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Abstract

Long-read sequencing technologies are overcoming early limitations in accuracy and throughput, broadening their
application domains in genomics. Dedicated analysis tools that take into account the characteristics of long-read data
are thus required, but the fast pace of development of such tools can be overwhelming. To assist in the design and
analysis of long-read sequencing projects, we review the current landscape of available tools and present an online
interactive database, long-read-tools.org, to facilitate their browsing. We further focus on the principles of error
correction, base modification detection, and long-read transcriptomics analysis and highlight the challenges that
remain.
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Introduction
Long-read sequencing, or third-generation sequencing,

offers a number of advantages over short-read sequenc-

ing [1, 2]. While short-read sequencers such as Illu-

mina’s NovaSeq, HiSeq, NextSeq, and MiSeq instruments

[3–5]; BGI’sMGISEQ and BGISEQmodels [6]; or Thermo

Fisher’s Ion Torrent sequencers [7, 8] produce reads of up

to 600 bases, long-read sequencing technologies routinely

generate reads in excess of 10 kb [1].

Short-read sequencing is cost-effective, accurate, and

supported by a wide range of analysis tools and pipelines

[9]. However, natural nucleic acid polymers span eight

orders of magnitude in length, and sequencing them

in short amplified fragments complicates the task of

reconstructing and counting the original molecules. Long

reads can thus improve de novo assembly, mapping cer-

tainty, transcript isoform identification, and detection of

structural variants. Furthermore, long-read sequencing of

native molecules, both DNA and RNA, eliminates ampli-

fication bias while preserving base modifications [10].

These capabilities, together with continuing progress in
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accuracy, throughput, and cost reduction, have begun to

make long-read sequencing an option for a broad range

of applications in genomics for model and non-model

organisms [2, 11].

Two technologies currently dominate the long-read

sequencing space: Pacific Biosciences’ (PacBio) single-

molecule real-time (SMRT) sequencing and Oxford

Nanopore Technologies’ (ONT) nanopore sequencing.

We henceforth refer to these simply as SMRT and

nanopore sequencing. SMRT and nanopore sequencing

technologies were commercially released in 2011 and

2014, respectively, and since then have become suitable

for an increasing number of applications. The data that

these platforms produce differ qualitatively from second-

generation sequencing, thus necessitating tailored analy-

sis tools.

Given the broadening interest in long-read sequenc-

ing and the fast-paced development of applications and

tools, the current review aims to provide a descrip-

tion of the guiding principles of long-read data anal-

ysis, a survey of the available tools for different tasks

as well as a discussion of the areas in long-read anal-

ysis that require improvements. We also introduce the

complementary open-source catalogue of long-read anal-

ysis tools: long-read-tools.org. The long-read-tools.org

database allows users to search and filter tools based on

various parameters such as technology or application.
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The state of long-read sequencing and data
analysis
Nanopore and SMRT long-read sequencing technologies

rely on very distinct principles. Nanopore sequencers

(MinION, GridION, and PromethION) measure the ionic

current fluctuations when single-stranded nucleic acids

pass through biological nanopores [12, 13]. Different

nucleotides confer different resistances to the stretch of

nucleic acid within the pore; therefore, the sequence of

bases can be inferred from the specific patterns of current

variation. SMRT sequencers (RSII, Sequel, and Sequel II)

detect fluorescence events that correspond to the addition

of one specific nucleotide by a polymerase tethered to the

bottom of a tiny well [14, 15].

Read length in SMRT sequencing is limited by the

longevity of the polymerase. A faster polymerase for the

Sequel sequencer introduced with chemistry v3 in 2018

increased the read lengths to an average 30-kb poly-

merase read length. The library insert sizes amenable

to SMRT sequencing range from 250 bp to 50 kbp.

Nanopore sequencing provides the longest read lengths,

from 500 bp to the current record of 2.3 Mb [16], with

10–30-kb genomic libraries being common. Read length

in nanopore sequencing is mostly limited by the ability to

deliver very high-molecular weight DNA to the pore and

the negative impact this has on run yield [17]. Basecall-

ing accuracy of reads produced by both these technologies

have dramatically increased in the recent past, and the raw

base-called error rate is claimed to have been reduced to

< 1% for SMRT sequencers [18] and < 5% for nanopore

sequences [17].

While nanopore and SMRT are true long-read sequenc-

ing technologies and the focus of this review, there are

also synthetic long-read sequencing approaches. These

include linked reads, proximity ligation strategies, and

optical mapping [19–28], which can be employed in syn-

ergy with true long reads.

With the potential for accurately assembling and re-

assembling genomes [17, 29–32], methylomes [33, 34],

variants [18], isoforms [35, 36], haplotypes [37–39], or

species [40, 41], tools to analyse the sequencing data

provided by long-read sequencing platforms are being

actively developed, especially since 2011 (Fig. 1a).

A search through publications, preprints, online repos-

itories, and social media identified 354 long-read analy-

sis tools. The majority of these tools are developed for

nanopore read analyses (262) while there are 170 tools

developed to analyse SMRT data (Fig. 1a). We categorised

them into 31 groups based on their functionality (Fig. 1b).

This identified trends in the evolution of research inter-

ests: likely due to the modest initial throughput of long-

read sequencing technologies, the majority of tools were

tested on non-human data; tools for de novo assembly,

error correction, and polishing categories have received

the most attention, while transcriptome analysis is still in

early stages of development (Fig. 1b).

We present an overview of the analysis pipelines for

nanopore and SMRT data and highlight popular tools

(Fig. 1c). We do not attempt to provide a comprehensive

review of tool performance for all long-read applications;

dedicated benchmark studies are irreplaceable, and we

refer our readers to those when possible. Instead, we

present the principles and potential pitfalls of long-read

data analysis with a focus on some of the main types

of downstream analyses: structural variant calling, error

correction, detection of basemodifications, and transcrip-

tomics.

Basecalling
The first step in any long-read analysis is basecalling, or

the conversion from raw data to nucleic acid sequences

(Fig. 1c). This step receives greater attention for long

reads than short reads where it is more standardised and

usually performed using proprietary software. Nanopore

basecalling is itself more complex than SMRT basecall-

ing, and more options are available: of the 26 tools related

to basecalling that we identified, 23 relate to nanopore

sequencing.

During SMRT sequencing, successions of fluorescence

flashes are recorded as a movie. Because the template is

circular, the polymerase may go over both strands of the

DNA fragment multiple times. SMRT basecalling starts

with segmenting the fluorescence trace into pulses and

converting the pulses into bases, resulting in a contin-

uous long read (also called polymerase read). This read

is then split into subreads, where each subread corre-

sponds to 1 pass over the library insert, without the linker

sequences. Subreads are stored as an unaligned BAM file.

From aligning these subreads together, an accurate con-

sensus circular sequence (CCS) for the insert is derived

[42]. SMRT basecallers are chiefly developed internally

and require training specific to the chemistry version

used. The current basecalling workflow is ccs [43].

Nanopore raw data are current intensity values mea-

sured at 4 kHz saved in fast5 format, built on HDF5.

Basecalling of nanopore reads is an area of active research,

where algorithms are quickly evolving (neural networks

have supplanted HMMs, and various neural networks

structures are being tested [44]) as are the chemistries for

which they are trained. ONT makes available a produc-

tion basecaller (Guppy, currently) as well as development

versions (Flappie, Scrappie, Taiyaki, Runnie, and Bonito)

[45]. Generally, the production basecaller provides the

best accuracy and most stable performance and is suit-

able for most users [46]. Development basecallers can be

used to test features, for example, homopolymer accu-

racy, variant detection, or base modification detection,

but they are not necessarily optimised for speed or overall
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Fig. 1 Overview of long-read analysis tools and pipelines. a Release of tools identified from various sources and milestones of long-read sequencing.
b Functional categories. c Typical long-read analysis pipelines for SMRT and nanopore data. Six main stages are identified through the presented
workflow (i.e. basecalling, quality control, read error correction, assembly/alignment, assembly refinement, and downstream analyses). The
green-coloured boxes represent processes common to both short-read and long-read analyses. The orange-coloured boxes represent the
processes unique to long-read analyses. Unfilled boxes represent optional steps. Commonly used tools for each step in long-read analysis are within
brackets. Italics signify tools developed by either PacBio or ONT companies, and non-italics signify tools developed by external parties. Arrows
represent the direction of the workflow

accuracy. In time, improvements make their way into the

production basecaller. For example, Scrappie currently

maps homopolymers explicitly [47].

Independent basecaller with different network struc-

tures are also available, most prominently Chiron [48].

These have been reviewed and their performance evalu-

ated elsewhere [13, 46, 49]. The ability to train one’s own

basecalling model opens the possibility to improve base-

calling performance by tailoring the model to the sample’s

characteristics [46]. As a corollary, users have to keep

in mind that the effective accuracy of the basecaller on

their data set may be lower than the advertised accuracy.

For example, ONT’s basecallers are currently trained on

a mixture of human, yeast, and bacterial DNA; their per-

formance on plant DNA where non-CG methylation is

abundant may be lower [50]. As the very regular updates

to the production Guppy basecaller testify, basecalling

remains an active area of development.

Errors, correction, and polishing
Both SMRT and nanopore technologies provide lower per

read accuracy than short-read sequencing. In the case of

SMRT, the circular consensus sequence quality is heav-

ily dependent on the number of times the fragment is

read—the depth of sequencing of the individual SMRT-

bell molecule (Fig. 1c)—a function of the length of the

original fragment and longevity of the polymerase. With

the Sequel v2 chemistry introduced in 2017, fragments

longer than 10 kbp were typically only read once and had

a single-pass accuracy of 85–87% [51]. The late 2018 v3

chemistry increases the longevity of the polymerase (from

20 to 30 kb for long fragments). An estimated four passes

are required to provide a CCS with Q20 (99% accuracy)

and nine passes for Q30 (99.9% accuracy) [18]. If the errors

were non-random, increasing the sequencing depth would

not be sufficient to remove them. However, the random-

ness of sequencing errors in subreads, consisting of more
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indels than mismatches [52–54], suggests that consensus

approaches can be used so that the final outputs (e.g. CCS,

assembly, variant calls) should be free of systematic biases.

Still, CCS reads retain errors and exhibit a bias for indels

in homopolymers [18].

On the other hand, the quality of nanopore reads is

independent of the length of the DNA fragment. Read

quality depends on achieving optimal translocation speed

(the rate of ratcheting base by base) of the nucleic acid

through the pore, which typically decreases in the late

stages of sequencing runs, negatively affecting the quality

[55]. Contrary to SMRT sequencing, a nanopore sequenc-

ing library is made of linear fragments that are read only

once. In the most common, 1D sequencing protocol, each

strand of the dsDNA fragment is read independently,

and this single-pass accuracy is the final accuracy for the

fragment. By contrast, the 1D2 protocol is designed to

sequence the complementary strand in immediate suc-

cession of up to 75% of fragments, which allows the

calculation of a more accurate consensus sequence for the

library insert. To date, the median single-pass accuracy

of 1D sequencing across a run can reach 95% (manufac-

turer’s numbers [56]). Release 6 of the human genomic

DNA NA12878 reference data set reports 91% median

accuracy [17]. 1D2 sequencing can achieve a median con-

sensus accuracy of 98% [56]. An accurate consensus can

also be derived from linear fragments if the same sequence

is present multiple times: the concept of circularisation

followed by rolling circle amplification for generating

nanopore libraries is similar to SMRT sequencing, and

subreads can be used to determine a high-quality consen-

sus [57–59]. ONT is developing a similar linear consensus

sequencing strategy based on isothermal polymerisation

rather than circularisation [56].

Indels and substitutions are frequent in nanopore data,

partly randomly but not uniformly distributed. Low-

complexity stretches are difficult to resolve with the cur-

rent (R9) pores and basecallers [56], as are homopolymer

sequences. Measured current is a function of the partic-

ular k-mer residing in the pore, and because transloca-

tion of homopolymers does not change the sequence of

nucleotides within the pore, it results in a constant signal

that makes determining homopolymer length difficult. A

new generation of pores (R10) was designed to increase

the accuracy over homopolymers [56]. Certain k-mers

may differ in how distinct a signal they produce, which

can also be a source of systematic bias. Sequence quality

is of course intimately linked to the basecaller used and

the data that has been used to train it. Read accuracy can

be improved by training the basecaller on data that is sim-

ilar to the sample of interest [46]. ONT regularly release

chemistry and software updates that improve read quality:

4 pore versions were introduced in the last 3 years (R9.4,

R9.4.1, R9.5.1, R10.0), and in 2019 alone, there were 12

Guppy releases. PacBio similarly updates hardware, chem-

istry, and software: the last 3 years have seen the release

of 1 instrument (Sequel II), 4 chemistries (Sequel v2 and

v3; Sequel II v1 and v2), and 4 versions of the SMRT-LINK

analysis suite.

Although current long-read accuracy is generally suf-

ficient to uniquely determine the genomic origin of the

read, certain applications require high base-level accuracy,

including de novo assembly, variant calling, or defining

intron-exon boundaries [54]. Two groups of methods to

error correct long-reads can be employed: methods that

only use long reads (non-hybrid) and methods that lever-

age the accuracy of additional short-read data (hybrid)

(Fig. 2). Zhang et al. recently reviewed and benchmarked

15 of these long-read error correction methods [60], while

Fu et al. focused on 10 hybrid error correction tools

[61]. Lima et al. benchmarked 11 error correction tools

specifically for nanopore cDNA reads [62].

In non-hybridmethods, all reads are first aligned to each

other and a consensus is used to correct individual reads

(Fig. 2a). These corrected reads can then be taken forward

for assembly or other applications. Alternatively, because

genomes only contain a small subset of all possible k-mers,

rare k-mers in a noisy long-read data set are likely to rep-

resent sequencing errors. Filtering out these rare k-mers,

as the wtdbg2 assembler does [63], effectively prevents

errors from being introduced in the assembly (Fig. 2a).

Hybrid error correction methods can be further clas-

sified according to how the short reads are used. In

alignment-based methods, the short reads are directly

aligned to the long reads, to generate corrected long reads

(Fig. 2a). In assembly-based methods, the short reads are

first used to build a de Bruijn graph or assembly. Long

reads are then corrected by aligning to the assembly or by

traversing the de Bruijn graph (Fig. 2a). Assembly-based

methods tend to outperform alignment-based methods in

correction quality and speed, and FMLRC [64] was found

to perform best in the two benchmark studies [60, 61].

After assembly, the process of removing remaining

errors from contigs (rather than raw reads) is called ‘pol-

ishing’. One strategy is to use SMRT subreads through

Arrow [65] or nanopore current traces through Nanop-

olish [66], to improve the accuracy of the consensus

(Fig. 2b). For nanopore data, polishing while also tak-

ing into account the base modifications (as implemented

for instance in Nanopolish [66]) further improves the

accuracy of an assembly [46]. Alternatively, polishing can

be done with the help of short reads using Pilon [67],

Racon [68], or others, often in multiple rounds [50, 69, 70]

(Fig. 2b). The rationale for iterative hybrid polishing is that

as errors are corrected, previously ambiguously mapped

short reads can be mappedmore accurately. While certain

pipelines repeat polishing until convergence (or oscilla-

tory behaviour, where the same positions are changed
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Fig. 2 Paradigms of error correction (a) and polishing (b). Errors in long reads and assembly are denoted by red crosses. Non-hybrid methods only
require long reads, while hybrid methods additionally require accurate short reads (purple)

back and forth between each round), too many iterations

can decrease the quality of the assembly, as measured

by the BUSCO score [71]. To increase scalability, ntE-

dit foregoes alignment in favour of comparing the draft

assembly’s k-mers to a thresholded Bloom filter built from

the sequencing reads [72] (Fig. 2b).

Despite continuous improvements in the accuracy of

long reads, error correction remains indispensable in

many applications. We identified 62 tools that are able

to carry out error correction. There is no silver bullet,

and correcting an assembly requires patience and careful

work, often combining multiple tools (e.g. Racon, Pilon,

and Nanopolish [50]). Adding to the difficulty of the

absence of an authoritative error correction pipeline, cer-

tain tools do not scale well for deep sequencing or large

genomes [50]. Furthermore, most tools are designed with

haploid assemblies in mind. Allelic variation, repeats, or

gene families may not be correctly handled.

Detecting structural variation
While short reads perform well for the identification of

single nucleotide variants (SNVs) and small insertion and

deletions (indels), they are not well suited to the detection

of larger sequence changes [73]. Collectively referred to

as structural variants (SVs), insertions, deletions, dupli-

cations, inversions, or translocations that affect ≥ 50 bp

[74] are more amenable to long-read sequencing [75, 76]

(Fig 1c). Because of these past technical limitations, struc-

tural variants have historically been under-studied despite

being an important source of diversity between genomes

and relevant for human health [77, 78].

The ability of long reads to span repeated elements

or repetitive regions provides unique anchors that facili-

tate de novo assembly and SV calling [73]. Even relatively

short (5 kb) SMRT reads can identify structural vari-

ants in the human genome that were previously missed

by short-read technologies [79]. Obtaining deep cover-

age of mammalian-sized genomes with long reads remains

costly; however, modest coverage may be sufficient: 8.6×

SMRT sequencing [14] and 15–17× nanopore sequenc-

ing [80, 81] have been shown to be effective in detect-

ing pathogenic variants in humans. Heterozygosity or

mosaicism naturally increase the coverage requirements.

Evaluating the performance of long-read SV callers is

complicated by the fact that benchmark data sets may be

missing SVs in their annotation [73, 77], especially when it
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comes only from short reads. Therefore, validation of new

variants has to be performed via other methods. Devel-

oping robust benchmarks is an ongoing effort [82], as is

devising solutions to visualise complex, phased variants

for critical assessment [82, 83].

For further details on structural variant calling from

long-read data, we refer the reader to two recent reviews:

Mahmoud et al. [73] and Ho et al. [77].

Detecting basemodifications
In addition to the canonical A, T, C, and G bases, DNA

can contain modified bases that vary in nature and fre-

quency across organisms and tissues. N-6-methyladenine

(6mA), 4-methylcytosine (4mC), and 5-methylcytosine

(5mC) are frequent in bacteria. 5mC is the most common

base modification in eukaryotes, while its oxidised deriva-

tives 5-hydroxymethylcytosine (5hmC), 5-formylcytosine

(5fC), and 5-carboxycytosine (5caC) are detected in cer-

tain mammalian cell types but have yet to be deeply

characterised [84–88]. Still, more base modifications that

result from DNA damage occur at a low frequency [87].

The nucleotides that compose RNA are even more var-

ied. Over 150 modified bases have been documented

to date [89, 90]. These modifications also have func-

tional roles, for example, in mRNA stability [91], tran-

scriptional repression [92], and translational efficiency

[93]. However, most RNA modifications remain ill-

characterised due to technological limitations [94]. Aside

from the modifications to standard bases, base analogues

may also be introduced to nucleic acids, such as the

thymidine analogue BrdU which is used to track genomic

replication [95].

Mapping of nucleic acid modifications has traditionally

relied on specific chemical treatment (e.g. bisulfite conver-

sion that changes unmethylated cytosines to uracils [96])

or immunoprecipitation followed by sequencing [97]. The

ability of the long-read platforms to sequence native

nucleic acids provides the opportunity to determine the

presence of many more modifications, at base resolution

in single molecules, and without specialised chemistries

that can be damaging to the DNA [98]. Long reads thus

allow the phasing of base modifications along individual

nucleic acids, as well as their phasing with genetic vari-

ants, opening up opportunities in exploring epigenetic

heterogeneity [34, 99]. Long reads also enable the analysis

of base modifications in repetitive regions of the genome

(centromeres or transposons), where short reads cannot

be mapped uniquely.

In SMRT sequencing, base modifications in DNA or

RNA [100, 101] are inferred from the delay between

fluorescence pulses, referred to as interpulse duration

(IPD) [98] (Fig. 3). Base modifications impact the speed

Fig. 3Methods to detect base modifications in long-read sequencing. Base modifications can be inferred from their effect on the current intensity
(nanopore) and inter-pulse duration (IPD, SMRT). Strategies to call base modifications in nanopore sequencing and the corresponding tools are
further depicted
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at which the polymerase progresses, at the site of mod-

ification and/or downstream. Comparison with the sig-

nal from an in silico or non-modified reference (e.g.

amplified DNA) suggests the presence of modified bases

[102, 103]. It is notably possible to detect 6mA, 4mC,

5mC, and 5hmC DNA modifications, although at differ-

ent sensitivity. Reliable calling of 6mA and 4mC requires

25× coverage per strand, whereas 250× is required

for 5mC and 5hmC, which have subtler impacts on

polymerase kinetics [102]. Such high coverage is not

realistic for large genomes and does not allow single-

molecule epigenetic analysis. Coverage requirements can

be reduced by conjugating a glucose moeity to 5hmC,

which gives a stronger IPD signal during SMRT sequenc-

ing [102, 103]. Polymerase dynamics and base modifi-

cations can be analysed directly via the SMRT Portal,

or for more advanced analyses with R-kinetics, kinet-

icsTools or basemods [104]. SMALR [99] is dedicated

to the detection of base modifications in single SMRT

reads.

In nanopore sequencing, modified RNA or DNA bases

affect the flow of the current through the pore differ-

ently than non-modified bases, resulting in signal shifts

(Fig. 3). These shifts can be identified post-basecalling

and post-alignment with three distinct methods: (a) with-

out prior knowledge about the modification (de novo)

by comparing to an in silico reference [105], or a con-

trol, non-modified sample (typically amplified DNA) [105,

106]; (b) using a pre-trained model [66, 107, 108] (Fig. 3,

Table 1); and (c) directly by a basecaller using an extended

alphabet [45, 109].

De novo approaches, as implemented by Tombo [105]

or NanoMod [106], allow the discovery of modifications

and modified motifs by statistically testing the deviation

of the observed signal relative to a reference. However

these methods suffer from a high false discovery rate and

are not reliable at the single-molecule level. The com-

parison to a control sample rather than an in silico ref-

erence increases the accuracy of detection, but requires

the sequencing of twice as many sample as well as high

coverage to ensure that genomic segments are covered

by both control and test sample reads. De novo calling

of base modifications is limited to highlighting regions of

the genomes that may contain modified bases, without

being able to reveal the precise base or the nature of the

modification.

Pre-trained models interrogate specific sites and clas-

sify the data as supporting a modified or unmodified

base. Nanopolish [66] detects 5mC with a hidden Markov

model, which in signalAlign [107] is combined with a

hierarchical Dirichlet process, to determine the most

likely k-mer (modified or unmodified). D-NAscent [95]

utilises an approach similar to Nanopolish to detect

BrdU incorporation, while EpiNano uses support vector

machines (SVMs) to detect RNA m6A. Recent meth-

ods use neural network classifiers to detect 6mA and

5mC (mCaller [108], DeepSignal [110], DeepMod [111]).

The accuracy of these methods is upwards of 80% but

varies between modifications and motifs. Appropriate

training data is crucial and currently a limiting fac-

tor. Models trained exclusively on samples with fully

methylated or unmethylated CpGs will not perform opti-

mally on biological samples with a mixture of CpG

and mCpGs, or 5mC in other sequence contexts [66,

105]. Low specificity is particularly problematic for low

abundance marks. m6A is present at 0.05% in mRNA

Table 1 Tools and strategies to detect base modifications in Nanopore data (HMM hidden Markov model, HPD hierarchical Dirichlet
process, CNN convolutional neural network, LSTM long short-termmemory, RNN recurrent neural network, SVM support vector machine)

Tool Base modifications Strategy Reference

Guppy 5mCpG, 5mC (Dcm), 6mA (Dam) Basecall [45]

Taiyaki – Basecall [45]

RepNano BrdU Basecall [109]

D-Nascent BrdU HMM [95]

Nanopolish 5mCpG HMM [66]

Megalodon 6mA, 5mCpG HMM [45]

signalAlign 6mA, 5mC, 5hmC HMM-HDP [107]

DeepSignal 6mA (Dam), 5mCpG Neural network (CNN + classifier) [110]

DeepMod 6mA, 5mCpG Neural network (LSTM-RNN) [111]

mCaller 6mA, 5mCpG Neural network classifier [108]

Tombo 6mA (DNA), 5mC (RNA, DNA), de novo Statistical test [105]

NanoMod de novo Statistical test [106]

EpiNano m6A (RNA) SVM [112]
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[113, 114]; therefore, a method testing all adenosines in

the transcriptome with sensitivity and specificity of 90%

at the single-molecule, single-base level would result in an

unacceptable false discovery rate of 98%.

Direct basecalling of modified bases is a recent addition

to ONT’s basecaller Guppy, currently limited to 5mC in

the CpG context. A development basecaller, Taiyaki [45],

can be trained for specific organisms or base modifica-

tions. RepNano can basecall BrdU in addition to the four

canonical DNA bases [109]. Two major bottlenecks in the

creation of modification-ready basecallers are the need for

appropriate training data and the combinatorial complex-

ity of adding bases to the basecalling alphabet. There is

also a lack of tools for the downstream analysis of base

modifications: most tools output a probability that a cer-

tain base is modified, while traditional differential methy-

lation algorithms expect binary counts of methylated and

unmethylated bases.

Analysing long-read transcriptomes
Alternative splicing is a major mechanism increasing the

complexity of gene expression in eukaryotes [115, 116].

Practically, all multi-exon genes in humans are alterna-

tively spliced [117, 118], with variations between tis-

sues and between individuals [119]. However, fragmented

short reads cannot fully assemble nor accurately quan-

tify the expressed isoforms, especially at complex loci

[120, 121]. Long-read sequencing provides a solution by

ideally sequencing full-length transcripts. Recent studies

that used bulk, single-cell, or targeted long-read sequenc-

ing suggest that our best transcript annotations are still

missing vast numbers of relevant isoforms [122–126]. As

noted above, sequencing native RNA further provides the

opportunity to better characterise RNA modifications or

other characteristics such as poly-A tail length. Despite

its many promises, analysis of long-read transcriptomes

remains challenging. Few of the existing tools for short-

read RNA-seq analysis are able to appropriately deal with

the high error rate of long reads, necessitating the devel-

opment of dedicated tools and extensive benchmarks.

Although recently, the field of long-read transcriptomics

is rapidly expanding, we tallied 36 tools related to long-

read transcriptome analysis (Fig. 1b).

Most long-read isoform detection tools work by clus-

tering aligned and error-corrected reads into groups and

collapsing these into isoforms, but the detailed imple-

mentations differ between tools (Fig. 4). PacBio’s Iso-Seq3

[127, 128] is the most mature pipeline for long-read tran-

scriptome analysis, allowing the assembly of full-length

transcripts. It performs pre-processing for SMRT reads,

de novo discovery of isoforms by hierarchical cluster-

ing and iterative merging, and polishing. Cupcake [129]

provides scripts for downstream analysis such as col-

lapsing redundant isoforms and merging Iso-Seq runs

from different batches, giving abundance information as

well as performing junction analysis. In the absence of a

reference genome, Iso-Seq can assemble a transcriptome,

but transcripts from related genes may be merged [130]

as a trade-off for correcting reads with a high error rate.

Furthermore, the library preparation for Iso-Seq usually

requires size fractionation, which makes absolute and rel-

ative quantification difficult. The per-read cost remains

high, making well-replicated differential expression study

designs prohibitively expensive.

Alternative isoform detection pipelines such as Iso-

Con [130], SQANTI [131], and TALON [132] attempt

to mitigate the erroneous merging of similar transcripts

of the Iso-Seq pipeline. IsoCon and SQANTI specifically

work with SMRT data while TALON is a technology-

independent approach. IsoCon uses the full-length tran-

scripts from Iso-Seq to perform clustering and partial

error correction and identify candidate transcripts with-

out losing potential true variants within each cluster.

SQANTI generates quality control reports for SMRT Iso-

Seq data and detects and removes potential artefacts.

TALON, on the other hand, relies heavily on the GEN-

CODE annotation. Since both IsoCon and TALON focus

on the human genome, they may not perform equally

well with genomes from non-model organisms. A num-

ber of alternative isoform annotation pipelines for SMRT

and/or nanopore data have recently emerged, such as

FLAIR [133], Tama [134], IDP [122], TAPIS [135], Man-

dalorion Episode II [36, 57], and Pinfish [136]. Some of

them use short reads to improve exon junction annota-

tion. However, their accuracy has not yet been extensively

tested.

In addition to high error rates, potential coverage biases

are currently not explicitly taken into account by long-

read transcriptomic tools. In ONT’s direct RNA sequenc-

ing protocol, transcripts are sequenced from the 3′ to the

5′ end; therefore, any fragmentation during the library

prep, or pore blocking, results in truncated reads. In

our experience, it is common to see a coverage bias

towards the 3′ end of transcripts, which can affect iso-

form characterisation and quantification. Methods that

sequence cDNA will also show these coverage biases due

to fragmentation and pore-blocking (for nanopore data),

compounded by non-processivity of the reverse tran-

scriptase [124], more likely to stall when it encounters

RNA modifications [137]. Finally, the length-dependent

or sequence-dependent biases introduced by protocols

that rely on PCR are currently not well characterised nor

accounted for.

To quantify the abundance of transcripts or genes,

several methods can be used (Fig. 4). Salmon’s [138] quasi-

mapping mode quantifies reads directly against a refer-

ence index, and its alignment-based mode instead works

with aligned sequences. The Wub package [139] also



Amarasinghe et al. Genome Biology           (2020) 21:30 Page 9 of 16

Fig. 4 Types of transcriptomic analyses and their steps. The choice of sequencing protocol amongst the six available workflows affects the type,
characteristics, and quantity of data generated. Only direct RNA sequencing allows epitranscriptomic studies, but SMRT direct RNA sequencing is a
custom technique that is not fully supported. The remaining non-exclusive applications are isoform detection, quantification, and differential
analysis. The dashed lines in arrows represent upstream processes to transcriptomics

provides a script for read counting. The featureCounts

[140] function from the Subread package [141, 142]

supports long-read gene level counting. The FLAIR [133]

pipeline provides wrappers for quantifying FLAIR iso-

form usage across samples using minimap2 or Salmon. Of

course, for accurate transcript-level quantification, these

methods rely on a complete and accurate isoform annota-

tion; this is currently the difficult step.

Two types of differential analyses can be run: gene level

or transcript level (Fig. 4). Transcript-level analyses may

be further focused on differential transcript usage (DTU),

where the gene may overall be expressed at the same level

between two conditions, but the relative proportions of

isoforms may vary. The popular tools for short-read dif-

ferential gene expression analysis, such as limma [143],

edgeR [144, 145], and DESeq2 [146], can also be used for

long-read differential isoform or gene expression analyses.

DRIMSeq [147] can perform differential isoform usage

analysis using the Dirichlet-multinomial model. One dif-

ference between short- and long-read counts is that for the

latter, counts per million (cpm) are effectively transcripts

per million (tpm), whereas for short reads (and random

fragmentation protocols), transcript length influences the

number of reads, and therefore, cpms need scaling by

transcript length to obtain tpms. The biological interpre-

tation of differential isoform expression strongly depends

on the classification of the isoforms, for example, whether

the isoforms code for the same or different proteins or

whether premature stop codons make them subject to

nonsense-mediated decay. This is currently not well inte-

grated into the analyses.

Combining long reads, synthetic long reads, and
short reads
Assemblies based solely on long reads generally pro-

duce highly complete and contiguous genomes [148–150];

however, there are many situations where short reads

or reads generated from synthetic long-read technology

further improve the results [151–153].

Different technologies can intervene at different scales:

short reads ensure base-level accuracy, high-quality 5–

15-kb SMRT reads generate good contigs, while ultra-

long (100 kb+) nanopore reads, optical mapping or

Hi-C improve scaffolding of the contigs into chro-

mosomes [11, 17, 154–157]. Combining all of these

technologies in a single genomic project would be
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costly. Instead, combinations of subsets are frequent, in

particular, nanopore/SMRT with short-read sequencing

[50, 152, 153, 158], although other combinations can be

useful. Nanopore assembly of wild strains of Drosophila

melanogaster supported by scaffolds generated from Hi-

C corrected two misalignments of contigs in the reference

assembly [154]. Optical maps helped resolve misassembly

of SMRT-based chromosome level contigs of three plant

relatives of Arabidopsis thaliana, where unrelated parts of

the genome were erroneously linked [155].

For structural variation or base modification detec-

tion, obtaining orthogonal support from SMRT and

nanopore data is valuable to confirm discoveries and

limit false positives [77, 108, 159]. The error profiles

of SMRT and nanopore sequencing are not identical—

though both technologies experience difficulty around

homopolymers—combining them can draw on their

respective strengths.

Certain tools such as Unicycler [160] integrate long- and

short-read data to produce hybrid assemblies, while other

tools have been presented as pipelines to achieve this

purpose (e.g. Canu, Pilon, and Racon in the ont-assembly-

polish pipeline [45]). Still, combining tools and data types

remains a challenge, usually requiring intensive manual

integration.

long-read-tools.org: a catalogue of long-read
sequencing data analysis tools
The growing interest in the potential of long reads

in various areas of biology is reflected by the expo-

nential development of tools over the last decade

(Fig. 1a). There are open-source static catalogues

(e.g. github.com/B-UMMI/long-read-catalog), custom

pipelines developed by individual labs for specific pur-

poses (e.g. Search results from GitHub), and others that

attempt to generalise them for a wider research commu-

nity [46]. Being able to easily identify what tools exist—or

do not exist—is crucial to plan and perform best-practice

analyses, build comprehensive benchmarks, and guide

the development of new software.

For this purpose, we introduce long-read-tools.org, a

timely database that comprehensively collates tools used

for long-read data analysis. Users can interactively search

tools categorised by technology and intended type of

analysis. In addition to true long-read sequencing tech-

nologies (SMRT and nanopore), we include synthetic

long-read strategies (10X linked reads, Hi-C, and Bionano

optical mapping). The fast-paced evolution of long-read

sequencing technologies and tools also means that certain

tools become obsolete. We include them in our database

for completeness but indicate when they have been super-

seded or are no longer maintained.

long-read-tools.org is an open-source project under the

MIT License, whose code is available through GitHub

[161]. We encourage researchers to contribute new

database entries of relevant tools and improvements to

the database, either directly via the GitHub repository or

through the submission form on the database webpage.

Discussion
At the time of writing, for about USD1500, one can

obtain around 30 Gbases of ≥ 99% accurate SMRT CCS (1

Sequel II 8M SMRT cell) or 50–150 Gbases of noisier but

potentially longer nanopore reads (1 PromethION flow

cell). While initially, long-read sequencing was perhaps

most useful for assembly of small (bacterial) genomes,

the recent increases in throughput and accuracy enable

a broader range of applications. The actual biological

polymers that carry genetic information can now be

sequenced in their full length or at least in fragments of

tens to hundreds of kilobases, giving us a more complete

picture of genomes (e.g. telomere-to-telomere assem-

blies, structural variants, phased variations, epigenetics,

metagenomics) and transcriptomes (e.g. isoform diversity

and quantity, epitranscriptomics, polyadenylation).

These advances are underpinned by an expanding col-

lection of tools that explicitly take into account the

characteristics of long reads, in particular, their error

rate, to efficiently and accurately perform tasks such

as preprocessing, error correction, alignment, assem-

bly, base modification detection, quantification, and

species identification. We have collated these tools in the

long-read-tools.org database.

The proliferation of long-read analysis tools revealed

by our census makes a compelling case for complemen-

tary efforts in benchmarking. Essential to this process is

the generation of publicly available benchmark data sets

where the ground truth is known and whose characteris-

tics are as close as possible to those of real biological data

sets. Simulations, artificial nucleic acids such as synthetic

transcripts or in vitro-methylated DNA, resequencing,

and validation endeavours will all contribute to establish-

ing a ground truth against which an array of tools can be

benchmarked. In spite of the rapid iteration of technolo-

gies, chemistries, and data formats, these benchmarks will

encourage the emergence of best practices.

A recurrent challenge in long-read data analysis is scal-

ability. For instance in genome assembly, Canu [69] pro-

duces excellent assemblies for small genomes but takes

too long to run for large genomes. Fast processing is cru-

cial to enable parameter optimisation in applications that

are not yet routine. The recently released wtdbg2 [63],

TULIP [70], Shasta [162], Peregrine [163], Flye [164], and

Ra [165] assemblers are orders of magnitude faster and

are quickly being adopted. Similarly, for mapping long

reads, minimap2’s speed, in addition to its accuracy, has

contributed to its fast and wide adoption. Nanopolish

[66] is popular both for assembly correction and base

https://github.com/B-UMMI/long-read-catalog
https://github.com/search?q=long+read+pipeline
https://long-read-tools.org
https://long-read-tools.org
https://opensource.org/licenses/MIT
https://github.com/shaniAmare/long_read_tools
https://long-read-tools.org
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modification detection; however, it is slow on large data

sets. The refactoring of its call-methylation func-

tion in f5c tool greatly facilitates work with large genomes

or data sets [166].

Beyond data processing speed, scalability is also

impacted by data generation, storage, and integration.

Nanopore sequencing presents the fastest turnaround

time. Once DNA is extracted, sequencing is underway

in a matter of minutes to hours, and the PromethION

sequencer provides adjustable high throughput with indi-

vidually addressable parallel flow cells. All other library

preparation procedures are more labour intensive, and

sequencing may have to await pooling to fill a run, and

flow cells need to be run in succession rather than in

parallel. The raw nanopore data is however extremely

voluminous (about 20 bytes per base), leading to substan-

tial IT costs for large projects. SMRTmovies are not saved

for later re-basecalling, and the sequence and kinetic

information takes up a smaller 3.5 bytes per base. Fur-

thermore, hybrid methods incorporating strengths from

other technologies such as optical mapping (Bionano,

OpGen) and Hi-C add to the cost and analytical complex-

ity of genomic projects. For these, manual data integration

is a significant bottleneck, but the rewards are worth

the effort.

Despite increasing accuracy of both SMRT and

nanopore sequencing platforms, error correction remains

an important step in long-read analysis pipelines. Pub-

lished assemblies that omit careful error correction are

likely to predict many spurious truncated proteins [167].

Hybrid error correction, leveraging the accuracy of short

reads, is still outperforming long-read-only correction

[60]. Modern short-read sequencing protocols require

small input amounts (some even scale down to single cells)

so sample amount is usually not a barrier to combin-

ing short- and long-read sequencing. Removing the need

for short reads, and higher coverage via improvements

in non-hybrid error correction tools and/or long-read

sequencing accuracy, would reduce the cost, length, and

complexity of genomic projects.

The much anticipated advances in epigenet-

ics/epitranscriptomics promised by long-read sequencing

are still in development. Many modifications, including

5mC, do not influence the SMRT polymerase’ dynam-

ics sufficiently to be detected at a useful sensitivity

(5mC requires 250× coverage). In this case, software

improvements are unlikely to yield significant gains, and

improvements in sequencing chemistries are probably

required [168]. Nanopore sequencing appears more

amenable to the detection of a wide array of base mod-

ifications (to date: 5mCG, BrdU, 6mA), but the lack

of ground truth data to train models and the combi-

natorial complexity of introducing multiple alternative

bases are hindering progress towards a goal of seamless

basecalling from an extended alphabet of canonical and

non-canonical bases. Downstream analyses, in particular,

differential methylation, exploiting the phasing of base

modifications, as well as visualisation, suffer from a

dearth of tools.

The field of long-read transcriptomics is equally in

its infancy. To date, the Iso-Seq pipeline has been

used to build catalogues of transcripts in a range of

species [128, 169, 170]. Nanopore reads-based transcrip-

tomes are more recent [10, 171–173], and work is still

needed to understand the characteristics of these data

(e.g. coverage bias, sequence biases, reproducibility). Cer-

tain isoform assembly pipelines predict a large number

of unannotated isoforms requiring validation and clas-

sification. Even accounting for artefacts and transcrip-

tional noise, these early studies reveal an unexpectedly

large diversity in isoforms. Benchmark data and stud-

ies will be required in addition to atlas-type sequencing

efforts to generate high-quality transcript annotations

that are more comprehensive than the current ones. Long

reads theoretically confer huge advantages over short

reads for transcript-level differential expression, how-

ever the low-level of replication and modest read counts

obtained from long-read transcriptomic experiments are

currently limiting. Until throughput increases and price

decreases sufficiently, hybrid approaches that use long

reads to define the isoforms expressed in the samples

and short reads to get enough counts for well-powered

differential expression may be successful; these do

not yet exist.

Long-read sequencing technologies have already

opened exciting avenues in genomics. Taking on the

challenge of obtaining phased, accurate, and complete

(including base modifications) genomes and transcrip-

tomes that can be compared will require continued efforts

in developing and benchmarking tools.
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