements 

for outdoor localization of BSN data, as well as a commercial air 

pollution monitor (connected via serial cable) for research on 

personal exposures to air pollution and respiratory health.  

Additionally, we have begun to use smartphones running the 

Android operating system as our mobile base station, which has 

provided additional capabilities as described below. 

2.2 The SPINE framework 
DexterNet makes use of the open-source Signal Processing in 

Node Environment (SPINE) framework, which provides 

flexibility in integrating different sensors, processing algorithms, 

and communications for on-the-fly reconfiguration of the BSN 

[7].  SPINE consists of on-node TinyOS code that performs basic 

sensing and communication functions, as well as low-level signal 

processing of raw sensor data.  Sensors and processing can be 

turned on or off over-the-air depending on different application 

needs.  SPINE provides basic feature extraction algorithms for 

low-level processing of sensor data, including min, max, mean, 

variation, and energy.  These features, as well as other algorithms 

which can be easily developed and added to SPINE, are computed 

on a sliding window of sampled sensor data, and are sent to the 

SPINE server module.  Shifting some processing to the BSL 

nodes, may reduce on radio communication with PNL, thereby 

realizing benefits of lightweight signal processing. 

In SPINE, a server module, implemented in Java acts as the 

coordinator for the BSN.  We ported SPINE server to run on the 

Nokia N800 device, and are currently implementing a port to 

Android smartphones.  As an application on the PNL mobile 

device, SPINE server can communicate with the sensor motes to 

reconfigure sensing and low-level processing.  Higher level 

processing of either the raw sensor data or extracted features can 

be implemented in Java within a SPINE server application.  Such 

an application may fuse data from various body sensors, as well as 

sensors onboard or attached to the mobile device.  By making use 

of the higher processing and storage capability of the mobile 

device, higher level data filtering and classification algorithms are 

possible, potentially reducing the amount of communication with 

the GNL. 

2.3 Android and WAVE 
Android is an operating system for mobile devices.  Android 

includes not only an operating system, but also a Java-based 

software development kit, and a set of mobile applications. One of 

the benefits of porting SPINE server and our BSN platform to 

Android is the large number of consumer mobile devices that are 

coming to market based on this operating system, which will aid 

in the translation of BSN research to practice. Additionally, 

because source code is available (e.g., for the Bluetooth radio 

library), Android is compatible with our overarching goal of 

creating a robust platform for heterogeneous BSN. 

Current mobile devices running Android provide a number of rich 

sensing and interactive capabilities that can be integrated into 

BSN applications.  For instance, current Android mobile phones 

(e.g., Google Nexus One) provide voice and sound, SMS, and 

data communication; camera, light, touch, vibration, text input, 

visual graphic display, GPS localization, and accelerometer. 

In our port of the SPINE server to Android, we recognized the 

increasing ability for smartphones to provide sensor data and 

social interaction between users.  To create a framework for 

integrating BSN data with these capabilities, we developed the 

WAVE application programming interface (API) for Android 

[18].  In essence, the WAVE API serves as Android glue between 

the BSL and GSN layers.  WAVE provides application developers 

with a set of Java classes that simplifies the setup, access, and 

processing of BSN data, and integrates BSN with local and/or 

remote databases. The databases can be populated with data from 

multiple users, allowing for interactive BSN applications.  WAVE 

is run as a service on the mobile device, and can be called by 

different Android applications that need to access the BSN or the 

databases. 

From the standpoint of human factors, the Android mobile phone 

interface provides the user with a familiar device to interact with 

the BSN.  Specifically, Android allows for integration of a BSN-

related application with other application and services on the 
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phone through message calls, or intent objects.  For example, the 

native web browser, SMS message, or telephone dialer 

applications can all be called from a BSN application.  Moreover, 

because the mobile phone is a pervasive device, a user is more 

likely to carry it and maintain its battery because it provides many 

capabilities, as opposed to a dedicated device for health 

monitoring alone. 

3. APPLICATIONS 
We present three applications built on the DexterNet platform.  

The first is system for monitoring exposures to environmental 

pollutants. The second is a system for monitoring congestive heart 

failure patients.  The third is a system for monitoring physical 

activity for obesity intervention. 

3.1 Environmental health monitoring 
The heterogeneous sensing model of DexterNet is well-suited to 

monitoring a user’s exposures to environmental pollutants.  Our 

system fuses motion, air quality, and location sensing, to build a 

rich database that has been used to characterize the magnitude of a 

person’s exposure, as well as the underlying context of when, 

where, and why a person experiences his or her exposures [15].  

Such a system has uses in the management of asthma and other 

respiratory health conditions. 

In experiments of our system, individuals each wore five motion 

sensing motes placed on both wrists and ankles, and additionally 

at the front waist position.  A Nokia N810 served as the base 

station, collecting GPS time and location measurements.  A mote 

was also used to monitor heart and breathing variables.  

Additionally, a commercial airborne particulate monitor was 

connected via serial port to the Nokia.  Individuals were asked to 

walk a prescribed route around the University of California, 

Berkeley campus, which included part of downtown, small and 

large arterial streets, as well as the center of campus, which was 

largely free of vehicle traffic.  Figure 2 illustrates the results of 

one of the walks, which provides a multivariate perspective of the 

person’s urban air pollution exposure experience.  For this work, 

we developed and validated a lightweight energy expenditure 

algorithm in SPINE called Kcal. 

 

Figure 2.DexterNet system used to monitor exposure to urban 

air pollution. 

3.2 Congestive heart failure patient 

monitoring 
The heterogeneous sensing model of DexterNet can also be 

applied to telemedicine patient monitoring model, in which a 

patient is continually monitored, with data being set to an EMR 

system, which can then provide feedback to patients.  In 

collaboration with Vanderbilt University researchers, we created a 

mobile system based on DexterNet for managing congestive heart 

failure. 

The system consisted of a Nokia N810, connected via 802.15.4 

radio to a motion mote located at the waist to monitor physical 

activity, and connected via Bluetooth to a digital scale and blood 

pressure monitor to monitor daily changes related to fluid 

overload and possibly changes due to blood pressure medication. 

We tested the system in an experiment in which a user at Berkeley 

wore the system as part of their daily activity.  In the morning, the 

user activated the system.  When blood pressure and weight 

monitors were used, their measurements were automatically stored 

at the base station.  During the day, the system continually 

computed and stored physical activity according to the Kcal 

energy expenditure algorithm in SPINE.  When the mobile system 

found a Wi-Fi access point, the data were uploaded using standard 

Internet security protocols to a remote EMR at Vanderbilt.  At the 

end of the day, the user received an SMS message as feedback, 

which suggested changes in behavior, such as increasing activity 

and/or changing doses of medication. 

3.3 CalFit for obesity intervention 
Physical activity is associated with numerous health outcomes. 

Most directly, it is part of the energy balance equation that is 

associated with the risk of obesity.  Using DexterNet and the 

WAVE API for Android smartphones, we developed the CalFit 

application – a multi-user mobile application that monitors 

physical activity, and encourages exercise through social 

interaction and competition [18]. 

The current version of CalFit relies exclusively on the onboard 

sensing capabilities of smartphones like Google’s Nexus One and 

Motorola’s Droid.  The triaxial accelerometer is used with the 

SPINE Kcal algorithm for energy expenditure.  The algorithm was 

designed to be insensitive to sensor orientation.  Hence, it can 

continually track activity even with the mobile phone arbitrarily 

placed in the user’s pocket.  On-board GPS is used to track the 

time and location of activities.  The WAVE API allows storing 

workout data to remote servers, where it can be further managed 

and shared.  Finally, Android intent objects are used to call the 

native SMS application so that workout data can be shared among 

users in a competitive fashion (Figure 3). 

 

Figure 3. CalFit Android application flow. 
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We are currently in the process of conducting user experiments 

with CalFit.  Our hypothesis is that users will not only be 

motivated to increase physical activity by seeing their own 

progress, but competitive interaction with other users will also 

provide as motivation. 

CalFit can serve as the foundation for further BSN research.  We 

have begun testing the interface between SHIMMER motes and 

CalFit, with the goal of incorporating more sophisticated motion 

classification [19] into the system. 

4. OPPORTUNISTIC SENSING FOR BSN 
As mentioned above, consumer smartphones increasingly offer 

different sensing and communication capabilities.  When 

integrated with BSN, we propose that there are numerous 

opportunistic sensing strategies that are consistent with the goals 

of lightweight sensing in terms of data reduction and refinement at 

the local PNL level. 

Opportunistic sensing has been described as the tasking of mobile 

devices to collectively sense environmental data – the context in 

pervasive computing applications (e.g., in people-centric urban 

sensing) [3].  It shares similarities with cooperative sensing 

networks, in which distributed sensors are used in a cooperative 

fashion to provide greater fault tolerance, improved coverage and 

sensing quality, while leveraging of lightweight sensing devices 

[1].  However, the opportunistic sensing model typically describes 

a cooperation at higher levels (i.e., between people) than between 

multiple BSN devices worn on a single person. 

4.1 Location-based approaches: GPS and 

indoor localization 
Most mobile devices include localization in the form of GPS.  

Indeed in our work, we have extensively included GPS 

measurements to provide context for BSN data.  Recent studies to 

monitor mobility and location with smartphones make use of GPS 

and accelerometer data [13]. Nevertheless, the location 

information obtained through GPS is only reliable in certain 

outdoor environments, and the accelerometer data are generally 

too noisy to obtain accurate information.  

Reference [16] shows the importance of indoor localization, 

especially for hospitals and government offices. There have been 

several attempts to obtain indoor localization through image 

matching techniques [10, 6], but indoor environments are 

extremely challenging for this kind of application, and even if it is 

possible to recognize the shapes of pedestrians and objects 

through image processing techniques, the identification of similar 

ones is difficult for a computer vision-based system intended to 

monitor whole buildings [2]. In fact, the computational cost of 

high-dimensional feature extraction and processing is typically 

prohibitive for implementation in a cell-phone [8]. Consequently 

we have tried to focus on alternative ways for indoor localization. 

Android is well-suited for localization due to its support of 

diverse sensors and hardware which enable localization (e.g. GPS, 

Wi-Fi, cellular communications, accelerometer), and its higher 

efficiency in comparison with other platforms such as J2ME [4]. 

In this sense, recent research work [17] presents location-based 

services running on Android based largely on outdoor GPS use, 

but precise indoor localization would be a valuable addition. 

We have been exploring indoor localization based on the 

possibilities afforded by three smartphone resources: Wi-Fi radio, 

cellular communications radio and accelerometer, with the 

intention to build a multimode approach for localization. Making 

use of RSSI information from Wi-Fi beacons deployed within 

buildings, it is possible to obtain a radio map of different 

locations (fingerprinting), which will allow estimating locations 

through the comparison of the current RSSI measurements with 

those stored in the radio map. Processing this information 

statistically, we have obtained accuracies in the order of a meter 

and with real-time dynamicity (refreshment of location 

information every second). Nevertheless, we have found a major 

challenge with some smartphones (early generations of 

smartphones regardless of their Operating System), in the sense 

that the RSSI values were not refreshed dynamically. 

Smartphones running on Android 2.0 and above do not have this 

issue.  

RSSI information from cellular base stations could theoretically 

be used to disambiguate locations for which the Wi-Fi radio map 

offers doubts. Nevertheless, we have found this approach 

unfeasible with current state of the art smartphones, because the 

refreshment rate of RSSI values is very slow (not dynamic enough 

for indoor walking) and the granularity in the RSSI values is poor 

and hardware dependent (e.g. G1 phone only distinguishes 

between 4 bars of coverage, and Droid only provides a few more 

intermediate values). Moreover, we could only read RSSI 

information from neighboring base stations belonging to the same 

SIM card operator, constraining the practicality of this approach.  

While there are still challenges to realizing indoor localization on 

today’s devices, the ability to use location in an opportunistic way 

to triage signal processing algorithms is promising.  For example, 

in applications of continuous activity classification, we could first 

threshold on accelerometery to determine motion yes/no, and if 

yes, use localization to determine the context for the motion.  If 

for instance, the user is moving and outdoors on a sidewalk, we 

could activate a step counting algorithm, or moving fast in the 

middle of a roadway we could instead activity a carbon footprint 

algorithm, or indoors in a stairwell, activate an algorithm to count 

stair climbing/descending.  Triaging in this manner could greatly 

decrease the complexity of classification tasks, particularly given 

SPINE’s capabilities for over-the-air reconfiguring of sensors and 

algorithms. 

4.2 Other approaches 
Even simple opportunistic approaches, such as using the clock on 

the smartphone may provide context to body sensor applications.  

In the case of our congestive heart failure project, a typical 

protocol may include only recording morning and evening weight 

and blood pressure, whereby the Bluetooth radio could be turned 

off most of the time to conserve power. 

For environmental pollution monitoring where it is only necessary 

to sample while the user is outdoors, the mobile phone’s light 

sensor may be used to discriminate indoor from outdoor 

conditions, and if outdoors, conduct environmental monitoring.  

Similarly, in lieu of a costly air pollution monitor, it may be 

possible to discern when a user is outdoors, and only then, sample 

sound from the phone’s microphone.  These sounds could then be 

used in vehicle sound detection algorithms and fused with BSN 

motion classification to quantify exercise and mobile source air 

pollution together. 



Additionally, the persistent connectivity of smartphones may lead 

to opportunistic strategies for BSN.  For example, in CalFit, we 

will evaluate the degree to which an SMS message from one user 

to another triggers increased workouts in the other user.  We may 

also evaluate whether Google Latitude, a location-based service 

for identifying nearby friends made possible by persistent Internet 

connectivity may lead to increased walking to meet with friends. 

5. CONCLUSIONS AND FUTURE WORK 
In this paper we have provided a description of a heterogeneous 

BSN system, which provides for a hierarchical structure of signal 

processing on-node and on a mobile base station.  We have 

provided an overview of its application to three case studies.  

Finally, we have discussed the most recent evolution of our work 

to integrate an Android smartphone as the base station 

coordinator, which provides for opportunistic sensing strategies. 

Moving forward, our group will continue the migration of our 

system to Android devices, and conduct user studies to evaluate 

the performance of the BSN.  Our CalFit application will provide 

a foundation for future evaluation of BSN activity classification 

algorithms.  In developing these algorithms, we will explore the 

tradeoffs between on-node versus base station processing.  

Additionally, we will evaluate the performance gains possible 

through our proposed BSN opportunistic sensing strategies. 
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