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Abstract

Copper plays an important role in numerous biological processes across all living systems

predominantly because of its versatile redox behavior. Cellular copper homeostasis is tightly

regulated and disturbances lead to severe disorders such as Wilson disease (WD) and Menkes

disease. Age related changes of copper metabolism have been implicated in other

neurodegenerative disorders such as Alzheimer’s disease (AD). The role of copper in these

diseases has been topic of mostly bioinorganic research efforts for more than a decade, metal-

protein interactions have been characterized and cellular copper pathways have been described.

Despite these efforts, crucial aspects of how copper is associated with AD, for example, is still

only poorly understood. To take metal related disease research to the next level, emerging multi

dimensional imaging techniques are now revealing the copper metallome as the basis to better

understand disease mechanisms. This review will describe how recent advances in X-ray

fluorescence microscopy and fluorescent copper probes have started to contribute to this field

specifically WD and AD. It furthermore provides an overview of current developments and future

applications in X-ray microscopic methodologies.
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Introduction

Metals and their involvement in health and disease are of ever growing importance in

biomedical research. Lighter elements such as Ca participate in complex signaling pathways

that are still being unraveled while transition metals are often co-factors in proteins where

they undergo chemical state alterations (i.e. redox reactions) in enzymatic reactions they

facilitate. While the reactivity of metals is of great use for facilitating enzymatic reactions it

also requires strict control to mitigate toxicity. Therefore, metal homeostasis is tightly

managed by cells and any disturbance leads to severe consequences. A comprehensive

metallomic study would typically entail choosing a pathway for a specific metal and then

investigating metal concentration, distribution, and metal-protein binding as well as changes

thereof in healthy and disease. While measuring bulk metal concentrations as well as

exploring metal-proteins interactions employs established methods and instrumentation,

reliable, user-friendly techniques to produce spatially resolved data of metal content in

biological specimen have only largely emerged during the past 10 years. Examples are
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synchrotron based X-ray fluorescence microscopy (XFM), fluorescent metal sensors,

secondary ion mass spectrometry (SIMS) and nano-SIMS, laser ablation inductively coupled

mass spectrometry (LA-ICPMS), electron probe X-ray micro-analysis (EPXMA) and

proton-induced X-ray emission (PIXIE) (for a recent review on these methods and their

application to metallomic studies in neurodegenerative diseases see [1]).

This report will review recent progress in the metallome of mammalian Cu with respect to

unraveling the disease mechanisms of two human disorders: Wilson disease (WD) and

Alzheimer’s disease (AD). We will specifically discuss contributions to this field made by

imaging techniques, predominantly XFM studies and fluorescent copper sensors. We will

furthermore describe new methodologies and developments in X-ray fluorescence

tomography, XFM imaging at the nanoscale, and provide a perspective on sample

preparation.

Imaging methods

X-ray based microscopy

X-ray microscopy (XRM) and specifically synchrotron-based XRM methods are

increasingly used either as stand-alone or in combination with other correlative techniques

to image cellular, organelle, or elemental structures in biology. The advantage of using X-

rays in biological imaging is based on their penetration debth which allows for imaging

close or at the native state of cells or tissue rather than bulk or homogenized and fractionated

samples. Advances in focusing optics now yield microscopes with 20 nm resolution while

tomographic reconstructions enables 3-dimensional imaging. Some correlative approaches

such as fluoresecent microscopy allow for targeting of regions of interest prior to

measurement while others such as Fourier transform infrared micro spectroscopy (FTIRM)

are used to complement XRM information with chemical properties.

Two main classes of X-ray microscopy outline the two major applications. Soft X-rays (2–5

nm wavelength) are used to measure the intrinsic phase contrast of lighter elements i.e.

detecting cellular and intracellular structures such as organelles etc. Detection is made in

transmission mode, the detector is located in line with X-ray and sample. Because of limited

penetration of soft X-rays, samples have to be thin (~100 nm). Hard X-rays in combination

with Zernike phase contrast techniques enable users to perform X-ray tomography on

thicker samples (>10 μm). The resulting hard X-ray phase contrast images are often used in

combination with X-ray fluorescence (XFM), a technique that will yield quantitative

information with high spatial resolution about elemental distribution (see below).

Chemical state mapping (XANES)

XANES is an attractive method to gain information about an elements redox status when

imaging biological material. To determine oxidation states of metals a stationary focused X-

ray beam (usually 5 μm × 5 μm) is applied to a target cell or tissue samples and the

absorption of X-ray photons is monitored while scanning the energy through the X-ray

abosprtion edge of the element of choice. The position of the edge (its first inflection point)

as well as the shape of the edge (specifically ‘pre-edge features’) contain information about

the oxidation and often the coordination sphere. Data analysis is still almost exclusivly

performed in an empiric manner by comparing experimental data with measured model

compounds. Several groups have sucessfully determined the oxidation states of mostly Fe

and Cu, in biological specimen [2–4] (for a recent review see Ortega et al. [5]). A nice

example is a more recent publication by Glasauer et al. who studied the oxidation state of Fe

in cytoplasmic granules in Shewanella putrefaciens that are formed during anaerobic

respiration and found Fe to be in a mixed valence state [2]. Yang et al. determined the

oxidation state of Cu in a mouse fibroblast cell line that had been exposed to 200 μM CuCl2.
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Their results indicated that copper is predominatly present as Cu(I) in a linear to trigonal

coordination environment by mostly sulfur [4].

While the experimental setup and data analysis for XANES is straightforwar literature

examples are still rare. Longer dwell times (sample remains stationary during a 5 – 10 min

scan) with highly brilliant, focused X-rays induce significant photoreduction and radiation

damage, XANES measurements have therefore carefully be evaluated. Lastly, even a small

beamsize of 5 μm × 5 μm will contain multiple proteins and the resulting XANES spectrum

will be a representation of the average oxidation state which is mostly likely dominated by a

metals bound to a high abundance stoarage protein.

X-ray fluorescence microscopy (XFM)

XFM is part of the X-ray microscopy super group and is rapidly becoming the method of

choice for an ever-growing community of bioanalytical researchers to probe trace elements

in biological systems. It is used for both quantitative visualization as well as analysis of the

local chemical state of elements of interest (for in depth reviews of XFM see [6,7,5,8–12]).

Briefly, hard X-rays (≥10 keV), with an incident energy chosen to be above the relevant

absorption edges of the elements of interest, are focussed onto the specimen, inner (K- or L-

shell) electrons are knocked out, and the subsequent relaxation process causes the emission

of X-ray fluorescence characteristic for the absorbing element. An energy dispersive

detector system is usually used to record a full x-ray spectrum at each scan position and

elemental maps for 10 or more chemical elements are then derived from these spectra. A

scheme illustrating the experimental setup for XFM experiments is depicted in Fig. 1. The

achievable spatial resolution is generally determined by the x-ray optics used, values that are

routinely achieved today on a variety of instruments are in the micron range for

Kirckpatrick-Baez mirror systems and on the order of 100’s of nm for Fresnel zone plate

based systems. Several systems have capabilities to achieve spatial resolutions well below

100 nm [12–14]. Recent years have not only seen significant improvements in X-ray optics

development, but also in detector and data acquisition systems development, permitting,

amongst other things, much more rapid data collection with significantly reduced overhead

[15]. In terms of biological applications, XFM is a convenient probe to explore the

elemental content in cells and tissue but it has also been shown to be a powerful tool in

determining regulatory changes in cells and tissues. Chen et al. used XRF to confirm that

cis-platin is sequestered in melanosomes in melanoma cells instead of nuclear targeting. The

melanosomes were subsequently exported explaining the underlying mechanism of

multidrug resistance in patients with melanoma [16]. Finney et al. demonstrated dynamic

changes of the copper distribution in breast cancer cells. They found that copper relocates to

the extracellular space during angiogenesis and based on these results suggested that copper

plays has regulatory role in the process of angiogenesis.

XFM Imaging at the nanoscale and sample preparation—Several institutions are

pursueing next generation X-ray fluorescence microprobes that enable imaging of trace

metal content in biological systems at highest spatial resolution, in the range of 20–50 nm,

with samples preserved as close as possible to the natural state. Radiation damage is

generally manageable in X-ray fluorescence microscopy (dwell times are relatively short),

its effects can, however, directly limit the achievable spatial resolution (see [17] for a

discussion of the relation between required dose for imaging and structural damage to the

sample). To mitigate the effects of radiation damage, the sample must therefore be adequatly

preserved. While chemical fixation can work well for just structural studies it, often

interferes with elemental content and can cause significant redistrubition of elements, in

particular for diffusible ions[18,19]. The method of choice to preserve elemental content,

such as the copper distribution, is cryo-fixation, preferably through plunge freezing
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intoliquid nitrogen cooled liquid ethane (for thin samples) or high–pressure freezing for

thick samples. This way vitrification is achieved without the creation of ice crystals that

would damage the specimen structure. While subsequent freeze-drying and imaging of the

sample at room temperature is a reasonable approach for investigations requireing moderate

spatial resolution, freeze-drying does neither preserve the true 3D structure of the specimen

well, nor does it preserve ultrastructure best. To make best use of the strengths of x-ray

fluorescence microscopy, such as high penetration depth, a spatial resolution that is

maintained through comparatively thick samples (as long as they are within the depth of

focus of the used optics), and low background, but at the same time minimize self absorption

artefacts for low-Z fluorescence, good samples thicknesses would then be on the order of 10

microns, well matched to typical cell sizes. To exploit the recent advances, and enable

highest resolution trace metal mapping, several different approaches have been

implemented. In vacuum-systems [13,20] have the advantage of minimized background and

minimum absorption of low-Z elemental fluorescence, but require dedicated

instrumentation. Approaches that work in ambient conditions permit more flexible use of the

microprobe instrument but are not optimized for low Z element detection. One such

approach is the use of a separated, cryo-cooled stage [12], another one is the use of a cryo-

jet [21], similarily to methods in macromolecular crystallography.

Three-dimensional XFM—Since X-ray microprobes have a large depth of focus (≥ 100

μm), and the lateral spatial resolution does not deteriorate throughout the specimen,

elemental maps acquired from the sample are projection images integrating the elemental

content through the thickness of the sample, i.e. a three-dimensional object is projected into

a two-dimensional plane. Interpretation of such an elemental map can be challenging,

especially if the thickness exceeds more than one cell layer or at high spatial resolutions,

because of multiple overlapping structures. In these cases it is desirable to visualize the

elemental content of a sample in three dimensions (3D). When collecting data for 3D-XFM

numerous projection images are acquired for different projection angles, to then reconstruct

the full tomographic representation of the specimen. This technology is still facing some

challenges with regards to routine implementation [22], but there have already been a

number of impressive applications [23–25] and exciting advances have been made in recent

years. An example is shown in Fig. 2, where De Jonge et al. visualized the 3D elemental

distribution for the diatom Cyclotella meneghiniana as a proof-of-concept study. The

authors achieved 400 nm resolution and were able to calculate concentrations for biologicaly

relevant elements. The frustule is comprised of mainly Si, with less abundant Cu and Zn. P,

K, and Ca were shown to accumulate in three distinct nuclei while Mn and Fe were shown

to localize to ring shaped patterns around the diatom.

Several new or upgraded instruments are in various stages from conception, to

implementation, to commissiong, to operation, promising the ability to image trace

elemental content in frozen-hydrated biological specimens with spatial resolutions below 50

nm, in 3D. Several synchrotron radiation facilities have either come recently online or are in

various stages of being built or upgraded, and offer valuable additional improvements in

instrument performance through increased brightness and thereby focussed flux on the

sample and corresponding improved throughput. These instrumentation advances, together

with source and detector developments, as well as methods development such as the

application of dose fraction approaches [26] towards XFM promise to enable full 3D

visualization of trace elemental content of single cells [22]. Such advances will significantly

improve our ability to investigate elements such as copper in biological systems close to

their natural state within organelles, and enable new studies with potentially significant

impact on our understanding of the multitude of roles that these elements play. 1
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Quantitation: XFM is inherently quantitative and application software developments allow

users to quickly assess elemental concentrations in their samples [30,31]. Quantitation and

concentration measurements with XFM are based on the fact that the X-rays penetrate the

entire sample (typically in the range of 10 μm (high, sub-micron resolution) to 50 μm (low,

micron resolution) thickness. Standard X-ray reference materials are used to correlate the

fluorescent photon counts to area concentrations (μg/cm2), though standard-less

quantification is also possible. Resulting area concentrations are converted into volume

concentrations if the thickness of the sample is known. If whole cells are imaged, elemental

concentrations are often expressed as μg/cell.

Correlative techniques to complement XFM—XFM is based on the fluorescent

emission of elements, and is particularly sensitive for heavier elements (Z ≥ 14). As a

consequence, cellular structures such as membranes cannot easily be recognized unless

different cellular compartments contain substantially different amounts of one element.

Nuclei, for example, can often be identified by the comparably higher abundance of

phosphorous (Fig. 3). In order to co-localize elemental content with cellular sub structures

such as organelles, XFM has to overcome the lack of contrast artificially by either applying

other spectroscopic techniques to the same samples, making use of phase contrast [32–34],

or by using appropriate biomarkers labeled with a heavy, non-physiologically relevant

element. Miller et al. routinely employ Fourier transform infrared micro spectroscopy where

the relative protein content of an area is determined by integrating the spectra from 1490 to

1580 cm−1, the absorption range for the protein specific Amide II band. FTIRM

measurements are carried out on the same samples after the XFM experiments [35–39].

McRae et al. used Fluoronanogold (FNG, [40,41]) where secondary antibodies carry a 1.4

nm Au-cluster in addition to a fluorophore. FNG labeled antibodies against mitochondria

and the Golgi apparatus were visualized via the Au-cluster and subsequently co-localized

with copper in the initial proof-of-concept study. Endres et al. showed how organic

gadolinium MR probes can function as contrast agents for intracellular locations [42–44]

while Paunesku et al. tracked the Ti signature from TiO2 nancomposites that are used as

intra cellular drug delivery vehicle [45,46]. Lastly, the European group of Corezzi et al.

employed commercially available secondary CdSe/ZnS quantum dot antibodies against the

human cancer marker Her2 and β-tubulin and followed the Se signature [47] in a cancer cell

line. Another promising option for organelle labeling are Lanthanide (Ln3+) containing

conjugates for primary antibodies. Developed as markers for mass cytometry [48], Ln3+ ions

(such as Pr3+, or Sm3+) consist of metal chelating polymers that are attached to primary

antibodies via a reduced thiol group onto the Fc-fragment of the antibody (Fig. 4a). Each

polymer carries about 30 Ln3+ ions and between 4 and 6 polymers are bound to one protein

molecule. Therefore, a total of 120 – 130 Ln3+ ions are attached to each antibody. During

the actual XFM experiment the Ln3+ distribution is monitored and co-localized with other

metals of interest. The hypothetical application of these markers is illustrated in Fig. 4b–c.

Fig. 4b) shows a false colored image of fibroblasts that labeled with DAPI (blue, nuclei) and

anti-TG46, a marker for the trans-Golgi network (red). No information on the copper

distribution is available. Fig. 4c) shows a hypothetical XFM map consisting of an overlay

for the elements phosphorous (red, nuclei), copper (blue), and Pr (green, Pr-anti TG46

conjugate). A major advantage of this method is the convenient location of the Ln3+ L-

edge’s emission line. For Pr3+ or Sm3+, for example this range is between 5 and 7 keV,

which is well suited for typical XFM experiments where the maximum instrument

1One exciting development with regards to X-ray sources is the X-ray free electron laser (XEFLs). XEFLs produce X-ray pulses with
peak intensities that are ~109 times more intense than synchrotron radiation [27]. The main application for XFELs is the determination
of protein crystal structures from micro- or nano crystals [28,29]). As such (at least for now) XFELs is used to collect X-ray
diffraction patterns and although one can imagine to one day collect absoprtion patterns in fluorescence or transmission mode with in
x-y scanning mode this is as of yet not feasible.
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sensitivity is just above the Zn Kedge (10 keV incident X-ray energy). Additionally, the use

of a conjugated primary rather than a secondary antibody decreases the sample handling

time and eliminates another source of non-specificity.

Fluorescent copper sensors

To monitor fluxes of labile copper in living systems several research groups developed

copper sensitve fluorescent probes and sucessfully tested them on cells [49–52,4,53] and,

recently, tissue [54]. Although the cytosolic levels of unbound copper are below 1 Cu per

cell, the rapid rate by which this concentration can change suggests that part of this copper is

easily accessible. The cytosolic Cu concenration in fibroblasts, for example, increases 3-fold

or 10-fold when the growth medium is supplemented with with 100 μM copper for 4 or 48

hrs, respectively, (Ralle et al., unpublished results). Cu-fluorescent sensors are usually

membrane permeable probes that consist of two π electron systems (a Cu-binding moiety

and a fluorophore) separated and thus electronically disconnected by a short alkyl chain

linker. In the unbond state the fluorescence is quenched by fast photo induced-electron

transfer (PET) from or to the flourophore. Upon Cu binding the redox properties of the

binding unit are altered. The PET process is slowed or stopped and thus enabling flourescent

emssion [55]. Early probes were hampered by their lack of sensitivity and Fahrni et al.

showed that the flourescent recovery upon Cu(I) binding can be incomplete due to ternary

quenching pathways. His group subesequently adressed this and developed a high contrast

probe in which the flourescent enhancement upon saturation is greater than 200-fold

compared to a 5-fold increase of his earlier probes [4,56,57]. These probes, however, have

so far not been tested in in vivo systems. C. Chang’s group recently published the synthesis

and application of a copper sensor (CS790) with an near infrared emission at 790 nm. The

15-fold fluoresent enhancement of his probe was sufficient to monitor labile copper in

Atp7b−/− mice (see below and [54]).

The copper metallome

Copper is an essential trace element important in numerous biological processes. Its small

electrochemical half cell potential (Cu(II)/Cu(I) = 150 mV, 300 – 550 mV in proteins [58])

makes it a versatile tool in enzymatic reactions including electron transfer or redox

chemistry. This versatility also renders unbound or ‘free’ Cu a potential hazard. It promotes

the formation of reactive oxygen species (ROS) such as hydroxyl radicals via electron

abstraction from H2O2 [59]. Copper levels are tightly regulated to support physiological

requirements and prevent buildup of toxic levels; the cellular content of ‘free’ copper is held

to less than one Cu per cell [60,61]. Any disturbances in this regulatory process lead to

severe consequences. Wilson and Menkes disease are directly caused by copper

accumulation or deficiency, respectively, through inactivation of the copper exporting P1B

type ATPases ATP7b (Wilson disease) and ATP7a (Menkes disease) [62,63]. The

association of copper in neurodegenerative diseases has been discussed in a plethora of

papers (for a recent comprehensive review see [64]).

Copper binding proteins can be divided in two major classes, those which use copper for

specific functions (copper enzymes, class (I)) and those which facilitate copper transport,

transfer, and storage (class II) [65,58]. The sophisticated pathways for the latter class have

been extensively studied in both eucaryotic and procaryotic systems and are described in

several reviews [60,66,65,67]. It was further shown that the regulation of copper and iron (at

least in mammals) are intertwined [68]. While research over the past 20 years has greatly

advanced our knowledge of copper proteins and its pathways, disease related changes in

these pathways remain largely elusive. This is in part also why it remains unclear how

copper is associated with neurodegnerative diseases, for example Alzheimer’s disease, as

these are not caused by or involve a singular copper protein. The more general but
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nonetheless complex question of how non-genetic causes and disturbances in copper

regulation and pathways contribute to ailments such as cancer, Alzheimer’s disease, or

inflammation remains unanswered. Research targeting this question has to include a global

approach: changes in organ, cellular, and intracellular copper distribution, concentration,

and chemical state have to be considered. Bioanalytical sciences have to transition from a

one-dimensional, protein specific, approach to a two- and three- dimensional approach. This

review will describe research advances for the copper metallome as a consequence of

developments in metal multi-dimensional imaging methods. We will focus on Wilson

disease and Alzheimer’s disease, two neurodegnerative disease of substantially different

origin.

Copper homeostasis in Wilson and Menkes disease

Wilson disease (WD) is a genetic disorder of copper metabolism associated with severe

hepatic, neurological, and psychiatric abnormalities. A major hallmark of WD in patients is

the accumulation of copper in liver and frequently, basal ganglia. The affected gene,

ATP7B, which encodes a copper transporting ATPase was identified in 1993 [69,62]. The

protein, ATP7b, has been extensively studied [70,67]. Under basal copper conditions it

localizes to the TGN and transports copper across the membrane to be incorporated into

ceruloplasmin[71]. Upon elevation of intra cellular copper levels ATP7b relocates into

vesicles close to the apical membrane and for biliary excretion [72,73]. ATP7b is the only

known hepatic copper exporter and consequently its inactivation leads to accumulation of

copper. WD can present with a clinical syndrome indistinguishable from chronic hepatitis or

advanced cirrhosis of other origin [74]. The only reliable biochemical indicator of WD is

greatly elevated copper in liver biopsy samples (> 250 μg/g dry tissue weight compared to

20–50 μg/g dry weight in control [75,76]). However, the level of copper per se does not

correlate with either stage or severity of the disease. Genetically engineered ATP7b null

mice confirmed the complex genotype - phenotype relationship [77–79]: It was shown that

the knock-out mice do not start to exhibit substantial cellular damage until after the copper

levels had peaked at 6 weeks of age. Significant changes in morphology are typically not

observed until 12 weeks of age. In Menkes disease (MD), an x-linked genetic disorder,

newborns are incapable of absorbing copper from the small instestines therefore developing

a copper difficieny. The defective protein in MD, ATP7a, has >40% sequence identity with

ATP7b and is expressed in most cells with the notable exception of hepatocytes[80,63].

Similar to ATP7b, ATP7a resides in the TGN at basal copper levels and relocates to the

proximity of the basolateral membrane to aid in copper export when levels are elevated [81].

Because ATP7a plays a critical role in copper uptake from the small intestines, its

dysfunction will lead to severe copper deficiency and usually death at the age of 3.

Elucidating the copper metallome for WD

Histological copper staining of liver sections from WD patients showed accumulated copper

in the periportal regions in the earlier stages of the disease while at later stages copper was

diffusely distributed in each lobule [82,83]. Other groups suggested that the intra-cellular

localization of copper changes from mainly cytosolic copper in the early disease stages to

predominantly lysosomal and nuclear at the later stages [84–86]. However, it was shown

that histological stains for copper are unreliable, it appears that they only detect unbound or

loosely bound copper [1,9]. In recent years researchers have utilized ATP7b null and control

mice which greatly increased the sampling size and ensured a controlled environment.

Using XFM, Ralle at al. proposed a mechanism for copper accumulation that could explain

the delayed onset of morphological changes in ATP7b−/− livers [87]: In the initial stages of

WD massive amounts of copper enter the hepatocytes. Excess copper also enters the nucleus

and triggers changes in the transcriptome. Later, copper recedes from the nucleus and other

Vogt and Ralle Page 7

Anal Bioanal Chem. Author manuscript; available in PMC 2014 February 01.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



compartments (including the cytosol) and becomes concentrated in deposits. This copper re-

distribution (possibly into the lysosomes) was proposed as a self-protection mechanism of

the cell against copper toxicity. Hirayama et al. demonstrated the ability of a fluorescent

sensor, CS790, to monitor labile copper pools in cells and living mice, including the

ATP7b−/− mice [54]. After testing the membrane permable version of CS790 on Hek293T

cells (CS790-AM), Hirayama et al. injected mice (ATP7b−/− and wild-type controls) with

100 μM Cu(Cl)2 solution 2 hrs prior to injection of CS790-AM and monitored the resulting

increase in fluorescence caused by copper binding to the sensor. As expected they found

copper predominantly accumulating in the liver of the mice with a higher fluorescent signal

indicating a higher copper concentration originating from the knock-out mice livers. The

authors also showed that upon administration of the copper chelator, ATN-224, a compound

that is currently discussed as treatment for WD, the fluorescent signal (radiant efficiency)

decreased by a factor of 2–3. A similar study by Peng et al. who used positron emission

tomography to track 64Cu in Atp7b−/− and wild type controls [88]. Similar to Hirayama et al.

Peng et al. demonstrated the liver to be the major site of copper accumulation with impaired

clearance for the knock-out mice (0.8 hrs versus 2.5 hrs of mean residence time for hepatic

copper in wild-type compared to null mice). In addition, they reported an inital increase in

clearance of copper from the kidney’s, an organ where both ATP7a and ATP7b are

expressed. They argued that in the absence of ATP7b ATP7a translocated from the

basolateral to the apical membrane in a compensatory mechanism to relieve the increased

burden of copper in the blood. Peng et al. were also able to monitor diffuse copper

distribution in the intestines 2 hrs post injection with 64Cu which could either be due to a

higher sensitivity or better resolution of the PET images (pixel size ~100 μm). The major

difference between these two studies are the timepoints. Peng et al. monitored Cu

distribution starting immedeately post injection with 2 additional time points at 2 and 24 hrs

post injection, Chang et al. only monitored one time point at 2 hrs post injection. Regardless,

both studys represent the first examples of determining copper distributions in WD knock-

out mice in vivo with sufficiently high spatial resolution. One possible future application for

copper sensors is the localization of tumors in vivo as they show increased copper uptake.

Patient would be injected with a copper containing solution and the distribution of copper

would be subesequently monitored.

Another protein important to understand the involvement of copper that plays a crucial in

WD and MD is Atox1, the copper chaperone that delivers Cu+ to ATP7a and ATP7b[89–

91]. Atox1 binds Cu+ in the same linear Cys-Cu-Cys fashion as the N-terminal binding

regions of Atp7a and Atp7b [92–94]. McRae et al. used SXRF to determine the distribution

of Cu in an Atox1 deficient fibroblasts compared to wild type cells when exposed to 50 μM

copper [95]. They reported that while copper preferrably localized to the peri-nuclear region

in Atox1+/+ cells it was diffusly distributed throughout the cell Atox1−/− cell. They also

found that the copper concentration in Atox1−/− cells is about 1.5 × higher than in Atox1+/+

cells when grown in basal conditions. Their results further underscored that Atox1 plays a

significant role in maintaining proper cellular copper distrbution.

Copper in Alzheimer’s disease

Alzheimer’s disease (AD) is a progressive neurological disorder associated with

extracellular amyloid-β (Aβ) deposits, A peptide oligomerization, intracellular

neurofibrillary tangles (NFTs), synaptic toxicity, and oxidative stress. Although most of

these processes or effects are understood individually, their complex, synergistic causes and

consequences remain unclear.

A potential role of dyshomeostasis of metals was first proposed more than 60 years ago

when Goodman et al presented a role for iron in AD [96]. Goodman saw elevated Prussian

Blue staining (a histological stain for iron) in post-mortem tissues from AD cases. Since
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then numerous papers and reviews have been published about a possible involvement of

metals in AD (for more in-depth reviews see [97,1,47,98]).Metallomics recently dedicated

an entire issue to the role of metals in neurodegenerative disorders[64]. Iron, copper, and

zinc have been identified to play a role in the mechanics of Aβ oligomer

formation[99,100,98], they have been found in plaques and NFT’s[98], and are believed to

be responsible for the widely observed oxidative stress in AD[101]. Despite this wealth of

studies much controversy exists about the specific role of metals, particularly copper, in key

processes in AD, and how global changes in copper concentration affect progression of the

disease. Even basic questions such as whether brains of AD individuals exhibit elevated

copper levels or rather a deficiency compared to healthy controls is subject of discussion and

controversy. Much of this is due to the complexity of the problem: the brain is a

heterogeneous organ and changes metal concentration will most likely be localized rather

than global. Analyzing ‘local’ metal concentrations with reasonable resolution (≤ 1μm ×

1μm) across an entire human brain is time consuming, let alone performing an longitudinal

study of disease and control brains. Schrag et al. performed a meta-analysis of quantitative

studies for Fe, Zn, and Cu in neo-cortical brain regions in post-mortem human tissue [102].

The authors concluded that neither Fe nor Zn were elevated and that Cu was in fact

decreased in AD subjects which is somewhat contradicting the conclusion of one of the most

cited review articles in AD-metal research by Bush who suggested a consensus in the

literature for elevated metal concentrations in brain of AD patients [103]. Schrag et al. found

that popular cited primary studies were qualitative, semi-quantitative (i.e. used metal to

protein ratios as quantitation), or used tissue unsuited for quantitative analysis.

This is also true when trying to define the role of metals at the protein level: Simple models

have proven to be a lot more complicated than in vitro analysis suggested. Tougu et al.

examined the interaction of Cu(II) and Zn(II) with Aβ and subsequent oligomer and fibril

formation[104]. He outlines the complexity and dependency of reaction conditions used

when examining the role of Cu and Zn in AD. Tougu et al. concluded that both Cu and Zn

enhance as well as inhibit the formation of Aβ fibrils.

Significant progress to elucidate the role of copper (and other metals) in AD was made by

spatially resolved, multi dimensional techniques. Several studies determined the copper

content in Aβ deposits (plaques). Lovell et al. found 1.5-fold elevated levels for copper in

plaques when compared to neuropil from human AD subjects using particle induced X-ray

emission (PIXE) [105]. Hutchinson et al. used LA-ICPMS on sections derived from a

transgenic mouse model [106] and confirmed that copper was elevated in plaques (~4-fold).

To identify Aβ deposits and correlate them with copper content, the mouse sections were

stained with a Eu or Ni conjugated antibody. Similar to Lovell et al. the imaged sections

were fixed in paraformaldehyde somewhat questioning the accuracy of the results as

formalin fixation can significantly alter metal concentration and distribution in tissue [18].

L. Miller et al. performed the first spatially resolved study of copper levels in Aβ deposits

from human plaques using cyro-fixed tissue [38,35]. They used a combination of FTIRM

and XFM on thioflavin stained sections and were able to show that copper was 1.8-fold

elevated in human Aβ deposits. The first quantitative imaging study on cryo-fixed,

unstained Aβ plaques was performed by Rajendran et al. [107]. Similar to Lovell et al [105],

the authors used PIXE for trace copper quantitation in plaques from brains of transgenic

mice, however, instead of visualizing plaques by histochemical stains they performed

scanning transmission microscopy Rutherford backscattering for structural characterization

i.e. to identify Aβ deposits. Their results confirmed elevated copper (and iron and zinc)

content in Aβ deposits.

Other imaging studies have been performed to determine the copper distribution,

concentration, and longitudinal changes during disease progression. Similar to the one-
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dimensional analysis of bulk tissue these studies were not always in agreement. In his initial

PIXE study in 1998,Lovell et al. found 5-fold elevated copper in the neuropil for AD

subjects compared to controls, (19 μg/g compared to 4 μg/g). A recent study by Wang et al.

used cryo-fixed, unstained brain sections from a transgenic mouse model to investigate the

copper distribution during disease progression [108]. The imaging method used was XFM

with low resolution optics (scans were performed at 3 μm × 3 μm, and 60 × 60 μm

resolution, respectively). The authors state that the copper levels in the hippocampus

increased from 1 month of age to 18 months from 5 μg/g to 16 μg/g (no standard deviations

were given) for the transgenic mice compared to 12 μg/g of Cu in 18 month old control

mice. The opposite was found in the thalamus (20 μg/g in transgenic versus 60μg/g in

control mice). The authors did not explain how they identified the hippocampus or the

thalamus in their brain sections and it seem likely that areas that are known to be higher in

copper (such as the peri-ventricular areas) were accidently included in some of the

calculations. XFM experiments from our lab that also used a transgenic mouse model did

not result in elevate copper content of the hippocampus, however, we did see a moderate

increase in copper concentration from pre-symptomatic (5μg/g) to symptomatic mice (7 μg/

g) [unpublished results].

Conclusions

Multi dimensional, high resolution imaging methods are beginning to elucidate the

metallome of copper and its changes during diseases processes. Particularly, XFM methods

are rapidly evolving in terms of resolution, three dimensional capabilities, and user

accessibility and publications from the past 6 years have established central role for XFM in

metallomic research. The involvement of copper in complex disorders like AD can only be

determined by taking this research to the next level, i.e. from one to two or three

dimensions. In combination with correlative techniques such as copper sensing fluorescent

probes or lower resolution techniques such as LA-ICPMS, XFM will likely become the

method of choice in the future to study copper pathways in biological systems.
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Fig. 1.
Scheme illustrating the experimental setup for XFM experiments
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Fig. 2.
Tomographic visualization of elemental distributions in Cyclotella meneghiniana. Iso

surface concentrations used for the display are indicated in mmol/l. Mn and Fe rings

correlate with specific locations in the Si frustule. The total elemental content spans several

orders of magnitude [reproduced with permission from [23]]
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Fig. 3.
Phosphorous (P), iron (Fe), and copper (Cu) XFM map and bright field image for a human

fibroblast. The nucleus is clearly visible as the brightest (i.e. most concentrated) area in the

P elemental map. The bar at the bottom of the image illustrates the false color display for the

concentration range of the elements (red temperature scale)
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Fig. 4.
Illustration of the use of lanthanide conjugates as potential organelle markers in XFM. a) A

schematic of the chemical structure of a lanthanide containing polymer conjugated to a

primary antibody. b) Immunofluorescent image of human fibroblasts labeled with DAPI

(blue) depicting the nuclei and anti-TG46 to outline the trans-Golgi network (TGN, red). No

information about the localization of copper is available. c) A fictional XFM image

illustrating the potential use of Pr-tagged anti-TG46. The elemental distribution for P (red)

outlines the nuclei while Cu (blue) and Pr (green) are hypothetically co-localized in the

TGN. 4a) was reproduced with permission from [48]
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