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Opportunities of Federated Learning in Connected,

Cooperative and Automated Industrial Systems
Stefano Savazzi, Monica Nicoli, Mehdi Bennis, Sanaz Kianoush, Luca Barbieri

Abstract—Next-generation autonomous and networked indus-
trial systems (i.e., robots, vehicles, drones) have driven advances
in ultra-reliable, low latency communications (URLLC) and
computing. These networked multi-agent systems require fast,
communication-efficient and distributed machine learning (ML)
to provide mission critical control functionalities. Distributed
ML techniques, including federated learning (FL), represent a
mushrooming multidisciplinary research area weaving in sens-
ing, communication and learning. FL enables continual model
training in distributed wireless systems: rather than fusing raw
data samples at a centralized server, FL leverages a cooperative
fusion approach where networked agents, connected via URLLC,
act as distributed learners that periodically exchange their
locally trained model parameters. This article explores emerging
opportunities of FL for the next-generation networked industrial
systems. Open problems are discussed, focusing on coopera-
tive driving in connected automated vehicles and collaborative
robotics in smart manufacturing.

I. INTRODUCTION

The rapid transformation of industrial systems, driven by

the digitization and 5G communication evolution, has led to

extensive research initiatives on manufacturing and automotive

verticals. These include, for example, Industry 4.0 (I4.0), at

European level, the European Factories of the Future Research

Association (EFFRA, effra.eu), the 5G Alliance for Connected

Industries and Automation (5g-acia.org) and the 5G Automo-

tive Association (5gaa.org). The envisioned smart industrial

systems rely on networked machines with increasing level of

intelligence and autonomy, moving far beyond traditional low-

cost, low-power sensors. According to industrial requirements,

such machines are required to support:

1) autonomous and adaptive decision making in dynamic sit-

uations with mobile operators/equipment, device-less human-

machine interfaces and time-varying environments;
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2) big-data-driven training of large-size machine learning

(ML) models for decision-making;

3) ultra-reliable and low-latency communications (URLLC)

[1] for mission-critical device-to-device (D2D) operations.

Networked and cooperative intelligent machines have re-

cently opened new research opportunities that target the inte-

gration of distributed ML tools with sensing, communication

and decision operations. Cross-fertilization of these compo-

nents is crucial to enable challenging collaborative tasks in

terms of safety, reliability, scalability and latency.

Among distributed ML techniques, federated learning (FL)

[2], [3] has been emerging for model training in decentralized

wireless systems. Model parameters, namely weights and

biases in deep neural network (DNN) layers, are optimized

collectively by cooperation of interconnected devices, acting

as distributed learners. In contrast to conventional edge-cloud

ML, FL does not require to send local training data to the

server, which may be infeasible in mission critical settings

with extremely low latency and data privacy constraints.

The most popular FL implementation, namely federated

averaging [2], alternates between the computation of a local

model at each device and a round of communication with

the server for learning of a global model. Local models are

typically obtained by minimizing a local loss function via

Stochastic Gradient Descent (SGD) steps [3], using local

training examples and target values.

Federated averaging is privacy-preserving by design, as it

keeps the training data on-device. However, it still leverages

the server-client architecture, which might not be robust to data

poisoning attacks and scalability needs. Overcoming this issue

mandates moving towards fully decentralized FL solutions

relying solely on local processing and cooperation among end

machines. As shown in Fig. 1, the device sends its local

ML model parameters to neighbors and receives in return the

corresponding updates. Next, it improves its local parameters

by fusing the received contributions. This procedure continues

until convergence.

The article addresses the opportunities of emerging dis-

tributed FL tools specifically tailored for systems characterized

by autonomous industrial components (vehicles, robots). FL

is first proposed as an integral part of the sensing-decision-

action loop. Next, novel decentralized FL tools and emerging

research challenges are highlighted. The potential of FL is fur-

ther elaborated with considerations primarily given to mission

critical control operations in the field of cooperative automated

vehicles and densely interconnected robots. Analysis with real

data on a practical usage scenario reveals FL as a promising

tool underpinned by URLLC communications.
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Fig. 1. Decentralized learning with federated datasets. Examples in mission
critical control applications: collaborative industrial robotics and cooperative
automated vehicles.

II. SENSING, DECENTRALIZED LEARNING AND

COMMUNICATION CO-DESIGN

Decentralized FL solutions have great potential for in-

dustrial 5G and beyond 5G (B5G) verticals. In automated

industrial processes, decentralized FL imbues intelligence di-

rectly into the end machines, which become smart cooperative

agents. Fig. 2 depicts a schematic of a cooperative and auto-

mated multi-agent industrial system. It consists of connected

machines performing collaborative tasks, and integrating ML

model training within the sensing-decision-action loop. The

ML model outputs might be scenario-dependent predictions of

a physical process, or rather value functions to be used for pol-

icy improvements (i.e., reinforcement learning). Outputs are

fed to the machine controller for local decisions or actuations.

Training of the ML model calls for highly efficient knowledge

discovery operations based on the overall training data col-

lected by all the machines performing the same task (federated

dataset), rather than local data only. Recent advancements of

FL constitute a first but significant step towards collaborative

learning and, particularly, the understanding of how ML could

be distributed over networked devices, without centralized

orchestration. Collaborative learning underpins local decisions

and allows the networked machines to augment their ML

Fig. 2. Decentralized FL in the sensing-decision-action loop.

model by sharing ego knowledge. As part of the sensing-

decision-action loop, emerging FL tools are expected to target

three fundamental challenges:

1) get over the restrictions of server-client architectures and

movements of large, unstructured, raw datasets over D2D wire-

less links, in favor of (typically) sparse ML model parameters

exchange;

2) optimally balance opportunistic (ego) learning based

on local training data, and collaborative learning (leveraging

neighbor’s experience), with the goal of steering convergence;

3) learn and re-train continuously over URLLC links to

adapt to changes in the data distribution, environment, process

or situation.

III. DECENTRALIZED FL: EMERGING TRENDS

Decentralized FL alternates the mutual exchange of local

ML models Wk(t) with the on-device minimization of a local

loss function. The goal is to promote convergence to a global

model W∞ that minimizes a global loss, decomposed into

the sum of local losses. Fully distributed FL implementa-

tions run on top of D2D networks characterized by arbitrary

connectivity graphs. The collaborative learning is based on

Decentralized Stochastic Gradient Descent (DSGD), which

guarantees convergence under strong convexity assumptions of

local loss functions [4] and networks with doubly stochastic

adjacency matrix [3]. DSGD alternates on-device SGD steps to

obtain Wk(t), with the mutual exchange of model parameters

to steer convergence. Mutual exchange is regulated by gossip

[5], consensus or diffusion algorithms [6]-[7].
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A. Consensus, diffusion and gradient negotiations

In consensus based approaches, [5]-[6], federated nodes

exchange local ML model parameters and update them sequen-

tially by distributed averaging. For the mutual exchange of

models, nodes might select random, time-varying or optimized

[8]-[12] partners. In gossipgrad [5], the selection policy creates

a virtual network where each cooperating agent is connected

to, typically, two other nodes. Convergence time and loss are

ruled by the specific choice of model update operations. Some

updating strategies favor fast convergence [6] while others

target model accuracy [12]. Considering DNN model training,

the neural network layers are also typically learned sepa-

rately and independently. Therefore, on-device optimization

and networking phases can run in parallel. Communication

overhead scales linearly with the model size and the number

of cooperating agents. However, non-independent-identically-

distributed (non-IID) federated datasets and large model size

penalize the rate of convergence [3].

Diffusion strategies incorporate a gradient negotiation

phase, described in Fig. 3, where devices exchange the in-

formation about how neighbor models should be adjusted

considering local data. Diffusion virtually expands the local

training data-set, and boosts the convergence compared with

gossip. Gradient exchange strategies are often regulated by

request-reply negotiation stages between neighbors [7]. In

the example of Fig. 3, the local model i, Wi(t = 1), is

sent to the neighbor k at time t = 1 to start a negotiation.

The received model is used by the neighbor k to compute a

gradient vector ∇W using the local loss. Both the gradient

vector and the local model are then fed-back to the device i,

that started the negotiation (t = 2). On-device optimization

(t = 3) finally adjusts the local model by combining the

gradients obtained from local loss with those received from

the neighbor (combine-and-adapt [7]). In [6] the negotiation

resorts to a two-stage asynchronous procedure: convergence

speed improves at the cost of larger communication overhead.

Exploring this trade off is currently an open challenge.

In addition to the above tools, distributed ledger technolo-

gies can also be applied to decentralized training [11] by

validating clients model updates via a series of validation

steps (Proof-of-Work, or others). As a result, decentralized FL

is transformed into a market of expert model training nodes

and validators. The development of robust FL designs against

data poisoning and adversarial manipulations is still an open

problem.

B. Improving communication efficiency

Reliable and low-latency D2D communications serve as

the backbone for distributed FL computations. Transmission

of model parameters must be extremely reliable with packet

error rate down to 10−8 to prevent frequent retransmissions

penalizing the convergence rate [6]. Transmission time in-

tervals (TTI) should be aligned with the data dynamics and

the computation times required to perform SGD and model

adaptation, targeting 5 ms and below [1]. The model size

also affects communication design choices: DNN models often

Fig. 3. Decentralized FL with diffusion: communication, gradient negotia-
tions (t = 1, 2) and computing rounds (t = 3).

used in industrial applications contain > 15k parameters per

layer, usually extremely sparse.

Although vanilla FL assumed noiseless or rate-limited

communications [3], recently proposed digital and analog

designs quantify the effects of intermittent communications,

time-varying fading and interference. Digital implementations

of FL require each device to communicate with peers over

half-duplex links via time scheduled wireless access. Popular

solutions to limit the model size, and thus the communica-

tion overhead, are quantization, sparsification and distillation

[8]. Sparsifying operators select a subset of informative ML

parameters, often improving also the model generalization.

More recently, analog FL and hybrid analog-digital im-

plementations have been proposed for fast and synchronous

model averaging [4]. Analog FL gets over the restrictions

of time scheduled access as it exploits the superposition

property of dense wireless transmissions when averaging the

neighbor models. Each device receives the superposition of

the ML models simultaneously transmitted by the neigh-

borhood. When ML parameters are sparse and sent as un-

coded/uncompressed, Lasso type recovery can be adopted for

decoding and reconstruction [9].

Besides low-level communications, optimization of resource

allocation has been considered to find the best trade-off

between on-device computation (SGD updates) and wireless

channel use for parameters exchange [10]. Optimized medium

access control can also substantially reduce the FL loss [12]:

for example, scheduling should reward devices having high

quality data compared to those possessing few, or redundant

samples [11].

C. Emerging research challenges

The roll-out of new decentralized communication paradigms

in B5G is expected to bridge the gap between deep learning

and wireless networking research, raising at the same time

unprecedented challenges. For example, current FL designs

generally ignore the underlying dynamics of the network

graph, the presence of intermittent communication links or

weakly connected components [3]. Research in this direction

should focus on balancing local data collection, model adap-

tations and cooperation from selected agents. Digital, analog

or hybrid implementations should be considered based on

devices’ mobility, model size, computational and bandwidth
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Fig. 4. Distributed FL for cooperative perception by real-time fusion of
imaging data at different vehicles.

resources, as well as connectivity quality. Learning an optimal

policy for graph (and/or neighbor) selection while training the

ML model, namely learning simultaneously the network graph

and the model, is also a promising direction.

Automated systems are often characterized by heteroge-

neous devices performing distinct but related tasks. Col-

laborative learning of multiple functions, namely multitask

learning [13], will have a relevant impact on several industrial

applications. Understanding when cooperation, in the form

of consensus, or any decentralized agreement protocol, can

better steer convergence compared with opportunistic or ego

behaviors is an open problem of wide interest. The analysis

must also take into consideration the cost of distributed

computations, the federated data distribution and the network

designs for URLLC.

Using the I4.0 vision and emerging B5G verticals as guide-

lines, in what follows opportunities of FL are highlighted

for the needs of selected mission critical control applica-

tions, namely cooperative automated driving and collaborative

robotics.

IV. DISTRIBUTED INTELLIGENCE FOR COOPERATIVE

AUTOMATED DRIVING

Vehicular URLLC leverage B5G connectivity to enable

flexible vehicle-to-everything (V2X) interactions with road

infrastructure (V2I) and other vehicles (V2V). Distributed ML

over V2X networks will play a central role in cooperative

intelligent transportation system (C-ITS), enabling level 4-5

cooperative automated driving functionalities [14]. Coopera-

tive automated vehicles share maps of the driving environment

(Fig. 4) using V2X URLLC to extend the range and resolution

of their ego imaging sensors (radar, camera, lidar). Beside

improving detection and localization of safety-related events,

vehicles can also negotiate the maneuvering and synchronize

to a common mobility pattern, forming tight autonomous-

driving convoys and increasing traffic efficiency. All the above

scenarios are characterized by time-critical functions that must

be implemented on a closer-to-the-ground cloud, with part

of the cooperative computational tasks performed locally, by

pushing intelligence into the vehicles rather than on the mobile

edge cloud (MEC) [14].

Decentralized FL techniques [6] are promising solutions for

these time-sensitive applications. They require the vehicles

to transmit smaller models which can be aggregated at the

road side unit (RSU) or by vehicles via ultra-low latency

(3 ms) and highly reliable (10−5) V2X connectivity. The

exchange of local ML model parameters, rather than raw

data, is expected to decrease the learning time, allowing to

quickly react to unexpected events and take safety-critical

decisions. Domain-specific FL designs must also account for

intermittent communications, time-varying network graphs and

non-IID training datasets changing quickly over time, thus

evolving according to vehicle motions, with speeds up to 250

km/h (3GPP TR 22.886), and the surrounding environment.

In such cases, a transitory phase is expected where vehicles

with outdated, or partially trained models, will coexist with

highly-automated ones and benefit from their cooperation. The

federation with fully equipped vehicles will assist lower-level

vehicles to get an augmented vision of the driving environ-

ment, even if equipped with less accurate sensors. Balancing

between centralized and decentralized FL implementations for

energy optimization is also a main issue. Besides cooperative

driving, to improve safety and reliability, the vehicles need

also to learn the network latency in a distributed manner [1],

whereby decentralized FL (and its variants) are instrumental.

Open problems further relate to the tension between local and

global models, and the impact of large numbers of vehicles.

Fig. 4 highlights a distributed ML-assisted cooperative

perception task where vehicles fuse their sensor data in a

decentralized implementation to get an extended vision of the

environment. Fusing dynamics (i.e., global navigation satellite

systems, GNSS, inertial measurement units, IMU) and imaging

sensor data (i.e., lidar, camera, radar) from different vehicles

improves the location sensing accuracy making real-time re-

sponses feasible. A main challenge is the association of un-

labeled imaging measurements at different vehicles to jointly

sensed features for cooperative simultaneous localization and

mapping (SLAM). Large data volumes and computational

complexity are also critical challenges. Decentralized FL is

a promising candidate, as it is able to learn a common model

for data association and fusion from local raw data, limiting

the V2X exchange to model parameters.

V. DECENTRALIZED FL FOR COBOTS

The development of collaborative robotics in advanced man-

ufacturing environments (cobots) can be interpreted as parallel

to autonomous driving. Standardized in the ISO/TS 15066,

collaborative robot operations allow the machines (industrial

manipulators, vehicles) installed in a shared workspace to

move concurrently with human operators inside fenceless

environments. Connected and collaborative robots are trans-

forming industrial workspaces, such as assembly lines in the

example of Fig. 5(a), and represent a challenging ground for

the development of decentralized FL tools. First, robots op-

erate in increasingly complex and time-varying environments.
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Fig. 5. (a) Decentralized FL setup in a cobot environment: frequency-modulated continuous wave (FMCW), multiple-input-multiple output (MIMO) radar
locations (A,B,C) and ML model based classification of subject positions; (b) FL loss for gossip (blue) and diffusion (red) vs. time and over a D2D network
of 15 robots. IID (no markers) and non-IID (diamond markers) federated datasets using the 8% and 3% of the full training dataset, respectively. D2D network
with TTI=3ms, BLER=10−9. Dashed lines refer to the opportunistic learning case.

Network design, paired with distributed learning tools, must

consider the problem of continual learning (and periodic re-

training) over URLLC communication links to track variations

of data dynamics caused by changes of the workflow process.

Second, robots might perform distinct tasks, although these

can be considered as strongly related, targeting a common

manufacturing process (assembly or dis-assembly tasks) and

efficient workspace sharing. In such cases, opportunistic (ego)

and collaborative approaches should be carefully assessed. For

example, FL can boost the model training for some tasks, such

as vision functions, in common to many robots.

To shed light on some of the above challenges, we resort

to a typical mission critical control problem in Industry 4.0

workspaces. The goal is to plan the motions of a robotic

manipulator based on the information about the positions of

human operators sharing the workspace. Operator locations

are classified using a ML model, described in Fig. 5(a), that

computes the human-robot distance d and the direction of ar-

rival (DOA) θ in real-time, using 6 regions of interest as target

classes. During the on-line workflow, the ML model can be

trained/updated continuously by decentralized FL and consen-

sus (cooperative learning loop). The sensing-decision-action

loop is supervised by an industry standard programmable logic

controller (PLC) that makes decisions about robot emergency

stop, or trajectory replanning [15], based on the information

about subject positions. Decentralized FL uses D2D links, runs

in parallel to the sensing-decision-action loop, and thus takes

some load off of the PLC network, whose resources must be

reserved for robot motion control. All the robots support vision

functions implemented by 3 radars working in the 77−81GHz

band with a field-of-view of 120deg each. Radars produce the

raw data [15] that are fed into the ML model.

VI. RESULTS AND DISCUSSIONS

The example of Fig. 5(b) analyses the performance of

decentralized FL approaches compared with ego, i.e., oppor-

tunistic, learning, considering the application case previously

described. In particular, the robots might choose to combine in

groups of 15 agents and implement FL over a D2D network, or

rather act opportunistically, thus learning from local data only,

disabling the D2D radio interface. The examples also highlight

the impact of federated data distribution on convergence time

and validation loss. When federated data is IID partitioned,

each device uses 8% of the full training dataset of 900 samples.

In the more challenging non-IID scenario, only the 3% of the

data is used: batches contain examples for only 5 of the 6
output target classes, chosen randomly.

D2D communications are organized into consecutive frames

and use time-division multiple access (TDMA) scheduling.

Frames have payload 1 kB and TTI of 3 ms, in line with

URLLC [1]. Notice that a frame drop (BLER is 10−9) causes

the loss of a layer update, and an increase of the convergence

time. FL and networking have been simulated on a virtual en-

vironment but using real data from the plant. The environment

allows to deploy networked agents acting as virtual robots and

learning over a configurable federated dataset (IID and non-

IID).

The simulations of Fig. 5(b) quantify the average validation

loss [1] experienced by the deployed agents versus time. This

allows to assess the time required by the consensus rounds,

as relevant for real-time implementation. Gossip and diffusion

FL approaches, described previously, are evaluated over a k-

regular D2D network consisting of robots with 2 neighbors

each. Implementation of gossip is based on [5]: on each

round, the agents randomly choose a single neighbor from

the neighborhood, exchange the local ML models and adapt

them by averaging, followed by SGD on local data. Diffusion

FL implements the gradient negotiations described in Fig. 3:

on each round the agents now exchange the local ML models

and the gradients ∇W with a single neighbor, chosen again

randomly. For both cases, the time span of an individual

round consists of the transmission of the ML parameters
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in the assigned frames, the model adaptation and the SGD

steps (30ms per round). Before D2D transmission, the ML

model parameters are sparsified [9] to limit the communication

overhead, measured in kB per round.

Diffusion FL boosts the model training for robots possessing

few data (3%) and insufficient examples (non-IID). Compared

with ego learning, cooperation gives smaller loss after a train-

ing period of 39 s, that is enough to track workflow changes.

Diffusion needs considerable communication overhead (220
kB per round) due to gradients exchange. Convergence time

thus increases with the network size. Notice that small but

sudden increases of the loss are observed on some rounds

when averaging the neighbor models. These effects are more

visible when the local models are trained with non-IID data

and can be mitigated by learning rate optimization [6]. Gossip

requires twice lower number of frames (92 kB per round) but

it is less effective over non-IID data. However, it is still useful

for refining models trained with IID data as it improves ego

approaches after 23 s. Opportunistic learning converges fast

as it does not utilize D2D communications, but experiences a

large loss: it is a viable solution only for agents possessing

enough data and performing specialized tasks that do not

require much re-training.

VII. CONCLUSIONS AND FUTURE DIRECTIONS

In this article we explored opportunities and applications

of FL in networked and automated industrial systems, under-

pinned by D2D wireless communications. Open problems and

challenges have been discussed, focusing on manufacturing

and automotive B5G verticals. Decentralized FL enables the

cooperative learning of ML models. It can be seamlessly inte-

grated into the application dependent sensing-decision-action

loop within each automated entity to improve knowledge

discovery operations. Learning and re-training continuously

to follow the changing dynamics of the environment have a

profound impact on the networking co-design, capitalizing on

model sparsity and superposition properties of the wireless

links.

Future research is expected to target increasingly complex

mobile environments characterized by heterogeneous devices

cooperating to learn distinct, but related, functions. The choice

between opportunistic and cooperative behaviors will largely

depend on the URLLC design. Emerging FL tools are promis-

ing in cooperative automated driving, leveraging V2X interac-

tions, and in collaborative robotics for distributed learning in

complex and dynamic workflows.

APPENDIX: FEDERATED DATA AND ML MODEL

As shown in Fig. 5, the robots are equipped with 3 Multiple-

Input-Multiple-Output (MIMO) Frequency Modulated Contin-

uous Wave (FMCW) radars, working in the 77 GHz band.

Radars implement a Time-Division (TD) MIMO system with

2 transmit and 4 receive antennas each, and a field-of-view

of 120 deg. During the on-line workflow, the distance d

and DOA θ information are classified by the agents using a

trained ML model. The ML model is here trained to classify 6
potential HR collaborative situations characterized by different

HR distances and DOA ranges, corresponding to safe or unsafe

conditions.

Based on the above setup, a simplified database for testing,

is available in the repository:http://dx.doi.org/10.21227/0wmc-

hq36. The database contains 4 main data structures, detailed

as follows:

i) mmwave_data_test has dimension 900 x 256 x 63. Con-

tains 900 FFT range-azimuth measurements of size 256 x 63:

256-point range samples corresponding to a max range of

11m (min range of 0.5m) and 63 angle bins, corresponding

to AOA ranging from -75 to +75 degree. Data are used for

testing (validation database). The corresponding labels are in

label_test. Each label (from 0 to 5) corresponds to one of the

6 positions (from 1 to 6) of the operator as detailed in the Fig.

5.b.

ii) mmwave_data_train has dimension 900 x 256 x 63. Con-

tains 900 FFT range-azimuth measurements used for training.

The corresponding labels are in label_train.

iii) label_test with dimension 900 x 1, contains the true

labels for test data (mmwave_data_test), namely classes (true

labels) correspond to integers from 0 to 5.

iv) label_train with dimension 900 x 1, contains the true

labels for train data (mmwave_data_train), namely classes

(true labels) correspond to integers from 0 to 5.

The implemented ML model takes as input the raw range-

azimuth data (after background subtraction) of size 256× 63
from the radars. As shown in Fig. 5.a, it consists of 2 trainable

neural network layers of 25.000 parameters. Decentralized FL

uses gossip or diffusion methods (described previously) with

SGD step size µt = 0.025.
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