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Abstract We survey the recent work on micro-UAVs, a fast-growing field in
robotics, outlining the opportunities for research and applications, along with the
scientific and technological challenges. Micro-UAVs can operate in three-dimensional
environments, explore and map multi-story buildings, manipulate and transport ob-
jects, and even perform such tasks as assembly. While fixed-base industrial robots
were the main focus in the first two decades of robotics, and mobile robots enabled
most of the significant advances during the next two decades, it is likely that UAVs,
and particularly micro-UAVs will provide a major impetus for the third phase of
development.

1 Introduction

The last decade has seen many exciting developments in the area of micro Un-
manned Aerial Vehicles (UAVs) that are between 0.1-0.5 meters in length and
0.1-0.5 kilograms in mass. Just as the incorporation of 2-D mobility reinvigorated
robotics research in the 1990s, the ability to operate in truly three-dimensional en-
vironments is bringing in new research challenges along with new technologies and
applications. Indeed by some estimates [52], the UAV market is estimated to ex-
ceed $60 B in the next three years, and this forecast is conservative since it does
not account for the thousands of micro-UAVs that are likely to be fielded in the near
future.

Our focus in this work is on UAVs that have gross weights of the order of 1 kg and
below; although as described in [6, 9, 31, 41] the platform development represents
a challenge in its own right. While commercial products ranging from 5 g. to 350 g.
are available, most of these products do not carry the sensors and processors required
for autonomous flight. Many of these small aircrafts do not have the endurance
required for missions of longer than 5 minutes. Longer endurance requires bigger
batteries, and with the current energy densities of Li-polymer batteries (of the order
of several hundred Watt-hr/kg), the mass fraction used by batteries is significant,
often between 25-50% of the gross weight.

There are many types of micro-UAVs that are in various phases of research,
development and practice. Fixed-wing aircrafts are less adept than rotor crafts at
maneuvering in constrained, 3-D environments. While avian-style flapping wing
aircrafts provide more agility, our limited understanding of the aerodynamics and
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the fluid-structure coupling in such aircrafts presents a formidable challenge [11].
Insect-style flapping wing vehicles provide the ability to hover in place while also
enabling forward flight [2]. However, it is unclear that they represent a significant
advantage over rotor crafts or ducted fans in terms of efficiency, endurance, or ma-
neuverability, and they do incur a significant increase in complexity [44].

There are two configurations of rotor crafts that have gained acceptance in the
research community. Co-axial rotor crafts, exemplified by the Skybotix Coax [9],
are equipped with two counter-rotating, co-axial rotors and with a stabilizer bar [7].
Prototypes of less than 300 grams (without sensors or processors) with a hover time
of nearly 20 minutes make them attractive for robotics applications. In addition, the
stabilizer bar confers passive mechanical stability making them easy to control.

However, we argue (see next section) that multi-rotor aircrafts exemplified by
quadrotors currently represent the best bet in terms of maneuverability and their
ability to carry small payloads. Hence the rest of this paper will address the me-
chanics and control of quadrotors, and approaches to state estimation, mapping,
planning, exploration and manipulation.

2 Rotor craft designs and scaling laws

In this section, we explore the effect of choosing length scales on the inertia, pay-
load and ultimately angular and linear acceleration. In particular, we can analyze
maneuverability in terms of the robot’s ability to produce linear and angular accel-
erations from a hover state. If the characteristic length is L, the rotor radius R scales
linearly with L. The mass scales as L3 and the moments of inertia as L5. On the other
hand the lift or thrust, F , and drag, D, from the rotors scales with the cross-sectional
area and the square of the blade-tip velocity, v. If the angular speed of the blades
is defined by ω = v

L , F ∼ ω2L4 and D ∼ ω2L4. The linear acceleration a scales as

a∼ ω2L4

L3 = ω2L.
For multi-rotor aircrafts like the quadrotor, thrusts from the rotors produces a

moment with a moment arm L. Thus the angular acceleration α ∼ ω2L5

L5 = ω2. How-
ever, the rotor speed also scales with length since smaller motors produce less torque
which limits their peak speed because of the drag resistance that also scales the same
way as lift.

There are two commonly accepted approaches to scaling: Froude scaling and
Mach scaling [55]. Mach scaling is used for compressible flows and essential as-
sumes that the tip velocities are constant leading to ω ∼ 1

R . In other words, the rotor
speed scales inversely with length. Froude scaling is used for incompressible flows
and assumes that for similar aircraft configurations, the Froude number, v2

Lg , is con-
stant. Here g is the acceleration due to gravity. This yields ω ∼ 1√

R
. Neither Froude

or Mach number similitudes take motor characteristics into account. It is clear that
the motor torque (τ) scales with length. The surface area, which goes as R2 ∼ L2,
and the volume of the core which scales as R3 ∼ L3, are both important variables
governing motor performance. It turns out Froude scaling (ω ∼ 1

R ) is consistent
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with τ ∼ L2 while Mach scaling is consistent with τ ∼ L3. While the reality might
be somewhere in between, these two limiting cases are meaningful for our analysis.
Froude scaling suggests that the acceleration is independent of length while the an-
gular acceleration α ∼ L−1. On the other hand Mach scaling leads to the conclusion
that a ∼ L while α ∼ L−2. In other words, smaller aircrafts are much more agile.
Note that this conclusion is based on the assumption that the propeller blades are
rigid, the efficiency of the blade is independent of the length scale and the iner-
tia associated with the blades can be neglected. These factors can be important but
considering the inertia of the blade further emphasizes the benefits of scaling down
— longer blades require larger cross-sections to minimize stresses and the inertia
grows faster than L5.

For other types of rotor crafts, including co-axial rotor crafts, the linear accel-
eration scales the same way but the angular acceleration does not. This is because
the moment arm associated with the rotors is exactly L. This moment arm does not
scale the same way with coaxial helicopters. Similarly the scaling law for conven-
tional helicopters and ducted fans appears to be different. Thus if our objective is to
build small, highly maneuverable aircrafts, multi-rotor helicopters like the quadro-
tor appear to be the best configuration. While rotorcrafts with six and eight rotors
have been developed and are commercially available [3], the main benefits appear
to be redundancy due to the number of rotors and increased safety because of the
compactness of a six-rotor design over a four-rotor design.

There are three design points that are illustrative of the quadrotor configuration.
We use the Pelican quadrotor from Ascending Technologies [3] equipped with sen-
sors (approx. 2 kg gross weight, 0.75 m diameter, and 4000 rpm nominal rotor speed
at hover), consuming approximately 400 W of power. The Hummingbird quadrotor
from Ascending Technologies (500 grams gross weight, approximately 0.5 m diam-
eter, and 5000 rpm nominal rotor speed at hover) consumes about 75 W. Attempts to
develop a smaller quadrotor at the University of Maryland [35] suggest that a quad
rotor without sensors of mass 62 grams, 0.075 m diameter and 9000 RPM rotor
speed consumes a little over 10 W of power.

3 Control

3.1 Dynamics

The dynamics of quadrotors can be simplified to rigid body dynamic models with
approximations to the aerodynamic forces [33]. In Fig. 1, the inertial frame, A , is
defined by the triad a1, a2, and a3 with a3 pointing upward. The body frame, B, is
attached to the center of mass of the quadrotor with b1 coinciding with the preferred
forward direction and b3 perpendicular to the plane of the rotors pointing vertically
up during perfect hover (see Fig. 1). Let r denote the position vector of the center
of mass C in A . The vehicle has mass m and the components of the inertia tensor
is given by the 3×3 matrix J along along the principal axes bi. The rotation matrix
describing B in A is given by R ∈ SO(3), while the angular velocity of the vehicle,
Ω ∈ R3, is defined as
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Fig. 1 The vehicle model. The position and orientation of the robot in the global frame are denoted
by r and R, respectively.

Ṙ = RΩ̂

where the operator ·̂ is defined such that x̂y = x× y for all x, y ∈ R3.
The forces on the system are gravity, in the −a3 direction, the lift forces from

each of the rotors, Fi, and the drag moments from the rotors Mi, all in the b3 direc-
tion. Each rotor has an angular speed ωi and produces a lift force Fi = kF ω2

i and
drag moment Mi = kMω2

i . The constants, kF and kM , are related to the drag and
lift coefficients, the cross sectional area and the rotor speed as discussed in Sect. 2.
However, for a specific rotor, it is quite easy to determine these empirically. The
thrust input is given by:

u1 =
4

∑
i=1

Fi

while the moment input vector is

u2 = L

 0 1 0 −1
−1 0 1 0
µ −µ µ −µ




F1
F2
F3
F4


where L is the distance of the rotor axis from C, and µ = kM

LkF
is a non dimensional

coefficient that relates the drag (moment) to the lift (force) produced by the propellor
blades.

The dynamic model is given by:

mr̈−mge3 = u1Re3 (1)
JΩ̇+Ω× JΩ = u2 (2)

where e3 = [0, 0, 1]T.
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3.2 Control

The control problem, to track smooth trajectories (Rdes(t),rdes(t)) ∈ SE(3), is chal-
lenging for several reasons. First, the system is underactuated — there are four in-
puts (u1,u2) while SE(3) is six dimensional. Second, the aerodynamic model de-
scribed above is only approximate. Finally, the inputs are themselves idealized. In
practice, the motor controllers must generate the required speeds to realize these
inputs. The dynamics of the motors and their interactions with the drag forces on
the propellers can be quite difficult to model, although first order linear models are
a useful approximation.

The first challenge, the underactuation, can be overcome by recognizing that the
quadrotor is differentially flat. See [37, 39] for a discussion of differential flatness.
To see this, we consider the outputs r and ψ as shown in Fig. 1, and show that we can
write all state variables and inputs as functions of the outputs and their derivatives.
Derivatives of r yield the velocity v, and the acceleration,

a =
1
m

u1b3 +g

By writing the unit vector:

e1 = [cosψ, sinψ, 0]T

we can define the body frame from ψ and a as follows:

b3 =
a−g
‖a−g‖

, b2 =
b3× e1

‖b3× e1‖
, b1 = b2×b3

provided e1×b3 6= 0. This defines the rotation matrix R as a function of a and ψ .
To write the angular velocity and the inputs as a function of the outputs and their
derivatives, we write the derivative of acceleration or jerk,

j =
1
m

u̇1b3 +
1
m

u1 Ω×b3

and finally, the snap or the derivative of jerk:

s =
1
m

ü1b3 +
2
m

u̇1 Ω×b3 +
1
m

u1 Ω̇×b3 +
1
m

u1 Ω× (Ω×b3)

where
Ω̇ = J−1(u2−Ω× JΩ)

From the equations above it is possible to verify that there is a diffeomorphism
between the 18×1 vector:[

rT,vT,aT, jT,sT,ψT, ψ̇T, ψ̈
]T
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Fig. 2 Nonlinear feedback allows us to reduce the nonlinear system to a linear system (4).

and
R×

[
rT, ṙT,ΩT,u1, u̇1, ü1,uT

2
]T

Accordingly define the vector of flat outputs to be:

z = [r,v,a, j,ψ, ψ̇]T = [z1,z2,z3,z4,z5,z6]
T

We can also define a vector of fictitious inputs

v =
[
vT

1 ,v2
]T

related to the original inputs by a nonlinear transformation of the form:[
v1
v2

]
= g(z)

[
ü1
u2

]
+h(z) (3)

so the state equations are linear:

ż = Az+Bv (4)

with

A =


03×3 I3×3 03×3 03×3 03×1 03×1
03×3 03×3 I3×3 03×3 03×1 03×1
03×3 03×3 03×3 I3×3 03×1 03×1
03×3 03×3 03×3 03×3 03×1 03×1
01×3 01×3 01×3 01×3 0 1
01×3 01×3 01×3 01×3 0 0

 , B =


03×3 03×1
03×3 03×1
03×3 03×1
I3×3 03×1
01×3 0
01×3 1


This obviously makes the control problem trivial. See Fig. 2 for a graphical descrip-
tion of the controller design.

There are several difficulties following this naive approach. First, the linear con-
troller based on (4) works only if the dynamics can be effectively linearized. This
in turn depends on the cancelation of the dynamics in (3) which is difficult because
the dynamic model only represents an approximation of the aerodynamic forces and
our knowledge of the parameters in the model is not perfect. While parameter esti-
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Fig. 3 The attitude controller achieves the desired orientation, which is in turn computed from the
errors in position.

mation and adaptive control techniques (e.g., [40]) can be used to learn and adapt
to these parameters, it is often not possible to get access to the low level signals
involving higher order derivatives of the state and the inputs.

Indeed, the second challenge is to derive estimators that yield the extended state,
z, which includes not only the position and velocity, but also the acceleration and
jerk. Knowledge of the thrust (u1) and attitude (b3) allows us to estimate acceler-
ation. Similarly, measuring the derivative of the thrust (u̇1), which is related to the
rate of change of motor speeds, and the angular rates (Ω) allows us to estimate the
jerk. However, this information is not usually available from motor drivers.

However, this model of exact linearization is useful since it allows us to design
trajectories in the 18-dimensional space of flat outputs and their derivatives which
are guaranteed to respect the dynamics and constraints we might want to impose on
the state variables.

In most previous work [9, 15, 43], the control problem is addressed by decoupling
the position control and attitude control subproblems as illustrated in Fig. 3. The
position controller is obtained by projecting the position error (and its derivatives)
along b3 and applying the input u1 that cancels the gravitational force and provides
the appropriate proportional plus derivative feedback:

u1 = mbT
3

(
r̈des +Kd(ṙdes− ṙdes)+Kp(rdes− rdes)−g

)
. (5)

The attitude controller varies based on the representation which is either using Euler
angles, quaternions or rotation matrices. Euler angle representations have singular-
ities and are suitable only for small excursions from the hover position. In most
cases, it is sufficient to use linear controllers that are based on the linearization of
the plant dynamics around the hover position [9, 16, 29, 33, 43]. The use of quater-
nions permits the exact cancellation of dynamics and a nonlinear controller that is
exponentially stable almost everywhere in SO(3) [53]. A similar result with rotation
matrices is available in [23]. In both these papers, the error is defined on the rotation
group and does not require the error to be small.

In [23], the two controllers are shown to result in a nonlinear controller that ex-
plicitly track trajectories in SE(3). The key idea is to design exponentially converg-
ing controllers in SO(3) using an accurate measure of the error in rotations instead
of taking linear approximations:
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êR =
1
2

(
(Rdes)TR−RTRdes

)
(6)

which yields a skew-symmetric matrix representing the axis of rotation required
to go from R to Rdes and with the magnitude that is equal to the sine of the angle
of rotation. Computing the proportional plus derivative of the error on SO(3) and
compensating for the nonlinear inertial terms gives us:

u2 = J(−kReR− kΩeΩ)+Ω× JΩ, (7)

If we do not consider constraints on the state or the inputs, (6-7) achieve asymptotic
convergence to specified trajectories in SE(3) [23]. From a practical standpoint it
is possible to neglect the nonlinear Ω× JΩ term in the controller and achieve sat-
isfactory performance [27]. Finally, as shown in [29], it is possible to combine this
controller with attitude only controllers to fly through vertical windows or land on
inclined perches with close to zero normal velocity.

trajectory controllers allows the robot to build up momentum and reorient itself
while coasting with the generated momentum.

3.3 Adaptation and Learning

The dynamic models suffer from two types of limitations. First, such parameters
as the location of the center of mass, the moments of inertia and the motor time
constants are not precisely known. Second, the aerodynamic models are only ap-
proximate.

The first difficulty is overcome using parameter estimation algorithms. Because
the unknown parameters appear linearly in the equations of motion (as in the case
for robot manipulators [10, 38, 54]), we can write the state equations in discrete
time as follows,

yk+1 = θ
T

Φk

θ is the parameter vector, Φk and yk are the regressor and the measurement at the kth

time step. A simple linear least-squares method can be used to estimate the unknown
parameters as shown in [28] either in a batch or in a recursive algorithm provided
the dynamics are persistently excited. These methods can also be used to determine
the offsets in IMU readings and for online calibration [48].

Adapting to varying aerodynamic conditions such as those encountered in narrow
passages or perturbations due to wind gusts is harder because of the interaction be-
tween the time scales of estimation and control. Model Reference Adaptive Control
techniques can be used in such settings, although it is necessary to get good mea-
surements of the inputs (motor currents or speeds) and state variables for effective
adaptation.

Iterative learning has been used effectively in [26, 29] for acrobatic maneuvers.
Such techniques allow the robot to learn trajectories and inputs without knowing a
precise aerodynamic model.
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Regardless of the specific platform, it is unlikely that a conventional model-based
approach to control can work without a robust adaptation mechanism. The small
length scales and inertias lead to variations in dynamics that are very difficult to
model and impossible to reason about in real time. However it is also unlikely if
purely data-driven approaches can be used for control of micro-UAVs. While ap-
prenticeship methods and variants of reinforcement learning algorithms (see, for
example, [1]) have achieved remarkable results, they require an expert human op-
erator to generate data for model and control identification. Further, it is unclear if
these methods can generalize the results to cases not a priori encountered, where
training data is not available. Indeed, in much of the work considered in our own
group [29, 51], it is very challenging if not impossible for a trained human operator
to fly the robot in the specified manner.

4 Planning

Incremental search [24] and sampling based techniques [22], which are excellent
for planning in configuration spaces, are not particularly well-suited for planning
motions for underactuated systems. RRT methods and their variants can solve prob-
lems with dynamic constraints. For example, in [48], a RRT planner is used to gen-
erate trajectories online through a cluttered environment with models acquired by
a laser and a camera, but for dynamic models obtained by linearization around the
hover operating point. However, the complexity of a 12-dimensional state space with
four inputs makes such techniques impractical for planning fast motions through
constrained environments. Smaller problems, for example planning motions in the
plane, can be solved using reachability algorithms [13], but it is difficult to explore
using the full state space using such approaches.

An alternative approach is to use a combination of planning algorithms for con-
figuration spaces along with controller synthesis techniques to ensure the UAVs can
execute the planned trajectory. For example, RRT-like techniques have been used
with LQR-like control synthesis techniques to find trajectories and sufficing (and
even optimal) control policies [50]. Similarly, uncertainty in dynamics and estima-
tion can be addressed using LQG techniques with motion planners [5]. However,
techniques like this have yet to be applied to 3-D motion planning of UAVs.

Model predictive control (MPC) techniques represent a third approach that can
be used to solve planning and control problems for underactuated systems [20, 56].
These techniques are promising since they combine open loop (optimal) motion
planning with feedback control — by generating open loop trajectories based on
environmental models periodically with a time interval that is much smaller than the
horizon of planning, corrective motions can be generated to accommodate changes
in the environment. However, with such approaches, convergence guarantees are
difficult to prove. It is possible to prove stability of the MPC algorithm when the
linearized model is fully controllable about the goal position [56] (which is gener-
ally possible when the goal corresponds to a static hover position), or if a control
Lyapunov function can be synthesized for goal positions [17]. Guarantees aside, the
synthesis of optimal control solutions even with a finite horizon and a terminal cost
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function can be difficult with limiting on-board processing resources. Thus it ap-
pears to be difficult to directly apply such techniques to the trajectory generation of
a quadrotor with guarantees.

It appears that a hierarchical approach that combines incremental search or sam-
pling based techniques in configuration space with optimal control techniques that
refines configuration space trajectories in state space is the best framework to solve
such problems. If a configuration space planner can be used first to establish way-
points and constraints, optimal trajectories that respect these constraints and the
dynamics of the UAV can be generated as a second step. In [27], the property of
differential flatness is used to develop an algorithm that enables the generation of
optimal trajectories through a series of keyframes or waypoints in the set of posi-
tions and orientations, while ensuring safe passage through specified corridors and
satisfying constraints on achievable velocities, accelerations and inputs. Since the
cost function and all the constraints can be written as algebraic functions of the flat
output vector, z, the general setting reduces to solving the problem:

min
v(t)

∫ T

0
L(z)dt, s.t. g(z)≤ 0 (8)

A simple choice for L(z) is the square of the norm of the input vector, which
turns out to be the equivalent of finding the trajectory that minimizes the snap and
the yaw acceleration along the trajectory. It also has the added benefit of yielding
a convex cost function. Recall that trajectories in this flat space automatically sat-
isfy the dynamic equations of motion. Thus the only constraints in g(z) ≤ 0 are
those on the position (obstacles), velocity (maximum angular rates because of gyro
saturation), accelerations (saturation of the IMU), and inputs (propellors can only
exert positive lift). All except the position constraints are linear. By linearizing the
position constraints the optimization in (8) becomes a convex program. The uncon-
strained problem, the minimum snap trajectory optimization, yields an analytical
solution - a seventh degree polynomial function of time for which we can introduce
a polynomial basis for the trajectories. We can similarly use polynomial functions
(if necessary of higher order) to satisfy all the constraints in (8). The resulting tra-
jectories have interesting time scaling properties [27] and can be refined efficiently
for different values of T to obtain the fastest trajectory to satisfy all the constraints.
Finally the quadratic program can be solved in real time quite efficiently, and even
in a distributed MPC-like setting for multiple quadrotors at speeds approaching 20
Hz. [51].

5 State Estimation and Perception

State estimation is a fundamental necessity for any application involving autonomous
UAVs. However, platform design, mobility and payload constraints place consider-
able restrictions on available computational resources and sensing. The agility and
three-dimensional mobility of the vehicle require sensors that provide low-latency
information about the three-dimensional environment surrounding the vehicle. Al-
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though in open outdoor domains, this problem is seemingly solved with onboard
GPS, IMU and camera sensors [45, 47], indoor domains and cluttered outdoor en-
vironments still pose a considerable challenge. In such complex environments, the
vehicle must be able to localize, detect or perceive obstacles, generate trajectories
to navigate around the obstacles and track the trajectories with reasonable accuracy.
Any failure to successfully achieve any of these requirements may in fact lead to a
complete failure of the vehicle. Further, outdoor environmental effects (e.g. obscu-
rants [46], wind, direct sunlight, GPS-shadowing) and indoor structural considera-
tions (e.g. obstacles, tight corridors, vehicle-induced wind [33]) can challenge the
consistency and accuracy of estimation algorithms that are not designed to directly
consider these issues.

The fusion of information from multiple onboard sensors such as IMU, laser and
cameras (monocular, stereo and RGB-D) do much to address these issues but come
with a cost on processing demands, payload and power. Thus there is a real need
to find a balance between sensor availability, onboard and offboard processing and
operating conditions (which in turn lead to restrictions on the kind of environments
in which the UAV can operate).

Initial developments in the area focused on systems capable of navigating indoor
environments with algorithms leveraging laser and IMU information to generate a
map and localize within the map [4, 14]. Processing for estimation and mapping
is shared between local and external computational resources. Unlike the previous
work, a monocular camera approach is employed for full pose estimation and lo-
calization of ground terrain in GPS-denied environments in [8] but with offboard
processing. However, a major concern with offboard processing is the need to main-
tain uninterrupted, low-latency communication. While this is possible in some in-
door and outdoor environments, it inhibits the ability of the system to operate au-
tonomously throughout more general and complex environments. Additionally, the
added time cost of external information exchange reduces the performance of the
onboard feedback control due to the communication incurred time-delays.

To address these issues, in [48] we considered a similar problem but required
the development of an implementation that permitted all processing to occur on the
vehicle in real-time. The advancements made in this work were in the form of sys-
tem design and algorithm optimization to permit autonomous navigation using an
IMU, camera and laser to generate three-dimensional maps throughout large and
multi-story environments using only limited onboard processing. Further, as all pro-
cessing occurred in real-time and on the vehicle, we were able to leverage the feed-
back from the state estimation to drive model-based adaption to account for external
disturbances due to gusting wind and ground effects.

Thus far, the discussion focuses on autonomous navigation, where the vehicle
plans and controls to goals provided by an external entity. A remaining question is
the introduction of perception, planning and control to permit autonomous explo-
ration, where perception algorithms must also allow the UAV to reason about the
environment to determine control policies that will yield maximal information for
mapping. However, a major challenge in moving toward this direction is the lack
of three-dimensional sensors that can be mounted on UAVs, which are required for
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3-D exploration. Unfortunately, rich sensor sources such as three-dimensional laser
range finders and omni-directional cameras either do not fit the vehicle payload con-
straints or are prohibitive given the limited computational resources. As such, it is
necessary to focus on new algorithmic methods to explore an environment given
limited sensing and computational resources. A current strategy we are pursuing in
ongoing research [49] is the application of stochastic-differential equations to estab-
lish information frontiers between spatial regions that represent the known, explored
environment and regions that represent the unexplored environment. The approach
strives to find a balance between the computationally complexity of analyzing a
full three-dimensional map and the limited field-of-view of onboard sensing. The
area of autonomous exploration and perception is clearly an area with rich research
possibilities that will become increasingly viable as computing and sensing options
improve in time.

6 Other Challenges

6.1 Scaling and SWaP constraints

One of the key challenges in creating small autonomous UAVs are the so-called
size, weight and power constraints. Packaging constraints are severe. Sensors and
processors have to be smaller due to the limitations on payload. Because of this, it is
difficult to create autonomous quadrotors (with onboard computation and sensing) at
small length scales. The smallest autonomous quadrotors capable of exploring, map-
ping and scouting an unknown three-dimensional building-like environment have a
characteristic length of approximately 0.75 m, mass of a little less than 2 kg., and
power consumptions over 400 Watts leading to a mission life of around 10-20 min-
utes [48]. The main reason for the size is the need to carry three-dimensional sensors
like Hokuyo laser range finders or Microsoft Kinect cameras. This in turn leads to
high power consumption. Many impressive advances have been made in mapping
and estimation for autonomous navigation using just an IMU and a camera [8]. Re-
cent results point to algorithms that yield estimates of 3-D metric information from
just monocular vision combined with a good IMU [21, 36]. This suggests that the
sensor payload challenges associated with scaling can be overcome in the near fu-
ture.

However, the net payload constraints are still significant if the UAV needs to be
able to transport or manipulate a payload. Since the linear acceleration scales with L
(Sect. 2), it is impossible to design small UAVs that are able to overcome this funda-
mental constraint. Current UAVs with L∼ 1m have a maximum payload of around 1
kg. One way to overcome this constraint is by using multiple UAVs to cooperatively
transport or manipulate payloads. Recent work suggests that the challenges in co-
ordinating multiple UAVs and adapting individual vehicles to constraints imposed
by other vehicles is possible in different settings ranging from payloads suspended
from UAVs [12, 18, 19, 32] to payloads rigidly grasped by UAVs [30].
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6.2 Grasping and manipulation

There are many challenges in aerial grasping for micro-UAVs. The biggest chal-
lenge arises from their limited payload. While multiple UAVs can be coordinated to
carry payloads with grippers [30], the end effector or gripper has to be light weight
and capable of grasping complex shapes. Second, the dynamics of the robot are sig-
nificantly altered by the addition of payloads. While this can be beneficial to tasks
when aerial robots need to sense the payload that has been grasped, it is important to
also be able to compensate for and adapt to changes in the dynamics caused by the
grasped payload. It is clear that the design of claws for grasping represents a chal-
lenging mechanism design problem where the compliance and damping must be
finely tuned to grasping. Finally, all the challenges associated with grasping objects
(approaching, contacting, and securing the grasp) make this a significant challenge.

Preliminary work in this direction has appeared in conferences over the last two
years. The difficulties associated with the analysis of the flight dynamics and stabil-
ity are explained with the help of an approximate model in [42]. The mechanics and
design for aerial grasping are addressed in [28, 30]. Parameter estimation methods
for estimating the grasped payload and the ability to adapt to the payloads are inves-
tigated in [28]. The application to construction of structures is discussed in [25] in
which the sensed disturbance forces are used to verify successful grasping and as-
sembly. Micro-UAVs afford opportunities for truly three-dimensional grasping since
they can, in principle, approach objects or assemblies from any direction, and be-
cause they can sense disturbance forces without additional sensors. This is a fertile
area of future research.

6.3 Adaptation to complex environments with changing dynamics

As discussed earlier, it is very difficult to model micro-UAVs with a high degree of
precision because of the complexity of modeling air drag, the interactions between
the motor, rotor and the fluid through which the propellor blades must move, the dy-
namics of the flexible propellor blade and the different nonlinearities and saturation
effects in the sensors and actuators. And such difficulties get compounded when the
rigid body dynamics interact with the aero dynamics and the fluid-structure cou-
pling effects become significant, as is the case in flapping-wing vehicles or rotor
crafts with long blades. As discussed earlier in Sect. 3.3, adaptive control and itera-
tive learning techniques can be used to handle some of these challenges. However,
parameterizing the set of uncertainties and ensuring the appropriate level of sens-
ing and actuation to identify these parameters may not always be possible. Methods
such as the ones described in [26, 28, 29] are good starting points for such studies.

The effects of changes in the aerodynamics in three-dimensional environments
are much harder to study. A study of wind gusts in [57] illustrates the challenges in
modeling and experimentation. For small aircrafts, small, local variations in wind
conditions can be significant. Transitions between indoor and outdoor environments
can induce large perturbations. Even without wind gusts, changes in elevation can
dramatically alter the lift generated by individual propellors resulting in signifi-
cant disturbances to the vehicle. Some of these phenomena are studied for mod-
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estly changing environments in [48] where the inputs required to compensate for
the changes can be parameterized by a small set of trim parameters. In these studies
the sensed information was limited to gross position and velocity information which
in turn limits the level of adaptation that is possible. If aerial vehicles are to become
as reliable and easy-to-use as ground vehicles, it is necessary to develop techniques
that will enable safe and robust low-level navigation behaviors in complex environ-
ments.

7 Conclusion

Micro UAVs are potentially game changers in robotics. They can operate in con-
strained three-dimensional environments, explore and map multi-story buildings,
manipulate and transport objects, and even perform such tasks as assembly. Our
recent experiments with quadrotors in collapsed buildings in Sendai, Japan in July
2011 [34] demonstrated many benefits of using autonomous quadrotors for map-
ping unknown environments, searching in collapsed buildings and exploration in
settings that are too dangerous for human rescue workers. Just as the advent of mo-
bile robots led to a flurry of activity with new research problem areas, micro-UAVs
will inevitably lead robotics research in new and exciting directions.
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