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Abstract

Animal movement patterns in space and time are a central aspect of animal ecology. Remotely-sensed environmental
indices can play a key role in understanding movement patterns by providing contiguous, relatively fine-scale data that
link animal movements to their environment. Still, implementation of newly available remotely-sensed data is
often delayed in studies of animal movement, calling for a better flow of information to researchers less familiar
with remotely-sensed data applications. Here, we reviewed the application of remotely-sensed environmental
indices to infer movement patterns of animals in terrestrial systems in studies published between 2002 and
2013. Next, we introduced newly available remotely-sensed products, and discussed their opportunities for animal
movement studies. Studies of coarse-scale movement mostly relied on satellite data representing plant phenology or
climate and weather. Studies of small-scale movement frequently used land cover data based on Landsat imagery or
aerial photographs. Greater documentation of the type and resolution of remotely-sensed products in ecological movement
studies would enhance their usefulness. Recent advancements in remote sensing technology improve assessments of
temporal dynamics of landscapes and the three-dimensional structures of habitats, enabling near real-time environmental
assessment. Online movement databases that now integrate remotely-sensed data facilitate access to remotely-sensed
products for movement ecologists. We recommend that animal movement studies incorporate remotely-sensed products
that provide time series of environmental response variables. This would facilitate wildlife management and conservation
efforts, as well as the predictive ability of movement analyses. Closer collaboration between ecologists and remote
sensing experts could considerably alleviate the implementation gap. Ecologists should not expect that indices derived
from remotely-sensed data will be directly analogous to field-collected data and need to critically consider which
remotely-sensed product is best suited for a given analysis.

Keywords: Animal trajectories, Movement patterns, Remote sensing, Trade-off resolution, Satellite products, Landsat,
LiDAR, MODIS, Animal movement databases
Introduction
Both remote sensing and animal tracking technology
have recently experienced major advances which has the
potential to facilitate integrated analyses of environmen-
tal and animal movement data in unprecedented detail
[1,2] Correspondingly, statistical analyses have advanced
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to quantify spatial patterns, to account for processes on
different scales and for spatial autocorrelation in animal
movement data [3]. Improvements in sensor tracking
technology, e.g., Global Positioning System (GPS) data,
provide animal movement data that capture movement
paths (i.e., time series) in ecological landscapes, an im-
provement over “timeless” position clusters [1]. These
advances provide many opportunities, but also chal-
lenge the scientific community of movement ecology
as acknowledge with special issues in two leading
international journals [1,2]. In parallel, remotely-
sensed data from different satellite sensors have been
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available since the 1970s at a wide range of spatial and
temporal resolutions, providing a better match to various
scales of animal movement. A key challenge to overcome,
however, is the time lag between the availability of new
remotely-sensed products and their application in eco-
logical research and management. Minimizing this tem-
poral disconnection requires closer collaboration between
wildlife ecologists and remote sensing experts to facilitate
more rapid implementation of geospatial data processing
(sensu [4]).
Analyses of animal movement pathways can increase

understanding of resource utilization and dispersal dy-
namics among populations over time, and can ultimately
aid animal conservation and management [5]. While
habitat analyses tend to overlook the temporal aspects of
habitat use, analyses of animal movement pathways (tra-
jectories) integrate each animal location into the larger
context of the spatial distribution of the population and
changing environmental conditions through time, as well
as individuals’ constraints, behavior, and survival [5-7].
Animal movement over time is a result of decision-
making among behavioral trade-offs, considering animals’
internal state, motion, navigation, and external factors [8].
Today, sensor technology can link physiological data such
as body temperature and heart rate to movement data,
thereby directly linking animals’ physiological conditions
and movement behavior to landscape features [9]. Move-
ment path analyses (such as state-space models or step se-
lection functions) track animal resource selection over
time [10,11], and require increasing application of dy-
namic environmental covariates to better understand the
mechanism for animal movement behavior.
Animals interact with their environment at multiple

spatiotemporal scales, resulting in different movement
modes [12,13]. Fine-scale temporal movement data re-
veal functional landscape connectivity by distinguishing
movement corridors, barriers, or stop-over-sites, thereby
helping to identity areas critical for mammalian and
avian movement [14-18]. Fine-scale data also capture
residency times and site fidelity, and can identify critical
resources such as water or resting sites [19,20]. At
broader scales, pathway analysis can distinguish between
migration, nomadic behavior, and dispersal [21], which
affects population dynamics, resource utilization, gene
flow among populations (e.g. [5]), and the spread of dis-
eases [22].
New remotely-sensed data better capture both the tem-

poral dynamics of landscapes and the three-dimensional
structure of habitats. In contrast to field-collected point
data, which are typically information-rich but spatially-
sparse, remotely-sensed data typically provide spatially con-
tinuous data over larger areas, but less information for any
given point or pixel due to their relatively coarser reso-
lution. This means that the different spatiotemporal scales
at which animal movement occurs require different types
of remotely-sensed data to understand the underlying
causes of movement (Figure 1 [7,23]). However, there is an
inherent trade-off between fine-but-infrequent (i.e., fine
spatial but coarse temporal grain) versus coarse-but-fre-
quent (i.e., coarse spatial but fine temporal grain) data re-
corded by different satellite sensors (Figure 1; Table 1).
More specifically, if the goal is to understand fine-scale
movement patterns, fine-but-infrequent data are arguably
most useful, because they provide the detail necessary to
gain insight into the drivers of movement patterns and be-
cause temporal variation of the environment such as land
cover or phenology matters less over shorter time spans
(see e.g. [13,24-28]). In contrast, to understand fine-scale
movement patterns of flying animals, highly frequent infor-
mation about weather and wind condition is needed be-
cause the fine details of e.g., atmospheric turbulence that
shape the movement patterns can change very rapidly
[29,30]. On the other hand, when broad-scale movement
patterns are studied, temporal change in the environment
is the key and coarse-but-frequent data are better covariates
of movement (e.g. [31]).
Our goal here was to provide a review for movement

ecologists who are less familiar with the variety of
remotely-sensed data available and their application in ani-
mal movement studies, reducing the present time lag in ap-
plication of available remotely-sensed products in animal
movement studies [4]. Thus, we first review the current ap-
plications of remotely-sensed ecological indices that deal
with vertebrate movement patterns in terrestrial systems.
Second, we introduce newly-available remotely-sensed
products and discuss the opportunities that they provide
for animal movement studies. We focused on studies that
link animal locations and remotely-sensed data in terrestrial
ecosystems, published between 2002 and 2013 (Table 2).
Specifically, the studies we reviewed investigated how ani-
mals interact with their terrestrial environment over time,
and are based on trajectories and range shifts by individuals
and populations, thereby potentially aiding conservation
and management. Current animal movement studies are
heavily biased towards larger-bodied animals due to the
weight and size of tracking devices. While there is a history
of radio-tracking and linking large-bodied seabird move-
ment to environmental features, it has only recently be-
come possible to equip small-bodied terrestrial avian
migrants with devices capable of tracking long-range move-
ments [32,33]. Consequently, our review focuses largely on
movement studies of large-bodied mammalian species.

Review
Remotely-sensed products commonly used in ecological
animal movement studies
The studies of small-scale movement that we reviewed
included data about land cover, infrastructure, and
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Figure 1 Scales of current resolution in space and time of animal movement and remotely-sensed data.

Neumann et al. Movement Ecology  (2015) 3:8 Page 3 of 13
terrain, and less often data on vegetation phenology, cli-
mate and weather (Table 2). Surprisingly, we found that
even long-term, small-scale movement studies seldom
applied multiple years of land cover data, although the
satellite data from which they are derived, i.e. Landsat
imagery, are available continuously since the 1970s (but
Table 1 Source and resolution of different remote sensing pr

Sensor and
satellite

Spatial resolution
[m]

Temporal resolution
[days]

Swa
[km]

MODIS (Terra,
Aqua)

250, 500, 1000 1-2 2.330

AVHRR*** 1100 <1 2.600

VIIRS (Suomi NPP) 750 1-2 3.000

ASTER (Terra) 15, 30, 90 16 60

ETM+ (Landsat 7) 15, 30, 60 16 183

TM (Landsat 5) 30, 120 16 185

Vegetation 1
(SPOT 4)

10, 20 2-3 60

Vegetation 2
(SPOT 5)

5, 10, 20 2-3 60

Spot 6 1.5, 6 2 60

RapidEye satellites 5 5 25

IKONOS 0.8, 3.2 3 11

GeoEye-1 0.4, 1.7 3 15

QuickBird 0.6, 2.4 3 18

Worldview 1 0.5 2 18

Worldview 2 0.5 1 18

* The very first Landsat launch was in 1972, but is not longer in service. **due to an
NOAA satellites. 1978 was a first attempt for AVHRR on a different satellite, which w
Additional missions are planned for 2013–2014, such as Landsat DCM (continuing t
combined with Spot 6 will provide satellite imagery at a temporal resolution of 1 d
sensing data used in research applications are typically acquired from airborne syst
acquisitions specifications, such as laser pulse density and area cover, thus are flexi
about LiDAR data and specifications used in natural resource management are desc
high spatial resolution (e.g. <10 cm) and they cover small areas (~15-25 km; see [11
and biodiversity.
see [15,34,35]). Moving beyond a single-date snap-shot
of a given environmental situation towards incorporation
of multiple years of data could help to detect land use
change [36] which influences animal movement. Studies
that analyzed animal movement at coarser scales (e.g.,
migration) often used data on vegetation phenology (e.g.,
oducts

th Operational since Link

1999 (Terra), 2002
(Aqua)

http://modis.gsfc.nasa.gov/about/
design.php

1981 http://noaasis.noaa.gov/

2011 http://npp.gsfc.nasa.gov/

1999 http://asterweb.jpl.nasa.gov/

1999** http://landsat.gsfc.nasa.gov

1984* http://landsat.gsfc.nasa.gov

1998 http://www.astrium-geo.com

2002 http://www.astrium-geo.com

2012 http://www.astrium-geo.com

2008 http://www.rapideye.com

1999 https://www.digitalglobe.com

2008 https://www.digitalglobe.com

2001 http://www.digitalglobe.com

2007 http://www.digitalglobe.com

2009 http://www.digitalglobe.com

instrument failure all scenes after May 2003 have data gaps; ***different
as improved and replaced in 1981 by the AVHRR sensor or the NOAA satellite.
he Landsat program with pixels sizes of 15, 30, and 100 m), Spot 7 (which
ay), and Worldview 3, with pixel sizes of 0.3 m and 1.2 m. LiDAR remote
ems, rather than from satellites as those described above. The LiDAR
ble and depend on the objectives of the particular study. Detailed information
ribed in [122] and [123]. Aerial photos captured with drones have typically a
2] for an example of an inexpensive drone designed to monitor forests
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Table 2 Sample of ecological animal movement studies that apply remotely-sensed products

Land
cover

Terrain Infrastructure Climate Weather Phenology/
Productivity

Species Data origin (when available; multiple
layers in bold)

Reference

Small scale (e.g., daily movement, residence time, side fidelity, corridors)

X X Woodland caribou LANDSAT, DEMa [12]

X X X X Elk Snow water equivalents, DEMw, roadsw,
habitatw

[124]

X X X Bison Vegetation cover type, geothermal layersb,
DEM

[44]

X X X Roe deer SPOT, DEMc, digitized aerial photographs [50]

X X Elk LANDSATv [34]

X X X X African elephant LANDSAT, TRMM, MODIS (EVI) [35]

X X Moose Ecoforest maps, DEM [13]

X X X Brown bear CORINE, DEMu, human featuresu [42]

X X X Gray wolf LANDSATd, DEMe [39]

X North Island robin digitized aerial photographs, satellite images [24]

X X X Grizzly bear LANDSATf, vegetation inventory data,
fire-history maps, DEM

[51]

X Lion digitized water wholes [19]

X X X X African elephant digitized static features, DEMg, SPOT (NDVI) [40]

X X Jaguar Roadsh, MODISc (NDVI) [125]

X X American marten color-infrared aerial photographs [15]

X Barred Antshrikes,
Rufous-naped
Wrens

infrared imagesg, orthorectified using DEM [126]

X X Black bear LANDSAT, color orthophotos, stream water
layerc, topographic maps

[52]

X Mule deer MODISm (NDVI) [16]

X Lion LiDARs [110]

Coarse/seasonal scale (e.g., seasonal range change, migration, dispersal)

X X Wildebeest DEM, GTOPO30c, AVHRR/NOAA (NDVI) [127]

X Red deer NOAA (NDVI) [128]

X X X Serengeti
Wildebeest

DEM, SRTM, LANDSAT, NOAA, SPOT (NDVI) [58]

X Elk MODIS (NDVI) [66]

X Five migratory bird
speciesj,k

AVHRR/NOAA (NDVI) [60]

X Mongolian gazelle MODIS (NDVI) [129]

X X X Saiga antelope DEM, SRTMi, MODIS (NDVI); WorldClim
database (precipitation)

[68]

X X Migratory birds LANDSAT [14]

X X X Roe deer EEA-Corine Land cover, CGIAR-DEM/SRTM,
NASA-ASTER relative DEM, MODIS (snow)

[38]

X Great snipes NCEP/NCAR provided by NOAA/OAR/ESRL
PSDr (wind)

[30]

X Four migratory
ungulate speciesl

AVHRR/NOAA, GIMMS (NDVI) [31]

X Red deer DEMt [130]

X X Golden Eagle,
Turkey vulture

DEM, GTOPO30, NARRo (wind, temperature) [29]

X Common swift [17]
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Table 2 Sample of ecological animal movement studies that apply remotely-sensed products (Continued)

NCEP/NCAR provided by NOAA/OAR/ESRL
PSDr (wind)

X X X X African buffalo MODIS (EVI, tree coverp), TRMMn, MODISo

(fire), vegetation mapq
[41]

X X X Bobolink MODIS (NDVI), SPOTx, water content
estimatesy

[59]

Small and coarse scale

X African elephant AVHRR/NOAA, SPOT (NDVI) [61]

X Sheep MODIS (NDVI) [67]

LAND COVER: vegetation, water, streams, forest age, cutblocks, seral stages; TERRAIN: elevation, slope, aspect, ruggedness, solar radiation, soil wetness;
INFRASTRUCTURE: roads, buildings, borders, fences, trails; CLIMATE/WEATHER: wind speed, wind direction, precipitation, temperature, cloud; PHENOLOGY/
PRODUCTIVITY: NDVI, EVI, tree cover, fire; aBritish Columbia Ministry of Crown Lands; bThe Watershed Institute (California State University, Monterey Bay, USA),
National Hydrographic Dataset; cUSGS; dFoothills Research Institute Grizzly Bear Research Program; eBanff and Kootenay National Park; fAlberta Vegetation
Inventory; gNASA, CARTA program; hSelva Maya Zoque y Olmeca database; iSurface Radar Topography Mission; jRinging data; kLesser Whitethroat, Whitethroat,
Blackcap, Chiffchaff, Willow Warbler; lbarren-ground caribou, Mongolian gazelle, guanacos, moose; mWyoming View; nhttp://trmm.gsfc.nasa.gov; oNational Deneter
for Environ Predict; pWegmann et al., unpublished data; qMendelsohn 1997, An environmental profile and atlas of Caprivi. Windhoek, Namibia: Gamsberg
Macmilian; rBoulder, Colorado, USA, http://www.cdc.noaa.gov; sCarnegie Airborne Observatory, tNational Mapping Agency of Norway, uLantmäteriet Sweden,
vAlberta Sustainable Resource Development, wSpatial Analysis Center at Yellowstone National Park, xhttp://bioval.jrc.ec.europa.eu/products/glc2000/products.php,
yhttp://neo.sci.gsfc.nasa.gov.
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the Normalized Difference Vegetation Index (NDVI)),
sometimes combined with climate, weather, and terrain
data (Table 2). While the use of land cover data from
multiple dates was rare, phenology was typically in-
cluded from multiple dates (Table 2). Unfortunately, we
also found that ecological studies frequently lacked de-
tails regarding the origin of the satellite data, and the
spatial and temporal resolution of the products that had
been analyzed (e.g., land cover data; Table 2). This lack
of information makes it difficult to determine, for ex-
ample, if the resolution of the remotely-sensed products
matches the resolution of the animal location data and is
suitable to address the study question, ultimately imped-
ing the readers’ interpretation of results [18].
Land cover data are typically derived from fine-but-in-

frequent remotely-sensed products and researchers can
use them to infer animal movement patterns on finer
spatial scales (Figure 1). To suggest appropriate conser-
vation actions based on studies of movement, it is im-
portant to relate animal movement to land cover and
land use, and to understand animals’ use of the land-
scape, such as, the reluctance of dispersing North Island
robins Petroica longipes to cross pastures, or elephants’
Loxodonta africana need to be close to water resources
during the dry season [24,35]). Ancillary data can cap-
ture land use change and infrastructure development
and can help to update remotely-sensed maps, thereby
creating dynamic landscape data [15]. Of the studies we
reviewed, Landsat or aerial photographs were the most
common source. Images provided by Google Earth (i.e.,
satellite data from Landsat, IKONOS, and Quickbird)
provide a visualization tool, and have been used to
understand habitat use during avian migration for Veery
Catharus fuscescens [37], but are not suitable for ana-
lyses requiring image manipulation.
Digital elevation models (DEM) provide fine-but-infre-
quent information on altitude, aspect, and slope, as well
as soil wetness and solar radiation, and have been ap-
plied in different ways. DEMs are sometimes combined
with coarse-but-frequent remotely-sensed atmospheric
variables such as wind speed, turbulent kinetic energy,
temperature, and cloud height (e.g., 8-day moderate-
resolution Imaging Spectroradiometer (MODIS) prod-
ucts, monthly WorldClim data, or 10-day National
Oceanic and Atmospheric Administration data (NOAA;
i.e., the Advanced Very High Resolution Radiometer
(AVHRR); Table 2). DEMs can be a powerful tool and
the interpretation of observed patterns can contribute to
inference of migratory strategies, for example disentan-
gling species-specific specialization to uplift modes in
soaring birds such as Turkey vultures Cathartes aura
and Golden Eagles Aquila chrysaetos [29]. The analysis
of digital elevation and climatic data in relation to ani-
mal movement data highlights that topographic variabil-
ity and winter severity affect migratory behavior in
ungulates such as roe deer Capreolus capreolus, and
their opportunistic migration behavior when there are
no predictably extreme winter conditions [38].
Human infrastructure influences many wildlife species’

habitats. Infrastructure can create barriers and can mod-
ify daily and seasonal movement patterns. For example,
gray wolves Canis lupus cross highways less frequently
with increasing human presence [39], human settle-
ments disrupt African elephant Loxodonta africana
movement [40], and distance to fences affects African
buffalo Syncerus caffer migrations [41]. In hunted species,
infrastructure can also affect temporal movement pat-
terns, e.g., brown bear Ursus arctos and moose Alces alces
avoid roads during the day [42,43]. On the other hand,
some species associate preferentially with infrastructure,

http://trmm.gsfc.nasa.gov/
http://www.cdc.noaa.gov/
http://bioval.jrc.ec.europa.eu/products/glc2000/products.php
http://neo.sci.gsfc.nasa.gov/
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for example to facilitate movement, as in the case of the
American bison Bison bison [44]. Digital maps of infra-
structure are fine-but-infrequent data, and typically de-
rived from land cover data and aerial photos. The use
of high spatial resolution imagery and LiDAR (Light
Detection and Ranging; pulsed laser signals that meas-
ure distances to the earth surface and thereby generate
information about the shape of the surface; http://
oceanservice.noaa.gov/facts/lidar.html) also provides
opportunities to discriminate between different types
of human infrastructure and vegetation, such as high-
ways, roads, railroads, pipelines, power-lines, houses,
and trees (e.g. [45-48]). In high-resolution satellite im-
agery, the number of lanes of a given road is easily de-
termined, and LiDAR data can detect roads even under
dense forest canopies [49]. Governments and private
companies use LiDAR and high spatial resolution data
to map human infrastructure for large areas, and the
resulting maps can be useful for understanding wildlife
movement. Understanding road-crossings, the impact
of road density and movement barriers such as wildlife
fences, and exploitation or avoidance of road-near hab-
itats, provides insights important for wildlife conserva-
tion and management (e.g., elk Cervus elaphus [34];
African elephant [35]; roe deer [50]; Grizzly bear Ursus
arctos [51]; Black bear Ursus americanus [52]).
Plant phenology, the annual dynamics of vegetation

greenness, can be tracked using NDVI and the Enhanced
Vegetation Index (EVI) [53,54], although NDVI is more
commonly applied in animal movement studies (see review
by [55]). Phenology indices are typically derived from
coarse-but-frequent satellite imagery, such as 10-day Satel-
lite Pour l’Oservation de la Terre (SPOT) or 16-day
MODIS reflectance data, and can be applied to predict in-
dividual and population movement and distribution. Yet
animal movement ecologists need to consider the different
interpretation of traditional phenology and satellite-based
landscape phenology; while traditional phenology tracks e.
g. flowering and budding of single plant species, satellite-
based phenology quantifies dates of greening and browning
patterns of multiple plant species at the landscape scale
[56,57]. The analysis of variation in broad-scale landscape
predictability is useful for gaining insights into long-
distance movements in ungulates such as migration, no-
madism, and residency [31]. Vegetation proxies such as
NDVI also provide opportunities for applications in envir-
onmental conservation and paleoecology, and for predic-
tions of past and future population and biodiversity
response to climate, phenology, and primary production
[55]. In our sample of studies, plant phenology data were
commonly used to understand broad-scale migration pat-
terns. For example, new forage growth is important for un-
gulate and avian long-distance migration (e.g., wildebeest
Connochaetes taurinus [58]; Bobolink Dolichonyx
oryzivorus [59]), and environmental conditions en route
affect arrival at the breeding grounds of migratory bird spe-
cies [60]. NDVI is particularly useful for movement studies
in highly seasonal ecosystems (e.g., African elephants move
more randomly when forage is abundant [61]). The occur-
rence of fires affects plant phenology and modifies animal
movement (e.g., African buffalo [41]). MODIS fire detec-
tion data are available from 2001 to present, and may facili-
tate reconstruction of prior habitat conditions [62]. The
combination of vegetation indices (e.g., NDVI) with pre-
cipitation data (e.g., TRMM (Tropical Rainfall Measuring
Mission)) improves the prediction of the timing and speed
of migrations (e.g., zebra Equus burchelli antiquorum [63]).
For vertical migration, i.e., along an elevational gradient,
vegetation proxies combined with DEM can predict sea-
sonal movement that follows vegetation growth at different
elevation (e.g., for elephants [64]). For birds, combination
of NDVI and weather data such as wind and temperature
generates fruitful environmental indices helping to under-
stand global long-term movement patterns (e.g., vultures
[65]). Furthermore, new products, such as global data on
soil moisture (SMAP, Soil Moisture active Passive, newly
launched, http://smap.jpl.nasa.gov/) and the Global Pre-
cipitation Measurement (GPM, planned for the near fu-
ture, http://www.nasa.gov/mission_pages/GPM/main/#.
VNtBJy7s7FQ) provide exciting opportunities to improve
our understanding of the drivers of animal movement.
Productivity, i.e., seasonal plant growth, can be calcu-

lated by merging information from ground biomass
measurements and MODIS-derived NDVI, and can pre-
dict, e.g., movement patterns of elk at different scales,
demonstrating the connection between migration and
access to higher-quality forage [66]. With its temporal
resolution of typically 10–16 days, NDVI has been used
to infer fine-scale movement patterns related to vegeta-
tion greenness, where it may represent a static habitat
index rather than a phenological index (e.g., forage avail-
ability does not affect within-patch movement in sheep
Ovis aries [67], but affects migration speed across
patches (i.e., stop-over-sites) in mule deer Odocoileus
hemionus [16]).
Climate and weather indices provide information

about precipitation (i.e., rainfall and snow from 10-day
NOAA, 8-day MODIS, and monthly WorldClim data)
and temperature (e.g., 10-day NOAA), and are generally
coarse-but-frequent indices. It is important to distinct
between climate and weather. Climate describes the
average pattern of meteorological variables such as
temperature, wind, precipitation over longer time in a
given area. In contrast, weather describes the short-term
variations of those meteorological variables. In the con-
text of animal movement, climate affects animals at a
broader scale and can, for example, cause seasonal mi-
gration. Precipitation and temperature are particularly

http://oceanservice.noaa.gov/facts/lidar.html
http://oceanservice.noaa.gov/facts/lidar.html
http://smap.jpl.nasa.gov/
http://www.nasa.gov/mission_pages/GPM/main/#.VNtBJy7s7FQ
http://www.nasa.gov/mission_pages/GPM/main/#.VNtBJy7s7FQ
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important determinants of animal movement patterns in
seasonal ecosystems (e.g., rainfall and snow influence mi-
gration patterns in Saiga antelope Saiga tatarica tatarica
[68] and roe deer [38]; Table 2). Weather, on the other
hand, affects short-term movement such as daily move-
ment. In flying animals, dynamics in diurnal weather con-
ditions generate complex environmental conditions that
affect animals’ movement patterns (e.g., thermal condi-
tions generate inter-specific migration strategies and
movement behavior in soaring birds [29,69-71], wind drift
such as tail- or crosswinds affect flying patterns in fruit
bats Eidolon helvum [72], and temperature and turbulent
kinetic energy affect bee-eater Merops apiaster flight
mode [73]. Climate and weather indices provide informa-
tion about precipitation (i.e., rainfall and snow from 10-
day NOAA, 8-day MODIS, and monthly WorldClim data)
and temperature (e.g., 10-day NOAA), and are generally
coarse-but-frequent indices.
In summary, inclusion of remotely-sensed data can

greatly improve our understanding of the drivers of
Table 3 Precision and accuracy of main remotely-sensed deriv

Product Sources

Land
cover

NLCD (National Land Cover Database): developed from Landsat
30-m pixel; available for 1992, 2001, 2006, and 2011. U.S. only.

CORINE: developed from Landsat, Spot, and recently higher reso
imagery; available for 1990, 2000, 2006, 2012. Minimum mapping
with 25 ha/ 100 m.

MODIS Land Cover: available for 2001–2012, 500-m pixel resolut

GlobCover: based on 300-m pixel resolution imagery from MERIS
sensor (ENVISAT), available for 2005–06 and 2009.

Terrain
(elevation)

SRTM (Shuttle Radar Topography Mission): 30-m and 90-m pixel
resolution

ASTER Global Digital Evalation Map: 30-m pixel

TanDem-X (TerraSAR-X add-on for Digital Elevation Measuremen
provides elevation data <12-m pixel resolution; launched in 201

Climate/
Weather

MODIS Land Surface Temperature/Emissivity: available daily, 8-da
monthly, at 1-km, 5.6-km resolutions.

TRMM (Tropical Rainfall Measuring Mission): 16 times per day, m
products describing rainfall at 2.4 km and 5-km pixel resolution

MODIS Cloud Product: daily product of cloud properties at 1-km
5-km pixel resolution.

Phenology MODIS Global Vegetation Phenology product (MCD12Q2): provid
estimates of the timing of vegetation phenology at 500-m pixel
resolution. MCD12Q2 is produced once a year with 24 months o
input data, available from 2001 through 2012

SPOT Vegetation: provides NDVI global data since 1998 at a
1.15-km pixel resolution

MODIS Gross Primary Productivity (GPP) product (MOD17A2): 8-d
composite at 1-km spatial resolution

MODIS Leaf Area Index (LAI) and Fractional Photosynthetically A
Radiation (FPAR): 8-day composite at 1-km spatial resolution

Note: The Visible Infrared Imaging Radiometer Suite (VIIRS) extends and improves t
(AVHRR) and the Moderate Resolution Imaging Spectroradiometer (MODIS). na: no
animal movement and provide novel insights about
movement strategies across species and ecosystems. The
main environmental indices are available from a broad
range of remotely-sensed products that can vary in pre-
cision, and accuracy (Table 3). The set of studies that we
reviewed reflected the current application of remotely-
sensed data in animal movement studies. Single-date
Landsat imagery was a common source of land cover in-
formation. Terrain data combined with climate and wea-
ther data were powerful tools for inferring migration
patterns. Yet, movement ecologists should critically
weigh which remotely-sensed product best fits their
scale of analysis (i.e., fine-but-infrequent versus coarse-
but-frequent), and more importantly, should avoid the
expectation that remotely-sensed data are equivalent to
field-collected data. On the other hand, field-collected
data will never match the spatial continuity of remotely-
sensed data collected over large areas. Remotely-sensed
and field-collected data have unique strengths, and their
integration allows unique insights.
ed products

Precision Accuracy

20
classes

78 and 79% for latest products [117]

lution
unit/

44
classes

8% (for 2000 version) [131]

ion 17
classes

75% [132]

23
classes

58-79% [133]

16-bit Geolocation error = 9.8 meters; absolute height error
= 6.9 meters; relative height error = 7.0 meters [134]

16-bit Overall accuracy ~17 meters [135]

t):
0.

16-bit <2 m height accuracy [136]

y, and 8-bit and
16-bit

0.5 K to 1 K [132]

ultiple na TRMM Precipitation Radar instrument is able to
detect fairly light rain rates down to about .0.7 mm
per hour.

and na na

es

f

16-bit Consistent with in-situ measurements [137]

na na

ay 8-bit and
16-bit

Annual estimates of GPP are within 10.4% of average
published results [132]

ctive 8-bit Accuracy is 0.66 LAI units RMSE and 0.12 FPAR units
RMSE respectively [132]

he measurements initiated by the Advanced Very High Resolution Radiometer
information.
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Opportunities for remotely-sensed products in ecological
studies of animal movement
Increasing access to remotely-sensed data
High spatial resolution imagery is recorded by sensors
such as IKONOS, QuickBird, OrbView-3 and Spot-5,
with spatial resolutions from 0.5 - 10 m ([74]; Table 1).
High-resolution imagery allows the identification of
small habitat features such as infrastructure (e.g. [75]),
riparian corridors (e.g. [76,77]), and individual trees (e.g.
[78]). Knowledge of specific environmental features is
often critical for understanding animals’ response to
landscapes (see [79]), and improves our insight into spe-
cies’ ecology (e.g. [20,50]). Although the cost of high
spatial resolution imagery can be a limitation, cost has
declined as more sensors have launched and increased
competition [74]. Furthermore, in many areas high-
spatial resolution images are available for free, thanks to
web-mapping sites such as Google Earth (http://earth.
google.com).
However, high-resolution imagery is not available

everywhere and imagery archives are limited. In contrast,
Landsat satellite imagery is available for free, and ar-
chives span 40 years, making Landsat the most com-
monly used satellite imagery for monitoring land cover
[80], and in ecological studies (e.g. [81,82]; Table 1). The
launch of the Landsat 8 satellite in February 2013 ([83];
Table 1), together with the planned Sentinel satellites of
the European Space Agency [84], promises a new era in
which 30-m resolution Landsat-like satellite data are
available every two to three days, i.e., with similar tem-
poral resolution as currently available for 500–1,000 m
resolution MODIS and VIIRS.
Raw reflectance data (i.e., unclassified data), as an al-

ternative to traditional classified land cover data or cal-
culated indices such as NDVI, experience increasing
interest for predicting animal distribution. They over-
come classification errors and can provide better pre-
dictive ability – even at fine resolution – than more
commonly-used remotely-sensed products (see for ex-
ample in birds [85]).
A computational challenge for many movement ecolo-

gists is the integration of these remotely-sensed data sets
into animal movement data sets, as remote sensing data
often are provided using complex tiling systems in space
and time [86]. Further, these data sets often vary in
source, format, and projection system, making it difficult
if not impossible for anyone others than remote sensing
experts to make use of directly. However, new tools are
emerging for movement ecologists which greatly auto-
mate and simplify the computation and integration [86].
In movement data portals, linking of environmental data
to animal movement data is a general trend, making a
variety of remotely-sensed products readily available for
animal movement ecologists; e.g. through the Env-DATA
system in Movebank ([86]; https://www.movebank.org),
as a direct link in Eurodeer ([38]; www.eurodeer.org), or
under development in Wireless Remote Animal Monitor-
ing ([87]; WRAM).

Capturing the temporal dynamics of landscapes
The use of high temporal resolution satellite data offers
new possibilities for animal movement studies as it
means increased opportunities for matching satellite im-
agery with concurrent high resolution animal location
data, and captures many temporal dynamics of land-
scapes (e.g., phenology, land use change, disturbances).
In particular, long-term animal monitoring projects can
take advantage of analyzing movement patterns in dy-
namic landscapes to better understand the impact of a
given change and its consequence for management and
conservation [88,89].
For studying fine-scale animal movement, an exciting

advancement is the automated analysis of dense time
series of Landsat images. In the past, studies rarely in-
corporated more than a few Landsat images due to cost
and processing limitations. Since Landsat data became
freely available in 2008, new image processing algo-
rithms have been developed that analyze many decades
of annual Landsat imagery simultaneously [90,91]. The
great advantage of such dense time series (or ‘time
stacks’) is in identifying changes, such as forest clear-
cuts that can be detected immediately after the disturb-
ance occurs, but can be missed if images are years apart.
Software that analyses forest disturbance from dense
time series of LANDSAT imagery includes Vegetation
Change Tracker (VCT [90]) and LandTrendr [91]. Dense
time series have also been used to monitor desertifica-
tion [92] and urban development ([93]; Table 1).
For analysis of coarse-scale animal movement, indices

of vegetation phenology can be informative [55]. Satellite
sensors such as MODIS, AVHRR, VEGETATION, and
the recently launched VIIRS provide daily imagery, typ-
ically summarized in 8- or 16-day composites that are
relatively cloud-free (Table 1). However, composites may
contain some erroneous NDVI values, and analyzing
dozens of satellite images for a given year is computa-
tionally and logistically challenging. Thus algorithms
that fit phenology curves to a time series of NDVI data
and estimate parameters such as the onset of greenness,
or the range of NDVI for each pixel are a major ad-
vancement [94,95]. By fitting a curve, the effects of out-
liers are reduced, reduce data volumes of phenology
indices, and offer ecologically meaningful measures of
vegetation change over time. One software package for
phenology analysis is TIMESAT (http://www.nateko.lu.
se/TIMESAT; version 3.0 [94]); MODIS phenology prod-
ucts are also available (https://lpdaac.usgs.gov/products/
modis_products_table/). Substantial work has been done

http://earth.google.com/
http://earth.google.com/
https://www.movebank.org/
http://www.eurodeer.org/
http://www.nateko.lu.se/TIMESAT
http://www.nateko.lu.se/TIMESAT
https://lpdaac.usgs.gov/products/modis_products_table/
https://lpdaac.usgs.gov/products/modis_products_table/
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to unify data from older and new sensors to establish
consistency in time series data [96] and improve pheno-
logical assessment through Landsat-MODIS fusion [97].
Although NDVI is the most commonly used index in

ecological applications of remotely-sensed data, there is
also a broad range of spectral indices that can be derived
from satellite data (e.g. chlorophyll, foliage, surface mois-
ture [98,99]) as well as ready-to-use products (e.g. Gross
and Net Primary Productivity from MODIS) that offer
opportunities for animal movement studies. The spectral
fidelity (the number of spectral bands, and bandwidths)
of remotely-sensed data is becoming increasingly import-
ant, as it is now possible to map individual plant species
and nitrogen content of grazing lands. For example, Rapi-
dEye sensors provide high-resolution satellite images in
which the Red-Edge band is sensitive to chlorophyll con-
tent and leaf structure (http://blackbridge.com/rapideye/).
RapidEye data are at the cutting-edge of geospatial data,
because of their ability to describe foliar nitrogen at im-
pressive resolutions [100], which can help to understand
herbivore distribution in grazing systems.

Characterizing the 3d strcuture of habitats
The 3D structural characteristics of vegetation are im-
portant determinants of animals’ space use [4]. For ex-
ample, visibility at ground level and canopy cover affect
selection of daytime bedding sites (e.g., brown bears
[20]). Unfortunately, remotely-sensed products com-
monly used in animal movement studies, i.e., Landsat
and MODIS imagery, are not well suited to quantify
vegetation structure, resulting in a resolution gap be-
tween the movement data and the remotely-sensed vege-
tation indices.
LiDAR is a relatively new technology that uses a laser

to measure the vertical and horizontal structure of ecosys-
tems ([101]; Table 1), making it possible to characterize
animal habitats in novel ways [102]. LiDAR data provide
direct information about vegetation height [103] and can-
opy closure [104], and indirect information about forest
age [105], canopy gaps [106], and large trees [107]. The
ability of LiDAR to “see through” the forest canopy allows
the characterization of topography and understory vegeta-
tion, important to many animal species [108]. For these
reasons, LiDAR data are great predictors of species habitat
use [102], and can track herbivore activity e.g., treefalls by
elephants [109]. However, their utility for movement path-
way studies still needs to be fully explored (but see [110]
for lion Panthera leo hunting strategies and for predation
risk in roe deer [111]). Most LiDAR data stem from air-
borne platforms, and are thus costly to obtain. As a result,
the application of LiDAR data in ecological movement
studies will likely depend on available LiDAR data from
other projects for the foreseeable future. However, as
more LiDAR platforms become available, costs are likely
to decrease, and accessibility of LiDAR products will
increase.

Environemntal real time assessment
Finally, scientists and managers are exploring the use of
low-cost pre-programmed or remote-controlled drones
equipped with video and photo cameras, as alternative
ways to survey landscapes, count animal populations,
and monitor human activities (see http://www.fort.usgs.
gov/RavenA; e.g. [112]). This environmental assessment
in real-time provides exciting opportunities for animal
movement studies. Weather surveillance radars track arrival
of migratory birds and thereby assess quantitative data on
bird distribution, helping to identify migratory stopover
over broad geographic areas in real-time [14,113].

Model reanalysis products
In addition to the technologies and products outlined
before, there is a growing number of efforts to reanalyze
remote sensing and weather data to derive consistent,
long-term, global or regional environmental products at
low to medium (12–1000 km) spatial resolution, but
very high (1–24 h) temporal resolution. Examples in-
clude the North American Regional Reanalysis (NARR),
the NOAA global weather reanalysis (NCEP Reanalysis
2), and the European weather reanalysis (ECMWF) for
weather data, or the Oregon University Ocean NPP re-
analysis for ocean products. The NASA’s MERRA pro-
ject, for example, provides consistent information on
weather variability from 1979 to the present. Finally, al-
though not a reanalysis product per se, Hansen and co-
authors [114], recently mapped global tree cover at
yearly time steps between 2000 and 2012 at a spatial
resolution of 30 meters, with great potential for animal
movement studies.

Potential limitations of remotely-sensed products for
studies of movement ecology
As much promise as new remotely-sensed data and
methods offer, it is important to recognize inherent limi-
tations of these approaches. One important issue is that
of errors, uncertainties, and accuracies in remotely-
sensed products [115,116]. No land cover classification
is perfect, and this can introduce errors in models of
animal movement. Closely related to the question of ac-
curacy is the question of the thematic resolution, i.e., the
number of land cover classes, which for ecological appli-
cations often needs to be high. However, the classifica-
tion accuracy decreases as more land cover classes are
mapped. In the 2006 National Land Cover Dataset
(NLCD), for example, forest as a single class has a user
accuracy of 93%, but coniferous, deciduous and mixed
forests each had accuracies of 81-85% [117]. Some land
cover classes are more challenging to map than others;

http://blackbridge.com/rapideye/
http://www.fort.usgs.gov/RavenA
http://www.fort.usgs.gov/RavenA
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in the NLCD, for example, wetlands user accuracy was
<40%. Spectral indices such as NDVI, on the other hand,
are mathematical formulas and as such do not have a
classification error, but require validation due to e.g. sen-
sor errors or atmospheric contamination [118,119].
Movement ecologists that apply remotely-sensed prod-

ucts to animal movement data also need to consider
spatial autocorrelation that are inherent in the data. Ad-
vances in statistical tools help to discover spatial pat-
terns and to correct for autocorrelated data, e.g., in
mixed models with help of correlation structures [3,120].
Patterns of autocorrelation in animal movement behav-
ior themselves provide valuable information, and are
used to better understand the mechanisms of animal
movement [121].
The spatial resolution of the satellite data is another

critical issue that is pertinent when analyzing fine-scale
movement data. First, the size of the pixels, which tend
to be 250–1,000 m for those satellites that provide daily
observations, are far coarser than GPS-collar-based
movement data. Secondly, the smallest observable fea-
ture that can reliably be mapped (i.e., the minimum
mapping unit) is considerably larger than the pixel size
(typically at least four pixels). This means that only
Quickbird or Worldview data can detect habitat features
of 1–5 m2, compared to minimum mapping units of
3,600 m2 for Landsat imagery, and 250,000 m2 for
MODIS data. As movement ecology advances, and inte-
grates more remotely-sensed data, it will be important
to keep these inherent limitations of satellite data in
mind, and to avoid the temptation to try to obtain more
information from the imagery than it contains.

Conclusions
Animals move in response to environmental changes,
and to fulfill their varying needs for environmental re-
sources over days, weeks, and years. New generations of
remotely-sensed products with better spatiotemporal
resolution provide great opportunities for insights into
animal movement, as they characterize environmental
patterns such as temporal dynamics of landscapes and
three-dimensional structures of habitats. To capture
these dynamics and to improve predictive ability, we
recommend that researchers analyze time series of
remotely-sensed products, as they can capture environ-
mental dynamics that determine movement responses.
The integration of landscape dynamism in movement
studies becomes particularly important with respect to
meeting the conservation and management challenges
of future landscape change and corresponding changes
in animal movement in space and time. To be able
to provide realistic foundations for management
and conservation, movement ecologists need to in-
crease their application of dynamic environmental
information when analyzing animal movement. With
new tools emerging to automate the integration of
remotely-sensed data with animal movement data sets,
former computational challenges can be overcome,
making environmental data more easily accessible for
movement ecologists. Yet, the increasing possibilities
of integrated analyses of remotely-sensed products
and animal movement data presents new challenges to
match these types of data logically, bearing in mind
the inherent trade-offs posed by the different resolu-
tions. It is important to critically weigh which
remotely-sensed product is best suited for a given
scale of analyses (e.g., fine-but-infrequent versus
coarse-but-frequent or minimum mapping unit) and
how its limitations may affect inferences. Closer col-
laboration between ecologists and remote sensing ex-
perts can facilitate the use of newly available products
in movement studies, and minimize the time lag of ap-
plying these products in ecological research.
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