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Abstract: Photonics offers exciting opportunities for neu-

romorphic computing. This paper specifically reviews the

prospects of integrated optical solutions for accelerating

inference and training of artificial neural networks.

Calculating the synaptic function, thereof, is computa-

tionally very expensive and does not scale well on state-of-

the-art computing platforms. Analog signal processing,

using linear and nonlinear properties of integrated optical

devices, offers a path toward substantially improving

performance and power efficiency of these artificial intel-

ligence workloads. The ability of integrated photonics to

operate at very high speeds opens opportunities for time-

critical real-time applications, while chip-level integration

paves theway to cost-effectivemanufacturing and assembly.

Keywords: integrated optics; optical signal processing;

photonic neural networks; photonic reservoir computing.

1 Introduction

Over the last two decades, the computing landscape has

massively changed. The saturation of silicon technology

scaling started to cripple Moore’s law, and as a conse-

quence, new architectures and integration schemes had to

be developed to maintain the computing performance

roadmaps. The emergence of ultrahigh bandwidth internet

facilitated a new ‘computing-as-a-service’model based on

large flexible disaggregated systems in the cloud and

enabled new applications and services like video stream-

ing, social networks and data-driven business intelligence.

The availability of large amounts of data from, and for,

such services naturally created a desire to extract value

from them. However, because a large part of those data is

noisy, unstructured or incomplete, traditional, statistical

methods have difficulties working properly. This refueled

interest in trainable or even self-learning algorithms that

were already of great scientific interest in the 1960s and

1990s [1]. The revival of neuromorphic computing had been

triggered. Exploiting the now finally available computing

power of silicon technology, large and complex brain-

inspired architectures can be designed, optimized, and

executed, and artificial intelligence (AI) has become a

major area of R&D and an essential part of our daily life.

A big challenge on the path to ultimate brain-inspired

systems is that the brain itself is not yet understood well

enough to take it as a starting point [2]. This holds true at all

levels, from the smallest building block to the overall ar-

chitecture, interaction and memory models. Therefore, in

today’s AI systems, the so-far identified building blocks

and architectures are loosely mapped onto a suitable

technology platform, up to the extent that the term ‘brain-

inspired’ may even be a large stretch. Silicon Comple-

mentary metal-oxide-semiconductor (CMOS) is the most

advanced, highest performance,miniaturized, reliable and

established one. Hence, it is used as the basis for almost all

AI hardware implementations today. To overcome the

fundamental memory bottlenecks of the von Neumann

architecture, it became necessary to advance silicon CMOS

toward novel architectures [3] and enhance its function-

ality in a ‘more-than-Moore’ approach. One key aspect of

the latter is to deeply embed the basic neural network

building blocks like the massively parallel synaptic inter-

connect layers and nonlinear activation functions in the

platform foundation.

The main task in neuromorphic computing is calcu-

lating and optimizing the synaptic interconnects in a

neural network, wherein the signals into the neurons are

weighted and summed throughmanymultiply-accumulate

(MAC) operations. If we consider all synaptic connections

between two network layers, this operation can finally be
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formulated as one large vector-matrix multiplication. The

computational cost of the latter scaleswithN2, withN being

the number of neurons of the neural network layer.

To accelerate the computation of large numbers of these

vector-matrix multiplications during training and infer-

ence of deep neural networks (DNNs), dedicated hard-

ware accelerators were introduced. Examples include

graphics processing units (GPUs) [4] or tensor processing

units [5]. Such accelerators enable parallel and pipelined

processing of MAC operations, fetching data from mem-

ory and writing back the results. This moving back and

forth of data/results between the different memory loca-

tions and the actual computing engines constitutes the

classical von Neumann bottleneck and is attributed to the

bulk of the overall energy consumption (Figure 1). For out-

of-order instruction executions, it is probably the limiting

factor in the overall performance of the classical

computing.

With increasing distance to the processing unit,

memory access becomes increasingly more power

expensive and through larger access latency slows down

computing (Figure 1). Furthermore, the energy for per-

forming arithmetic operations strongly depends on the

required accuracy. To mitigate the massive power con-

sumption of today’s systems, two directions become

clear. First, datamust be kept as local as possible. Second,

operations must be performed at the lowest accuracy

feasible. Using accelerators like GPUs with copackaged

memory is in linewith this concept. However, though data

are kept more local and processing is massively paral-

lelized, processing and memory units are still separated

as in a von Neumann architecture. The urgency of over-

coming these power-driving mechanisms of today’s sys-

tems was recently assessed [7]. Strubell et al. [7] show that

training a state-of-the-art natural language processing

neural network, for which 213-M parameters had to be

optimized on a cloud data center using modern GPUs,

requires around 200 kWh. Even by using partially

renewable energy for running the cloud data center, this

still translates into the estimated emission of 100 kg of CO2

to train one neural network (Figure 2).

Consequently, an enhanced technology platformmust

(1) overcome excessive data motion;

(2) reduce signal processing overhead;

(3) provide synaptic connections resembling the neural

network architecture.

The processor-to-memory data exchange issue can be

largely addressed by pursuing in-memory computing con-

cepts, while the signal processing overhead is reduced by

applying analog signal processing. In the electrical domain,

fascinating new concepts are emerging adhering to the

concepts listed above. For example, the use of computa-

tional memory based on memristive devices enables to

performMAC operations, in-place (or in-memory). The MAC

operation is performed in the analog domain using mem-

ristive devices by exploiting Ohm’s law (multiply operation)

and Kirchhoff’s law (accumulate operation). The input

signal is applied as a voltage across a conductor, and the

resulting current is the multiplication of the voltage and the

conductance. Combining the currents from multiple indi-

vidual conductors leads to the accumulated current. Each

memristive device represents a synaptic weight. Recently,

impressive demonstrations of neural network operations

employing electrical crossbar technology for calculating the

synaptic interconnect were achieved [10]. The memristive

devices can be integrated in the back-end-of-the-line of

CMOS technology and are often implemented based on

phase-changematerials [11] ormetal oxide resistivememory

(OxRAM) devices [12]. The direct cointegration with CMOS

and, hence, high-density implementation is an important

aspect of this technology. Challenges remain in setting the

resistance to the desired value and the retention thereof, as

required for inference, while a well-controllable change of

the resistance is important for efficient neural network

training [13].

(a) (b)

Figure 1: Typical energy required for logic operations (a) and data transfer between various levels of storage or memory and the arithmetic

logic unit (ALU) (b). The impact of the logic operation accuracy and data transfer on the total power consumption is large. Data from the study

by Horowitz [6].
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In the remaining of this paper, we will address the

training and inference of artificial DNNs. DNNs are the

most advanced and widespread applied architectures [14].

The tremendous interest and success originates from

learning algorithms based on backpropagation, with which

synapticweight values in aDNNcanbeoptimized efficiently,

such that the DNN performs a desired task [14, 15].

Fully connected feedforward neural networks with

multiple hidden layers are a typical example of a DNN

(Figure 3b). The basic building block of these networks is

interconnected neurons, wherein each neuron applies a

nonlinear activation function on the sum of all its input

signals (Figure 3a). The neurons are arranged in layers, and

neurons of consecutive layers are connected by a synaptic

(weighted) connection. A DNN has at least two hidden

layers; current state-of-the-art networks often use hun-

dreds of hidden layers. To calculate the neural network

response, a vector-matrix operation xiWi and the nonlinear

activation function are executed for each layer in the sys-

tem. Evaluating the vector-matrix operation is the most

compute-intensive operation in the inference and training

of the neural network. Therefore, the synaptic interconnect

will be a focus of this paper.

2 Prospects of integrated photonic

neural networks

Photonic technologies are widely applied in our daily life.

Integrated photonics, as in silicon photonics [16] and

indium phosphide–based technologies [17], emerged in

solutions for optical communication in long-range, metro

and recently also short-range links. The decisive advan-

tages of optics are the larger bandwidth-distance product,

the massive parallelism, low propagation loss, density and

the availability of broadband optical amplifiers. This en-

ables the transmission of highly multiplexed signals over

large distances through optical fibers [18]. A single optical

amplifier restores the power of a series of wavelength-

multiplexed signals, each operating at bandwidths

exceeding 100 Gb/s. In such an optical link, the integrated

optical technologies mentioned above provide the inter-

face between the electrical system and the optical fiber.

Important integrated optic building blocks are high-speed

electro-optical modulators, detectors and a wide range of

passive optical devices such as couplers, splitters and

wavelength (de)multiplexers. The introduction of optical

technology in data centers, for example, the large dis-

aggregated cloud systems mentioned above, was an

important step for the integrated optic technology plat-

forms. Silicon photonics specifically profited from this new

application as it provides a cost-effective scalable plat-

form, but indium phosphide–based devices and sub-

systems remain vital as well. However, despite advances in

integration, photonic solutions come with an overhead in

terms of number of components, assembly, size, reliability

and hence often cost. The penetration of integrated optic

technology in computing systems showed that it must

provide concrete performance or functionality advantages

at reasonable cost as compared to electrical solutions to be

a viable alternative [18]. Similar considerations will hold

Figure 2: Comparison of the estimated, equivalent CO2 emission for the training of different state-of-the-art deep neural networks for natural

languageprocessing (blue bars)with various everydayactivities (redbars). Equivalent CO2 for the neural networkswas estimatedbasedon the

power consumption required for the training. The equivalent CO2 emission for a neural network architecture search evolving from the

Transformer big model with 979 million training steps was estimated to be 284,000 kg. Training of a single ‘Transformer Big’model with 213

million parameters still emits roughly 100 kg of CO2. Data sources: [7] for the neural network power estimations, [8] for air travel estimation

and [9] for the remaining values.
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for photonics neuromorphic systems. Hence, carefull

considerations on the specific differences optics can bring,

are of utmost importance [19].

Based on the above information, optical links are a

first consideration for applying photonic technology in

neuromorphic computing. Similar as in large-scale

computing systems, optical technology can help provide

bandwidth over distances in a denser or more power-

efficient way than electrical technology. However, this

does not inherently change the computing architecture.

Here, we focus on new applications for photonics, facili-

tating novel ways for performing data movement and

signal processing. In the study by Denz [20] and DeMarinis

et al. [21], an excellent overview is given on the broad

applicability of photonics for neuromorphic computing,

covering optical and nonlinear photonic signal processing,

materials, technology, architectures and applications.

Three major advantages of photonics for neuromorphic

computing are cited. We add a fourth argument:

(1) Large bandwidth, processing of high-speed data.

(2) Massive parallelism based on the ‘superposition of

light’.

(3) Parallel handling of images of arrays of light points –

so-called pixels.

(4) The ability to process signals with low latency, real-

time signal processing.

Also, in the study byDenz [20], light-matter interactions are

described, providing additional functions of importance

for neuromorphic computing. Some photonic materials’

properties of interest are

(1) Electro-optic effect, to control the photonic signal

phase by applying a current or electrical field.

(2) Electroabsorption, to impact the optical signal trans-

mission by an electrical signal.

(3) Trimmable refractive index or absorption, which re-

sults in a persistent change in the material’s optical

properties by applying an optical or electrical signal.

This is of special interest for nonvolatile weights.

(4) Photorefractive effect, local change of the refractive

index through exposure to light.

Many nonlinear optical effects provide ultrafast response

times as well as good reproducibility of the induced change

of the optical properties; the electro-optic Pockels effect is

an excellent example [22]. For analog signal processing,

such properties are crucial as they enable fast and precise

tuning of the photonic circuit functionality. Though pho-

tonic signal processing can be inherently fast, signal-to-

noise considerations limit the maximum operation speed.

Nevertheless, optical communication technology shows the

ability to operate photonic systems in the 50-GHz or 100-Gb/

s range. Though feasible, whether implementing multi-

plexing is a viable option depends on the problem to be

solved. Wavelength division multiplexing creates an over-

head that in optical communication iswell justified for long-

range (>10km) but not for short-range (<150m) links. Similar

considerations will apply for photonic neuromorphic

computing solutions; the option to implement an integrated

multiplexed signal processing or transmission solution

must be evaluated against the size, performance and cost

compared to multiple single signal processing units.

Figure 3: (a) Single neuron with synaptic connections. Each signal xi is weighted by the corresponding synaptic connection. The weighed

signals reach the neuron, where they are summed together before the nonlinear activation function σ is applied. (b) Small feedforward neural

network with two hidden layers. (c) Two nonlinear activation functions that are typically used in deep neural networks (DNNs): the rectified

linear unit (ReLU) and the sigmoid activation.
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A wide variety of photonics for neuromorphic

computing examples is described in the literature. Though

this paper focuses on integrated optics technology, it is

worthwhile to also study bulk- and fiber-optic systems as

examples highlighting advantages and capabilities of

photonic signal processing. Parallel handling of arrays of

light points, the third item in the list above, is ideally

exploited in three-dimensional systems and hence a

typical example of a bulk optical system. The benefits were

also anticipated for optical signal processing for super-

computing [23]. An input vector is projected onto an array

of spatial light modulators and subsequently on the de-

tector array to perform, for example, an analog vector-

matrix multiplication. In the study by Saade et al. [24], the

spatial light modulator prepares the input vector that is

imaged onto a scattering medium and from there onto a

detector array. The scattering matrix technique enables a

reduction in the dimension of the input data (random

projection) and therefore a more efficient neuromorphic

signal classification in the subsequent steps. This type of

system is capable of handling high-speed optical signals,

but scalability limitations are imposed by the spatial light

modulator array size and update rate.

Fiber-optic systems provide an ideal means for guiding

light over long distances with ultralow propagation loss. In

single-modeoptical fibers, the phaseproperties of the optical

signals are preserved. This opens a path to enhanced feed-

backdynamics as, for example,demonstrated in the studyby

Brunner et al. [25]. The single-mode fiber reservoir system

with a single time-modulated input signal and nonlinear

optical source can demonstrate spoken digit recognition and

chaotic time-series prediction at data rates beyond 1 Gb/s.

Multimode fiber systems do not preserve the phase of the

light, but operation is based on the signal power only.

Though this may affect functionality, avoiding drift and

noise of the optical phase can offer a stability advantage [26].

Integrated optic devices for neuromorphic computing

offer several performance merits such as form factor, man-

ufacturability, cost,mechanical stability and the availability

of high-speed devices such as modulators and detectors.

The examples above show that specific advantages exist for

each implementation. The application and specific imple-

mentation decide on the viability of each approach. In the

following sections, we discuss integrated optic neuro-

morphic computing architectures and implementations,

starting with reservoir computing (RC) approaches.

2.1 Integrated photonic RC systems

RC is a computation concept well suited for sequential data

processing (Figure 4) [27, 28]. A stream of input data is

coupled into a reservoir, which consists of recurrently

connected neurons. The synaptic interconnects between

the input and the reservoir, as well as within the reservoir,

are assigned randomly and kept fixed. RC systems are

therefore a special type of recurrent neural networks

(RNNs). The connections in the reservoir are typically

sparse (<20%). To avoid exponential growth of the signals

in the reservoir, the weights in the reservoir are scaled such

that the system fulfills the echo state property [27]. During

training, only the weights at the output layer are learned.

RC has been of great interest as it massively simplifies the

training compared to general RNNs. In an echo state

network with a linear output layer, the weights can be

learned by a simple ridge regression. While the simple

training method is still beneficial, deep learning methods

have made great progress over the last years and allow for

very effective application of RNNs on complex tasks that

could hardly be solved by RC systems. Nevertheless, RC

remains an interesting concept for neuromorphic systems

as the fixed reservoir weights map very well to a variety of

non–von Neumann hardware implementations. Tanaka

et al. [29] review various physical RC implementations

ranging from electronic to optical and mechanical as well

as biological implementations. Bulk, fiber and integrated

photonic RC systems are reviewed in detail in the study by

Van Der Sande et al. [30]. Here, we will give an overview of

the integrated systems.

Some of the early concepts for integrated photonic

reservoir systems evolved around networks of semi-

conductor optical amplifiers (SOAs). Each SOA provides an

optical nonlinearity owing to its power saturation behavior

and has a rich internal dynamic behavior. In the study by

Vandoorne et al. [31], a waterfall network architecture with

Figure 4: Illustration of the reservoir computing approach. The

weights at the input and in the reservoir are randomly selected and

kept fixed. The connectivity in the reservoir is sparse, and the

connections are recurrent. The weights at the output layer can

therefore be trained by a simple ridge regression.
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feedback connections and SOA nodes was suggested. Its

performance was compared to an echo state network with

tanh activation function (classical software implementa-

tion) on a simple pattern recognition task, indicating a

slightly better performance for the SOA network, despite

the simple network architecture. Improved architectures

were proposed, and the performance benefit over tradi-

tional software implementations has been demonstrated in

numerical simulations for various tasks, such as, for

example, spoken digit recognition [32]. However, owing to

the large power consumption of the SOAs and, hence, the

limited power efficiency of these networks, the first hard-

ware realization was based on a different concept, a pas-

sive silicon photonic implementation.

The coherent silicon photonic RC implementation

presented in the study byVandoorne et al. [33] is based on a

passive, linear photonic circuit. The linear reservoir nodes

are arranged on a grid and connected through waveguides

(delay lines), splitters and combiners to their neighbors

(Figure 5a). The state at each reservoir node is read out

through a detector, introducing a square nonlinearity at

the output of the system; the reservoir itself remains linear.

The operation speed of the reservoir is determined by the

length of the waveguide delay lines between the neigh-

boring nodes, which in this case was set to 2 cm (280 ps), to

match the speed of the available measurement equipment.

Using shorter delay lines, the operation speed could easily

be increased to 100’s of Gb/s. Operation up to 12.5 Gb/swas

demonstrated for a 16-node system and based on various

tasks. In the experiments, the input signal was fed into a

single node, and the output signals at 11 nodes were

recorded. The output signals were digitized and weighted

and combined in software. The training was performed

offline using ridge regression. Excellent performance was

reported for timewise Boolean operations like exclusive or

(XOR), bit header recognition or spoken digit recognition.

Various improvements on the architecture have been

applied over the years. The input scheme was optimized,

by injecting the input signal to multiple nodes for a better

power distribution in the network [34]. The use of multi-

mode waveguides was suggested in the study by Katumba

et al. [35] to minimize the combining loss of Y-junctions,

and a novel architecture based on four-port devices for

minimal loss and improved state-mixing behavior was

introduced in the study by Sackesyn et al. [36] (Figure 5b).

However, the missing nonlinearity inside the reservoir, the

bandwidth limitations and latency imposed by detecting

and weighting the output signals in the electronic domain,

as well as the large number of required photodetectors for

parallel operation (one detector per node), will signifi-

cantly limit the practical applicability of these systems.

To overcome the later, all-optical photonic RC con-

cepts have been suggested in the studies by Freiberger

et al. [37] and Stark et al. [38] (Figure 6). The amplitude and

phase of each node’s output signal are weighted in the

optical domain using ring resonators [39] and phase

shifters or Mach-Zehnder interferometers [40], and sub-

sequentially, the weighted signals are summed together

using a coherent photonic combiner tree. The optical

output signal can then either be kept in the optical domain,

e.g., for nonlinear dispersion compensation in an optical

link [41], or be converted into the electronic domain for

further processing using a single fast photodetector.

However, these systems cannot make use of the nonline-

arity through the detection as the detection occurs only

after the node signals have been coherently combined. It is

nevertheless appealing to work with such coherent, linear

photonic systems as some problems like the well-known

XOR function are linearly separable in the complex domain

(C), but not in the real domain (R) [42]. An additional

challenge for all-optical systems is that the individual

complex node states cannot be read out; hence, training

these all-optical networks requires iterative optimization

techniques to optimize both phase and amplitude of each

weight. Amethod to reconstruct the complex states at each

node is discussed in the study by Freiberger et al. [43],

showing promising performance in numerical simulations.

To reconstruct the amplitude of the states, all weights are

set to zero, and sequentially, a single weight is enabled,

and the output is recorded. In a second step, the relative

phase difference between the states and a selected refer-

ence state is obtained, by turning on this pair of weights.

Blackbox optimization techniques like the covariance

matrix adaptation evolution strategy (CMA-ES) work as

well but require a much longer training time.

One way to implement the missing nonlinearity in

these systems is to embed SOAs based on III–V materials

on top of the silicon photonic stack. In the study by Stark

et al. [38], we demonstrated a concept for such a system

(Figure 6), which is based on a four-port architecture, and

besides the SOAs, uses nonvolatile optical weights based

on electro-optic barium titanate technology. The main

drawback of using SOAs is their large energy consumption

and the rather complex fabrication process. An alternative

concept to bring nonlinearity into the silicon photonic

reservoir is the use of nonlinear microring resonators [44].

The nonlinearity occurs through two-photon absorption,

free carrier absorption and dispersion in the ring resonator.

By carefully optimizing the operation point and delay line

lengths, promising performance and excellent energy ef-

ficiency was obtained in numerical simulations for a

timewise XOR task.
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In the following sections, we will discuss two specific

examples where we see potential for integrated photonic

implementations of analog MAC accelerators. For com-

parison, we reference some bulk optical systems as well. In

the first example, we focus on neural network inference,

whereas the second option also opens a path toward effi-

cient neural network training.

2.2 Integrated photonic devices for neural

network inference

For neural network inference, there is a need for real-time

power-efficient vector-matrix multiplications of high-

speed signals. In literature, several examples were

demonstrated of cascaded Mach-Zehnder interferometer

structures performing a unitary matrix calculation. The

matrix elements, representing the synaptic weights, are

externally controlled by setting the phase of electro-optic

tuning elements in the Mach-Zehnder arms [45]. Alterna-

tive architectures are, for example, based on ring resonator

filters [46]. Barium titanate on silicon photonics electro-

optic devices offer ultrahigh-speed phase modulation [22]

and ultralow power tuning in the nanowatt range [47]. The

maturity of state-of-the-art silicon photonics and silicon

nitride and indium phosphide platforms is well suited for

the implementation of this type of devices. Most demon-

strations are limited to 4 × 4 matrix sizes, and indeed,

challenges arise in scaling to larger matrices. Phase errors

limit the performance, and as full control of anN×Nmatrix

requires 2N2 phase shifters, setting all elements requires

many electrical signals to be controlled. This makes this

option well suited for small-size matrix operations (N < 32)

as, for example, in convolutional signal processing [48].

The inference calculation is performed in a fully parallel

manner, and execution time and effort do not depend on

Figure 5: Two integrated photonic reservoir

computing architectures were suggested in

the study by Sackesyn et al. [36]. The swirl

architecture (a) and the four-port architec-

ture (b), wherein each node (black box) is

connected to four other nodes. The four-

port architecture offers improved power

efficiency as it does not use Y-junctions but

four-port devices to mix and redistribute

the signals.

Figure 6: Concept for an all-optical integrated reservoir computing system. The reservoir consists of a network of nodes (blue boxes) based on

semiconductor optical amplifiers (SOAs) and multimode interferometers (MMIs), which are connected by delay line waveguides (blue dots).

For the node connection, a four-port architecturewas used. Additionally, a fraction of the light is coupled out at each node and transmitted to a

photonic weight. We suggest using electro-optic switches based on barium titanate to implement the signal weights. After the weighting, the

signals are combined through a coherent combiner tree, and the output signal is either converted into the electrical domain using a

photodetector or kept in the optical domain.
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the matrix size. An important aspect is the option to adjust

the weight values very fast out of a prestored set of values.

This opens the opportunity to adapt the matrix at the same

speed as data is coming in, for example, to perform

different types of convolutional operations. Another

promising approach for neural network inference is based

on the integration of phase-change materials as adjustable

absorbers with integrated optic circuits [49, 50].

2.3 Integrated photonic devices for neural

network training

The second exciting opportunity for integrated optic tech-

nology is related to artificial neural network training.

Establishing an enhanced technology platform for neural

network training is of utmost interest. Recent publications

show the large environmental footprint of today’s tech-

nology in neural network training, as described in the

introduction [7]. There are two basic approaches to opti-

mize the training of photonic neural networks. Either the

training methods are adapted to match the system capa-

bilities, or the operations used in a general trainingmethod

like stochastic gradient with backpropagation [15] are

accelerated through photonic hardware.

An example for the former concept is given in the study

by Bueno et al. [51], wherein Bueno et al. implemented an

iterative photonic learning method based on a greedy

learning algorithm for a 4f free-space RC system with 900

nodes. A digitalmicromirror device is used to set the output

weights, which are therefore binary. The greedy learning

algorithm randomly selects an output weight and switches

its state. The system performance is evaluated, and if it

improved, the new output weight configuration is kept;

otherwise, the previous configuration will be restored.

These steps are applied iteratively, until the required per-

formance is achieved, or the error rate converges. The

training method was able to optimize the weights in about

900 learning iterations for one-step-aheadprediction of the

chaoticMackey-Glass time series, with good generalization

and performance.

For the latter, we present a concept, which extends the

inference calculation of the synaptic connection between

two neural layers to a technology platform in which also

the backpropagation and weight update steps are per-

formed in a fully parallel manner by optical signal pro-

cessing. In the Mach-Zehnder interferometer-based vector-

matrix multiplication concept, the matrix element values

are set by an external subsystem. Hence, changing these

values in an optimization procedure would require signals

to flow from the neural network output to the control sys-

tem. An in situ training algorithm for this type of structures

was proposed [52] supporting the backpropagation algo-

rithm [53]. It is based on performing intensity measure-

ments in the device and storing the obtained values for

processing in the subsequent steps. This communication

path would still introduce an information flow bottleneck

and therefore limit the performance andpower efficiency of

the training algorithm. A local weight updatemechanism is

required, directly fetching the signals in the network itself.

Here, we first summarize the backward propagation algo-

rithm as this helps to understand the merits of the optical

Figure 7: Illustration of forward- and backpropagation through a feedforward neural network with two hidden layers (similar to Fig. 3b) for

training of the networkweights. To train the networkmany training samples xwith target output t are forward propagated through the network

and the resulting output y are stored. Next, the loss which describes the error between the output y and the desired output is computed. Using

backpropagation, we compute the error signals δi for each layer for all training samples. The weight updates are averaged over all training

samples. This procedure is repeated iteratively until the loss is minimized.
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signal processor presented thereafter. To train a feedfor-

ward DNN,we can use stochastic gradient descent together

with backpropagation as follows (Figure 7) [54]:

(1) Forward propagate training input samples xk

with target response tk and store the corresponding

outputs y.

(2) For each training sample, compute the loss between

the target output and the obtained outputs using a loss

function. Often, the squared error is used as a loss

function.

(3) For each training sample, find the error signal δi =
δL
δzi
,

which indicates how large the influence of the input at

a neuron on the total loss is. This error signals can

be obtained by propagating the loss backward through

the network with transposed weight matrices

and using derivative of the activation functions [54].

http://neuralnetworksanddeeplearning.com/

chap2.html

(4) Using the error signals obtained in step 3, update the

weights as follows, to minimize the loss

W i→W i − αxi ⊗ δi

where α is the learning rate and xi ⊗ δi =
δL
δW i

is the

partial derivative of the loss with respect to the

weights, which is averaged over all training samples.

(5) Iteratively repeat steps 1–4 until the loss reaches a

minimum.

Already in the 1990s, a photonic system was demonstrated

inwhich theweighting elements are stored in a bulk crystal

of a photorefractive material [55]. The MAC operation is

obtained through the diffraction efficiency of a refractive

index grating formed in the photorefractive crystal through

the interference of two beams. A detailed description of

signal processing in photorefractive materials is given in

chapter 3 of the study by Denz [20]. In Figure 8, we depict

the formation and operation principle of first a single

weight and then two synaptic weights.

The diffraction efficiency of an input signal to one of

the outputs represents the respective synaptic weight.

Also, a part of the other input signals is diffracted toward

the same output where they are coherently combined,

representing the accumulation function. Because the full

input vector can be applied in one inference cycle, the

Figure 8: (a) A synaptic weight is formed in the photorefractive crystal through the interference of two light beams. Charge carriers are

optically excited and diffuse to dark regions of the interference pattern. The charge separation induces an electrical field, and through the

Pockels effect, a modulation of the refractive index is induced. (b) An optical signal (S1) impinging from the direction of source 1 will now be

diffracted toward destination 1, resembling the operation of a single synapse. (c) A second grating is formed by applying a second source

(source 2), while the destination direction is kept the same. (d) By subsequently applying input signals from the directions of source 1 and

source 2, an analog multiply and accumulate operation is performed toward destination 1.

Figure 9: All critical vector-matrix calcula-

tions for neural network inference and

training are efficiently performed as O(1)

operations. (a) The input light is dif-

fracted by the refractive index grating

(green), which is stored in the photore-

fractive material. The weight matrix is

given by the diffraction efficiency of the

input signals to the different outputs. (b)

The same refractive index grating can be

used to compute the product of the

transpose of the weight matrix by using

alternate inputs and outputs. (c) A weight update is performed by writing a new refractive index grating by applying the input and error

vector at the same time.
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vector-matrix calculation is of O(1), independent of the size

of the matrix. The inference calculation is now visualized

for multiple beams in Figure 9a.

The backpropagation function is performed on the

transpose of the matrix (WT ). The alternate input and

output sections enable a straightforward calculation of the

transpose operation on the same photorefractively

imprinted grating, as indicated in Figure 9b. Finally, the

weight update is induced by applying both the input and

the error vectors at eachnetwork layer. All operations are of

O(1), imposing a massive performance improvement

compared to digital signal processing in von Neumann

systems. Compared to themethod proposed in the study by

Hughes et al. [52], only intensity measurements at the de-

vice periphery are required and need to be transferred be-

tween layers of the network.

The availability of siliconphotonics and the cointegration

of materials like barium titanate or thin III–V layers [56] open

opportunities for chip-level implementation of an analog

photonic synaptic processing unit. In Figure 10, we show a

device layout to implement the neural network operations

based on the photorefractive effect, as depicted in Figure 9.

A thin layer of a photorefractive material is bonded to

the silicon photonics wafer in which the periphery to

operate the processing section is integrated. Electro-optic

modulators convert the electrical input vector to the

required power and phase of the optical beams. Detector

arrays convert the vector-matrix output signals back to the

electrical domain. To theoretically estimate the viability of

this concept, we take gallium arsenide (GaAs) as the pho-

torefractive material. The retention time of GaAs as a

weight storage medium is approximately 300 ms. With a

projected cycle time for the inference and backpropagation

steps of 20 ns and an update cycle of 100 ns, approximately

104–106 operations can be performed before the weight

values must be refreshed. Therefore, this does not repre-

sent a hurdle for the applicability of this technology for

neither neural network inference nor training. The theo-

retical storage density is large; we evaluated that the

storage of 106 weights in a thin layer with dimensions of

5 × 5mm2 is possible. Note that the peripheral devicesmust

be added to the required area, resulting in a total size of

25 × 25 mm2, which is still feasible. The estimated total

operating power is less than 5 W. In addition to the paral-

lelization, this in-memory computing concept avoids

communication to and frommemory, which is an essential

aspect in meeting the power efficiency advancement. Cal-

culations for electrical systems predict a power efficiency

and performance advancement of factors larger than 100

[13]. For the optical case as presented here, we anticipate

similar values as the power requirements for operating

the devices are on the same order of magnitude as for

the electrical memristive structure. Whether an optical

implementation will be a viable solution compared to the

electrical memristive structure will depend on the perfor-

mance, form factor and application. Clearly, the electrical

solution will have an overall larger areal density of about a

factor of 20–50. Inherently, the photorefractive effect pro-

vides well-controlled setting and trimming of the weight

values. This is important for efficient training and opens

opportunities for analog vector-matrix multiplications

with regularly updated matrix elements.

3 Conclusions

Photonic implementations of neuromorphic computing

technology offer exciting properties in terms of bandwidth,

processing speed and controllability. We discussed bulk,

fiber-optic and integrated optic implementations of neu-

romorphic computing structures. The potential of inte-

grated photonics for neural network inference and training

was discussed, and a new concept for training artificial

neural networkswas presented. Benchmarking of results in

photonic neuromorphic computing against other platforms

Figure 10: Schematic representation of an integrated photonic

synaptic processor for inference and training. The device has one

coherent optical input. The electrical input signals drive electro-

optic modulators in the transmitter array sections to set the optical

input vector. Collimatingmirrors convert the diverging optical waves

in the planar waveguide sections to collimated beams entering the

photorefractive region under slightly different angles (compare with

Figure 8). Both transmitter arrays are operated simultaneously to

update the gratings stored in the photorefractive material. For the

inference and backpropagation steps, only one transmitter array is

used. The resulting optical output signal is detected by the receiver

array and converted back to the electrical domain.
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is important to direct the effort toward the most promising

application.
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