
Open access · Posted Content · DOI:10.1101/2021.06.03.446887

Opportunity or catastrophe? Effect of sea salt on host-parasite survival and reproduction — Source link \square

Annabelle O. Yu, J T Vannatta, Stephanie O Gutierrez, Dennis J. Minchella Institutions: University of California, Berkeley, Purdue University Published on: 03 Jun 2021 - <u>bioRxiv</u> (Cold Spring Harbor Laboratory) Topics: Freshwater snail, Biomphalaria alexandrina, Brackish water, Snail and Salinity

Related papers:

- Molecular assessment of trematode co-infection and intraspecific competition in molluscan intermediate hosts.
- Tropics, trophics and taxonomy: the determinants of parasite-associated host mortality
- How Temperature, Pond-Drying, and Nutrients Influence Parasite Infection and Pathology
- Low genetic diversity in a snail intermediate host (Biomphalaria pfeifferi Krass, 1848) and schistosomiasis transmission in the Senegal River Basin.
- Experimental warming drives a seasonal shift in the timing of host-parasite dynamics with consequences for disease risk

1	Full title: Opportunity or catastrophe? Effect of sea salt on host-parasite survival
2	and reproduction
3	Short title: Effect of sea salt on host-parasite interactions
4	
5	Ao Yu ¹ , J. Trevor. Vannatta ¹ , Stephanie O. Gutierrez ¹ , Dennis J. Minchella ¹
6	1 Department of Biological Sciences, Purdue University,
7	915 West State Street, West Lafayette, IN 47907, USA.
8	
9	* yu692@purdue.edu (AY); ao.yu@berkeley.edu (AY)
10	jvannat@purdue.edu (JTV); vanna006@umn.edu (JTV)
11	
12	
13	
14	Author contributions
15	AY, JTV, SOG, and DJM conceived and designed the study. AY, JTV, and SOG
16	conducted the study. AY and JTV analyzed the data. AY, JTV, SOG, and DJM
17	contributed to writing and revising the manuscript.
18	Data availability:
19	All data and code used for this study are available at <u>https://github.com/vanna006/sea-</u>
20	salt-schisto

21 Abstract

22	Seawater intrusion caused by anthropogenic climate change may affect freshwater
23	species and their parasites. While brackish water certainly impacts freshwater systems
24	globally, its impact on disease transmission is largely unknown. This study examined the
25	effect of artificial seawater on host-parasite interactions using a freshwater snail
26	host, Biomphalaria alexandrina, and the human trematode parasite Schistosoma mansoni.
27	Four components were analyzed to evaluate the impact of increasing salinity on disease
28	transmission: snail survival, snail reproduction, infection prevalence, and the survival of
29	the parasite infective stage (cercariae). We found a decrease in snail survival, snail egg
30	mass production, and snail infection prevalence as salinity increases. However, cercarial
31	survival peaked at an intermediate salinity value. Our results suggest that seawater
32	intrusion into freshwaters has the potential to decrease schistosome transmission to
33	humans.
34	
35	Author Summary
36	Climate change will have numerous impacts on many systems, including host-parasite
37	systems. One mechanism by which climate change with impact host-parasite interactions
38	is by rising sea levels flooding coastal regions, increasing salinity in many freshwaters.
39	Host-parasite interactions are a key component of freshwater ecosystems, but the effects
40	of sea water intrusion on host-parasite dynamics are largely unknown. In this study, we
41	quantify the effects of sea salt concentration on the model host-parasite system,

Biomphalaria alexandrina and *Schistosoma mansoni*. We demonstrate a significant, negative relationship between sea salt concentration and host-parasite survival and reproduction. The increase in freshwater salinity associated with sea level rise has the potential to decrease parasite transmission and disease burden in humans and wildlife.

46

47 Introduction

Anthropogenic climate change, associated with increasing greenhouse gases, can 48 change many environmental factors including temperature, pH, precipitation, as well as 49 50 salinity in both terrestrial and aquatic systems. Increasing salinity in freshwater systems is often caused by rising sea levels and seawater intrusion [1,2]. Salt concentration 51 (salinity) is a crucial abiotic factor that impacts many aspects of biotic interactions [3]. 52 Increases in salinity of freshwaters will undoubtedly result in changes in organismal 53 growth, reproduction, and survival, impacting entire food webs, and thus host-parasite 54 interactions. 55

Parasites play a key role in freshwater communities [4], and they are commonly recognized for their ability to modify the growth, reproduction, and survival of their hosts [5]. They are also the etiologic agents of human disease. Therefore, understanding how abiotic factors and parasitic diseases interact in the context of climate change, more specifically increasing salinity, is critical in order to understand human disease transmission.

62	Rising seawater levels and seawater intrusion are affecting numerous bodies of
63	water including the Nile River Delta. The salinization of coastal land in the Nile Delta is
64	caused by the decrease in the Nile River's freshwater levels due to human activity and the
65	increasing sea levels in the Mediterranean Sea [6]. Seawater will submerge large areas in
66	the coastal zone of the Nile Delta in the near future, impacting host-parasite interactions
67	in the region [7]. One parasitic disease of humans acquired in the Nile Delta of Egypt is
68	schistosomiasis, which is caused by the trematode Schistosoma mansoni [8].
69	Approximately, 12.7 million infected people are clustered in the Middle East and North
70	Africa region, and Egypt's share of the burden is about 7.2 million [9]. Parasite
71	transmission occurs when humans come in contact with secondary parasite larvae, called
72	cercariae, which are released from infected snails in freshwaters. In areas with perennial
73	irrigation such as the Nile Delta and the Nile River Valley, schistosomiasis prevalence is
74	high (60% infection rate). In contrast, the infection rate is relatively low (6%) in districts
75	of basin irrigation (commonly known as annual flooding) [10]. Development and shift
76	from basin irrigation to perennial irrigation in Egypt has resulted in year-round
77	availability of water in many districts making the likelihood of infection high [11], but
78	the impact of seawater intrusion on parasite transmission in this system is unclear.
79	This laboratory study explores the effect of increasing salinity (as artificial
80	seawater) on host and parasite success using the Egyptian strain of Schistosoma mansoni
81	and its snail intermediate host, Biomphalaria alexandrina, to simulate the conditions in

82	the Nile Delta of Egypt. In order to assess the success of parasite transmission, we
83	exposed snail hosts to the trematode parasite and monitored snail survival, snail egg mass
84	production, infection prevalence, and parasite (cercarial) survival. We predicted lower
85	snail survival and egg mass production as snails become stressed by osmoregulation and
86	allocate less energy to reproduction [12,13]. We further expected to observe lower
87	parasite infection prevalence in snails as salt concentration increased, since the parasite
88	larvae that infect snails (miracidia) may be less successful due to increased energy
89	expenditures required maintain osmolarity [14,15]. Finally, we predicted lower cercarial
90	(the parasite larvae which infects humans) survival as salt concentration increased due to
91	increases in energy expenditures on osmoregulation [16] and fewer available resources
92	from stressed hosts [17].
93	
94	Materials and Methods
95	Experimental reagents
96	Various sea salt brands were assessed to determine which most closely resembled
97	the mineral concentrations of seawater (supplement Figure S1; Table S1). Based on
98	these comparisons, Instant Ocean® Sea Salt was used to replicate seawater.

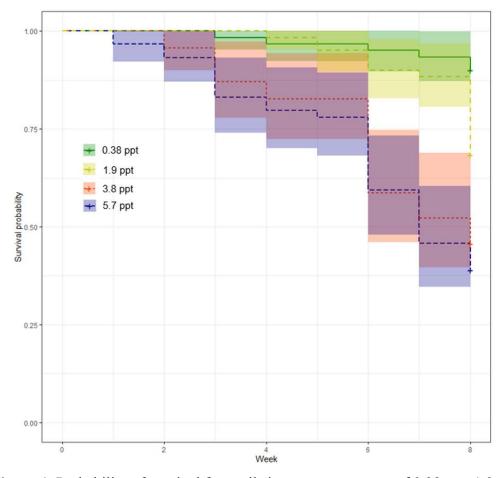
99 Salinity of the Mediterranean Sea is approximately 38 parts per thousand (ppt)

- 100 [18], which we considered saturated seawater (100% salt solution) in this experiment.
- 101 Salinity treatment groups consisted of 1% (0.38 ppt), 5% (1.9 ppt), 10% (3.8 ppt), and

102	15% (5.7 ppt) seawater solutions, which were chosen based on pilot data suggesting
103	seawater concentrations of 20% and higher rapidly killed the snail hosts. The four salinity
104	treatments were prepared from 100% stock solution (38 ppt) diluted with well water (the
105	1% solution), and the salinity of the final solutions were verified by using a handheld
106	refractometer (Premium Aquatics). The 1% (0.38 ppt) salinity treatment was designated
107	as the control for this experiment as this was the salinity of well water used for dilutions.
108	
109	Experimental strain maintenance
110	We used Biomphalaria alexandrina snails and Schistosoma mansoni parasites, which
111	both originated from Egypt. B. alexandrina snails were raised under controlled laboratory
112	conditions (~25 °C, 12 hour light/12 hour dark). The S. mansoni life cycle was
113	maintained for the experiment using <i>B. alexandrina</i> snails and male Balb/c mice [19].
114	In order to limit the shock induced by sudden seawater exposure, 60 snails were
115	acclimated for five days in each salinity treatment (total of 240 snails) before inclusion in
116	this study and subsequent Schistosoma infections. In a pilot study, five days was shown
117	to sufficiently control for initial mortality. During the experiment, snails were housed in
118	individual 225 mL jars with Styrofoam (for egg laying) and were fed romaine lettuce ad
119	libitum. Water in each jar was changed weekly to maintain salinity levels. Egg masses
120	were counted weekly and removed from jars during cleaning.
121	

122 Snail infections

123	Mice were euthanized in accordance with Purdue Animal Care and Use
124	Committee Protocol # 1111000225 to isolate Schistosoma eggs. The collected eggs were
125	placed in freshwater for approximately 60 minutes to allow the miracidia (the infective
126	stage for the snails) to hatch. The resulting miracidia were transferred to well plates
127	containing snails and 10 mL of their respective salinity treatment. Each snail was exposed
128	individually using eight miracidia in the corresponding salinity treatment and left
129	overnight.
130	
131	Data collection
132	Snail survival and egg masses laid were recorded weekly for eight weeks. In
133	weeks four to seven post parasite exposure, snails from each group were transferred into
134	well plates filled with 10 mL of corresponding salinity treatment solution and cercarial
135	release was observed. After one hour under artificial light, 1 mL of mixed solution was
136	drawn from each well, and the number of cercariae was counted for each snail [20].
137	Snails in which at least 10 cercariae were detected from the randomized 1 mL out of 10
138	mL were designated as infected. Only 13 out of 948 observations (1.37%) resulted in the
139	snail being assigned as uninfected while having countable cercariae from the randomized
140	1 mL sample. Thus, cross-contamination was infrequent, and likely had little impact on
141	our results.


142	Eight weeks after parasite exposure, cercariae from the 0.38 ppt salinity (control)
143	treatment were collected and were used to examine cercarial survival in various salt
144	solutions. Cercarial survival was assessed using only cercariae from the 0.38 ppt salinity
145	treatment due to high snail mortality and low infection prevalence in the other treatment
146	groups. Approximately 20 cercariae were placed into individual wells with 1ml of the
147	four salinity treatment solutions. Cercariae survival was checked at 4h, 8h, 12h, and 24h
148	after release from the snail, and cercariae were removed if little to no movement was
149	detected. Following the 24h check, all cercariae were euthanized with ethanol and
150	counted to determine the exact number of cercariae in each trial.

151

152 Statistical analyses

Snail survival was analyzed with a proportional hazard regression model using the 153 154 survminer and survival packages in R [21,22]. Snail egg mass production was only compared between uninfected snails to remove the confounding influence of parasitic 155 castration. Even after removal of infected snails, the data had considerable zero-inflation. 156 157 To account for this, we used a zero-inflated, negative binomial, mixed effects model created in the glmmTMB package to analyze snail reproduction [23]. Differences in 158 159 infection prevalence between salinity treatments were examined using a binomial General 160 Linear Model. Cercarial survival was analyzed with the coxme package using a mixed effects proportional hazard model[24]. This was done to control for non-independence as 161

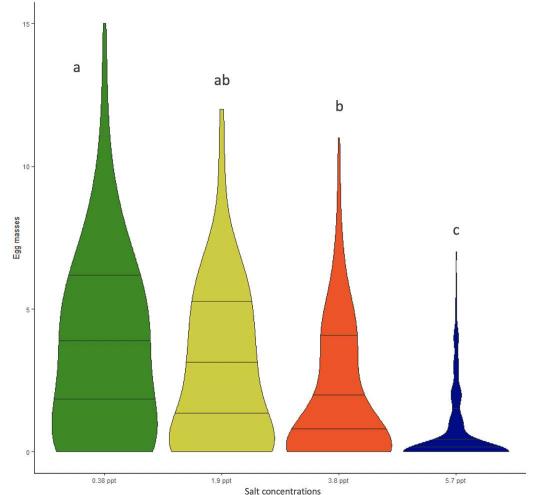
162	multiple cercariae were taken from the same snail. In these models, salinity treatment was
163	used as a fixed factor and individual snail ID was used as a random factor. All pairwise
164	comparisons were made using the emmeans package with the multivariate t distribution for
165	p value correction[25]. All analyses were performed in R version 3.6.3 [26].
166	Results
167	Effect of seawater on snail survival
168	Survival probability of infected and uninfected snails in the 0.38 ppt control treatment did
169	not differ significantly over the 8-week experiment ($P > 0.05$). Therefore, we compared
170	snail survival probability across all salinity treatments regardless of infection status
171	(Figure 1). All salinity treatments were significantly different from each other except for
172	3.8 ppt and 5.7 ppt (P > 0.05). Snails in the 0.38 ppt control treatment had the highest
173	survival probability, while the 3.8 ppt and 5.7 ppt salinity treatments had lower survival
174	than the 1.9 ppt salinity treatment (Figure 1; For coefficients and pairwise comparisons
175	see supplement Table S2).

176

Figure 1. Probability of survival for snails in treatment groups of 0.38 ppt, 1.9 ppt, 3.8 ppt, 5.7 ppt salinity treatments. Snail survival in 0.38 ppt is significantly higher than 1.9 ppt (P < 0.05), 3.8 ppt (P < 0.0001), and 5.7 ppt (P < 0.0001). The survival probability of 1.9 ppt is significantly higher than 3.8 ppt and 5.7 ppt salinity treatments (P < 0.05). For

181 coefficients and pairwise comparisons see supplement Table S2.

182


183 Effect of seawater on snail egg production

184 Snails infected with *Schistosoma mansoni* eventually become castrated and cease

producing egg masses [27]. However, since infection prevalence was lower in the 1.9 ppt,

- 186 3.8 ppt, and 5.7 ppt treatments, the decrease in egg mass production was likely in
- response to increases in salinity (Figure 2). Snails from the 0.38 ppt control treatment

- had higher egg output than snails in the 3.8 ppt (P < 0.05) and 5.7 ppt (P < 0.0001)
- salinity treatments. The 1.9 ppt treatment had a higher output than 5.7 ppt (P < 0.0001),
- and 3.8 ppt has a higher output than 5.7 ppt (P < 0.05). For coefficients and pairwise
- 191 comparisons see supplement **Table S3**.

Figure 2. Egg mass output for uninfected snails in treatment groups 0.38 ppt, 1.9 ppt, 3.8 ppt, and 5.7 ppt. Snails in the 0.38 ppt salinity treatment had significantly higher egg mass output than 3.8 ppt (P < 0.05) or 5.7 ppt (P < 0.0001). Snails in the 1.9 ppt and 3.8 ppt treatments also had a higher output compared to the 5.7 ppt treatment (P < 0.0001 and P < 0.05, respectively). The horizontal lines on the violin plot represent data quantiles of 25%, 50%, and 75%. Letters above bars indicate significant differences in egg mass production, with different letters representing significant differences. For pairwise

- 200 comparisons see supplement Table S3.
- 201

202 Effect of seawater on infection prevalence

Infection prevalence differed among the salinity treatments with a 70% prevalence in the 0.38 ppt treatment, 16% for 1.9 ppt treatment, 13% for 3.8 ppt treatment, and 9% for 5.7 ppt treatment. Snail infection prevalence in the 0.38 ppt control treatment had significantly higher prevalence than the other 3 treatments (P < 0.0001; For coefficients and pairwise comparisons see supplement **Table S4**). However, the prevalence levels in the 1.9 ppt, 3.8 ppt, and 5.7 ppt salinity treatments were not significantly different from each other (P > 0.05) (**Figure 3**).

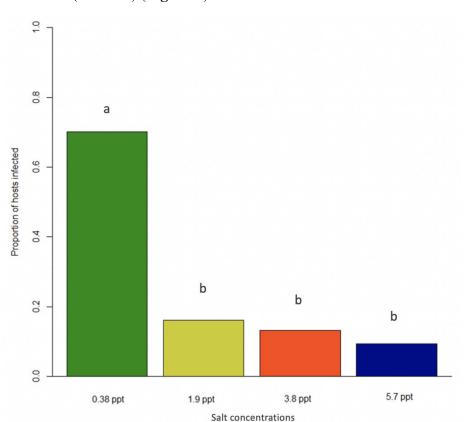


Figure 3. Snail infection prevalence in 0.38 ppt, 1.9 ppt, 3.8 ppt, and 5.7 ppt salinity

212 treatments after exposure to Schistosoma mansoni miracidia. Different letters above bars

213 indicate significant differences in infection prevalence among the treatments. For

214 pairwise comparisons see supplement **Table S4**.

216 Effect of seawater on cercarial survival

217	Cercariae in the 3.8 ppt salinity treatment had the highest survival rate. The 5.7 ppt
218	salinity treatment had the next highest survival rate, followed by the 1.9 ppt treatment
219	(Figure 4). Interestingly, the cercarial survival was lowest in the 0.38 ppt (control)
220	treatment with this treatment having significantly lower survival than the 1.9 ppt (P \leq
221	0.05), 3.8 ppt (P < 0.0001), and 5.7 ppt treatments (P = 0.0001; For coefficients and
222	pairwise comparisons see supplement Table S5). The 1.9 ppt salinity treatment was
223	significantly lower than the 3.8 ppt treatment ($P < 0.05$) but was not different from the
224	5.7 ppt treatment (P > 0.05). The 3.8 ppt salinity treatment was significantly higher than
225	the 5.7 ppt treatment ($P < 0.05$).

226

227 Discussion

Seawater intrusion caused by climate change is an on-going issue in the Nile Delta of
Egypt. How seawater intrusion will impact freshwater parasite-host interactions and
disease prevalence is of importance, especially in the transmission of human
schistosomiasis. In this study, we explored the effect of seawater on *Schistosoma mansoni* infection success in the freshwater snail *Biomphalaria alexandrina*.
Experimental conditions were designed to mimic seawater intrusion as it occurs in the

Nile Delta of Egypt. We investigated crucial factors that contribute to host and parasite

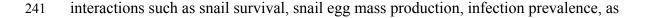



Figure 4. Survival probability of cercariae in 0.38 ppt, 1.9 ppt, 3.8 ppt, and 5.7 ppt salinity treatments over a 24-hour period. All four treatment groups are significantly different from one another except for 1.9 ppt and 5.7 ppt (P > 0.05) For pairwise comparisons see supplement **Table S5**.

242 well as parasite (cercarial) survival. Our results demonstrate that snail survival (Figure

- 1), snail reproduction (Figure 2), and snail infection prevalence (Figure 3) decreased as
- seawater concentrations increased across treatment groups. Additionally, cercarial

survival showed a nonlinear response to seawater concentrations with the 0.38 ppt 245 treatment having the lowest survival while cercariae in 3.8 ppt had higher survival than 246 247 those in 0.38, 1.9, and 5.7 ppt treatments (Figure 4). To our knowledge, this study is the first to investigate the impact of seawater on the 248 Biomphalaria alexandrina – Schistosoma mansoni host-parasite interaction using 249 250 environmentally realistic seawater solutions [28]. Previous studies have shown that the fecundity and survival of snails is adversely affected by salinities as low as 1 ppt, with 251 significant reductions occurring between 3.5 and 4.5 ppt resulting in progressive 252 elimination of snails [14,29]. Additionally, our result demonstrating higher cercarial 253 survival rates at intermediate seawater concentrations is supported by previous studies, 254 however, the salinity at which survival peaks varies among different host and parasite 255 species and strains [30–32]. Despite the observed decreases in snail fitness and parasite 256 transmission at higher seawater concentrations, production of infective cercariae 257 proceeded successfully in concentrations of seawater up to 5.7 ppt suggesting that 258 although parasite burden may be lessened, infections could still occur as sea levels rise 259 [15 and the current study]. Of course, cercarial survival is not necessarily predictive of 260 cercarial infectivity. This limits our ability to fully quantify the impact of rising sea levels 261 may have on parasite transmission to humans. 262 We speculate that these results are caused primarily by osmotic stress and energy 263

allocation to osmoregulation. Osmoregulation is a critical, energy-costly function of a

265	normal cell to maintain fitness [33]. Organisms under osmotic pressure will have less
266	energy to allocate to growth and reproduction. In our experiment, this likely led to the
267	decrease in snail survival and snail egg mass production. Parasite larvae, such as
268	miracidia that infect snails, are also affected by osmotic stress in the process of finding
269	and infecting hosts, causing lower infection prevalence as salinity increased. Some
270	authors have suggested that in contrast to miracidia, cercariae, which infect humans,
271	require less energy for osmoregulation due to the lower difference between external and
272	internal salinity to a certain threshold [34]. Therefore, cercariae seem to possess a higher
273	tolerance than their snail hosts to increasing salinity, which may drive the non-linear
274	relationship between cercarial survival and seawater concentration [34 and references
275	therein].
276	
276 277	Conclusions
276	
276 277	Conclusions
276 277 278	Conclusions Taken together, reduced survival, reproduction, and infection prevalence in snail
276 277 278 279	Conclusions Taken together, reduced survival, reproduction, and infection prevalence in snail hosts with increasing salinity will lead to lower snail population sizes and potentially
276 277 278 279 280	Conclusions Taken together, reduced survival, reproduction, and infection prevalence in snail hosts with increasing salinity will lead to lower snail population sizes and potentially fewer schistosomiasis infections in areas with seawater intrusion. However, the ability of
276 277 278 279 280 281	Conclusions Taken together, reduced survival, reproduction, and infection prevalence in snail hosts with increasing salinity will lead to lower snail population sizes and potentially fewer schistosomiasis infections in areas with seawater intrusion. However, the ability of organisms to rapidly adapt to changing conditions cannot be overlooked. Although a
276 277 278 279 280 281 282	Conclusions Taken together, reduced survival, reproduction, and infection prevalence in snail hosts with increasing salinity will lead to lower snail population sizes and potentially fewer schistosomiasis infections in areas with seawater intrusion. However, the ability of organisms to rapidly adapt to changing conditions cannot be overlooked. Although a decrease in human schistosomiasis might be expected, higher salt concentrations did not

We have shown that increasing concentrations of seawater in freshwater systems 286 (such as those which will occur with rising sea levels) can have a significant impact on 287 288 host-parasite interactions. Here, we have focused solely on the interactions between host and parasite, but these interactions are nested within complex food webs. Parasites and 289 their hosts can also function as prev in an ecosystem, and the changing salinity can affect 290 291 these relationships and parasite transmission [36,37]. Certainly, additional factors should be evaluated to accurately assess the future trend of schistosomiasis transmission in areas 292 with rising sea levels. Besides salinity, climate change will also influence temperature, 293 pH, rainfall, flooding, and drought [35]. Snail fitness is likely impacted by temperature 294 alterations and drought, and these alterations certainly impact snail mortality and parasite 295 production [20,38–43]. Our study reveals how a single abiotic factor, salinity, can play a 296 significant role in disease transmission. Further investigation of the role of multiple 297 environmental factors, food web interactions, and rapid evolutionary responses of hosts 298 and parasites to sea level rise will be needed to more accurately evaluate the future of 299 300 disease transmission in these altered ecosystems.

301

302 Acknowledgements

303 We thank Phillip T. LoVerde for providing the snail and parasite strain. Annabell Davis

and Bailey Pyle provided invaluable assistance with data collections. Thanks to the

305 Minchella lab members, Annabell Davis, Bailey Pyle, Hannah Melchiorre, Grace

306	Schu	macher, Spencer Siddons, and Paradyse Blackwood for reading early drafts of this
307	manuscript.	
308	This	research did not receive any specific grant from funding agencies in the public,
309	comr	nercial, or not-for-profit sectors.
310		
311	Refe	rence
312	1.	Zickfeld K, Solomon S, Gilford DM. Centuries of thermal sea-level rise due to
313		anthropogenic emissions of short-lived greenhouse gases. Proc. Natl. Acad. Sci. U.
314		S. A. 2017;114: 657-662. doi:10.1073/pnas.1612066114
315	2.	Kaushal SS, Groffman PM, Likens GE, Belt KT, Stack WP, Kelly VR, et al.
316		Increased salinization of fresh water in the Northeastern United States. Proc. Natl.
317		Acad. Sci. U. S. A. 2005;102: 13517-13520. doi:10.1073/pnas.0506414102
318	3.	Lei F, Poulin R. Effects of salinity on multiplication and transmission of an
319		intertidal trematode parasite. Mar. Biol. 2011;158: 995-1003. doi:10.1007/s00227-
320		011-1625-7
321	4.	Preston D, Johnson P. Ecological consequences of parasitism. In: Nature
322		Education Knowledge. 2010; 1:39. Available:
323		https://www.nature.com/scitable/knowledge/library/ecological-consequences-of-
324		parasitism-13255694/
325	5.	Laidemitt MR, Anderson LC, Wearing HJ, Mutuku MW, Mkoji GM, Loker ES.
326		Antagonism between parasites within snail hosts impacts the transmission of

327		human schistosomiasis. Elife. 2019;8. doi:10.7554/eLife.50095
328	6.	Frihy OE. The nile delta-Alexandria coast: Vulnerability to sea-level rise,
329		consequences and adaptation. Mitig Adapt Strateg Glob Chang. 2003;8: 115-138.
330		doi:10.1023/A:1026015824714
331	7.	Sefelnasr A, Sherif M. Impacts of seawater rise on seawater intrusion in the Nile
332		Delta aquifer, Egypt. Groundwater. 2013;52: 264-276. doi:10.1111/gwat.12058
333	8.	Caffrey CR. Schistosomiasis and its treatment. Future Med Chem. 2015;7: 675-
334		676. doi:10.4155/fmc.15.27
335	9.	Elmorshedy H, Bergquist R, El-Ela NEA, Eassa SM, Elsakka EE, Barakat R. Can
336		human schistosomiasis mansoni control be sustained in high-risk transmission foci
337		in Egypt? Parasites and Vectors. 2015;8: 372. doi:10.1186/s13071-015-0983-2
338	10.	Barakat RMR. Epidemiology of schistosomiasis in Egypt: travel through time:
339		review. J Adv Res. 2013;4: 425-432. doi:10.1016/j.jare.2012.07.003
340	11.	El-Rawy M, Abdalla F, El Alfy M. Water resources in Egypt. Springer, Cham;
341		2020. pp. 687–711. doi:10.1007/978-3-030-15265-9_18
342	12.	Kefford BJ, Nugegoda D. No evidence for a critical salinity threshold for growth
343		and reproduction in the freshwater snail Physa acuta. Environ Pollut. 2005;134:
344		377-383. doi:10.1016/j.envpol.2004.09.018
345	13.	Madsen H. The effect of sodium chloride concentration on centration on growth
346		and egg laying of Helisoma duryi, Biomphalaria alexandrina and Bulinus truncatus

347 (Gastropoda Planorbidae). J Mo	olluscan Stud. 1990;56: 181-187.
-------------------------------------	----------------------------------

- 348 doi:10.1093/mollus/56.2.181
- 349 14. Donnelly FA, Appleton CC, Schutte CHJ. The influence of salinity on the ova and
- 350 miracidia of three species of Schistosoma. Int J Parasitol. 1984;14: 113–120.
- 351 doi:10.1016/0020-7519(84)90037-7
- 352 15. Chernin E, Bower C. Experimental transmission of schistosoma mansoni in
- 353 brackish waters. Parasitology. 1971;63: 31–36. doi:10.1017/S0031182000067378
- 16. Mei B, Zhou S. Effects of osmolarity and pH on the transformation of Schistosoma

355 japonicum miracidium to mother sporocyst in vitro. 1988. Available:

356 http://en.cnki.com.cn/Article_en/CJFDTotal-HBYK198803001.htm

357 17. Seppälä O, Liljeroos K, Karvonen A, Jokela J. Host condition as a constraint for

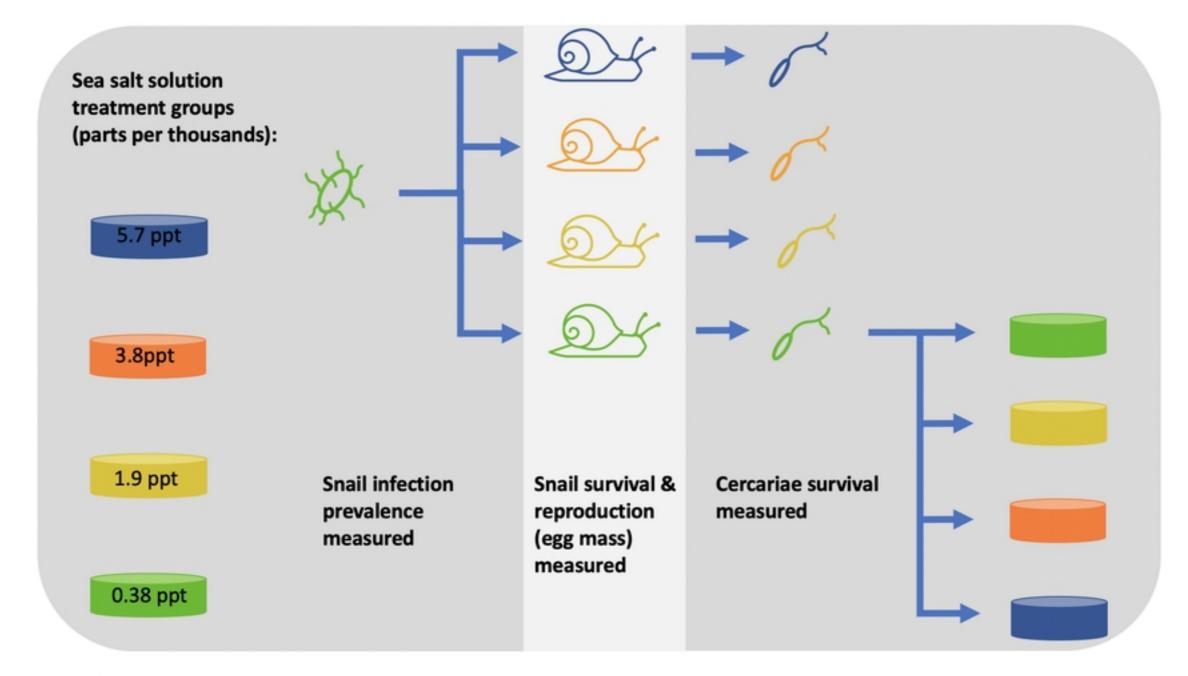
358 parasite reproduction. Oikos. 2008;117: 749–753. doi:10.1111/j.0030-

- 359 1299.2008.16396.x
- 360 18. Kumlu M, Eroldogan OT, Aktas M. Effects of temperature and salinity on larval
- 361 growth, survival and development of Penaeus semisulcatus. Aquaculture.

362 2000;188: 167–173. doi:10.1016/S0044-8486(00)00330-6

- 363 19. Tucker MS, Karunaratne LB, Lewis FA, Freitas TC, Liang Y san. Schistosomiasis.
- 364 Curr Protoc Immunol. 2013;103. doi:10.1002/0471142735.im1901s103
- 365 20. Gleichsner AM, Cleveland JA, Minchella DJ. One stimulus-two responses: host
- 366 and parasite life-history variation in response to environmental stress. Evolution

367	(N Y)	. 2016;70: 2640–2646. doi:10.1111/evo.130	61


368	21.	Kassambara A, Kosinski M, Biecek P. survminer:drawing survival curves using
369		"ggplot2". R package version 0.4.8. J. 9, 378–400. 2020. Available: https://cran.r-
370		project.org/package=survminer
371	22.	Therneau TM, Lumley T, Elizabeth A, Cynthia C. Survival analysis in R. Modern
372		Clinical Trial Analysis. 2020. doi:10.1007/978-1-4614-4322-3_1
373	23.	Brooks, M.E., Kristensen, K., van Benthem, K.J., Magnusson, A., Berg, C.W. N,
374		A., Skaug, H.J., Maechler, M., Bolker BM. glmmTMB balances speed and
375		flexibility among packages for zero-inflated generalized linear mixed modeling. R
376		J. 9, 378–400. 2017.
377	24.	Therneau TM. coxme: mixed effects cox models. 2020. Available: https://cran.r-
378		project.org/web/packages/coxme/index.html. Version 2.2-16.
379	25.	Lenth R, Buerkner P, Herve M, Love J, Riebl H, Singmann H. emmeans:
380		estimated marginal means, aka least-squares means. Aka Least-Squares Means.
381		2020. p. https://cran.r-project.org/package=emmeans.
382		doi:10.1080/00031305.1980.10483031>.Version 1.5.0.
383	26.	R Core Team. R: A language and environment for statistical computing. R
384		Foundation for Statistical Computing, Vienna, Austria. 2020. Available:
385		https://www.r-project.org/.
386	27.	Sorensen RE, Minchella DJ. Snail-trematode life history interactions: Past trends

387	and future direc	tions. Parasitology	. Cambridge U	niversity Press	; 2001. pp. S3-

- 388 S18. doi:10.1017/s0031182001007843
- 389 28. Buss N, Nelson KN, Hua J, Relyea RA. Effects of different roadway deicing salts
- 390 on host-parasite interactions: The importance of salt type. Environ Pollut.
- 391 2020;266. doi:10.1016/j.envpol.2020.115244
- 392 29. Donnelly FA, Appleton CC, Schutte CHJ. The influence of salinity on certain
- aspects of the biology of Bulinus (Physopsis) africanus. Int J Parasitol. 1983;13:
- 394 539–545. doi:10.1016/S0020-7519(83)80025-3
- 395 30. Milotic D, Milotic M, Koprivnikar J. Effects of road salt on a free-living trematode
- 396 infectious stage. J Helminthol. 2020. doi:10.1017/S0022149X20000309
- 397 31. Asch HL. Effect of selected chemical agents on longevity and infectivity of
- 398 Schistosoma mansoni cercariae. Exp Parasitol. 1975;38: 208–216.
- 399 doi:10.1016/0014-4894(75)90023-5
- 400 32. Venable DL, Gaudé AP, Klerks PL. Control of the Trematode Bolbophorus
- 401 confusus in Channel Catfish Ictalurus punctatus Ponds Using Salinity
- 402 Manipulation and Polyculture with Black Carp Mylopharyngodon piceus. J World
- 403 Aquac Soc. 2000;31: 158–166. doi:10.1111/j.1749-7345.2000.tb00349.x
- 404 33. Finan JD, Guilak F. The effects of osmotic stress on the structure and function of
- 405 the cell nucleus. Journal of Cellular Biochemistry. NIH Public Access; 2010. pp.
- 406 460–467. doi:10.1002/jcb.22437

407	34.	Donnelly FA, Appleton CC, Schutte CHJ. The influence of salinity on the
408		cercariae of three species of Schistosoma. Int J Parasitol. 1984;14: 13-21.
409		doi:10.1016/0020-7519(84)90005-5
410	35.	Adekiya TA, Aruleba RT, Oyinloye BE, Okosun KO, Kappo AP. The effect of
411		climate change and the snail-schistosome cycle in transmission and bio-control of
412		schistosomiasis in Sub-Saharan Africa. Int J Environ Res Public Health. 2020;17:
413		181. doi:10.3390/ijerph17010181
414	36.	Johnson PTJ, Dobson A, Lafferty KD, Marcogliese DJ, Memmott J, Orlofske SA,
415		et al. When parasites become prey: Ecological and epidemiological significance of
416		eating parasites. Trends Ecol Evol. 2010;25: 362-371.
417		doi:10.1016/j.tree.2010.01.005
418	37.	Sokolow SH, Huttinger E, Jouanard N, Hsieh MH, Lafferty KD, Kuris AM, et al.
419		Reduced transmission of human schistosomiasis after restoration of a native river
420		prawn that preys on the snail intermediate host. Proc Natl Acad Sci U S A.
421		2015;112: 9650–9655. doi:10.1073/pnas.1502651112
422	38.	Paull SH, Johnson PTJ. High temperature enhances host pathology in a snail-
423		trematode system: possible consequences of climate change for the emergence of
424		disease. Freshw Biol. 2011;56: 767–778. doi:10.1111/j.1365-2427.2010.02547.x
425	39.	Studer A, Thieltges D, Poulin R. Parasites and global warming: net effects of
426		temperature on an intertidal host-parasite system. Mar Ecol Prog Ser. 2010;415:

427		11-22. doi:10.3354/meps08742
428	40.	Poulin R. Global warming and temperature-mediated increases in cercarial
429		emergence in trematode parasites. Parasitology. 2006;132: 143-151.
430		doi:10.1017/S0031182005008693
431	41.	McCreesh N, Booth M. The effect of simulating different intermediate host snail
432		species on the link between water temperature and schistosomiasis risk.
433		Munderloh UG, editor. PLoS One. 2014;9: e87892.
434		doi:10.1371/journal.pone.0087892
435	42.	Mas-Coma S, Valero MA, Bargues MD. Climate change effects on trematodiases,
436		with emphasis on zoonotic fascioliasis and schistosomiasis. Vet Parasitol.
437		2009;163: 264–280. doi:10.1016/j.vetpar.2009.03.024
438	43.	Mangal TD, Paterson S, Fenton A. Predicting the impact of long-term temperature
439		changes on the epidemiology and control of schistosomiasis: a mechanistic model.
440		Baylis M, editor. PLoS One. 2008;3: e1438. doi:10.1371/journal.pone.0001438
441		

Graphical abstract