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Opportunistic Transmission Scheduling With
Resource-Sharing Constraints in Wireless Networks

Xin Liu, Edwin K. P. Chong, and Ness B. Shroff

Abstract—\We present an “opportunistic” transmission sched- at higher data rates via adaptation techniques, such as reducing
uling policy that exploits time-varying channel conditions and coding or spreading and/or increasing the constellation density.
maximizes the system performance stochastically under a certain By using adaptation techniques, cellular spectral efficiency (in

resource allocation constraint. We establish the optimality of .
the scheduling scheme and also that every user experiences é{erms of b/s/Hz/sector) can be increased by a factor of two

performance improvement over any nonopportunistic scheduling OF more [2]. All the major cellular standards have included
policy when users have independent performance values. We procedures to exploit this: adaptive modulation and coding
demonstrate via simulation results that the scheme is robust to schemes are implemented in the 3G TDMA standards, and
estimation errors and also works well for nonstationary scenarios, \ariaple spreading and coding are implemented in the 3G
resulting in performance improvements of 20%-150% compared CDMA standards. In general, a user is served with better
with a scheduling scheme that does not take into account channel : -0 TG -
conditions. Last, we discuss an extension of our opportunistic quality and/or at a higher bit rate when the channel condition
scheduling scheme to improve “short-term” performance. is better.

Index Terms—Resource allocation, scheduling, time-slotted On.one hand’ gO(?d scheduling Sc.h.emes should be ak?'e to
system, time-varying channel, wireless. exploit the time-varying channel conditions of users to achieve
higher utilization of wireless resources. On the other hand, the
potential to exploit higher data throughputs in an opportunistic
way, when channel conditions permit, introduces the tradeoff

N WIRELINE networks, resource allocation schemeproblem between wireless resource efficiency and levels of

and scheduling policies play important roles in providingatisfaction among users. Because wireless spectrum is a scarce
quality of service (QoS), such as throughput, delay, delay-jittégsource, improving the efficiency of spectrum utilization
fairness, and loss rate [1]. However, resource allocation aisd important, especially to provide high-rate-data service.
scheduling schemes from the wireline domain cannot be dience, we cannot expect the same throughput for all users
rectly carried over to wireless systems because of some unid@gause the users in general can have very different channel
characteristics in wireless channels, such as limited bandwidgionditions. However, a scheme designed only to maximize
time-varying and location-dependent channel conditions, atte overall throughput could be very biased, especially where
channel-condition-dependent performance. there are users with widely disparate distances from the base

In wireless networks, the channel conditions of mobile usestation. For example, allowing only users close to the base
are time-varying. Radio propagation can be roughly charagation to transmit with high transmission power may result in
terized by three nearly independent phenomena: path-lossy high throughput, but sacrifice the transmission of other
variation with distance, slow log-normal shadowing, and fagsers. This basic dilemma motivates our work: to improve
multipath-fading. Path losses vary with the movement a¥ireless resource efficiency by exploiting time-varying channel
mobile stations. Slow log-normal shadowing and fast multtonditions, while at the same time control the levels of fairness
path-fading are time-varying with different time scales. Thugmong users. There are various mathematical definitions of
users perceive time-varying service quality and/or quantitgirness in the literature [3], [4]. In this paper, we do not use a
because channel conditions are time-varying. For voice usdmmal notion of fairness, but simply adopt the intuitive notion
better channel conditions may result in better voice qualitipat no individual user should be denied access to network
For data service, users with better channel conditions [or largesources, i.e., each user is entitled to a certain amount of
signal-to-interference-and-noise ratio (SINR)] may be servégtwork resources.

We consider a time-slotted system in which time is the re-
source to be shared among the users. Associated with each user
. . , _isanumber between 0 and 1 representing the long-term fraction
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scheduling scheme that maximizes the wireless resource utiliza- 12

tion by exploiting time-varying channel conditions, taking into
account the resource allocation constraint (i.e., our scheme is
optimal among all schemes that satisfy the constraint). We refer
to our scheme as being “opportunistic” because it takes advan-
tage of favorable channel conditions in assigning time slots to
users.

Recently, the authors of [6]—[8] have studied wireless fair
scheduling policies. They extend scheduling policies for wire-
line networks to wireless networks that provide various degrees

10 e

Performance Value
D

of performance guarantees, including short-term and long-term 2

fairness, as well as short-term and long-term throughput bounds. 0 , ,

However, they model a channel as either “good” or “bad,” which 0 10 SIN%O(dB) 30 40

might be too simple to characterize realistic wireless channels,

especially for data service. Fig. 1. Users’ performance value (e.g., throughput) as a function of SINR.

In [9], [10], the authors present a scheduling scheme for the
Qualcomm/HDR system that satisfies the following fairness

pro%erty_ as deﬂneg mrElO]: '; anotrf1er schg?ulmg aglk%orlthm Rorks are time-varying, and thus users experience time-varying
used to increase the throughput of a specific useryover erformance. We use a stochastic model to capturdinte-

what that user receives under the HDR scheduling algorith ; h - e f f each
the sum of all the percentage decreases suffered by the thro%rbymg andchannel-condition-dependeperformance of eac

. . r. Specifically, lef 17/} be a stochastic process associated
puts of all the other users under the new algorithm will b\?/it P Y, I/} P

thane%. Thi s K tional fai h useri, whereUF is the level of performance that would
more thanz7o. ThiS property IS known asroportional faimess -, experienced by useif it is scheduled to transmit at time
[11]. The HDR algorithm also exploits time-varying chann

diti hil intaini tional fai Y he value ofUF measures the “worth” of time slétto the user
conditions while maintaining proportional fairness. HOWeVe, 4, s i general a function of its channel condition. Usually,

their constraint is different from ours, as is their objectlvghe better the channel condition of ugethe larger the value of
function. Our structure is flexible—the system can explicitI)Uk

set the fraction of time assigned to each user. Furthermore, oﬂif\'l
scheme outperforms the HDR scheduler in terms of the overﬁ.”e

throughput in all cases, although there is no guarantee th%g throughput (in terms of bits/sec) or the “monetary value”

S'rﬁ:e user pe_rforms l:_)ettgr. foll In Section I int of the throughput (in terms of dollars/sec). Usually, a user's
q ethpapertls orgargilzlel ag Ot_OWS”'I n Section t' wen rthoughput is a nondecreasing function of its SINR. Depending
uce the system model. in section 11, we present our ObPY yhe “class” of a user, the throughput could be a step function,

tunistic scheduling policy and its properties. We also provideaz?,] S-shape function, or a linear function of the SINR, as shown

parameter estimation algorithm and discuss implementation ilr?'Fig 1

sues. In Section IV, we use simulation results to illustrate theBes.idés throughput, other issues could also be important to
performqnce of our schedul!ng pollgy. An eXEensmn of tbe OQI'sers, and different users could have different performance mea-
portumstlc_ schedulmg a_Igonthm to Improve short_-term P€Tsures. For example, power consumption is typically very impor-
formange IS d|_scussed in Section V, and conclusions are P{&At to a handset user, and hence the performance of such a user
sented in Section VI.

could have the form

As explained previously, channel conditions in wireless net-

ext, we present some examples of possible performance
asures. The most straightforward performance measure is

Il. SYSTEM MODEL value of throughput cost of power consumption

We consider a time-slotted system—time is the resource to bén summary, the performance valGg is an abstraction used
shared among all users. A time-slotted cellular system can hawecapture the time-varying and channel-condition-dependent
more than one channel (frequency band), but at any given tif&prth” of a time slot to a user. In our system model, we do not
only one user can occupy a given channel within a cell. Hemaake any assumptions on the physical-layer implementation of
we focus on the scheduling problem for a single channel. Ndtee system. The use of such a general performance model frees
that a channel in this context could be very large. For examples from physical-layer implementation details and allows us to
it is possible for 10 users to share a 1-MHz frequency baffacus on the problem of designing scheduling policies. Different
for high-rate-data service, while in the 1S-136 standard a voiperformance measures may indicate different applications of the
channel takes 10-KHz bandwidth. The time-fraction assignmesttheduling scheme. Furthermore, we assume throughout that
scheme dictates the fraction of time that a user should transpatformance values for different users acmparable and ad-
on the channel. The scheduling algorithm then decides whidhive.
time slot should be assigned to which user, given the time-frac-We consider both the uplink and the downlink of a wireless
tion assignment. This time-fraction assignment can be viewadtwork. In both cases, the base station serves as the scheduling
as the fairness requirement in the system that each user is emgient. The scheduling scheme does the following: at the begin-
tled a certain portion of resource. ning of a time slot, the scheduler (i.e., the base station) decides
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which user should be assigned the time slot based on the peVe are interested only in policies that result in satisfaction of
formance values of the users at that time slot. (We describ¢ha time-fraction assignment constraints. Specifically, we say
particular scheduling procedure in Section I1I-C, including hothat a policy( is feasibleif P{Q(U’) =i} =r;foralli =
the scheduler obtains information about the users’ performarice .., N. Feasible policies are those that obey the given re-
values.) For the uplink case, if a user is assigned a time slspurce allocation constraints. We u3do denote the set of all
the user will transmit in that time slot. For the downlink casdeasible policies. Our goal is to find feasiblepolicy @ that
if a user is assigned a time slot, the base station will transmitaximizes the average system performance. The problem can
to the user in that time slot. If time sl@tis assigned to user be stated formally as follows:
i, the system is “rewarded” with a performance valuelgf,
i.e., useri’s performance value at time slét The goal of the
scheduling scheme is to maximize therage system perfor-
mance by exploiting the time-varying channel conditions, given
the time-fraction assignmerBasically, the scheduling policy Note that we can write
systematically assigns a time slot to a user with a performance
value that is large relative to those of the other users, while sat- E(U - )
isfying the time-fraction requirements of users. @)

Our scheduling scheme could be implemented in time < N ) N

=F

meg%rglzeE(UQ(ﬁ)). )

division multiple access/ frequency_ division multiple access Z Ulio@iy=iy | = Z E(Uil{Q(ﬁ):i})
(TDMA/FDMA) systems as well as time-slotted code division i=1 i=1

multiple access (CDMA) systems. The length of a time slot

in the scheduling policy can be different from an actual tim&
slot of a physical channel. The length of a scheduling time
slot depends on how fast the channel conditions vary and how 1s= {
fast we want to track the variation. As mentioned in [12],

it is necessary to “track” (at least slow fading) signal-levek the indicator function of the event. In other words, the

here

1, if Aoccurs
0, otherwise

variations for better network performance. overall objective function is the sum of all users’ average per-
formance values (where we reap a reward’obnly if useri is
scheduled).
[1l. OPTIMAL SCHEDULING PoOLICY Recall that we assumed the sequefité} to be stationary.

This assumption does not preclude correlations across users or
In this section, we describe the scheduling problem and opross time. In practice, a user’s channel condition is usually
scheduling sch]%me. Let denote the time-fraction assigned t@ime-correlated, for example, due to shadowing. Hence, a user’s
useri, wherey_;_, r; = 1 andV is the number of users in the performance is usually also time-correlated. Furthermore, the
cell. Here, we assume that thes are predetermined and servgerformance of different users may also be correlated. For
as a prespecified fairness constraint—on average, a fragtionsxample, when the intercell interference is high, some users’
of the whole time should be scheduled to use®ur goal is performance values simultaneously decrease. However, if users
to develop a scheduling scheme that exploits the time-varyiRglve enough separated locations, it is reasonable to assume that
channel conditions to maximize the system performance, unggsir performance values are only weakly dependent.
the time-fraction constraints, i = 1, ..., N. In the following, we present our opportunistic scheduling
LetU* = (U}, ..., U}) be theperformance vectaat time  policy. We state the properties of our policy, including its opti-
slotk, whereU} is the performance value achieved by usér mality with respect to (1). Then we explain how to estimate the
time slotk is assigned to usér We assume thdf} is nonnega- parameters used in the policy. Finally, we describe a procedure
tive and bounded. Assume from now tHat*} is stationary, so to implement our scheduling policy by tuning the parameter
that the time index can be dropped. Specifically, we use thgalues on-line based on measurements.
notationl/ = (Uy, ..., Un), whereU; is a random variable
representing the performance value of usat a generic time A Opportunistic Scheduling Policy

slot. ] )
The scheduling problem is stated as follows: givﬂérdeter— 1) Two-User Case:For the purpose of illustration, we start
th the two-user case. Suppose that user 1 and user 2 have

mine which user should be scheduled (in the giventimeslot).\)O’é fracti . dr el d s —
define apolicy @ to be a mapping from the performance-vecto'ilme' ra<_:t|0n a_smgnments anara, resp_ectlve Y. aney +rx =
space to the index sdt., 2, ..., N}. Given 7. the policyQ 1. We wish to find an opportunistic policy that solves (1).

determines the user to be scheduled{f/) = i, then user Definey(v) = P{U1 +v 2 Up}, wherev € R. Becausg(v)

should use the time slot, and the system receives a performair? € dist_ribution f_unction of the “’f‘”dom variab{_l@} - Ul_)’
fv is a right-continuous monotonically increasing function of

“reward” of U, = (i.e.,U/;). Hence,E(U, ) is the average ) ) N
system perfo?nqa)nce value associate(d Qv?vﬁlth)pd@cy\lote that ¥ W!th yloo) =1 and.y(—oo) = 0. Hence, there exists
the policyQ is potentially “opportunistic” in the sense that it can(WhICh may not be unique) such that for any- 0

use information on the performance vectorto decide which

user to schedule. ylv" —e) <r < y(v")
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wherer, is the time-fraction assignment of user 1. yetf(v) =  for all 5. In the special case whet¢ = 0 for all j, the sched-
P{U; +wv > U}, which is a left-continuous monotonically yling policy reduces th*((?) = argmax; U, i.e., always
increasing function of. So schedule the user with the largest performance value to transmit.
. . The proof of the optimality is attached in Appendix I.
y~(v7) S S y(vT) The policy @* maximizes the average system performance

even if users’ performance values are arbitrarily correlated,
both in time and across users. The following proposition es-
&ablishes, under a more restrictive assumption, that our scheme
Improves every user'saverage performance relative to any
nonopportunistic scheduling policy.

ie,y(v*) —y (v*) = P{Uy + v* = Uz} > 0. If y(v*) —
y~(v*) > 0, thenp = (ry —y~ (v*))/(y(v*) — y~(v*)). Oth-
erwise, letp = 1 (this value does not matter). The opportunisti
scheduling policy is then given by

1, ifU+v" > Us Proposition 2: If the performance valuds;s,i =1, ..., N,
0 ((7) _J L with prob.p if Uy +v* = U, are independent, then

2, with prob.1 — pif Uy +v* =Us

2, ifU +v* < Us. E(Uil{Q*(ﬁ)=i}) z 71E(Uz)

—

Itis clear that the policy2*(U) defined above is feasible: WhereE(1,,. 7y_;) = 7i-
The proof of this property is attached in Appendix Il.
P{Q* ((7) :1} =P{U1+v" > U }+P{U; + v*=Us}p=r;. Note thatE(Uil{Q*(U)zi}) is the average performance of
user¢ when using our opportunistic scheduling policy, and
The policy can be described as follows. The space spannedrhg(1/;) is the average performance of usewhen using a
U, andU; is divided into two halves by the ling; +v* = U;.  nonopportunistic scheduling scheme. This proposition makes
Above the line (i.e.l/; > U; + v*), we always schedule usera strong statement about the individual performance of each
2 to transmit. Under the line (i.el/; + v* > Us), we always user. If users’ performance values are independent, the average
schedule user 1 to transmit. If the probability of the line is posperformance ofevery userin our opportunistic scheduling
tive, some randomization is needed if we fall on the line—witecheme will be at least that of any nonopportunistic scheduling
probabilityp, we schedule user 1 and with probability- p, we scheme. In this sense, the opportunistic scheduling policy does
schedule user 2, whege= (r; —y~(v*))/(y(v*) —y~(v*)) not sacrifice any user’s performance to improve the overall
is determined by the time-fraction assignment constraint.  system performance. Of course, different users may experience
2) General Case:Now we extend the policy from the pre-different amounts of improvement. In general, the larger the
vious section to thév-user case. Define variance of a user’s performance value, the higher the improve-
ment (this observation is corroborated by our experiments; see
(V) = P{w + v; 2 max(U; +vj)}, fori=1,..., N Section IV).

i What Proposition 2 also tells us is that the fraction of time
where? = (v, ..., vy). Note thaty;(7) is a monotonically Slots assigned to each user is animportant measure of the perfor-
increasing right-continuous function of and a monotonically Mmance of that user. For example, if a user consumgsrtion
decreasing left-continuous function of, j # i. Hence, there Of the time slots, then the user is granted a minimum average
exists ai* that satisfiesP{Q* ({) = i} = r;, where our oppor- Performance value of; E(U;), when users have independent

tunistic policyQ* is defined as performance values. (In practice, if users move independently
and are not located at the same location, then users usually have
Q* ((7) — arg max(U; + v)). (2) independent performance values.)
i Moreover, our scheduling scheme can be applied to different

When ties occur in the argmax above, we break ties probabilitEenarios by adopting different forms of performance measures.
cally by picking a user among those that achieve the maximuriOF example, letus consider the case where each user has a fixed
above with a certain probability. Note that is not unique. SIR target. By reaching this target SIR, the user gets a certain

There areV components but onlyy — 1 independent constraint data ratgy;. Thenr; fraction of the time slots corresponds to a
equationsP{Q*(U’) =4} =r,fori=1,...,N—1,and data rate of-;g; for useri, assuming that uséralways adjusts
P{Q*(U’) —N}=1- Egvfl'r is a Iinéar c7ombina'éion of its power to reach the target SIR. If we define the performance
the first V' — 1 equations I—ig;\cezwe can simply s&t = 0 measure as the negative of power consumption used to meet the
3) Properties: The policy Q* defined in (2), whiéh repre- SIR target, then the schedgling scheme can be gpplied to m_in-
sents our opportunistic scheduling policy, is optimal in the folMZ€ the power consumption of users while satisfying certain
data rates. Instead, if we define the performance value as the

lowing sense.
Progposition 1: The policy Q* is a solution to the problem negative of the interference to the other cells, we can minimize

definedin (1), i.e., it maximizes the average system performar{&? intercell interference while maintaining the data rate.
under the resource allocation constraint.

We can think of the parameté¥ in (2) as an “offset” used o _ o
to satisfy the time-fraction assignment constraint. Under this Recall that our opportunistic scheduling policy is given by
constraint, the scheduling policy schedules the “relatively-best” wl
user to transmit. Useris “relatively-best” ifU; +v} > U; +v} Q (U)

B. Parameter Estimation

= arg max(U; + v})
i
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In this paper, we use a stochastic approximation algorithm to
estimatei™. For this, note that we can wrig€ as a root of the
equationf () = 0, where theth component of (¢*) is given

Update |«—— by
Vv

Fig. 2. Block diagram of the scheduling policy with online parameteénd
estimation. .
Q" (U) = argmax(U; +v]).
i

V!here thep;*s arg palranjete.rs Qetermlned by the distribution %e use a stochastic approximation algorithm to generate a se-
U. In practice, this distribution is unknown, and hence we ne%ence of iterates!. 2 that represent estimates &f
LU, .

to estimate the parameters, i = 1, ..., N — 1. Fig. 2shows pgo-hok defines a policyQ* given by
a block diagram of a practical scheduling procedure that incor- ~
porates online estimation of these parameters. Q* (U) = argmax (U; + v}).

In this section, we focus on the block that implements the on- ) ) ) )
N —1. labeled TO construct the stochastic approximation algorithm, we need
.y ,

line estimation of the parameters, ¢ = 1, .. ) . "y )
an estimatgy” of f(#*). Note that, although we cannot obtain

“Updatev™” in Fig. 2. We first provide an intuitive description © " > . : .
of the computation of* and then present a standard stochastid?") directly, we have a noisy observation of its components
9 =liguymy — T i=1 .., N-1

approximation algorithm to estimat& (the vector of the)}'s).
The observation error in this case is

Let us consider a scheduling algorithg:
(0) = mepstics . = 01 0 - {2 (0)=1)

If v; = 0 for all 4, then, clearly, the scheduling policy maxi-and thus we havéZ(¢¥) = 0. Hence, we can use a stochastic
mizes the system performance. If this scheduling policy meetgproximation algorithm of the form

=

Estimate |y
Measure| | performance —»| APPIY Q)
Channel Value Policy

fi(zT*):P{Q*((j'):i}—n, i=1,...,N—1,

the resource allocation constraint, we can®et= 0. In gen- Lk k(1 ]
eral,# = 0 does not meet the time-fraction assignment con- Vi T a ( {Q (=i} ~ ”)
straint, i.e., there exists at least a ussuch thatP{Qs(U) = \here, e.g.q* = 1/k. For the initial condition, we can se to

i} <. Ifwe increase the value af, we increase the value of e , or some estimate based on the measurement history. For the
P{Qs(U) =i} while decreasing the values 8§ Qz(U) = j}  above algorithm, following the standard proof in [13], we can
for j # i. The parameters;s are the offsets that are necessaryhow that{v*} converges ta;* with probability 1. Furthermore,

to satisfy the time-fraction assignment constraint. Intuitivelyg accelerate the convergence and to reduce the range of the
if P{Qz(U) = i} < ri, we increase the value af, and if fjctuation of the stochastic approximation algorithm, we can
P{Qw(U) = i} > r;, we decrease the value of. By making yse the standard technique of averaging (see, e.g., [14])

such adjustments, we hope to find tifeeventually such that 1 1

P{Qz (U) = i} = r; for all 4. In the following, we use a stan- T = <1 — —)m’“_l + — k.

dard stochastic approximation algorithm to implement this in- k k
tuitive idea and to estimate the value®t The computation in- Our simulations show that, with the stochastic approximation
volved in the stochastic approximation algorithm is very simpl@lgorithm,« converges ta} relatively quickly.

We first roughly explain the idea of the stochastic approxima- When thel/;s are not continuous random variables, there may
tion algorithm used in this paper. For a systematic and rigoro§ “ties” in the argmax of2* in (2). Specifically, ties occur
study of stochastic approximation algorithms, see [13], [14VhenP{U; + v = max;;(U; +v])} > 0 for somei. In this
Suppose we want to solve the root-finding probléfa*) = 0, caseyp’ will still converge tou?. However, we should break ties
wheref is a continuous function with one rost [bothz* and Probabilistically by picking a user among those that achieve
f(x*) are vectors of the same dimension]. If we can evaluate tH& maximum with a certain probability. In practice, we do not
value of f(z) at anyz, then we can use the iterative algorithmneed to estimate this probability because the tiebreak can be

Wbl ol B handled automatically by the adaptive nature of the stochastic
gt =gt —a" f(2") approximation algorithm. To see this, imaging fluctuating
which will converge tar* as long as the step sizé is appro- aroundv; within a small range; when is too large, we have
priately chosen, e.ga* = 1/k. Suppose that we cannot obtain’{@ = ¢} > r;, and hence will be dragged down. Our simu-
exactly the value off(z*) at z*, but instead we only have alation results show that the stochastic approximation algorithm
noisy observation/* of f(z*) atz*, i.e., g* = f(z*) + ¢¥ works well in both the continuous and “tie-break” cases—the
wherec* is the observation error (noise). In this case, it is weflystem performance obtained with the stochastic approximation

known that ifE(¢*) = 0 (i.e., the mean of the observation erropcheme is very close to that of the true optimal value while main-
is zero), then the algorithm taining the resource allocation requirements.

k+1 _ _k k _k . . .
x =z —a'g C. Implementation Considerations

converges ta:* with probability 1 under appropriate conditions So far, we have described our optimal scheduling policy
onca® and f (see, e.g., [13] and [14]). and addressed the problem of estimating the parameter values
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needed for the policy. In this section, we explore some imple- 3) The scheduled transmission takes place.

mentation considerations for our scheduling policy.  Uplink: the base station broadcasts the ID of the
In our scheduling policy, the base station needs to obtain in- selected user, and the selected user transmits in the

formation of each user’s performance value at a given time slot time slot.

to make the scheduling decision. The performance value of a + Downlink: the base station transmits to the selected

user can be estimated either by the user or by the base sta- user.

tion, based on the channel condition and/or measurements from#) The base station updates the parameter veétdr via
previous transmissions. For the downlink case, a user could
measure the received signal power level (from the user’s base vf“ = v} —a” (1{Qk(ﬁk)=i} - u)

station) and the interference power level. The user could then

calculate the performance value of the time slot based on the For the stationary case, we sét= 1/k. For the nonsta-
channel condition and other factors (such as power consump- tionary case, we set* to a small constant to track system
tion). For example, suppose a user’s performance measure is its  variations.

throughput, which is a linear function of the SINR, as showNote that the computation burden abov&i&V) per time slot,

in Fig. 1. Based on the estimated SINR, the user can then elhere/V is the number of users sharing the channel (usually on
tain its performance value. For the uplink case, the base sfae order of tens), which suggests that the procedure is easy to
tion could estimate the user’s channel condition based on thglement in practice.

received signal from the user. Assuming the base station knows

the form of the performance value for each user (i.e., how the IV. SIMULATION RESULTS

performance value depends on the SINR and/or other factors)

the performance value could then be calculated by the base stzi[‘ this section, we present numerical results from computer
tion. simulations of our scheduling scheme. Our scheduling policy
. . .. exploits time-varying channel conditions—the policy dynami-
m;it:ﬁnpeeejg)srg?)r:;;\glgat;]se?)Ztlsrgzgt::obr? wki(;]s i;nt?gi ;TS(E%I]I_y decides which user should be scheduled to transmit in a

lished in several wavs. For example eacr; user could maintﬁme slot based on users’ current performance values. For the
P . i yS- ) p'e, ; . “purpose of simulations, we assume that the time-fraction as-
a small signaling channel with the base station. Alternativel

G : . ignment is done usinfgir sharing i.e., the total resources are
the required information could be piggybacked over the usere§enly divided among the users. The well knowand-robin
acknowledgment packets.

; ] ] scheme is a policy that shares the resource (time in this case) in
‘As mentioned before, the length of a time slot in our scheghis manner, but does not exploit channel conditions. To eval-
uling policy can be different from an actual time slot of the,a¢e the performance gain of our dynamic and opportunistic as-
physical channel. The length of a scheduling time slot depeng§nment of transmissions, we compare the performance of our
on how fast the channel condition varies and how fast we Waﬁglicy with that of the round-robin scheme. We will show two
to track the variation. The usual tradeoff between accuracy agidks of simulation results. The first one is to simulate a cellular
signaling overhead exists here. Specifically, more frequent Wstem using our scheduling policy and evaluate the improve-
dating provides more accurate tracking of varying channel cofent of our scheme. Then, we show how estimation errors on

ditions, butincurs higher signaling costs. In practice, to decregsgformance values affect the results of the scheduling scheme,
signaling costs, a user can update its information only WheRq how the stochastic approximation works.
the change in the performance value is larger than a certain

threshold. Furthermore, it is not necessary for all users to UR- Cellular Model

date at the same time. Note that propagation delay is ignored. ] _ ) ) ) _ )
In the following, we summarize our scheduling procedure Our simulation environment is described in the following. We

which incorporates the online parameter estimation algoritffRnSider a multicell system consisting of a center hexagonal cell
described in the last section. As mentioned before, the init@ifrounded by hexagonal cells of the same size. The base sta-
estimater can be set t6 or some value based on history infordion is at the center of each cell, and simple omnidirectional an-

mation. At each time slat = 1, 2, ..., the system performs tennas are u_sed by mobiles and bas_e stations. The frequen_cy
the following steps. reuse factor is 3, and the co-channel interferences from the six
) first-ring neighboring cells are taken into account. We assume
1) Estimatel}. that each cell has a fixed number of frequency bands, and we

* Uplink: the base station estimates each usergcys on one frequency band in the central cell, which is shared
channel condition and calculates the value$/sf by 25 ysers. The scheduling policy decides which user should

i=1... N. ‘ ) __transmit in this frequency band at each time slot.
* Downlink: useri measures its channel condition, ysers move with random speed and direction in the cell
calculated’;, and informs the base station. and have exponentially distributed “on” and “off’ periods.

2) The base station decides which user should be scheduléy perceive time-varying and location-dependent channel

to transmit in the time slot based on the scheduling policg@ins. The channel gains of the users are mutually independent
random processes determined by the sum of two terms: one due

to path (distance) loss and the other to shadowing. We adopt

{77k _ .. k k
@ (U >_ algﬁnaX(Ui ). the path-loss model (Lee’s model) and the slow log-normal
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Fig. 4. Comparison of the opportunistic scheduling policy with the
round-robin scheme.

Fig. 3. Users’ performance values as a function of SINR.
shadowing model in [15]. To be conservative, we ignore the TABLE |

effects of fast multipath fading in the simulation. If fast fading GAUSSIAN PROCESSPARAMETERS
could be tracked accurately, our scheme would provide even
higher performance improvements than shown here. The
mobility model, the propagation model, and the parameters of user 1 10 10.8 0.3
the simulation are discussed in detail in [5].

ID mean | stand. deviation | corr. coefficient

. user 2 10 6.9 0.4
Fig. 3 shows the forms of the performance values used by

different users. To avoid crowding the figure, we only show the user3 | 10 4.0 0.5

performance functions of eight users. The performance values user 4 10 25 0.6

of users 1 and 2 are step-functions of their SINR, and user 2 has
a higher threshold than user 1. The performance values of users €™ 1 )| © 4 0
3—4 are linear functions of their SINR (in dB), with different err.2(e?)| 0 8 0
slopes. Users 5-8 have performance values that are S-shape
functions of their SINR, with different parameters. Totally, there
are four users with Step_functionS, six users with linear fun§j.gnment constraint. For all users, the third bar is Virtually iden-
tions, and 15 users with S-shape functions in the simulation.tical to 1. Hence, our scheduling scheme satisfies the time-frac-
As mentioned earlier, for our simulation experiments, we qtion assignment constraint, which suggests that our stochastic
sumefair sharing time-fraction assignment. When the numbeq;\pproxmatlon algorithm works well in the simulation experi-
of active usersV changes, i.e., when an active user becomes ifent even in the nonstationary case.
active or vice versa, we update the time-fraction assignment
for all active users. In other words, N is the number of active
users sharing the channel in the central cell, we-set 1/N, When our scheduling policy is implemented, the following
where uset is active. errors may occur. The first is the estimation errori@nusing
In each time slot, the system performs the following: all adhe stochastic approximation algorithm, i.e., the discrepancy be-
tive users inform the base station their estimated performarid&ens* andz*. Second, imperfect measurement of the channel
values; the base station decides which user to transmit usf@iditions may introduce errors in the estimates of users’ per-
the opportunistic scheduling policy, and updates the parametdé@sinance values. This experiment is designed to evaluate the
and then the selected user transmits. For a detailed simulafi@fpact of our online parameter estimation procedure and the
procedure, we refer interested readers to [5]. sensitivity of our opportunistic scheduling scheme to estimation
Fig. 4 shows the results of our simulation experiment. In tiR§rors on users’ performance values. We generate four time-cor-
figure, thex axis represents the users’ IDs. For each user, welated Gaussian processes, representing the performance-value
compare the average performance in our opportunistic schégduences for four users. The means and standard deviations of
uling policy (the first bar) with that of the round-robin policythe four Gaussian processes are displayed in Table I. Each user
(the second bar)_ We can see that, in every case, our Opmﬁs exponentially distributed “on” and “off” periods, which are
tunistic policy significantly outperforms the nonopportunisti¢!/sed to generate status changes in order to test how well the
round-robin policy, with gains of 20% to 150%. The amourfitochastic approximation tracks the changes. We compare four
of improvement varies from user to user because different uséierent cases:
have different performance functions. The third (right-most) bar « ideal case, i.e.2* with known thresholds* assuming
in the figure is the ratio of the total number of slots assigned to  exact values ot/;s are known;
each user in our opportunistic scheme to that of the round-robin ¢ estimated thresholds using the stochastic approximation
scheme, which is equal to that required by the time-fraction as- algorithm assuming exact valuesidfs are known;

B. Estimation Errors
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Fig. 5. Average performance value, normalized over the round-robin scherﬁfg 6. Fairness. normalized over the round-robin scheme

« estimated thresholds with estimated valué/gfi.e.,U; =
U; + e}, wheree} is the estimation error on usés per-
formance valueg! ~ N(0, 4) (as in Table 1), and the}s
are independent;
« estimated thresholds with estimated valuégfi.e.,U; =
U; + ¢2, wheree? is the estimation error on us€és per-
formance valueg? ~ N (0, 8) (as in Table I), and the's
_ are independent. _ V. SHORT-TERM PERFORMANCE
Fig. 5 shows the average performance (normalized over the
average performance value of the round-robin scheme) from th&’he scheduling scheme described thus far meets the
above four cases. The first bar is the normalized performarnioag-term performance requirements of users, i.e., the
value under the ideal condition; the second bar is that of edting-term average of the fraction of time slots assigned to a
mated thresholds with ideal measurements (i.e., the exact vahser is guaranteed. However, with such a scheme, it is possible
of U; is known). We can see that the performance of both tileat a user could be starved for a long time (say, more than a
optimal policy@* and our online policyp* with estimated pa- few seconds), which may be undesirable for certain users. Usu-
rameters are quite comparable and are significantly higher thally, a user may also have the demand for good “short-term”
that of the round-robin policy. This indicates that our online pgerformance—the user expects that the amount of service
rameter estimation scheme works well and that errors duedbtained within a relatively short time interval be close to the
the parameter estimation do not significantly degrade the pamount it should get.
formance of the policy relative to the optimal policy. In the generalized processor sharing (GPS) model [16], each
In Fig. 5, the performance gains appear to be related to thaw is treated as a fluid flow. Each flowis given a weightv;,
standard deviation: the higher the standard deviation, the largeid for any time intervalt;, ¢2] during which both sessionis
the performance gain. Note that, in the round-robin scheme, dred; are continuously backlogged, the resource granted to each
performance levels for all users are all approximately equal flow ¢, G;(¢1, t2), satisfies the following property:
the mean of the Gaussian processes (which is the mean perfor-
mance value). This is to be expected because the round-robin ‘Gi(tlv t2) _ Giltu t2)| _ 0. ©)
scheme allocates an equal fraction of time slots to each user, re- w; Wy
gardless of the channel conditions. Our opportunistic approaﬂ?

takes advantage of favorable transmission conditions, ther DY interval. There is an alternative to (3). ligtbe a starting

leading to average_performance values that are far aboveeib%(lem such that from timé, onwards, both sessionsind; are
mean of the Gaussian processes.

The third and fourth bars in Fig. 5 represent the normaﬁzpntmuously backlogged. It is clear that the satisfaction of (3)

ized performance with different estimation errors. The third bar equivalent to

shows the result of the case with estimation eeror N (0, 4). ‘ Gi(to, t)  Gy(to, t)

Fig. 6 shows the ratio of the time fractions obtained by our
policy Q* to that of the round-robin policy (which, as pointed
out before, are equal to the prespecified values). As we can see,
our scheme satisfies the time-fraction constraints very well in
all four cases, even in the case with very large estimation errors.

is means that a user gets its fair share of resource during any

With this estimation error, the average performance is still close =0 (4)

to that of the optimal case. When the estimation error increases,

it is not surprising that the average performance decreases. Tdreall ¢ > ¢¢, and users andj are both continuously back-
fourth bar shows a situation with very large estimation errorgged during the time intervat,, t].

especially for user 4. However, even in this case, our schedulingVe extend the above concept to a time-slotted system, where
scheme still outperforms that of the round-robin. This suggestse time slot is exclusively used by one user. Letbe the

that our opportunistic scheduling scheme is robust to estimatiaright of useri andr; (k) be the time-fraction requirement of
errors on users’ performance values. user: at timek. Note that, when the set of active users change,

w; wy
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Q

r;(k)s may change. For example, following the tradition in GPS, 10
r:(k) can be set as \
ws 10-14\\\ osl
ri(k) = = AN --- OSE
= 107 \\ - IND
whereA,, is the set of active users at tirkeUseri is guaranteed 3§ ¥\ .
aminimum share ofthe resourag/ > , w; duringitsactive 19 AN
period, whereA is the set of all users. & \\\ Vo
Let k; be the time that usaérbecomes active. Suppose that, ~ 10™ W
during the time intervalk, k], both users andj are contin- . ‘ N
uously active, wheré, = max(k;, k;). Let S;(ko, k) be the 107 \ T .
number of time slots assigned to ugerom &y to £. An ap- iR Vo
proximation of (4) is 0 10 20 30 4‘6 50 60

<r

‘Si(ko, k) 8(ko, k)

Starving—time (unit is time—slot)
wi wy ‘

Fig. 7. Starving-time histogram.

wherel” > 0is a constant.
Let Fi(k;, k) be the counter of the resource entitled of uselots less than its share. Because the user is gone, we cannot
i, 1.e., the number of time slots that should be assigned toiusésrce S; (k;, k) to be close ta;(k;, k) anymore. This discrep-

during the time intervalk;, k]| ancy has to be absorbed by other active users. We update the
% % counterF; (k;, k) of any active usef by replacing the value of
Fy(ki, k) = ri(t) = Z Wi (5) Fi(k;, k) by F;(k;, k) + A¥/N,., whereN,, is the number
Pl sl Z w; of active users. In other words, the discrepancy is evenly dis-
JEA, tributed among all active users. Note that this way of handling

users’ departures is intuitive, but not necessarily optimal. Actu-

where, is the set of active users at tinelt is obvious that ally, it is challenging to even define a good optimal criterion in
the F;(k;, k)s satisfy (4) and hence (3) at each discrete time the situation where there exists the tradeoff between short-term

Note thatF;(k;, k) may not be an integer and thus may not be
) . ) . performance and the overall system performance.
achievable when a time slot is exclusively used by one user. : . . .
) We use the same simulation setup as in Section IV-B. Four
We usel’(k;, k) as a benchmark. To improve the Short_tem(q.;aussian random processes are used to represent the perfor
performance, we want,(k;, k) to be close taf;(k;, k). We P P P

modify our previous opportunistic scheduling scheme in theforlrjance-value sequences of four users, and their parameters are
Iowingwapret PP g shown in Table I. The simulation runs for 1 000 000 time slots

(while all four users have exponentially distributed on—offs).
Al = Fi(k;, k) — Si(k;, k). Next, we show two metrics for the short-term performance for

user 4, which has a time-correlation coefficient of 0.6.
If Af > 0, then user is “lagging” (i.e., the user gets less The first metric is the starving-time, defined as the time
resource than it should get), andAff < 0, then useri is interval between two contiguous time-slot assignments when
“leading.” The idea is to increase the probability of transmissiqfe user is active. Note that starving-time is closely related to
of alagging user and decrease the probability of transmissiongé delay a user experiences. Fig. 7 shows the starving-time
a leading user. Hence, a direct modification of our schedulirpgstogram_ In the legend, MOS represents the modified

policy is the policyB* given by opportunistic scheduler defined in (6); OSI is the ideal op-
L ‘ AF portunistic scheduler with known thresholtf; OSE is the
B’“(U"):ar%ma;(lfi"+v§)<?” +/3> (6) opportunistic scheduler using stochastic approximation to

estimate the threshold; and IND represents the numerical result
where« and g are positive constants. When the valuecof when a user’s performance values at different time slots are
is smaller, the effect ofA* is more significant, and thus theindependent. If a user’s performance values are independent
short-term performance is better. The value®facts as a across time, the starving-time is binomially distributed, i.e.,
threshold—a user is forbidden to transmit if the amount bi{starving-time= n} = (1 — r;)*~Yr;, wherer; is the
which it leads is greater thabr. time-fraction of useri. Because user 4’'s performance value

Next, we consider the case where there are changes in theseatorrelated across time, compared with the IND case, the
of active users. When a new user comes into the system, grebability of a long starving-time of user 4 in the OSI and
system adjusts the;s for all users, and the new usgistarts OSE cases, which do not consider the short-term performance,
a counterF;(k;, k) for its resource share. When a user leaveés larger. Furthermore, the probability that a large starving-time
the system, the system adjusts the and the counters of fair occurs in MOS is much smaller than that of OSI and OSE,
share for other active users. Suppose udeaves the system and it is also smaller than that of IND. Hence, the chance that
at timek and uset has been served with; (k;, k) time slots. a user is starved decreases and the short-term performance is
Recall thatA¥ = F(k;, k) — Si(k;, k), i.e., uset hasA¥ time  improved.
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10 - ‘ ‘ its transmission. When a user is at its due time, we assign the
time slot to this user with probability 1. If we know the distri-

» - bution functions of users’ performance values, it is possible to

B sheshuihiiaa ok aaba it AL determine how large the transmission probability should be (as
Sl ] a function of its and other users’ due times) numerically. Other-

" wise, these transmission probabilities might be determined ex-
perimentally.

Variance

——
e gy VI. CONCLUSION
-2| b P, *****ﬁ*ﬁx* 1

Rk, o

‘ In this paper, we present an opportunistic transmis-
— IND sion-scheduling policy. Given a time-fraction assignment
requirement, the scheduling policy maximizes the average
system performance. In our model, each user’s performance
0 100 200 300 400 value is a stochastic process, reflecting the time-varying
Time Scale performance that results from randomly-varying channel
conditions. The users’ performance-value processes can be
mbitrarily correlated, both in time and across users. We estab-
lish the optimality of our opportunistic scheduling policy. We
The second metric of the short-term performance is definatbo provide a scheduling procedure that includes an on-line

Fig. 8. Normalized variance of discrepancy as a metric of the short-te
performance.

as parameter-estimation algorithm to estimate parameter values
5 used in the scheduling policy. Our scheduling algorithm has

E[(Si(kv k+Am) — Fi(k, k + Am)) } a low computational burden, which is important for on-line

Am implementation. Via simulation, we illustrate the performance

. . ) of our scheduling policy, showing significant performance
whereArm is the length of the window by which we measurey,ing over the round-robin policy. Our simulation results also
the discrepancy between the fair shafgk, k + Am) and  ghow that our scheme works well for the case of nonstationary
Si(k, k+Am) while useri is active during the intervak, & + performance-value sequences and is robust to estimation errors.
Am]: B_;ecauseE_[Si(k, k+ Aam)] = Fy(k, k + Am), this Resource allocation and scheduling schemes are important
metric is the variance of; (k, k 4 Am) normalized over the i, yyireless networks, especially to provide high-rate data and
window sizeArm. The discrepancy should be zero in the Fluide 5 iess service for future wireless networks. There are many
Fair Model and is no larger than 1 in the round-robin SChedu'”?Hteresting problems in this area that remain to be resolved.

scheme. In Fig. 8, we show that MOS results in a noticeable Ggsese include the need for a general fairness criterion tailored to

crease of the normalized variance. . , wireless networks and dealing with the short-term performance
We should mention here that the modified scheduling SCherHFexplicit delay requirement for certain users.

does not decrease the average performance significantly. In

this simulation, OSI outperforms round-robin by 25% in terms APPENDIX |

of the average performance of user 4, and MOS outperform%PTlMALlTY OF THE OPPORTUNISTICSCHEDULING POLICY
round-robin by 22% while satisfying the long-term resource ~
allocation requirement. Overall, the system performanceRecall that there exists@ that satisfiesd”?{Q*(U) = i} =
obtained in MOS is only about 3% less than that of OSI, while, where the policy* is defined as

both outperforming the round-robin by over 60% and satisfying o (ﬁ)

the long-term resource allocation requirement. Hence, MOS

improves the short-term performance without dramatically the following, we show tha®* defined above is an optimal
decreasing the system throughput. In general, the larger fiwicy, i.e., thatE(UQ(ﬁ)) < E(UQ*(ﬁ)) for any O satisfying
time-correlation, the worse the short-term performance, a QU = i} = ri.

the greater the improvement in the short-term performance, th et Q be a policy satisfyingP{Q(U’) — i} = r; for all 4.
larger the loss in system performance. Then !

One closely related problem is to be able to handle users W|tn '
explicit delay requirements, such as audio and video. Itis a chal ) B * AN _
lenging problem to schedule users opportunistically while satisIIE (UQ(U>) N E(UQ<U>> + = vi (P {Q(U> N L} “)
fying the delay requirements of certain users. One possible solu- =
tion is to extend the current scheduling scheme in the following N

2 2 Uil q)=1)

= argmax(U; +v;).

.

way. Each user has a due time known by the base station. The
due time of a user is the due time of the first packet in the user’'s
gueue. If a user has no delay requirement, its due time is set to N .

be cc. Suppose different users have different due-times. (If two + Z o (P {Q(U) = L} — n)

users have the same due-time, we randomly pick one and make i=1

its due time the time slot before its actual due time.) We then N N
adjust the transmission probability of a user of according to its - E Z (Ui + v i | — Z Vi
due time. The closer the due time, the higher the probability of P PURW= f
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By the definition ofQ*, we have + Ey, (U|U; > Y)Y P(U; <Y)
2 By, (UilU; 2Y) P(U; 2 Y)
N
+ By, (Ui|U; <Y) P(U; <Y)
E (U + U*)l N B
Zz::l % 1/ H{QU)=i} — EUZ- (Uz)7
N
<E[Y Ui+ )L g05)= |- where By (U;|U; > Y) > Y > Ey,(U;|U; < Y) due to
im1 the hypothesis thal/; is independent ot". Hence, we have
Ey (U;|QU) =) = By, (U;), and thusl; > 77 forall <. O
Hence
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