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Abstract

Recent advances in the development of sequencing technologies provide researchers with unprecedented

possibilities for genetic analyses. In this review, we will discuss the history of genetic studies and the progress

driven by next-generation sequencing (NGS), using complex inflammatory bowel diseases as an example. We focus

on the opportunities, but also challenges that researchers are facing when working with NGS data to unravel the

genetic causes underlying diseases.
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Background

Studies of human genetic variation using DNA sequen-

cing have undergone an extraordinary development from

their introduction over 40 years ago up to current

technologies, which allow for a human genome to be

sequenced and analyzed within a matter of days at

consumable costs of approximately 1000 USD. The first

widely used method was developed by the British

chemist Frederick Sanger in the 1970s [1] and he

received the Nobel prize in 1980. “Sanger sequencing”

relies on nucleotide-specific chain-terminating inhibitors

to identify the sequence of a specific fragment of DNA.

The method was continuously refined over the years and

incorporated in the first generation of automated se-

quencers. Sanger sequences show very high accuracy but

are restricted to a single DNA fragment at a time and a

maximum sequence length of 1000 bp. In addition to

the low throughput, high costs render this technology

unsuitable for routine large scale sequencing projects.

The largest effort using the Sanger technique was the

Human Genome Project with the goal of identifying the

complete sequence of the human genome [2], which is

in essence based on different donors from Buffalo

(New York, USA) [3, 4]. Completion of the project took

over a decade (1990–2003), involved more than 20 insti-

tutes all over the world and cost nearly 3 billion dollars.

Still, for many years, Sanger sequencing was the prevailing

technique to identify causative mutations in monogenic

diseases. However, the limitations of the technology meant

that finding the one gene responsible for a disease was

tedious work. Rather than performing large-scale, indis-

criminate sequencing, numerous experiments were often

necessary to narrow down candidate regions from

microsatellite-based linkage studies and pinpoint to one

or a few candidate genes that would then be sequenced. In

most cases, these experiments required samples from

large pedigrees with several affected individuals to suc-

cessfully identify candidate regions small enough for fur-

ther analysis. These issues are further amplified in the

study of genetically heterogeneous diseases with causative

variants in a number of genes or very large genes, as well

as diseases that do not follow a Mendelian inheritance pat-

tern, but instead have a complex genetic background in-

volving tens to hundreds of genes. The common disease-

common variant hypothesis assumes that a large part of

the heritability of these complex diseases can be attributed

to variants with a minor allele frequency above 1% (single

nucleotide polymorphisms, SNPs) in the general popula-

tion, each variant having a small additive or multiplicative

effect on the disease phenotype. Addressing questions as

complex as these clearly required novel approaches.

However, it was not until the introduction of high-

throughput genotyping in the early 2000s, enabling the

interrogation of several hundred thousand to millions of

genotypes in thousands of cases and controls [5], that

genome-wide association studies (GWAS) became a* Correspondence: a.franke@mucosa.de
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reality. For the first time a quick and unbiased screening

of SNPs throughout the whole genome was possible,

thereby facilitating the detection of susceptibility regions

for complex diseases. What followed can be referred to

as the “GWAS era”, with genome-wide case-control

association studies carried out for numerous complex

diseases, identifying more than 25,000 significantly

disease-associated genetic loci until today [6]. GWAS

studies primarily focused on common SNPs, excluding

rare variants. Later approaches like Illumina’s human ex-

ome genotyping array [7] shifted the focus to include rare,

exonic variants. However, it soon became clear that

genotyping efforts alone were not sufficient to completely

uncover the genetics behind complex diseases [8].

The release of the first “next-generation” sequencing in-

struments (NGS; see [9] for an overview) in the mid-2000s

led to a first revolution in disease study, offering vastly im-

proved speed at significantly lower cost - enabling the gen-

eration of a whole human genome sequence in a matter of

weeks for 10,000 USD by 2011 [10]. In addition to price

and performance, the new sequencing technology also

proved to compensate for some of the technical weak-

nesses of the older sequencing and genotyping technolo-

gies, allowing for the genome-wide detection of variants,

including novel ones, at a low cost. However, despite the

immense drop in sequencing costs for a human genome,

large-scale sequencing projects were still costly and there-

fore not yet carried out for thousands of samples as rou-

tinely done in GWAS.

In 2007, Craig Venter published the first diploid genome

sequence of a single individual, which was created using

the gold-standard Sanger sequencing technology, and

which is perhaps still among the most accurate and best-

annotated human genomes released to the public domain

[11]. However, DNA materials of the donor are, to our

knowledge, not available to the public for benchmarking

and follow-up studies. This year however, the academic

Genome in a Bottle Consortium provided extensive NGS

data on seven genomes, including two trios, which serve

as open benchmarking data and materials [12].

The next breakthrough for NGS in human genomics ar-

rived with the introduction of targeted enrichment

methods, allowing for selective sequencing of regions of

interest [13] and thereby dramatically reducing the

amount of sequences that needed to be generated. The ap-

proach is based on a collection of DNA or RNA probes

representing the target sequences in the genome, which

can bind and extract the DNA fragments originating from

these targeted regions. Whole exome sequencing (WES),

which enables sequencing of all protein-coding regions in

the human genome (the exome) quickly became the most

widely used targeted enrichment method, especially for

monogenic (“Mendelian”) diseases. This approach enabled

the detection of both exonic (coding) as well as splice-site

variants, while requiring only approximately 2% of se-

quencing “load” compared to whole genome sequencing

(WGS). The unbiased analysis of all genes eliminates the

need for a time-consuming selection of candidate genes

prior to sequencing. It has been estimated that the exome

harbors about 85% of mutations with large effects on

disease-related traits [14]. In addition, exonic mutations

were shown to cause the majority of monogenic diseases

[15], with missense and nonsense mutations alone ac-

counting for approximately 60% of disease mutations [16].

While these numbers may be in part biased by the

difficulty of identifying disease-causing mutations in non-

coding regions, the success of exome sequencing studies

for monogenic diseases confirms its advantages. In the

years following its introduction, exome sequencing led to

a vast increase in the identification of Mendelian disease

genes [17, 18]. This is reflected for example in almost

2000 new entries in OMIM since 2008 (current total:

4787), describing the molecular basis of a particular

phenotype.

Current large-scale genome and exome sequencing

projects [19–22] have not only provided crucial informa-

tion on variant frequencies in different populations, but

have also shown that a human genome typically contains

an estimated 100 genuine loss-of-function variants,

completely inactivating around 20 genes [23]. Therefore,

sequencing of healthy individuals or representative po-

pulation samples can also lead to important insights into

disease. Focusing on seemingly “healthy human knock-

outs” can aid in detecting the true effects of variants

previously assumed to be disease-causing [24] and ex-

ploring gene function in general, thus elucidating the

“resilience” phenomenon further [25].

In recent years, NGS has also been increasingly ap-

plied for addressing pharmacogenomic research ques-

tions. It is not only possible to detect genetic causes that

explain why some patients do not respond to a certain

drug, but also try to predict a drug’s success based on

genetic information [26]. Certain genetic variants can

affect the activity of a particular protein and these can

be used to estimate the probable efficacy and toxicity of

a drug targeting such a protein [27]. NGS therefore has

applications far beyond finding disease-causing variants.

For inflammatory bowel diseases (IBD) we refer to the

exhaustive pharmacogenomics review of Katsanos and

colleagues [28].

Progress of genetic research for common complex

diseases

Some of the diseases that profited immensely from

GWAS are inflammatory bowel diseases. Together with

ulcerative colitis (UC), Crohn’s disease (CD) is one of

the two main sub-phenotypes of IBD. IBD are chronic,

relapsing disorders involving inflammation of the
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gastrointestinal tract, sometimes accompanied by extra-

intestinal manifestations. The disease onset can occur at

any age, but the peak for CD as well as UC is in early

adulthood (approximately 25 to 35 years of age). In the

clinic, symptoms include chronic flare-ups of inflamma-

tion, abdominal cramping pain as well as diarrhea and

weight loss, thereby greatly affecting the quality of life of

patients. In Europe, an estimated 1.4 million people suf-

fer from CD [29] but as of yet, there is no known cure

and the current treatment is solely aimed at controlling

the symptoms. The current consensus is that IBD is

caused by the complex interplay of an overly active im-

mune system and environmental triggers (such as bac-

terial infections, dietary habits or smoking) in genetically

susceptible individuals [30, 31]. The strong genetic com-

ponent, especially for CD, is reflected by familial cluster-

ing of disease occurrence and a concordance of 35% in

monozygotic but only 3% in dizygotic twin pairs [32].

The relative risk for developing IBD is estimated to be

15 times higher for first degree relatives of an IBD

patient than in the general population [33].

Due to the complex nature of IBD, genetic research

focused on the identification of genetic risk factors that

increase the susceptibility to the disease, typically com-

mon SNP alleles that are significantly more frequent in

patients than in healthy controls. The aforementioned

methods have all contributed to the discovery of genetic

risk factors for IBD in the past. Genome-wide linkage and

candidate gene studies during the late 1990s were able to

identify the first susceptibility loci for IBD through

positional cloning and candidate gene analysis. The first

susceptibility gene to be identified for CD was NOD2

[34, 35], encoding for a member of the cytoplasmic

nucleotide-binding oligomerization domain (NOD)-like

receptor (NLR) protein family. Over the years, several

association studies added significantly to the number of

identified loci [36, 37], followed by meta-analyses which

combined the data of several individual GWAS-studies

from all over the world. The larger sample sizes led to

more statistical power and eventually to the discovery of

numerous additional susceptibility loci [38–40]. Today,

more than 200 loci have been identified for IBD [41] and

have highlighted some key pathways involved in the

etiology of IBD. Figure 1 illustrates the success of

hypothesis-free genome-wide studies. For example, our

group first unveiled the link of autophagy to IBD by iden-

tifying ATG16L1 in a genome-wide candidate SNP screen

[42]. Before, NOD2 had been identified as the first and so

far best-replicated Crohn’s disease susceptibility gene

through two independent studies [34, 35]. Gene identifica-

tion is then ideally followed by numerous validation and

in particular functional/mechanistic studies of the respect-

ive candidate genes. Bringing disease genes on the radar

of the research community leads to further studies, then

Fig. 1 Number of PubMed citations for ATG16L1, NOD2, IL23R, HLA/MHC, GWAS and autophagy in combination with “inflammatory bowel

disease”, “Crohn’s disease” OR “ulcerative colitis” from the years 1997–2015 depicting a steep increase of follow-up studies for genes and pathways

after discovery. Interestingly, the HLA/MHC association signal in IBD has been known for a long time, however, studies for this locus in IBD are rarer

and no increase can be observed. We think that this region is understudied, given its importance in disease etiology (in particular in ulcerative colitis),

calling for more IBD immunogenetics studies in the future
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scientific publications (as shown by the steep increase of

publications per year in Fig. 1) and ultimately an improved

disease understanding. However, the variants identified in

GWAS still explain less than 30% of the estimated genetic

variance of IBD [40]. While IBD constitutes perhaps one

of the greatest success stories and role models in complex

disease genetics research, GWAS have also been quite

effective for a number of other complex diseases like

psoriasis [43–45], atopic dermatitis [46, 47] and primary

sclerosing cholangitis (PSC) [48, 49]. Combined analyses

of several of these immune-mediated diseases have even

revealed considerable overlap of susceptibility loci, point-

ing at true pleiotropy and shared disease etiologies beyond

CD and UC, while also showing complex disease-specific

patterns at shared loci as well as revealing disease-specific

loci [50, 51].

Interestingly, the genetic susceptibility factors for IBD

are, with a few exceptions (e.g. NOD2, TNFSF15, HLA),

the same in European-ancestry and East-Asian IBD

patients [41]. Similar results have been obtained for

other complex inflammatory diseases, such as sys-

temic lupus erythematosus [52]. Therefore, trans-

ethnic studies will clearly aid in identifying consistent

genetic risk loci for complex inflammatory diseases,

thus increasing also statistical power due to the lar-

ger sample sizes. The few differences in the genetic

risk maps may also help in pinpointing likely existing

different environmental factors in the countries

under study.

As previously indicated, GWAS studies focused on

SNPs with moderate to high allele frequencies in the

general population. A part of the so-called missing herit-

ability may however be found in rare variants with

larger effect sizes [53] for some diseases. Results of a

recent large-scale sequencing project of more than

2600 genomes and almost 13,000 exomes did not

support the idea that lower-frequency variants have a

major role in predisposition to type 2 diabetes [54].

For IBD, however, common and rare susceptibility

variants have been shown to even coexist in the

same genes, as is the case for NOD2 [34, 55, 56].

Figure 2a illustrates this wide range of IBD-relevant

variants concerning their penetrance and the genetic

disease complexity and provides an overview of the

identified genes from monogenic, fully penetrant

genes to those harboring common susceptibility vari-

ants. Rare and especially novel variants can best be

detected by DNA sequencing and the development of

NGS finally made this feasible for complex diseases.

Figure 2b depicts the discovery of IBD genes since

2001 employing the different technologies discussed

here and shows the great success of GWAS on the

one hand, but also the increasing relevance of NGS

during the past few years.

Application of NGS for complex diseases

The usage of NGS and especially exome sequencing for

Mendelian disorders proved to be extremely successful.

Even sequencing of just a single patient could lead to

the discovery of the genetic mutation responsible for the

disease by filtering the detected variants based on func-

tional consequence (e.g. missense, nonsense, splice-site

variants) and allele frequency in the general population,

for example in the data of the 1000 genomes project

[19, 57] or the Exome Aggregation Consortium (ExAC)

[20]. But when dealing with complex diseases, different

approaches need to be considered.

One possibility is the application of the GWAS

approach to NGS data, aiming for the identification of

significant differences between cases and controls.

Disease-associated common variants can best be de-

tected by GWAS and sequencing approaches have the

potential to complement this by discovering rare variant

associations, given that the necessary large sample sizes

are considered. However, with a decreasing allele fre-

quency, the power to detect genes or variants of interest

also decreases, if effect sizes are small to moderate.

Single marker association testing is therefore often

“underpowered” for rare variants with frequencies below

0.5% or even 0.1% minor allele frequency (MAF), since

the number of observations of such alleles is often not

large enough to achieve statistical significance due to

small sample sizes [58]. For example, observing an allele

once with 0.5 or 0.1% MAF with 99% probability requires

sequencing of at least 460 or 2300 individuals, respect-

ively. Assuming a disease-associated variant with 0.1%

MAF and an allelic odds ratio (OR) of 1.4, the sample size

(cases and controls with equal sized groups) required to

achieve 80% power is 540,000, given a disease prevalence

of 5% and a significance level of 5 × 10−8 [59]. However,

the commonly used significance level of 5 × 10−8 is valid

for approximately one million common tag SNPs

(MAF ≥ 5%) only if a linkage disequilibrium r
2 < 0.8 for

pairs of tag SNPs is applied. With 0.1% MAF, we would

need a P-value threshold level of 1 × 10−8 and 3 × 10−7to

meet genome-wide and exome-wide significance (at

r
2 < 0.8), respectively [60]. Several statistical methods

have been proposed in the past to perform case-control

studies with WES or WGS data, most of them using

variant aggregation approaches to address this issue.

The two main types of aggregation tests comprise bur-

den and variance component tests [58] or a mixture of

both. Burden tests [61, 62] compare the number of var-

iants in a certain region or gene between cases and

controls, while variance component tests (e.g. the

sequence-based kernel association test, SKAT [63]) can

distinguish between protective and risk variants in a

single gene, making them more powerful if the gene

possesses a mixture of protective and risk variants.
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Lee et al. [59] provide a comprehensive overview of

currently available algorithms.

The successful application of these tests is however lim-

ited by sample size, as sequencing studies involving WES

or WGS still require a significantly larger sample size than

a typical GWAS to identify significant rare variant associa-

tions [64]. Despite continuously decreasing prices for se-

quencing, case-control studies employing thousands of

a

b

Fig. 2 a Top: Range of IBD-relevant variants based on genetic complexity underlying the disease and variant penetrance. Bottom: Overview of

identified IBD genes ranging from monogenic to complex forms based on the highest known penetrance for each gene. For both NOD2 and

PRDM1, for example, both common and rare variants have been identified as disease-relevant in patients [110, 111]. b Timeline of gene discovery

for IBD [112–137]. Top graph shows cumulative number of genes separated by technology (log scale)
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individuals still remain a costly undertaking compared to

GWAS where the latest array generation (e.g. Global

Screening Array from Illumina with 700,000 variants) is

currently available for less than $40 per sample. The NGS

approach is therefore still restricted to large-scale se-

quencing centers, companies, healthcare providers (e.g.

Geisinger Health), consortia involving several institutes

and crowd-sourced approaches.

Therefore, the focus currently lies on the analysis of

unusual cases to find highly penetrant variants. Here,

one possibility is sequencing of large families with sev-

eral affected individuals to narrow the dataset down to

few candidate variants based on those shared by the

affected individuals [65]. Clustering of patients within a

pedigree may point to variants with larger effects on

disease compared to those identified in GWAS and even

monogenic forms of IBD. However, it can also simply in-

dicate the accumulation of a large number of common

susceptibility alleles in the pedigree [65] and exome se-

quencing may therefore not necessarily be successful.

Apart from multiplex families, the most informative

characteristics indicating the presence of a highly pene-

trant genetic cause are an early age of onset and very

severe course of disease. GWAS performed specifically for

pediatric IBD (age of onset <18 years) failed to clearly dis-

tinguish early onset from adult IBD, identifying known

IBD loci or exclusive pediatric loci that were later also

identified for adult IBD [66, 67]. There is great overlap be-

tween susceptibility genes identified for pediatric and

adult-onset IBD (more than 30 loci described [66]). Early-

onset cases of IBD, with a disease manifestation during

the first 10 years of life, often show a more severe disease

course with a higher risk of complications and a higher

frequency of indeterminate colitis (IC) diagnoses [68]. Pa-

tients classified as very-early-onset even develop the dis-

ease during the first 6 years of life. A large spectrum of

monogenic diseases, mainly immunodeficiencies, can also

present with IBD-like intestinal inflammation [69]. How-

ever, several studies have also identified shared genetic

factors underlying these monogenic, early-onset and

adult-onset IBD cases with rather oligogenic or polygenic

causes. Mutations in genes for the interleukin 10 receptor

(IL10R) subunit proteins [70] and the IL10 gene itself [71]

were shown to be responsible for several cases of severe

early-onset IBD (eoIBD). At the same time, IL10 was also

associated with adult-onset UC [72] and CD [39] in

GWAS. Other identified causes of eoIBD include a dele-

tion in ADAM17 (ADAM metallopeptidase domain 17)

[73] and mutations or deletions in the XIAP (X-linked

inhibitor of apoptosis) gene [74–76] in male patients.

Although the direct overlap between key genes associated

with IBD and IBD-like monogenic disorders is rather low,

the affected proteins often interact directly or indirectly

with each other and share common signaling cascades

that contribute to IBD etiology [69]. Results from mono-

genic forms therefore have the potential to give important

insights into mechanisms contributing to disease. An

excellent overview of the genetics of early- and very early-

onset forms of IBD is the review by Uhlig et al. [77].

Targeted resequencing of susceptibility regions has

also been applied for several immune diseases and has

identified additional rare, functional variants in suscepti-

bility genes, which were detected using common variants

in GWAS. For instance, gene resequencing for atopic

dermatitis identified low-frequency missense variants in

the GARP gene as significant contributors to disease risk

[78]. Perhaps not surprisingly, monogenic disease forms

of complex diseases—i.e. patients that carry variants

with very high penetrance—have not exclusively been

detected for IBD, but also for other diseases. For ex-

ample, monogenic forms of psoriasis caused by muta-

tions in CARD14 [79] were revealed through exome

sequencing of a family with early-onset psoriasis. Studies

of rare variants in Mendelian forms of disorders that are

symptomatically similar to systemic lupus erythematosus

(SLE) have highlighted pathways also playing a role in

the complex disease form. As another example, TREX1,

encoding for the three prime repair exonuclease 1, has

been associated with monogenic Aicardi-Goutières syn-

drome [80], a disease displaying phenotypic overlap with

SLE. More recently, 0.5% of SLE patients were shown to

also harbor mutations in this gene [81].

While sequencing of severe early-onset patient exomes

greatly facilitated the identification of novel, high pene-

trance variants, their discovery among the tens of thou-

sands of variants identified in an exome is still a major

challenge. Since the first exome studies that relied on al-

lele frequencies from the 1000 genomes pilot [82], several

large-scale sequencing studies for genomes and exomes

have been undertaken. Databases like EVS [83], ExAC

[20] and KAVIAR [84] now provide population-specific

allele frequencies from several thousands to more than

60,000 individuals that can be used for filtering of candi-

date variants. However, some of these databases are

“contaminated” with data from patients or yet unknown

patients of similar symptoms as the disease of interest, so

the data should be used with caution.

The interpretation of non-coding variants has proven

to be extremely challenging. The ENCODE project [85]

significantly facilitated the understanding of functional

elements in the human genome. However, the complex

analysis of these sites is not yet routinely carried out in

most projects. For exome data, the analysis of non-

coding variants is limited from the beginning, due to the

nature of the technology with exclusive enrichment of

exons and, in some cases, UTRs. Variants from exomes

therefore tend to be reduced to those that are most

likely to affect protein structure. Nonsense, start-loss,
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stop-loss and splice-site variants as well as frameshift

insertions and deletions (InDels) have rather clearly

defined effects on the protein and are present in com-

parably low numbers. The interpretation of sometimes

hundreds of rare missense variants represents a greater

challenge. Several in silico prediction tools are available

to identify those amino acid changes that most likely

affect protein structure. SIFT [86] and Polyphen-2 [87]

were the first widely used tools, more recently DANN

[88], CADD [89] and FATHMM [90] were introduced.

The latter promise improved accuracy and additionally

offer predictions for non-coding variants. Other tools

specifically focus on identifying splice-altering variants,

including those located farther away from the exon-

intron boundary [91, 92]. Genes also differ concerning

the amount of potentially disruptive genetic variation

they can tolerate, expressed for example by the residual

variation intolerance score (RVIS) [93]. The prediction

of the effect of a variant on the protein structure and

thereby its function is however only one of the levels

that need to be considered when aiming to detect

disease-relevant variants. Variants diminishing the func-

tion of a gene do not necessarily manifest as an ob-

servable phenotype. This can for example be due to

redundancy of the function in several genes, preventing

the deficiency of one from having an effect. Filtering and

priorization of variants based on these criteria can

already significantly reduce the number of candidates. In

some cases, this is sufficient to identify a likely causative

variant relying on the known function of a well charac-

terized gene or novel variants in a known disease gene.

In most cases, however, additional filtering is needed. In

general, it is helpful to analyze more than one individual

of a family, even when dealing with sporadic cases, since

this allows the identification of variants segregating with

the disease within the pedigree. For sporadic cases the

healthy parents can also be used to detect de novo muta-

tions in the patient. These filtering steps can, however,

still result in a number of variants remaining, without

being able to clearly identify the most likely candidate.

Novel genes that haven’t previously been implicated in

disease or even genes with an unknown function sub-

stantially complicate the search. The question then

arises, how to proceed with a handful of candidates with

a possible but unconfirmed pathogenic effect (variants of

unknown significance, VUS) that remain after filtering

with all available methods. Functional analyses, espe-

cially for genes that are not yet well characterized, can

be time-consuming and expensive.

The case of a family with Crohn’s disease and auto-

immunity in two children [94] nicely illustrates this

issue. Exome sequencing was performed and yielded sev-

eral candidates, among them a rare missense variant in

CTLA4 (Cytotoxic T lymphocyte-associated protein 4).

While it represented a likely candidate, it was also

present in the asymptomatic mother. This incomplete

penetrance, as well as other candidate variants, made in-

terpretation and priorization difficult. Also, heterozygous

CTLA-4 deficiency in mice does not induce a phenotype

[95], which made the role of the detected variant in

disease questionable. Additional evidence pointing to

CTLA4 finally emerged when variants were also identi-

fied in other patients with immune phenotypes [96, 97]

and functional studies were able to back the role of het-

erozygous CTLA4 variants in immune dysregulation.

The incomplete penetrance suggests that additional

modifying factors yet need to be revealed, requiring the

analysis of additional patients with CTLA-4 deficiency.

Developing infrastructure for data sharing

Reliably classifying disease-causing variants often in-

volves finding correlations between different, independ-

ent observations, i.e. patients or cohorts with similar

clinical phenotypes in which the same (or a functionally

related) variant has been observed. For very rare or pri-

vate variants only a second patient with the same symp-

toms and the same genetic variant is sufficient for

statistical proof of the original finding. Sources of infor-

mation are usually published studies and public data

repositories that need to be searched, manually or with

specifically set up local bioinformatics pipelines. How-

ever, the complexity of the data at hand (including

sometimes dozens of VUS for larger patient cohorts) as

well as the vast amount of sequences that is now rou-

tinely being generated and deposited, is calling for more

efficient and integrated approaches.

Several efforts exist that aim to specifically aggregate

relevant clinical data, including databases such as De-

cipher [98], HGMD [99] or ClinVar [100]. Complemen-

tary to these resources, projects are under way to better

link national infrastructures and communities. Of note

here are, for example, the Belgian “SymBioSys” (http://

www.kuleuven.be/symbiosys/) or the German “Var-

Watch” project (BMBF project ID01EK1506 [101]), both

targeting separate issues in the integration of NGS data

and clinical variants. The main goal of SymBioSys is to

leverage national NGS data and provide efficient access.

It does so by building a federated network across se-

quencing facilities, together with a generic interface that

helps in rapidly mining the data for identical variants or

study parameters. VarWatch, on the other hand, is fo-

cused directly on the clinical context and is designed to

function as both a repository and a “monitoring” tool.

Clinicians can submit their VUS, together with pheno-

typic information about the disease, and VarWatch will

continuously search for matching cases, both within its

own data repository as well as external resources.
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While these initiatives are potentially important build-

ing blocks towards generating comprehensive clinical re-

sources, they leave the larger issue of how to efficiently

access and integrate the globally accumulating informa-

tion about the genetics of individual patients and their

conditions unanswered. A solution that is finding strong

support amongst larger databases and bioinformatics

institutes is currently being developed by the “Global

Alliance for Genomics and Health” (GA4GH), an inter-

national consortium of clinicians and bioinformaticians

with the goal of providing standards and software for

sharing clinical data on a global scale. One product of

these activities has been the “Beacon” network, and in

extension “MatchMaker Exchange” (MME) [102]. The

focus of Beacon and MME is to provide a “connective

tissue” between various “information islands”, linking

databases through a common interface and enabling

simple, platform agnostic queries without having to cre-

ate huge aggregations of data. Databases connected to

the beacon network can easily be queried for the pres-

ence of specific variants. MME further extends this con-

cept, allowing users not only to find identical variants,

but also to include information about the clinical con-

text of the variant (such as observed phenotype). In

doing so, it can bring together clinicians and researchers

with patients whose variants are not strictly identical,

but potentially related on a functional level and thus fur-

ther help finding diagnoses. Figure 3 depicts the variant

filtering of one real-world example from our clinic for

trio exome sequencing. While the filtering steps are able

to reduce the number of variants from more than 67,000

to only 18 variants potentially of interest, it is still

difficult to select the best candidate among these VUS or

in limbo variants. One possible solution for this problem

is the usage of MME which can detect overlaps between

the VUS submitted by different scientists or clinicians

and establish contact between them, making it possible

to pinpoint the causative variant(s) and thus solve the

clinical case (statistical significant result through recur-

rent finding of very rare event).

It is also becoming increasingly clear that in addition

to efficient access to distributed variant information,

there is also a growing need for metadata standards to

describe clinical observations not only genetically, but

also phenotypically. While several vocabularies have

been proposed over the years, the ones in use – such as

the Unified Medical Language System (UMLS) [103] -

are focused more on syndromes and less so on the

Fig. 3 Course of a typical trio exome project yielding several VUS and benefit of MME for variant selection. Filter by mode of inheritance:

recessive or dominant; by variant consequence: missense, nonsense, splice-site, start-loss or stop-loss; by frequency: maximum minor allele

frequency of 1% in various databases (ExAC, EVS, in-house controls)

Petersen et al. BMC Genetics  (2017) 18:14 Page 8 of 13



symptoms a patient is presenting with. This information

however will likely be vital, especially when trying to

match rare variants and rare diseases with poor repre-

sentation in standard nomenclatures. A promising

solution has recently been proposed in the form of the

Human Phenotype Ontology (HPO) [104], a collection

of hierarchical, phenotypic descriptors organized in an

ontological network similar to the already well-established

sequence ontology (SO) [105] and gene ontology (GO)

[106]. In addition to providing a complementary nomen-

clature for clinicians to better characterize their findings,

the inherent network-like structure of the HPO also al-

lows to measure the distance between any two terms. This

enables more complex matching scenarios, for examples

when clinicians have used slightly different but related

terms or sets of terms to characterize their patients [107].

Future directions

Combination of methods

Apart from genome and exome sequencing, which we

focus on here, there are several other NGS applications

that we expect to increase in relevance as efforts are

concentrating on linking observed mutations to func-

tional consequences beyond putative coding changes. Of

great interest here are the detection of modulation in

gene activity, for which both the direct sequencing of

transcripts through RNAseq as well as the detection

of differentially methylated sites (DMS) by means of

bisulfite sequencing as proxy for regulation hold great

promise. A completely different but equally important line

of inquiry is the metagenomic sequencing of the host-

associated microbiome to detect possible correlations be-

tween the presence or absence of certain genera and dis-

ease, as has already been suggested for a decrease in

Bacteroides and Firmicutes and a reduced diversity of the

microbiota in IBD patients [108]. The combined applica-

tion of these multi-omics data has the potential to provide

an improved overall picture of the characteristics of a cer-

tain disease and therefore help to understand its molecu-

lar underpinnings. With sequencing costs further

decreasing, large case-control studies with sample sizes

comparable to GWAS are also slowly becoming a reality

and will help detect rare variant associations specifically

for complex diseases. The biggest challenge though re-

mains, identifying relevant environmental factors in com-

plex diseases. Genetics and other functional genomics

analyses may also help in hinting at the disease-causing

environmental factors.

Technological developments

WES and WGS allow for the accurate identification of

single-nucleotide variants (SNVs) and small InDels. For

the detection of large InDels, copy number variations

(CNVs) as well as genomic rearrangements, however,

deep sequencing and meticulous analyses are needed,

which are mostly not yet part of the common analysis

pipelines used in the majority of projects.

NGS is already being applied to the clinic for the diag-

nosis of certain diseases, mostly through deep sequen-

cing of gene panels. However, relevant variants still

require confirmation through Sanger sequencing due to

the generally lower quality of NGS data, so it is desirable

to further increase the quality of NGS in the near future.

New methods are continuously being developed to use

NGS for additional applications or to extract more infor-

mation from standard applications. 10X Genomics for ex-

ample offers an additional instrument (Chromium), which

is fully compatible with the workflows of available NGS

sequencers and enables large-scale phasing of variants and

structural variant detection from WGS and even WES as

well as single cell applications by generating synthetic long

reads. The Chromium instrument uses emulsion to parti-

tion DNA. Barcoding and amplification of smaller frag-

ments from the original larger fragments then takes place

in droplets called “GEMs” that include all necessary re-

agents, resulting in the small fragments stemming from

one larger molecule carrying the same barcode. These

“synthetic long reads” can therefore be linked over larger

regions of the genome. The workflow delivers ready-to

use libraries for sequencing and software for the analysis

and visualization is openly available.

Other companies opt for the development of new

sequencing technologies, often called “third-generation se-

quencers”. Pacific Biosciences performs single molecule,

real-time (SMRT) sequencing of DNA fragments using

immobilized DNA-polymerases and produces reads of

over 10,000 bp average length. Nanopore sequencers, like

those developed by Oxford nanopore, detect the DNA se-

quence of a single-stranded DNA molecule by passing it

through a protein pore and measuring a shift in voltage

that originates from interactions with the pore. However,

these single-molecule technologies are still too expensive

and not yet applicable for resequencing larger numbers of

complete human genomes.

Looking further into the future, several exciting new

technologies are on the horizon. Genia Technologies,

which was bought by Roche in 2014, is currently develop-

ing a nanopore-based sequencing technique with a focus

on diagnostic applications. First results have already been

published [109], showing promising proof-of-principle re-

sults. However, it will likely still take several years until

the method is ready for the market. Illumina is planning

the launch of a new semiconductor sequencer in 2017 as

part of their Project Firefly, but as of yet, no details have

been released to the public. GenapSys by Sigma Aldrich

promises a low-cost, portable sequencer with a purely

electronic sequencing chip, but more information is cur-

rently only available to its testers.
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Conclusions

The extraordinary progress in the development of

methods for genomic analysis during the past 15 years

and especially the breakthrough in NGS in the past

decade has led to an enormous increase in the under-

standing of the human genome and its relation to dis-

ease. Improved technologies continuously provide faster,

cheaper and more accurate results, allowing us to move

from gene panels to exomes to routinely sequencing

whole genomes in the clinic in the near future. It has

however become increasingly clear, that to make the

most of the large, complex datasets being generated,

scientists must work together more than ever, to achieve

the ultimate goal of translating genomic data into clinic-

ally actionable results that patients can directly profit

from. With the generation of genomics data continu-

ously becoming easier and cheaper, the interpretation of

the large amounts of data and the identification of the

relevant disease-causing environmental factors will re-

main the biggest challenges of the years to come.
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