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In precision oncology, therapy stratification is done based on the patients’

tumor molecular profile. Modeling and prediction of the drug response for a

given tumor molecular type will further improve therapeutic decision-making

for cancer patients. Indeed, deep learningmethods hold great potential for drug

sensitivity prediction, but a major problem is that these models are black box

algorithms and do not clarify themechanisms of action. This puts a limitation on

their clinical implementation. To address this concern, many recent studies

attempt to overcome these issues by developing interpretable deep learning

methods that facilitate the understanding of the logic behind the drug response

prediction. In this review, we discuss strengths and limitations of recent

approaches, and suggest future directions that could guide further

improvement of interpretable deep learning in drug sensitivity prediction in

cancer research.
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Introduction

Cancer is a disease with multiple levels of complexity and the leading cause of

mortality in EU countries after cardiovascular diseases (Nagai and Kim, 2017). First, for a

given tumor entity, there is significant molecular variability across patients, which is

referred to as inter-patient tumoral heterogeneity (Sanchez-Vega et al., 2018). Second,

variability can also be observed within tumors, also termed as intra-tumoral heterogeneity

(Marusyk et al., 2012). Third, under therapeutic pressure, tumors adapt through (epi-)

genetic changes, which is defined as temporal heterogeneity (Venkatesan et al., 2017; Yu

et al., 2021). With this knowledge in mind, therapy has gradually shifted from a one-size-

fits-all approach towards precision oncology. The latter involves analysis of (epi)genome,

transcriptome and proteome biomarkers that inform clinicians about the molecular

characteristics of the tumor before and after therapy and aids in an improved diagnosis,

prognosis, therapy stratification, and monitoring of the patient (Schwaederle et al., 2015).
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However, an important challenge in precision oncology is how to

predict the drug sensitivity of a certain tumor based on its

molecular make-up.

As it is ethically and practically unfeasible to compare the

sensitivity of a panel of drugs on human cancer patient, different

types of patient-derived cancer models such as cell lines,

organoids, and patient-derived xenografts (PDX) are used

instead. Cancer cell lines are the easiest to handle, and in

general they also recapitulate the (epi)genetic and

transcriptomic alterations as observed in the actual tumors

(Kinker et al., 2020). These features make cell lines a widely

used platform for drug screening (Tables 1 Tables 2 Tables 3).

Large panels of cell lines that include a wide range of cancer types

have been characterized at different omics levels (Barretina et al.,

2012; Ghandi et al., 2019; Nusinow et al., 2020). Also, drug

response profiles have been determined on these cell lines for a

broad range of drugs (NCI60 (Shoemaker, 2006), CCLE

(Barretina et al., 2012), GDSC (Garnett et al., 2012; Yang

et al., 2012), CTRP (Rees et al., 2016), gCSI (Haverty et al.,

2016)). These rich data resources can be harnessed to associate

the phenotype (drug response) with the genotype of the tumors.

Tables 1 Tables 2 Tables 3 provides a systematic view of the data

resources available in pharmacogenomics that are supportive for

predictive modeling of cell lines for drug sensitivity.

To train computational prediction models for drug

sensitivity, both omics and drug sensitivity data of cell lines

are used. The trained models can afterwards be applied on omics

data of human tumors to predict drug vulnerabilities for

individual patients (Lee et al., 2007). Various computational

strategies are used to develop drug sensitivity prediction

models, mainly machine learning based methods which

include matrix factorization, support vector machines, random

forests, and deep learning (Dong et al., 2015; Kim et al., 2019;

Lind and Anderson, 2019). These methods generally use

molecular information (omics data for a certain panel of

genes) of the cell lines with structural and molecular

information of the drug as input features, and the drug

sensitivity as output/label for training (illustrated in Figure 1

for deep learning) (Menden et al., 2013).

Deep learning (DL) is a subset of machine learning that is

based on artificial neural networks (ANN) (Goodfellow et al.,

2016). The name and structure of ANN are inspired by the brain,

simulating the way the biological neural network system works to

process stimuli. An ANN is composed of an input layer, one or

more hidden layers, and an output layer. When the ANN is

composed of many hidden layers, it is referred to as a Deep

Neural Network (DNN). One of the advantages of DNNs is that

they can handle high-dimensional and noisy data. Furthermore,

they learn input-output relationships incrementally through

their hidden layers by transforming low-level features (raw

data) to high-level features (embeddings), capturing nonlinear

and complex relationships, which then are useful for output

prediction. These capabilities give them superior predictive

performance compared to many conventional machine

learning algorithms. However, in most DL approaches, the

data transformation inside the neural network is very complex

and lacks interpretability. Therefore, the DLmodels are black box

models, where the logic behind the predictions is hidden.

In this article, we review the recently published interpretable

deep learning methods for drug sensitivity prediction that can be

applied in precision oncology. We present how the

TABLE 1 An overview of drug sensitivity datasets. The table represents drug sensitivity datasets comprising of number of cell lines tested across panel
of drugs, resulting in number of cell line–drug pair drug sensitivities, which is measured using a specific assay.

Dataset Cell lines Drugs Drug responses Assay

NCI60 60 52,671 3,780,148 Sulphorhodamine B

CCLE 479 24 11,670 CellTitre Glo

GDSC I 970 403 333,292 Resazurin or Syto60

GDSC II 969 297 243,466 CellTitre Glo

CTRP I 242 185 50,531 CellTitre Glo

CTRP II 860 481 395,263 CellTitre Glo

gCSI 409 16 6,455 CellTiter Glo

TABLE 2 An overview of the major omics datasets available for the
cancer cell lines. The tabulated omics dataset from different
studies are available in the DepMap portal (DepMapThe Cancer
Dependency Map).

Dataset Cell lines Number of features

Transcriptomics (RNAseq) 1406 53,971 genes

Mutation 1771 18,784 genes

Copy number variation 1766 25,368 genes

Methylation (RRBS) 843 20,192 TSS sites

54,531 CpG clusters

Proteomics (RPPA) 899 214 proteins

Metabolomics 928 225 metabolites

CRISPR gene dependency 1086 17,386 genes

Global Chromatin Profiling 897 42 histone modifications
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TABLE 3 An overview of drug datasets.

Dataset Data available

STITCH (Kuhn et al., 2007) Drug-protein interaction information, chemical structure (SMILES and InChIKey)

Drug Bank (Wishart et al., 2006) Drug target information, chemical structure (SDF)

PubChem (Kim et al., 2021) Molecular properties, chemical structure (SDF, SMILES, InChi, InChiKey)

HMS LINCS KINOMEscan (HMS LINCS KINOMEscan dataa) Drug binding strength across ~440 kinases

FIGURE 1
Schematic representation of a DL based model to predict drug sensitivity using omics features of cell lines and structural and molecular
properties of drugs. (A) (left top)—High-throughput drug screening of cell lines across different drugs provides data for modeling drug sensitivity. (B)
(left bottom)—Gene mutation, RNA expression, DNA copy number variation, and/or DNAmethylation profiles for a given panel of genes are used as
features to represent cell lines, and structural information like SMILES or Hashed Morgan fingerprint, molecular properties like molecular
weight, solubility, lipophilicity, etc. or drug target information (e.g. among a set of genes, the drug targets vs. non-targets are represented in a binary
form) are used as features to represent drugs in the DL model. (C) (right top)—Workflow demonstrating the training process of the DNN which
involves adjustment of connection weights between the neurons to minimize the prediction error. (D) (right bottom)—A deep neural network is
trained using the cell lines and drug features to predict drug sensitivity.
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interpretability of DL models could be an added value in

rendering biological insights. We briefly introduce

interpretability techniques and also describe and comment on

interpretable DL methods for drug sensitivity prediction which

include DrugCell (Kuenzi et al., 2020), HiDRA (Jin and Nam,

2021), PathDNN (Deng et al., 2020), PaccMann (Manica et al.,

2019), consDeepSignaling (Zhang et al., 2021), DEERS (Koras

et al., 2021), ParsVNN (Huang et al., 2021), DNN

(Sakellaropoulos et al., 2019) and SWnet (Zuo et al., 2021).

We address the factors that account for both strengths and

limitations of these methods and discuss suggestions for

further improvement.

Interpretable deep learning

Despite the superior predictive performance of DL models,

the lack of interpretability is an important shortcoming

compared to other machine learning models. The model

interpretability can be an essential added value. Firstly, it can

explain how the model processes the input data to make the

prediction. In addition, it can indicate if the model is paying

proper attention to crucial input features which potentially

influence the output prediction. Lastly, in case of prediction

errors, it can explain why and how a model has malfunctioned

and point to biases or artifacts present in the input data

(Explainable, 2019). These interpretability features, in case of

a drug sensitivity prediction model, can provide mechanistic

insights to explain the drug mechanism of action (MOA) and the

confidence in the prediction system. Hence, it will help the

clinician with risk management for designing clinical trials,

based on consistency between their expert knowledge and the

model interpretability.

In recent years, many efforts have been made to develop

strategies and techniques to interpret black box DL models.

Three commonly used strategies are probing, perturbation,

and surrogation (Azodi et al., 2020). The probing of a model

is meant to discern the logic that the model has learned during

the training. The perturbing strategy involves removing an input

feature to see the effect on the output. The surrogating strategy is

based on using an inherently interpretable model (e.g. a linear

model) to approximate a black box model. Based on the intrinsic

properties of a model, the interpretation can be performed at

different levels, i.e. global, semi-global and local, and at different

stages i.e. ad hoc and post hoc (see Table 4 for definitions).

Nearly all the interpretable DL based drug sensitivity

prediction studies available are based on the probing strategy.

Since it is easier to describe the interpretability strategy using

example methods, we only focus on the probing strategy in this

review. The reason why probing is widely applied is that it can

explain how the input data is processed inside the neural

network, what input features got more attention to predict a

specific output, and that it can justify the relevance of

transformed data at each node/layer of the neural network

(explained in Figure 2). There are mainly three techniques

used in the probing strategy i.e. embeddings, weights, and

gradients, which we will address in detail in the next section.

Three classes of probing based
interpretable deep learning

Embeddings

The embedding at a neuron can be regarded as the

representation of inputs of the neuron in the form of its

output. Therefore, the embedding at neuron can be

represented by the neuron output. The neuron embedding

sometimes, is also referred to as the neuron state or the

activation level (Azodi et al., 2020; Deng et al., 2020; Kuenzi

et al., 2020; Lin and Lichtarge, 2021). The output of the neurons

can be used as a means to interpret the model and this is useful

when the complete or a part of the ANN architecture is based on

some constrained connections between the neurons e.g. some

form of biological organization where a neuron node or neurons

in a layer represent an actual pathway or biological process

(illustrated in Figure 2).

DrugCell
Kuenzi et al. developed Drugcell for predicting drug

sensitivity in the context of cancer by adopting principles of

the previously published method DCell which predicts yeast cell

growth from its gene deletion genotype (Ma et al., 2018). The

DrugCell model is developed to fulfil two objectives. The first

objective is to predict drug response for a given drug on a given

cell line using mutational profiles of the cell line and the chemical

structure of the drug as features. The second objective is to use

the trained model to explain the drug MOA, suggesting

important pathways implicated in the drug response. The

DrugCell model architecture consists of two ANNs, one for

the genotype and another for the drug structure that are

combined to predict the drug sensitivity. The ANN for the

drug structure is made up of fully connected layers (i.e. not

constrained). The ANN for the genotype is structured in such a

way that it mirrors the hierarchy of biological processes inside a

cell, by constraining the connections inside the ANN using the

Gene Ontology hierarchical information. The constrained

connections help to represent the hidden layers as actual

biological processes and render them biologically interpretable.

After the model is trained on the whole dataset, a post hoc

interpretability analysis is performed by computing the Relative

Local Improvement in Predictive Power (RLIPP) score for each

of the GO biological process term layers in the genotype ANN.

The RLIPP scoring system gives a semi-global interpretation, in

which it ranks a set of GO terms as important signatures for a

specific drug across all cell lines (cancer types). However, this
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TABLE 4 Glossary of terms related to the interpretation of machine/deep learning models.

Global interpretation Interpretation explaining predictions of the whole dataset

Example: All cell lines vs. all drugs

Semi-global interpretation Interpretation explaining predictions of a subset of the dataset

Example: all cell lines vs. one drug, or vice versa

Local interpretation Interpretation explaining prediction of an instance of the dataset

Example: a cell line—drug pair combination

Ad hoc interpretation Interpretation at the time of prediction due to the model’s inherent ability

Example: Using neural embeddings that emerged during drug sensitivity prediction to identify the activity of genes and pathways to
explain the drug mechanism of action (HiDRA (Jin and Nam, 2021))

Post hoc interpretation Interpretation that is based on statistical tests performed on the prediction results or the learned model parameters

Example: Gene set enrichment analysis on learned model weights to identify the pathways involved inMOA for a given drug (DNN
(Sakellaropoulos et al., 2019))

FIGURE 2
An illustration to show how embeddings at neurons of a biologically constrained ANN can be used for interpretation. In the left part, the densely
connected ANN (black box model) is very complex, which makes it difficult to understand how the input is processed to arrive at the output. In the
right part, the sparsely connected ANN based on some biological hierarchy of genes, pathways and biological processes makes the data processing
visible and also explains the relevance of each neuron and its output. For example, the node of Gene 3 has a high activation level, and the signal
only from the Gene 3 node is passed to the Pathway 2 node. The latter has a low activation level which can be interpreted that the pathway is inactive,
and Gene 3 has a suppressing effect on Pathway 2.
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RLIPP scoring may not be a good way to rank GO biological

processes in all cases because scores of biological processes may

not be comparable among each other in order to identify the top

processes (illustrated in Figure 3).

The authors validated the model interpretability using

external RNA-seq data of the 25 most sensitive versus the

25 most resistant cell lines against the drug docetaxel. For

this, they performed a differential gene expression analysis

and GO Biological Process enrichment using DAVID

(Huang et al., 2009a; Huang et al., 2009b). The obtained list

of overrepresented pathways was then compared with the list of

pathways obtained from the model post hoc analysis and

notably, they were found to be distinct. However, the

authors claimed that the experimental validation was

convincing. As the model suggested “Response to cAMP” as

a top pathway, they treated A427 cells with three different

treatments–paclitaxel, the glycolysis inhibitor 2-deoxyglucose,

or a combination of the two, and found that the combination

was substantially more effective than either individual

compound.

HiDRA
Jin et al. introduced a DL model called Hierarchical network

for Drug Response prediction with Attention (HiDRA) to predict

drug sensitivity of cancer cell lines (Jin and Nam, 2021). In the

ANN architecture, they employed a hierarchical attention

network that showed highly attended biological pathways and

their member genes related to the drug response. The

hierarchical attention here means while passing input data

from gene-level to pathway-level and then from pathway-level

to output in the neural network, the attention mechanism figures

out which part of the data is more important than others at the

respective levels for the prediction. The model consists of four

ANNs: a drug network, a gene-level network, a pathway-level

network, and a response prediction network. The gene-level

network and pathway-level network have an attention module

for calculating the importance of genes and pathways,

respectively. The model uses gene expression profiles as

features to represent the cell lines and the drug structure in

the form of hashed Morgan fingerprint as features to represent

the drugs.

FIGURE 3
An illustration of how the RLIPP score can be non-informative in a given setting. The GO biological processes BP4 and BP5 are at the same
hierarchical level and their respective RLIPP scores are computed. Although the predictive power of BP4 is greater than BP5, BP5 has a greater RLIPP
score than BP4. Therefore, a high RLIPP score for a biological process does not guarantee that it will be more informative and important for the
prediction, rather it will only say how much the biological process has more or less predictive power than its children processes. The color
scheme of the nodes in the neural network represents the flow of signals from the children biological processes to the parent biological process and
the color fusion symbolizes the fusion of signals from the children to the parent node. Each node here represents a layer in the genotype ANN and the
name, and the structure of the layers are based on GO hierarchy of biological processes.
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HiDRA suggests a set of pathways and the pathway member

genes that are important behind a specific cell line-drug response

prediction: hence this approach performs interpretation at the

local level. This is realized by looking at the attention scores of

pathways and their member genes derived from the pathway-

level network and the gene-level network, respectively.

The validation of the interpretability was done by performing

a case study with Gefitinib and Rapamycin on the LB2241-RCC

cell line. The log fold-change of the genes’ attention score was

computed for Gefitinib in comparison to Rapamycin. It was

found that the target genes of Gefitinib had high positive log fold-

change, whereas the target genes of Rapamycin had high negative

log fold-change, inferring that the respective target genes

received more attention and are important for the respective

predictions. The case study only showed a gene-level analysis,

skipping pathway level analysis. Moreover, the attention scores

were not directly used (contrary to the claim), rather their relative

change between two drugs was used to identify the important

genes behind the drug sensitivity prediction.

PathDNN
Deng et al. developed a Pathway-guided Deep Neural

Network (PathDNN) to predict the drug sensitivity in cancer

cell lines (Deng et al., 2020). The ANN architecture is structured

by constraining the connections between the gene layer (input

layer) and the pathway layer (first hidden layer) based on gene-

pathways relations obtained from the KEGG pathway database.

The model input layer is divided into two parts. The first part

takes gene expression data of a certain set of genes, representing

the cell line features. The second part takes binary data of a

certain set of genes indicating whether they are drug targets or

not, to represent drug features. The drug targets were retrieved

from the STITCH database (Kuhn et al., 2007).

The model interpretation is based on post hoc analysis of the

neuron output of the pathway nodes in the pathway layer. A

comparison is made between the output of the pathway nodes

with drug treatment and those without drug treatment and

quantified in terms of log2 fold-change. The no-drug

treatment setting is made by setting drug features equal to

zero. For a given cell line–drug pair, the log2 fold-change is

computed for all pathway nodes and the pathways with the

highest log2 fold-change are considered as important pathways

responsible for drug response prediction. The model is locally

interpretable as it can explain a single cell line–drug pair.

The authors validated the interpretability performance of

their method with a case study of eight rhabdomyosarcoma cell

lines treated with the CTK7H7014 drug. One important remark

is that the specified drug cannot be found back in any drug

database. Moreover, no gene target information is available for

the drug and therefore the mode of action is not known. In the

case study, the log2 fold-change (drug vs. no-drug) of the neuron

output of 323 pathways was computed for each of the eight cell

lines. This analysis revealed that the Hsa05202 pathway, which is

related to rhabdomyosarcoma, frequently occurred among the

top pathways across the eight cell lines that were treated with the

drug. However, the other top pathways were not further

discussed in the study.

PaccMann
Manica et al. adopted their previous work on the Prediction of

AntiCancer Compound sensitivity with Multimodal Attention-based

Neural Networks (PaccMann) and modified it with a novel

architecture that uses attention based multiscale convolution

encoders (Manica et al., 2019). The model uses two encoders, a

gene expression encoder and a SMILES encoder (Weininger, 1988).

The input to the gene expression encoder is gene expression profiles of

a set of most informative genes. These genes are selected using a

network propagation scheme carried out on the STRING PPI

network. For each drug, the weights initialized (=1) to the reported

drug targets are diffused over the STRING network, resulting in an

importance distribution over the genes. The important genes obtained

for each of the drugs are merged to form a set of most informative

genes. The SMILES encoder takes SMILES embeddings plus the

output embeddings from the gene expression encoder as input. The

output from both the encoders are further connected to a feed-

forward layer to predict drug sensitivity. As a result of using the output

of the gene expression encoder into the SMILES encoder, for a given

cell line across all the drugs, the gene attention values remain constant

and the attention values over SMILES encoding change.

The model interpretability is based on a post hoc analysis of

gene attention values from the gene expression encoder. The

genes that are frequently attended across all cell lines are used for

pathway enrichment analysis to investigate which pathways are

induced by the drugs. The analysis identified that the apoptosis

signaling pathway is elicited in general by all anti-cancer drugs

present in the dataset. Since this interpretation assumes that

every drug has the same drug MOA across all cell lines, it gives a

global interpretation.

The authors presented a case study to validate the method

based on the sensitivity of the MEG-01 cell line for Imatinib and

Masitinib. They showed how the model predicted differently

between two different drugs on the same cell line. Based on

attention values over the SMILES encoding, they determined

what molecular substructures of the drug were important for the

sensitivity prediction. They also aimed to show what genes were

important for the prediction for a given cell line-drug pair.

However, this may be misleading because for a given cell line

the model will show the same attended genes across all drugs, so

it will not be possible to distinguish drug-specific MOA among

different drugs.

Gradient

The feature importance score based on gradient is

determined by calculating the change in the predicted
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output upon a small change in an input feature, using partial

derivatives (illustrated in Figure 4). The gradient-based

approach has the limitation that it is not useful when small

changes in the feature value have no effect on the output

prediction. Moreover, individual features may sometimes not

have any effect on the output but may have an effect when

combined. Therefore, this approach only explains the

individual feature relationship to the output, which is a

second limitation. However, this technique is applicable to

all kinds of ANN architecture and hence it is a flexible

approach.

consDeepSignaling
Zhang et al. developed a constrained neural network

architecture guided by signaling pathways, called

consDeepSignaling for performing drug response prediction

on cancer cell lines (Zhang et al., 2021). The ANN is

structured by constraining the connections between the input

layer and the pathway layer (first hidden layer) based on gene-

pathways relations obtained for all available 46 signaling

pathways from the KEGG pathway database. The model uses

a set of genes related to the pathways as features, where each gene

is represented by its gene expression, copy number variation, and

drug target-gene binary call.

The post hoc interpretability analysis of the model is based on

investigating the importance of signaling pathways behind the

drug response prediction using the SmoothGrad model in the

“iNNvestigate” python package (Alber et al., 2018). This tool is

used to extract the gradients of the pathway layer in the trained

model to score the importance for each of the pathways. The

model interpretability does not explain the drug MOA but rather

reported what signaling pathways are important across all

predictions, thus providing a global interpretation.

The publication of Zhang et al. did not attempt to include

validation for the interpretability performance of the model.

DEERS
Koras et al. developed a neural network recommender

system for kinase inhibitor sensitivity prediction, called Drug

Efficacy Estimation Recommender System (DEERS) (Koras

et al., 2021). The ANN architecture contains two

autoencoders to represent cell line and drug features into

low dimensional representation and a feed forward ANN to

combine them for drug response prediction. The model uses

gene expression, binary mutation calls, and tissue type

information as features to represent the cell lines, and

binding strength of the drug across 294 protein kinases

obtained from HMS LINCS KINOMEscan data resource as

features to represent the drugs (HMS LINCS KINOMEscan

data). This method can be considered a hybrid of both gradient

and embeddings based interpretation.

The post hoc analysis for interpretation is done at the

feature and the biological process level. At the feature level,

for a given drug, the input features’ attribution towards the final

output are computed for each cell line separately using the

Integrated Gradients method (Sundararajan et al., 2017). The

attribution scores are then averaged across all cell lines. The

averaged attribution gives a semi-global interpretation as it

cannot explain at a specific cell line level, but instead explains

for all cell lines together for a given drug. At the pathway level,

each dimension of the low dimensional representation from the

cell line autoencoder is assigned to biological processes by

correlating it with the expression of each gene across all cell

lines, followed by GSEA on the ranked correlation values. The

same dimensions are also correlated with the sensitivity for a

given drug across all cell lines, to associate drug response with

biological processes.

The authors used a case study with three drugs (PHA-

793887, XMD14-99, and Dabrafenib) to validate the

interpretability of the method. They computed the

averaged feature attribution to show the top cell line and

drug features important for the prediction for a given drug.

They observed that the drug target gene was present among

the top drug features for all three drugs, but the top cell line

features did not include relevant genes (cancer or tissue type

related gene), except for Dabrafenib. They also showed which

biological processes best represented the drug sensitivity

across all cell lines for a given drug, by performing a

correlation analysis between the predicted drug sensitivity

and hidden dimensions embedding. Almost the same

biological processes (hidden dimensions) are associated

with the drug sensitivity for the three drugs. However, the

authors did not explain how these biological processes are

related to the drug sensitivities for each of the drugs based on

literature evidence.

Weights

The connection weights between an input layer neuron,

representing a specific cell line or drug feature, and the

neurons of the first hidden layer can be used to quantify the

importance of this feature by summing over the learned weights

between them (illustrated in Figure 5). Therefore, the first hidden

layer is interpretable based on weights and the remaining part of

the ANN has no role in the interpretability. The features with

high weights could be interpreted as the more important

components for the prediction. The feature importance scores

based on weights can be misleading when features are on

different scales, when positive and negative connection

weights cancel each other out, or when a connection has a

large weight but is rarely activated.

ParsVNN
Huang et al. introduced parsimony visible neural

network (ParsVNN) for cancer type specific drug sensitivity
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prediction and interpretation (Huang et al., 2021). The authors

believed that the biological hierarchy used in DrugCell is

agnostic to the downstream prediction task, as some of the

functional components in the biological hierarchy are not

involved in the biological process related to the drug

sensitivity phenotype. The conventional learning algorithm

used in DrugCell also does not distinguish the redundant

and irrelevant functional components which may permit

them to make contribution towards the prediction.

Therefore, such redundant and uninformative functional

components in the visible neural network architecture can

lead to overfitting and also result in misleading

interpretations. To address this problem, the authors have

built cancer-type specific model by pruning the redundant

and irrelevant components for that cancer-type. To do this,

they introduced sparse inducing penalty terms to the loss

function and employed proximal alternative linearized

minimization (PALM) algorithm as an optimization method

to minimize the loss function and learn the model parameters.

The penalty terms help to prune the components with less

important weights. The cancer-type specific model is achieved

by training the model with the cancer-type specific training

FIGURE 4
An illustration to show how the gradient-based approach scores the input features which are then used for making the interpretation. Here [x1,
x2, x3] and [x4, x5, x6] represent cell line and drug features respectively. Y represents drug sensitivity. F represents a function in the form of a neural
network that takes [x1, x2, x3, x4, x5, x6] as input and returns Y as an output. The gradient of the model with respect to each of the input features is
computed to find the attribution of the features towards the output. ∇F(xi) represents the gradient of the function at xi which is also equal to the
partial derivative of the function with respect to xi. The computed attribution score for a feature tells us how much the feature contributes to a
prediction.

FIGURE 5
An illustration of how connection weights between the neurons in an ANN can be used for interpretation. In this figure, the neuron weights
between the input layer and the first hidden layer are used to identify important features determining the prediction.
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data. The architecture and features used in ParsVNN are exactly

the same as in DrugCell, which includes the same genes and

subsystems (biological process GO terms) to build the visible

neural network.

The interpretability for a given cancer-type specific model is

based on post-hoc analysis to identify the non-zero connection

weights between the components. This reveals the components

i.e. the gene nodes and the subsystem nodes that remain in the

parsimonious architecture which contribute to the drug

sensitivity prediction. Since this approach explains the

predictions for a given cancer entity across a panel of drugs, it

gives a semi-global interpretation.

The authors validated the interpretability for five different

cancer types (stomach, breast, pancreatic, kidney and liver cancer)

at both gene level and subsystem level. The genes and subsystems

nodes remained in a cancer-type specific parsimonious model

were hypothesized to be the driver genes and the prognostic

biological processes for that cancer type, respectively. The

authors validated the first part of the hypothesis by checking

the degree of overlap between the identified genes and the cancer-

specific driver genes reported by IntOGen pipeline (Martínez-

Jiménez et al., 2020). The second part was validated by analyzing

each of the leaf subsystems (GO terms) in cBioPortal’s survival

analysis with the cancer-type specific samples. The samples were

divided into two groups, where one group had the samples that did

not contain any genemutated among the member genes of the GO

term, and the other contained at least one genemutated among the

member genes of the GO term. The authors found that some of the

GO terms that had its member gene(s) mutated significantly

influence the clinical outcome.

DNN
Sakellaropoulos et al. developed a conventional deep neural

network model (DNN) using gene expression data for a panel of

highly variable genes as features to predict drug response

(Sakellaropoulos et al., 2019). For each drug, the model

training is performed on cancer cell lines, and the prediction

is done on cancer patients.

The interpretability based on post hoc analysis of the model

assigns biological meaning to the nodes of the first hidden layer.

The weights are extracted from the nodes of the first hidden layer

that are connected to gene nodes in the input layer. The weights

are used to perform gene set enrichment analysis and the

normalized enrichment score of every node is calculated

against every pathway in the Reactome database. The

normalized enrichment score for each significant pathway

across the nodes of the first hidden layer is plotted as a

heatmap. The nodes are clustered into subgroups, where each

subgroup shows its signature of enriched pathways, suggesting

possible drug mechanisms. The training and interpretability

analysis is done for each drug separately. The interpretation is

qualitative because the drug signature pathways are inferred from

cluster patterns. The authors claimed that the pathways inferred

from the analysis for cisplatin, paclitaxel, and bortezomib, are

consistent with the literature evidence.

SWnet
Zuo et al. developed a DL predictive model called Self-

attention gene Weight layer Network (Swnet), which uses

gene expression, gene mutation, and drug structure data to

predict drug sensitivity (Zuo et al., 2021). The model consists

of a gene branch and a drug branch. The drug branch uses a

graph neural network to convert the 2D representations of

chemicals into embeddings in the latent space. The gene

branch uses a gene weight layer in the form of a weight

matrix to integrate the information of gene expression and

gene mutation. The weight matrix is based on self-attention

formed on the chemical similarity between all drugs, and this

accounts for the heterogeneity of the gene-drug relationship. The

integrated information is then processed using a convolution

neural network leading to transformation into embeddings in the

latent space. The embeddings from the drug and genomic

branches are integrated and processed by another CNN to

transform it into a unified output.

The model interpretation is based on post hoc analysis of the

gene weight layer, where the genes with a specific weight = 1 are

identified for each drug. The authors expected that the proteins

encoded by these genes would interact with the drug targets and

consequently a protein-protein interaction database can be used

to validate the existence of the interaction.

The authors performed a validation of the approach with

case studies on BRAF and BCL2 inhibitors. The genes

identified in these case studies (BRAF and BCLS) were

shown to be only two edges away from the drug target

gene in the PPI network, which was interpreted as a

validation by the authors. As shown in supplementary data,

most of the genes identified for all other drugs were found not

to be related to the drugs or the targets.

Discussion

While DL methods have proven their value in precision

oncology applications (Coudray et al., 2018; Campanella et al.,

2019; Chen et al., 2020), lack of interpretation of these black box

models makes it difficult to implement them in clinical practice.

In the past years, research has shifted focus toward interpretable

DL and several methods have been developed to predict drug

sensitivity. Table 5 gives an overview of the different published

approaches. The methods cover different techniques for

interpretation of the models, and each of them has certain

advantages and limitations that we will discuss in this section.

However, it is important to mention that it is not possible to

precisely compare the methods based on their predictive

performance, as they use different metrics and cross validation

schemes for performance evaluation.
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TABLE 5 Summary of studies describing interpretable deep learning approaches for drug sensitivity prediction. It includes the used datasets and types, the validation approach, the model drug sensitivity
prediction performance, the model interpretability parameters and the programing language and packages used to develop the model. DrugCell, PathDNN and PaccMann have online web portal
whichmakes their usability easier for a clinicianwith no knowledge of programming. Abbreviations: GMBCP, Genemutation binary call profile; GEP, Gene expression profile; CNVP, Copy number variation
profile; HMFP, Hashed Morgan Fingerprints; DTBC–Drug Target Binary Call; DBS, Drug binding strength; CV, cross-validation; LOCOV, Leave one cell line out validation; PCC, Pearson correlation; R2,
Coefficient of determination; Rho, Spearman correlation; MSE, Mean squared error.

Sl.
No.

Model Data
type

Dataset Validation
split

Independent
set validation

Performance Neural
network
type

Interpretability
technique

Type
of interpretability

Programming
language,
software
package(s)
and/or
online
web portal

1 DrugCell Cell line: GMBCP
(3008 genes)

GDSC and
CTRP

a5-fold CV No Rho = 0.80 Constrained Embeddings Semi-global
Interpretation

Python

Drug: HMFP 1235 cell lines
and 684 drugs

PyTorch

Drug sensitivity:
Normalized AUC

Post hoc analysis drugcell.ucsd.edu

2 HiDRA Cell line: GEP
(4592 genes)

GDSC1000 5-fold CV GDSC1 PCC = 0.9307 Constrained Embeddings Local Interpretation Ad hoc analysis

Drug: HMFP GDSC2 Python

Drug sensitivity:
IC50

968 cell lines,
235 drugs

CCLE R2 = 0.8647 Keras

3 PathDNN Cell line: GEP
(537 genes),

GDSC 10-fold CV CCLE R2 = 0.42 Constrained Embeddings Local Interpretation Python

Drug: DTBC
(741 genes)

970 cell lines,
250 drugs

LOCOV PCC = 0.798 Post hoc analysis PyTorch

Drug sensitivity:
Normalized AUC

pathdnn.denglab.org

4 PaccMann Cell line: GEP
(2128 genes)

GDSC 25-fold CV No Test performance on
lenient splitting

Unconstrained Embeddings Global Interpretation Python

Drug: SMILES 985 cell lines,
208 drugs

PCC = 0.9284 Ad hoc analysis Tensorflow

Drug sensitivity:
IC50

Lenient split
with 5-
fold CV

R2 = 0.8619 ibm.biz/
paccmann-aas

5 consDeepSignaling Cell line: GEP,
CNVP (929 genes),
Drug: DTBC
(929 genes)

GDSC 5-fold CV No PCC = 0.85 Constrained Gradient Global Interpretation Python

Drug
sensitivity: AUC

791 cell lines,
24 drugs

Post hoc analysis Keras, iNNvestigate

6 DEERS GDSC CCLE Unconstrained Gradient Python

(Continued on following page)
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TABLE 5 (Continued) Summary of studies describing interpretable deep learning approaches for drug sensitivity prediction. It includes the used datasets and types, the validation approach, the model drug
sensitivity prediction performance, themodel interpretability parameters and the programing language and packages used to develop themodel. DrugCell, PathDNN and PaccMann have online web portal
which makes their usability easier for a clinician with no knowledge of programming. Abbreviations: GMBCP, Genemutation binary call profile; GEP, Gene expression profile; CNVP, Copy number variation
profile; HMFP, Hashed Morgan Fingerprints; DTBC–Drug Target Binary Call; DBS, Drug binding strength; CV, cross-validation; LOCOV, Leave one cell line out validation; PCC, Pearson correlation; R2,
Coefficient of determination; Rho, Spearman correlation; MSE, Mean squared error.

Sl.
No.

Model Data
type

Dataset Validation
split

Independent
set validation

Performance Neural
network
type

Interpretability
technique

Type
of interpretability

Programming
language,
software
package(s)
and/or
online
web portal

Cell line: GEP
(202 genes), GMBCP
(21 genes), tissue
type

aTrain-
~42,000 instances

Using IC50,
PCC = 0.82

Semi-global
Interpretation

Drug sensitivity: DBS
(across 294 protein
kinases)

922 cell lines
and 74 drugs

Test and Validation -
~5000 instances

Using AUC Post hoc analysis PyTorch

Drug Sensitivity:
Normalized IC50,
and AUC

PCC = 0.76 Captum

7 ParsVNN Cell line: GMBCP
(3008 genes)

GDSC and
CTRP

Train:Test- 80:20% No NA Constrained Weights Semi-global
Interpretation

Python

Drug: HMFP 205 cell lines
and 684 drugs

5-fold CV Post hoc analysis Pytorch

Drug sensitivity:
Normalized AUC

8 DNN Cell line: GEP, Drug
Sensitivity: IC50

GDSC 5-fold CV Clinical data NA Unconstrained Weights Semi-global
Interpretation, Post hoc
analysis

R, H2O

1001 cell lines,
251 drugs

9 SWnet Cell line: GEP
(1478 genes)

GDSC Train:Test- 90:10%,
LOCOV

No GDSC Unconstrained Weights Semi-global
Interpretation, Post hoc
analysis

Python, PyTorch

GMBCP
(1478 genes)

983 cell lines,
221 drugs

MSE = 0.9384

Drug: Molecular
graph

CCLE R2 = 0.8683

Drug Sensitivity:
IC50

469 cell lines,
24 drugs

CCLE

MSE = 1.1604, R2=
0.7283

aDrugcell and DEERS are trained on the full dataset before the interpretability step.
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The comparison of the different methods indicates that

the important ingredients of the interpretable DL models

for drug sensitivity prediction are the input data, the ANN

architecture, and the ontological information on genes and

pathways.

The quantity and quality of the training/testing datasets

influence the predictive performance. Xia et al. showed

that machine learning models trained on the CTRP dataset

(887 cell lines and 544 drugs) showedmore accurate predictions

than models trained on GDSC (cell lines 1075 and

249 drugs) (Xia et al., 2022). First, GDSC shows more

replicate variability in drug response assay than CTRP.

Second, CTRP contains a larger number of drugs and cell

lines, allowing the models to better capture a large

diversity of relationships between cell processes and drugs.

Moreover, multiple omics data are available for cell

lines, and this can be beneficial in the learning and

improving the model performance (Malik et al., 2021).

However, not all omics and all drug sensitivity assays are

characterized for all cell lines, which could be a slight

limitation for not having muti-omics training data as large

as single-omics training data.

The ANN architecture determines whether the

interpretation is done in a post hoc or ad hoc manner and

what resolution of interpretation can be achieved. For example,

HiDRA has the ad hoc ability to render interpretation at

the time of prediction, at both pathway and gene-level

resolution. The design of an ANN architecture also depends

on the objective of the study. For example in PaccMann,

the architecture is designed to explain which drug

substructure is responsible for drug sensitivity, whereas in

other methods the architecture is designed to explain what

pathways or genes are responsible for drug sensitivity.

The gene and pathway ontological information in the form

of pathways gene set and pathways hierarchical relationships

that are used to design the ANN determines the quantity

of information i.e. number of features and the depth and the

type of interpretability. For example, HiDRA uses the highest

number of genes among all the methods, which could provide

more information to the model for a deeper resolution of

the interpretation. Another example is consDeepSignalling,

where the authors wanted to explain the prediction in terms

of signaling pathways, therefore they used signaling-pathway

gene sets to design the ANN.

Among the three probing techniques discussed, the

embeddings based approach is the most promising. It avoids

the pitfalls of the gradient and the weight based approach.

Moreover, the embeddings based approach can explain MOA

at gene, pathway, and biological process level behind a drug

response by allowing visible data processing inside the ANN. The

gradient and the weight based technique can only reveal the

important features behind a prediction. Moreover, the

comparison of the discussed DL methods also shows what

different levels of interpretation the three probing techniques

can confer. The embeddings based technique can offer local,

semi-global and global interpretation, using ad hoc and post hoc

analysis. It is important to note that ad hoc analysis can only

provide local interpretation. The gradient based technique can

also offer interpretation at all three levels, but it can only be

achieved through post hoc analysis. However, it can be applied

on both constrained and fully connected ANN. The weight based

approach can only offer global and semi-global interpretation

using post hoc analysis.

There are many issues regarding the validity of the

interpretability observed across the methods. Quantitative

methods for testing the accuracy of the predicted biological

interpretability are lacking. The interpretability remains mainly

at a qualitative level, checked with anecdotal evidence from the

literature. Moreover, genes or pathways in the top list that had

an agreement with the literature are prioritized, and other genes

or pathways are completely ignored. Another issue is that the

majority of the methods offer a semi-global interpretation to

explain the drug MOA, picturizing that all cancer types show

the same signature pathways for a given drug. Similarly, the

methods that had global interpretation showed that all

cancer types across all drugs will have the same signature

drug pathways.

The difficulty with the validation of interpretability is that

there is no good source of ground truth available. The

L1000 study can be considered a potential source for ground

truth, where it provides the drug signature pathways at different

drug concentrations and time points for a given cell line

(Subramanian et al., 2017). In the case of DL methods,

binarized labels or IC50/AUC values are used as a measure of

drug sensitivity for training and prediction. These drug

sensitivity metrics represent an overall effect of the drug,

therefore the interpretability will also explain the overall

MOA. Since the L1000 explains concentration and time point

specific drug MOA, it complicates its use as ground truth.

In one study, interpretable DL was already successfully

implemented in vitro studies, where its mechanistic insights

are used to design and test drug combination therapy and

drug repositioning (Kuenzi et al., 2020). As a proof of

concept, DrugCell used its interpretability to discover a

synergistic drug combination of Paclitaxel and 2-DG on

A427 cells and discovered in in vitro studies that the

combination was indeed more effective than either individual

compound.

Although there are already many studies on interpretable

DL in cancer research, there is still room for improvement. In

precision oncology, patient-specific treatment is the ultimate

goal; therefore, focusing on locally interpretable methods to

predict drug sensitivity at a personalized level is very relevant.

Moreover, to address drug resistance in the context of intra-

tumoral heterogeneity, interpretable models at the single

cell level would allow to gain ultraprecise mechanistic
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insights that could help in designing patient-specific drug

combinations. Last but not least, it is noteworthy to mention

that the developments of interpretable techniques in cancer

research could also be useful in other diseases which we have

not discussed in this review.
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