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Opportunistic Transmission Scheduling With
Resource-Sharing Constraints in Wireless Networks

Xin Liu, Edwin K. P. Chong, and Ness B. Shroff

Abstract—We present an “opportunistic” transmission sched-
uling policy that exploits time-varying channel conditions and
maximizes the system performance stochastically under a certain
resource allocation constraint. We establish the optimality of
the scheduling scheme and also that every user experiences a
performance improvement over any nonopportunistic scheduling
policy when users have independent performance values. We
demonstrate via simulation results that the scheme is robust to
estimation errors and also works well for nonstationary scenarios,
resulting in performance improvements of 20%–150% compared
with a scheduling scheme that does not take into account channel
conditions. Last, we discuss an extension of our opportunistic
scheduling scheme to improve “short-term” performance.

Index Terms—Resource allocation, scheduling, time-slotted
system, time-varying channel, wireless.

I. INTRODUCTION

I N WIRELINE networks, resource allocation schemes
and scheduling policies play important roles in providing

quality of service (QoS), such as throughput, delay, delay-jitter,
fairness, and loss rate [1]. However, resource allocation and
scheduling schemes from the wireline domain cannot be di-
rectly carried over to wireless systems because of some unique
characteristics in wireless channels, such as limited bandwidth,
time-varying and location-dependent channel conditions, and
channel-condition-dependent performance.

In wireless networks, the channel conditions of mobile users
are time-varying. Radio propagation can be roughly charac-
terized by three nearly independent phenomena: path-loss
variation with distance, slow log-normal shadowing, and fast
multipath-fading. Path losses vary with the movement of
mobile stations. Slow log-normal shadowing and fast multi-
path-fading are time-varying with different time scales. Thus,
users perceive time-varying service quality and/or quantity
because channel conditions are time-varying. For voice users,
better channel conditions may result in better voice quality.
For data service, users with better channel conditions [or larger
signal-to-interference-and-noise ratio (SINR)] may be served
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at higher data rates via adaptation techniques, such as reducing
coding or spreading and/or increasing the constellation density.
By using adaptation techniques, cellular spectral efficiency (in
terms of b/s/Hz/sector) can be increased by a factor of two
or more [2]. All the major cellular standards have included
procedures to exploit this: adaptive modulation and coding
schemes are implemented in the 3G TDMA standards, and
variable spreading and coding are implemented in the 3G
CDMA standards. In general, a user is served with better
quality and/or at a higher bit rate when the channel condition
is better.

On one hand, good scheduling schemes should be able to
exploit the time-varying channel conditions of users to achieve
higher utilization of wireless resources. On the other hand, the
potential to exploit higher data throughputs in an opportunistic
way, when channel conditions permit, introduces the tradeoff
problem between wireless resource efficiency and levels of
satisfaction among users. Because wireless spectrum is a scarce
resource, improving the efficiency of spectrum utilization
is important, especially to provide high-rate-data service.
Hence, we cannot expect the same throughput for all users
because the users in general can have very different channel
conditions. However, a scheme designed only to maximize
the overall throughput could be very biased, especially where
there are users with widely disparate distances from the base
station. For example, allowing only users close to the base
station to transmit with high transmission power may result in
very high throughput, but sacrifice the transmission of other
users. This basic dilemma motivates our work: to improve
wireless resource efficiency by exploiting time-varying channel
conditions, while at the same time control the levels of fairness
among users. There are various mathematical definitions of
fairness in the literature [3], [4]. In this paper, we do not use a
formal notion of fairness, but simply adopt the intuitive notion
that no individual user should be denied access to network
resources, i.e., each user is entitled to a certain amount of
network resources.

We consider a time-slotted system in which time is the re-
source to be shared among the users. Associated with each user
is a number between 0 and 1 representing the long-term fraction
of time to be assigned to the user. This “time-fraction assign-
ment” to users represents the fairness constraint that each user
is granted a certain portion of the resource. The time-fraction
assignment can be obtained as a byproduct of resource alloca-
tion schemes, as described in [5]. Given this resource alloca-
tion constraint, the problem is to determine which user should
be scheduled to transmit at each time slot so that the network
performance is optimized. To solve this problem, we present a
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scheduling scheme that maximizes the wireless resource utiliza-
tion by exploiting time-varying channel conditions, taking into
account the resource allocation constraint (i.e., our scheme is
optimal among all schemes that satisfy the constraint). We refer
to our scheme as being “opportunistic” because it takes advan-
tage of favorable channel conditions in assigning time slots to
users.

Recently, the authors of [6]–[8] have studied wireless fair
scheduling policies. They extend scheduling policies for wire-
line networks to wireless networks that provide various degrees
of performance guarantees, including short-term and long-term
fairness, as well as short-term and long-term throughput bounds.
However, they model a channel as either “good” or “bad,” which
might be too simple to characterize realistic wireless channels,
especially for data service.

In [9], [10], the authors present a scheduling scheme for the
Qualcomm/HDR system that satisfies the following fairness
property as defined in [10]: if another scheduling algorithm is
used to increase the throughput of a specific user byover
what that user receives under the HDR scheduling algorithm,
the sum of all the percentage decreases suffered by the through-
puts of all the other users under the new algorithm will be
more than . This property is known asproportional fairness
[11]. The HDR algorithm also exploits time-varying channel
conditions while maintaining proportional fairness. However,
their constraint is different from ours, as is their objective
function. Our structure is flexible—the system can explicitly
set the fraction of time assigned to each user. Furthermore, our
scheme outperforms the HDR scheduler in terms of the overall
throughput in all cases, although there is no guarantee that a
single user performs better.

The paper is organized as follows. In Section II, we intro-
duce the system model. In Section III, we present our oppor-
tunistic scheduling policy and its properties. We also provide a
parameter estimation algorithm and discuss implementation is-
sues. In Section IV, we use simulation results to illustrate the
performance of our scheduling policy. An extension of the op-
portunistic scheduling algorithm to improve “short-term” per-
formance is discussed in Section V, and conclusions are pre-
sented in Section VI.

II. SYSTEM MODEL

We consider a time-slotted system—time is the resource to be
shared among all users. A time-slotted cellular system can have
more than one channel (frequency band), but at any given time,
only one user can occupy a given channel within a cell. Here,
we focus on the scheduling problem for a single channel. Note
that a channel in this context could be very large. For example,
it is possible for 10 users to share a 1-MHz frequency band
for high-rate-data service, while in the IS-136 standard a voice
channel takes 10-KHz bandwidth. The time-fraction assignment
scheme dictates the fraction of time that a user should transmit
on the channel. The scheduling algorithm then decides which
time slot should be assigned to which user, given the time-frac-
tion assignment. This time-fraction assignment can be viewed
as the fairness requirement in the system that each user is enti-
tled a certain portion of resource.

Fig. 1. Users’ performance value (e.g., throughput) as a function of SINR.

As explained previously, channel conditions in wireless net-
works are time-varying, and thus users experience time-varying
performance. We use a stochastic model to capture thetime-
varyingandchannel-condition-dependentperformance of each
user. Specifically, let be a stochastic process associated
with user , where is the level of performance that would
be experienced by userif it is scheduled to transmit at time.
The value of measures the “worth” of time slotto the user
, and is in general a function of its channel condition. Usually,

the better the channel condition of user, the larger the value of
.

Next, we present some examples of possible performance
measures. The most straightforward performance measure is
the throughput (in terms of bits/sec) or the “monetary value”
of the throughput (in terms of dollars/sec). Usually, a user’s
throughput is a nondecreasing function of its SINR. Depending
on the “class” of a user, the throughput could be a step function,
an S-shape function, or a linear function of the SINR, as shown
in Fig. 1.

Besides throughput, other issues could also be important to
users, and different users could have different performance mea-
sures. For example, power consumption is typically very impor-
tant to a handset user, and hence the performance of such a user
could have the form

value of throughput cost of power consumption

In summary, the performance value is an abstraction used
to capture the time-varying and channel-condition-dependent
“worth” of a time slot to a user. In our system model, we do not
make any assumptions on the physical-layer implementation of
the system. The use of such a general performance model frees
us from physical-layer implementation details and allows us to
focus on the problem of designing scheduling policies. Different
performance measures may indicate different applications of the
scheduling scheme. Furthermore, we assume throughout that
performance values for different users arecomparable and ad-
ditive.

We consider both the uplink and the downlink of a wireless
network. In both cases, the base station serves as the scheduling
agent. The scheduling scheme does the following: at the begin-
ning of a time slot, the scheduler (i.e., the base station) decides
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which user should be assigned the time slot based on the per-
formance values of the users at that time slot. (We describe a
particular scheduling procedure in Section III-C, including how
the scheduler obtains information about the users’ performance
values.) For the uplink case, if a user is assigned a time slot,
the user will transmit in that time slot. For the downlink case,
if a user is assigned a time slot, the base station will transmit
to the user in that time slot. If time slot is assigned to user
, the system is “rewarded” with a performance value of,

i.e., user ’s performance value at time slot. The goal of the
scheduling scheme is to maximize the average system perfor-
mance by exploiting the time-varying channel conditions, given
the time-fraction assignment. Basically, the scheduling policy
systematically assigns a time slot to a user with a performance
value that is large relative to those of the other users, while sat-
isfying the time-fraction requirements of users.

Our scheduling scheme could be implemented in time
division multiple access/ frequency division multiple access
(TDMA/FDMA) systems as well as time-slotted code division
multiple access (CDMA) systems. The length of a time slot
in the scheduling policy can be different from an actual time
slot of a physical channel. The length of a scheduling time
slot depends on how fast the channel conditions vary and how
fast we want to track the variation. As mentioned in [12],
it is necessary to “track” (at least slow fading) signal-level
variations for better network performance.

III. OPTIMAL SCHEDULING POLICY

In this section, we describe the scheduling problem and our
scheduling scheme. Let denote the time-fraction assigned to
user , where and is the number of users in the
cell. Here, we assume that thes are predetermined and serve
as a prespecified fairness constraint—on average, a fraction
of the whole time should be scheduled to user. Our goal is
to develop a scheduling scheme that exploits the time-varying
channel conditions to maximize the system performance, under
the time-fraction constraints , .

Let be theperformance vectorat time
slot , where is the performance value achieved by userif
time slot is assigned to user. We assume that is nonnega-
tive and bounded. Assume from now that is stationary, so
that the time index can be dropped. Specifically, we use the
notation , where is a random variable
representing the performance value of userat a generic time
slot.

The scheduling problem is stated as follows: given, deter-
mine which user should be scheduled (in the given time slot). We
define apolicy to be a mapping from the performance-vector
space to the index set . Given , the policy
determines the user to be scheduled: if , then user
should use the time slot, and the system receives a performance
“reward” of (i.e., ). Hence, is the average
system performance value associated with policy. Note that
the policy is potentially “opportunistic” in the sense that it can
use information on the performance vectorto decide which
user to schedule.

We are interested only in policies that result in satisfaction of
the time-fraction assignment constraints. Specifically, we say
that a policy is feasibleif for all

. Feasible policies are those that obey the given re-
source allocation constraints. We useto denote the set of all
feasible policies. Our goal is to find afeasiblepolicy that
maximizes the average system performance. The problem can
be stated formally as follows:

maximize (1)

Note that we can write

where

if occurs
otherwise

is the indicator function of the event. In other words, the
overall objective function is the sum of all users’ average per-
formance values (where we reap a reward ofonly if user is
scheduled).

Recall that we assumed the sequence to be stationary.
This assumption does not preclude correlations across users or
across time. In practice, a user’s channel condition is usually
time-correlated, for example, due to shadowing. Hence, a user’s
performance is usually also time-correlated. Furthermore, the
performance of different users may also be correlated. For
example, when the intercell interference is high, some users’
performance values simultaneously decrease. However, if users
have enough separated locations, it is reasonable to assume that
their performance values are only weakly dependent.

In the following, we present our opportunistic scheduling
policy. We state the properties of our policy, including its opti-
mality with respect to (1). Then we explain how to estimate the
parameters used in the policy. Finally, we describe a procedure
to implement our scheduling policy by tuning the parameter
values on-line based on measurements.

A. Opportunistic Scheduling Policy

1) Two-User Case:For the purpose of illustration, we start
with the two-user case. Suppose that user 1 and user 2 have
time-fraction assignments and , respectively, and
. We wish to find an opportunistic policy that solves (1).
Define , where . Because

is the distribution function of the random variable ,
is a right-continuous monotonically increasing function of

with and . Hence, there exists a
(which may not be unique) such that for any
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where is the time-fraction assignment of user 1. Let
, which is a left-continuous monotonically

increasing function of . So

i.e., . If
, then . Oth-

erwise, let (this value does not matter). The opportunistic
scheduling policy is then given by

if
with prob. if
with prob. if
if .

It is clear that the policy defined above is feasible:

The policy can be described as follows. The space spanned by
and is divided into two halves by the line .

Above the line (i.e., ), we always schedule user
2 to transmit. Under the line (i.e., ), we always
schedule user 1 to transmit. If the probability of the line is posi-
tive, some randomization is needed if we fall on the line—with
probability , we schedule user 1 and with probability , we
schedule user 2, where
is determined by the time-fraction assignment constraint.

2) General Case:Now we extend the policy from the pre-
vious section to the -user case. Define

for

where . Note that is a monotonically
increasing right-continuous function of and a monotonically
decreasing left-continuous function of, . Hence, there
exists a that satisfies , where our oppor-
tunistic policy is defined as

(2)

When ties occur in the argmax above, we break ties probabilisti-
cally by picking a useramong those that achieve the maximum
above with a certain probability. Note that is not unique.
There are components but only independent constraint
equations: , for , and

is a linear combination of
the first equations. Hence, we can simply set .

3) Properties: The policy defined in (2), which repre-
sents our opportunistic scheduling policy, is optimal in the fol-
lowing sense.

Proposition 1: The policy is a solution to the problem
defined in (1), i.e., it maximizes the average system performance
under the resource allocation constraint.

We can think of the parameter in (2) as an “offset” used
to satisfy the time-fraction assignment constraint. Under this
constraint, the scheduling policy schedules the “relatively-best”
user to transmit. Useris “relatively-best” if

for all . In the special case where for all , the sched-
uling policy reduces to , i.e., always
schedule the user with the largest performance value to transmit.
The proof of the optimality is attached in Appendix I.

The policy maximizes the average system performance
even if users’ performance values are arbitrarily correlated,
both in time and across users. The following proposition es-
tablishes, under a more restrictive assumption, that our scheme
improves every user’saverage performance relative to any
nonopportunistic scheduling policy.

Proposition 2: If the performance values s, ,
are independent, then

where .
The proof of this property is attached in Appendix II.

Note that is the average performance of
user when using our opportunistic scheduling policy, and

is the average performance of userwhen using a
nonopportunistic scheduling scheme. This proposition makes
a strong statement about the individual performance of each
user. If users’ performance values are independent, the average
performance ofevery userin our opportunistic scheduling
scheme will be at least that of any nonopportunistic scheduling
scheme. In this sense, the opportunistic scheduling policy does
not sacrifice any user’s performance to improve the overall
system performance. Of course, different users may experience
different amounts of improvement. In general, the larger the
variance of a user’s performance value, the higher the improve-
ment (this observation is corroborated by our experiments; see
Section IV).

What Proposition 2 also tells us is that the fraction of time
slots assigned to each user is an important measure of the perfor-
mance of that user. For example, if a user consumesportion
of the time slots, then the user is granted a minimum average
performance value of , when users have independent
performance values. (In practice, if users move independently
and are not located at the same location, then users usually have
independent performance values.)

Moreover, our scheduling scheme can be applied to different
scenarios by adopting different forms of performance measures.
For example, let us consider the case where each user has a fixed
SIR target. By reaching this target SIR, the user gets a certain
data rate . Then fraction of the time slots corresponds to a
data rate of for user , assuming that useralways adjusts
its power to reach the target SIR. If we define the performance
measure as the negative of power consumption used to meet the
SIR target, then the scheduling scheme can be applied to min-
imize the power consumption of users while satisfying certain
data rates. Instead, if we define the performance value as the
negative of the interference to the other cells, we can minimize
the intercell interference while maintaining the data rate.

B. Parameter Estimation

Recall that our opportunistic scheduling policy is given by
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Fig. 2. Block diagram of the scheduling policy with online parameter
estimation.

where the s are parameters determined by the distribution of
. In practice, this distribution is unknown, and hence we need

to estimate the parameters, . Fig. 2 shows
a block diagram of a practical scheduling procedure that incor-
porates online estimation of these parameters.

In this section, we focus on the block that implements the on-
line estimation of the parameters, , labeled
“Update ” in Fig. 2. We first provide an intuitive description
of the computation of and then present a standard stochastic
approximation algorithm to estimate (the vector of the s).

Let us consider a scheduling algorithm :

If for all , then, clearly, the scheduling policy maxi-
mizes the system performance. If this scheduling policy meets
the resource allocation constraint, we can set . In gen-
eral, does not meet the time-fraction assignment con-
straint, i.e., there exists at least a usersuch that

. If we increase the value of , we increase the value of
while decreasing the values of

for . The parameters s are the offsets that are necessary
to satisfy the time-fraction assignment constraint. Intuitively,
if , we increase the value of , and if

, we decrease the value of. By making
such adjustments, we hope to find theeventually such that

for all . In the following, we use a stan-
dard stochastic approximation algorithm to implement this in-
tuitive idea and to estimate the value of. The computation in-
volved in the stochastic approximation algorithm is very simple.

We first roughly explain the idea of the stochastic approxima-
tion algorithm used in this paper. For a systematic and rigorous
study of stochastic approximation algorithms, see [13], [14].
Suppose we want to solve the root-finding problem ,
where is a continuous function with one root [both and

are vectors of the same dimension]. If we can evaluate the
value of at any , then we can use the iterative algorithm

which will converge to as long as the step size is appro-
priately chosen, e.g., . Suppose that we cannot obtain
exactly the value of at , but instead we only have a
noisy observation of at , i.e.,
where is the observation error (noise). In this case, it is well
known that if (i.e., the mean of the observation error
is zero), then the algorithm

converges to with probability 1 under appropriate conditions
on and (see, e.g., [13] and [14]).

In this paper, we use a stochastic approximation algorithm to
estimate . For this, note that we can write as a root of the
equation , where theth component of is given
by

and

We use a stochastic approximation algorithm to generate a se-
quence of iterates that represent estimates of .
Each defines a policy given by

To construct the stochastic approximation algorithm, we need
an estimate of . Note that, although we cannot obtain

directly, we have a noisy observation of its components

The observation error in this case is

and thus we have . Hence, we can use a stochastic
approximation algorithm of the form

where, e.g., . For the initial condition, we can set to
be 0, or some estimate based on the measurement history. For the
above algorithm, following the standard proof in [13], we can
show that converges to with probability 1. Furthermore,
to accelerate the convergence and to reduce the range of the
fluctuation of the stochastic approximation algorithm, we can
use the standard technique of averaging (see, e.g., [14])

Our simulations show that, with the stochastic approximation
algorithm, converges to relatively quickly.

When the s are not continuous random variables, there may
be “ties” in the argmax of in (2). Specifically, ties occur
when for some . In this
case, will still converge to . However, we should break ties
probabilistically by picking a user among those that achieve
the maximum with a certain probability. In practice, we do not
need to estimate this probability because the tiebreak can be
handled automatically by the adaptive nature of the stochastic
approximation algorithm. To see this, imagine fluctuating
around within a small range; when is too large, we have

, and hence will be dragged down. Our simu-
lation results show that the stochastic approximation algorithm
works well in both the continuous and “tie-break” cases—the
system performance obtained with the stochastic approximation
scheme is very close to that of the true optimal value while main-
taining the resource allocation requirements.

C. Implementation Considerations

So far, we have described our optimal scheduling policy
and addressed the problem of estimating the parameter values
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needed for the policy. In this section, we explore some imple-
mentation considerations for our scheduling policy.

In our scheduling policy, the base station needs to obtain in-
formation of each user’s performance value at a given time slot
to make the scheduling decision. The performance value of a
user can be estimated either by the user or by the base sta-
tion, based on the channel condition and/or measurements from
previous transmissions. For the downlink case, a user could
measure the received signal power level (from the user’s base
station) and the interference power level. The user could then
calculate the performance value of the time slot based on the
channel condition and other factors (such as power consump-
tion). For example, suppose a user’s performance measure is its
throughput, which is a linear function of the SINR, as shown
in Fig. 1. Based on the estimated SINR, the user can then ob-
tain its performance value. For the uplink case, the base sta-
tion could estimate the user’s channel condition based on the
received signal from the user. Assuming the base station knows
the form of the performance value for each user (i.e., how the
performance value depends on the SINR and/or other factors),
the performance value could then be calculated by the base sta-
tion.

If the performance value is estimated by the user, this infor-
mation needs to be sent to the base station, which can be accom-
plished in several ways. For example, each user could maintain
a small signaling channel with the base station. Alternatively,
the required information could be piggybacked over the user’s
acknowledgment packets.

As mentioned before, the length of a time slot in our sched-
uling policy can be different from an actual time slot of the
physical channel. The length of a scheduling time slot depends
on how fast the channel condition varies and how fast we want
to track the variation. The usual tradeoff between accuracy and
signaling overhead exists here. Specifically, more frequent up-
dating provides more accurate tracking of varying channel con-
ditions, but incurs higher signaling costs. In practice, to decrease
signaling costs, a user can update its information only when
the change in the performance value is larger than a certain
threshold. Furthermore, it is not necessary for all users to up-
date at the same time. Note that propagation delay is ignored.

In the following, we summarize our scheduling procedure,
which incorporates the online parameter estimation algorithm
described in the last section. As mentioned before, the initial
estimate can be set to or some value based on history infor-
mation. At each time slot the system performs
the following steps.

1) Estimate .
• Uplink: the base station estimates each user’s

channel condition and calculates the values of,
.

• Downlink: user measures its channel condition,
calculates , and informs the base station.

2) The base station decides which user should be scheduled
to transmit in the time slot based on the scheduling policy:

3) The scheduled transmission takes place.
• Uplink: the base station broadcasts the ID of the

selected user, and the selected user transmits in the
time slot.

• Downlink: the base station transmits to the selected
user.

4) The base station updates the parameter vector via

For the stationary case, we set . For the nonsta-
tionary case, we set to a small constant to track system
variations.

Note that the computation burden above is per time slot,
where is the number of users sharing the channel (usually on
the order of tens), which suggests that the procedure is easy to
implement in practice.

IV. SIMULATION RESULTS

In this section, we present numerical results from computer
simulations of our scheduling scheme. Our scheduling policy
exploits time-varying channel conditions—the policy dynami-
cally decides which user should be scheduled to transmit in a
time slot based on users’ current performance values. For the
purpose of simulations, we assume that the time-fraction as-
signment is done usingfair sharing, i.e., the total resources are
evenly divided among the users. The well knownround-robin
scheme is a policy that shares the resource (time in this case) in
this manner, but does not exploit channel conditions. To eval-
uate the performance gain of our dynamic and opportunistic as-
signment of transmissions, we compare the performance of our
policy with that of the round-robin scheme. We will show two
sets of simulation results. The first one is to simulate a cellular
system using our scheduling policy and evaluate the improve-
ment of our scheme. Then, we show how estimation errors on
performance values affect the results of the scheduling scheme,
and how the stochastic approximation works.

A. Cellular Model

Our simulation environment is described in the following. We
consider a multicell system consisting of a center hexagonal cell
surrounded by hexagonal cells of the same size. The base sta-
tion is at the center of each cell, and simple omnidirectional an-
tennas are used by mobiles and base stations. The frequency
reuse factor is 3, and the co-channel interferences from the six
first-ring neighboring cells are taken into account. We assume
that each cell has a fixed number of frequency bands, and we
focus on one frequency band in the central cell, which is shared
by 25 users. The scheduling policy decides which user should
transmit in this frequency band at each time slot.

Users move with random speed and direction in the cell
and have exponentially distributed “on” and “off” periods.
They perceive time-varying and location-dependent channel
gains. The channel gains of the users are mutually independent
random processes determined by the sum of two terms: one due
to path (distance) loss and the other to shadowing. We adopt
the path-loss model (Lee’s model) and the slow log-normal
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Fig. 3. Users’ performance values as a function of SINR.

shadowing model in [15]. To be conservative, we ignore the
effects of fast multipath fading in the simulation. If fast fading
could be tracked accurately, our scheme would provide even
higher performance improvements than shown here. The
mobility model, the propagation model, and the parameters of
the simulation are discussed in detail in [5].

Fig. 3 shows the forms of the performance values used by
different users. To avoid crowding the figure, we only show the
performance functions of eight users. The performance values
of users 1 and 2 are step-functions of their SINR, and user 2 has
a higher threshold than user 1. The performance values of users
3–4 are linear functions of their SINR (in dB), with different
slopes. Users 5–8 have performance values that are S-shape
functions of their SINR, with different parameters. Totally, there
are four users with step-functions, six users with linear func-
tions, and 15 users with S-shape functions in the simulation.

As mentioned earlier, for our simulation experiments, we as-
sumefair sharing time-fraction assignment. When the number
of active users changes, i.e., when an active user becomes in-
active or vice versa, we update the time-fraction assignment
for all active users. In other words, if is the number of active
users sharing the channel in the central cell, we set ,
where user is active.

In each time slot, the system performs the following: all ac-
tive users inform the base station their estimated performance
values; the base station decides which user to transmit using
the opportunistic scheduling policy, and updates the parameters;
and then the selected user transmits. For a detailed simulation
procedure, we refer interested readers to [5].

Fig. 4 shows the results of our simulation experiment. In the
figure, the axis represents the users’ IDs. For each user, we
compare the average performance in our opportunistic sched-
uling policy (the first bar) with that of the round-robin policy
(the second bar). We can see that, in every case, our oppor-
tunistic policy significantly outperforms the nonopportunistic
round-robin policy, with gains of 20% to 150%. The amount
of improvement varies from user to user because different users
have different performance functions. The third (right-most) bar
in the figure is the ratio of the total number of slots assigned to
each user in our opportunistic scheme to that of the round-robin
scheme, which is equal to that required by the time-fraction as-

Fig. 4. Comparison of the opportunistic scheduling policy with the
round-robin scheme.

TABLE I
GAUSSIAN PROCESSPARAMETERS

signment constraint. For all users, the third bar is virtually iden-
tical to 1. Hence, our scheduling scheme satisfies the time-frac-
tion assignment constraint, which suggests that our stochastic
approximation algorithm works well in the simulation experi-
ment even in the nonstationary case.

B. Estimation Errors

When our scheduling policy is implemented, the following
errors may occur. The first is the estimation error onusing
the stochastic approximation algorithm, i.e., the discrepancy be-
tween and . Second, imperfect measurement of the channel
conditions may introduce errors in the estimates of users’ per-
formance values. This experiment is designed to evaluate the
impact of our online parameter estimation procedure and the
sensitivity of our opportunistic scheduling scheme to estimation
errors on users’ performance values. We generate four time-cor-
related Gaussian processes, representing the performance-value
sequences for four users. The means and standard deviations of
the four Gaussian processes are displayed in Table I. Each user
has exponentially distributed “on” and “off” periods, which are
used to generate status changes in order to test how well the
stochastic approximation tracks the changes. We compare four
different cases:

• ideal case, i.e., with known threshold assuming
exact values of s are known;

• estimated thresholds using the stochastic approximation
algorithm assuming exact values ofs are known;
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Fig. 5. Average performance value, normalized over the round-robin scheme.

• estimated thresholds with estimated value of; i.e.,
, where is the estimation error on user’s per-

formance value, (as in Table I), and the s
are independent;

• estimated thresholds with estimated value of, i.e.,
, where is the estimation error on user’s per-

formance value, (0, 8) (as in Table I), and the s
are independent.

Fig. 5 shows the average performance (normalized over the
average performance value of the round-robin scheme) from the
above four cases. The first bar is the normalized performance
value under the ideal condition; the second bar is that of esti-
mated thresholds with ideal measurements (i.e., the exact value
of is known). We can see that the performance of both the
optimal policy and our online policy with estimated pa-
rameters are quite comparable and are significantly higher than
that of the round-robin policy. This indicates that our online pa-
rameter estimation scheme works well and that errors due to
the parameter estimation do not significantly degrade the per-
formance of the policy relative to the optimal policy.

In Fig. 5, the performance gains appear to be related to the
standard deviation: the higher the standard deviation, the larger
the performance gain. Note that, in the round-robin scheme, the
performance levels for all users are all approximately equal to
the mean of the Gaussian processes (which is the mean perfor-
mance value). This is to be expected because the round-robin
scheme allocates an equal fraction of time slots to each user, re-
gardless of the channel conditions. Our opportunistic approach
takes advantage of favorable transmission conditions, thereby
leading to average performance values that are far above the
mean of the Gaussian processes.

The third and fourth bars in Fig. 5 represent the normal-
ized performance with different estimation errors. The third bar
shows the result of the case with estimation error (0, 4).
With this estimation error, the average performance is still close
to that of the optimal case. When the estimation error increases,
it is not surprising that the average performance decreases. The
fourth bar shows a situation with very large estimation errors,
especially for user 4. However, even in this case, our scheduling
scheme still outperforms that of the round-robin. This suggests
that our opportunistic scheduling scheme is robust to estimation
errors on users’ performance values.

Fig. 6. Fairness, normalized over the round-robin scheme.

Fig. 6 shows the ratio of the time fractions obtained by our
policy to that of the round-robin policy (which, as pointed
out before, are equal to the prespecified values). As we can see,
our scheme satisfies the time-fraction constraints very well in
all four cases, even in the case with very large estimation errors.

V. SHORT-TERM PERFORMANCE

The scheduling scheme described thus far meets the
long-term performance requirements of users, i.e., the
long-term average of the fraction of time slots assigned to a
user is guaranteed. However, with such a scheme, it is possible
that a user could be starved for a long time (say, more than a
few seconds), which may be undesirable for certain users. Usu-
ally, a user may also have the demand for good “short-term”
performance—the user expects that the amount of service
obtained within a relatively short time interval be close to the
amount it should get.

In the generalized processor sharing (GPS) model [16], each
flow is treated as a fluid flow. Each flowis given a weight ,
and for any time interval during which both sessions
and are continuously backlogged, the resource granted to each
flow , , satisfies the following property:

(3)

This means that a user gets its fair share of resource during any
time interval. There is an alternative to (3). Letbe a starting
point such that from time onwards, both sessionsand are
continuously backlogged. It is clear that the satisfaction of (3)
is equivalent to

(4)

for all , and users and are both continuously back-
logged during the time interval .

We extend the above concept to a time-slotted system, where
one time slot is exclusively used by one user. Letbe the
weight of user and be the time-fraction requirement of
user at time . Note that, when the set of active users change,
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s may change. For example, following the tradition in GPS,
can be set as

where is the set of active users at time. User is guaranteed
a minimum share of the resource during its active
period, where is the set of all users.

Let be the time that userbecomes active. Suppose that,
during the time interval , both users and are contin-
uously active, where . Let be the
number of time slots assigned to userfrom to . An ap-
proximation of (4) is

where is a constant.
Let be the counter of the resource entitled of user

, i.e., the number of time slots that should be assigned to user
during the time interval

(5)

where is the set of active users at time. It is obvious that
the s satisfy (4) and hence (3) at each discrete time.
Note that may not be an integer and thus may not be
achievable when a time slot is exclusively used by one user.

We use as a benchmark. To improve the short-term
performance, we want to be close to . We
modify our previous opportunistic scheduling scheme in the fol-
lowing way. Let

If , then user is “lagging” (i.e., the user gets less
resource than it should get), and if , then user is
“leading.” The idea is to increase the probability of transmission
of a lagging user and decrease the probability of transmission of
a leading user. Hence, a direct modification of our scheduling
policy is the policy given by

(6)

where and are positive constants. When the value of
is smaller, the effect of is more significant, and thus the
short-term performance is better. The value ofacts as a
threshold—a user is forbidden to transmit if the amount by
which it leads is greater than .

Next, we consider the case where there are changes in the set
of active users. When a new user comes into the system, the
system adjusts the s for all users, and the new userstarts
a counter for its resource share. When a user leaves
the system, the system adjusts thes and the counters of fair
share for other active users. Suppose userleaves the system
at time and user has been served with time slots.
Recall that , i.e., user has time

Fig. 7. Starving-time histogram.

slots less than its share. Because the user is gone, we cannot
force to be close to anymore. This discrep-
ancy has to be absorbed by other active users. We update the
counter of any active user by replacing the value of

by , where is the number
of active users. In other words, the discrepancy is evenly dis-
tributed among all active users. Note that this way of handling
users’ departures is intuitive, but not necessarily optimal. Actu-
ally, it is challenging to even define a good optimal criterion in
the situation where there exists the tradeoff between short-term
performance and the overall system performance.

We use the same simulation setup as in Section IV-B. Four
Gaussian random processes are used to represent the perfor-
mance-value sequences of four users, and their parameters are
shown in Table I. The simulation runs for 1 000 000 time slots
(while all four users have exponentially distributed on–offs).
Next, we show two metrics for the short-term performance for
user 4, which has a time-correlation coefficient of 0.6.

The first metric is the starving-time, defined as the time
interval between two contiguous time-slot assignments when
the user is active. Note that starving-time is closely related to
the delay a user experiences. Fig. 7 shows the starving-time
histogram. In the legend, MOS represents the modified
opportunistic scheduler defined in (6); OSI is the ideal op-
portunistic scheduler with known threshold ; OSE is the
opportunistic scheduler using stochastic approximation to
estimate the threshold; and IND represents the numerical result
when a user’s performance values at different time slots are
independent. If a user’s performance values are independent
across time, the starving-time is binomially distributed, i.e.,

starving-time , where is the
time-fraction of user . Because user 4’s performance value
is correlated across time, compared with the IND case, the
probability of a long starving-time of user 4 in the OSI and
OSE cases, which do not consider the short-term performance,
is larger. Furthermore, the probability that a large starving-time
occurs in MOS is much smaller than that of OSI and OSE,
and it is also smaller than that of IND. Hence, the chance that
a user is starved decreases and the short-term performance is
improved.
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Fig. 8. Normalized variance of discrepancy as a metric of the short-term
performance.

The second metric of the short-term performance is defined
as

where is the length of the window by which we measure
the discrepancy between the fair share and

while user is active during the interval
. Because , this

metric is the variance of normalized over the
window size . The discrepancy should be zero in the Fluid
Fair Model and is no larger than 1 in the round-robin scheduling
scheme. In Fig. 8, we show that MOS results in a noticeable de-
crease of the normalized variance.

We should mention here that the modified scheduling scheme
does not decrease the average performance significantly. In
this simulation, OSI outperforms round-robin by 25% in terms
of the average performance of user 4, and MOS outperforms
round-robin by 22% while satisfying the long-term resource
allocation requirement. Overall, the system performance
obtained in MOS is only about 3% less than that of OSI, while
both outperforming the round-robin by over 60% and satisfying
the long-term resource allocation requirement. Hence, MOS
improves the short-term performance without dramatically
decreasing the system throughput. In general, the larger the
time-correlation, the worse the short-term performance, and
the greater the improvement in the short-term performance, the
larger the loss in system performance.

One closely related problem is to be able to handle users with
explicit delay requirements, such as audio and video. It is a chal-
lenging problem to schedule users opportunistically while satis-
fying the delay requirements of certain users. One possible solu-
tion is to extend the current scheduling scheme in the following
way. Each user has a due time known by the base station. The
due time of a user is the due time of the first packet in the user’s
queue. If a user has no delay requirement, its due time is set to
be . Suppose different users have different due-times. (If two
users have the same due-time, we randomly pick one and make
its due time the time slot before its actual due time.) We then
adjust the transmission probability of a user of according to its
due time. The closer the due time, the higher the probability of

its transmission. When a user is at its due time, we assign the
time slot to this user with probability 1. If we know the distri-
bution functions of users’ performance values, it is possible to
determine how large the transmission probability should be (as
a function of its and other users’ due times) numerically. Other-
wise, these transmission probabilities might be determined ex-
perimentally.

VI. CONCLUSION

In this paper, we present an opportunistic transmis-
sion-scheduling policy. Given a time-fraction assignment
requirement, the scheduling policy maximizes the average
system performance. In our model, each user’s performance
value is a stochastic process, reflecting the time-varying
performance that results from randomly-varying channel
conditions. The users’ performance-value processes can be
arbitrarily correlated, both in time and across users. We estab-
lish the optimality of our opportunistic scheduling policy. We
also provide a scheduling procedure that includes an on-line
parameter-estimation algorithm to estimate parameter values
used in the scheduling policy. Our scheduling algorithm has
a low computational burden, which is important for on-line
implementation. Via simulation, we illustrate the performance
of our scheduling policy, showing significant performance
gains over the round-robin policy. Our simulation results also
show that our scheme works well for the case of nonstationary
performance-value sequences and is robust to estimation errors.

Resource allocation and scheduling schemes are important
in wireless networks, especially to provide high-rate data and
seamless service for future wireless networks. There are many
interesting problems in this area that remain to be resolved.
These include the need for a general fairness criterion tailored to
wireless networks and dealing with the short-term performance
or explicit delay requirement for certain users.

APPENDIX I
OPTIMALITY OF THE OPPORTUNISTICSCHEDULING POLICY

Recall that there exists a that satisfies
, where the policy is defined as

In the following, we show that defined above is an optimal
policy, i.e., that for any satisfying

.
Let be a policy satisfying for all .

Then,
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By the definition of , we have

Hence

which completes the proof.

APPENDIX II
PERFORMANCEIMPROVEMENT FORINDIVIDUAL USERS

Let be the average performance of userin the oppor-
tunistic scheduling policy, i.e., . Let
be the average performance of a nonopportunistic scheduling
policy, i.e., . In the following, we will show that

for all if users have independent performance values.
Note that we can write

Hence, to prove that , it suffices to prove that

We have

for all

Letting , we have

where due to
the hypothesis that is independent of . Hence, we have

, and thus for all .
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