
RESEARCH Open Access

OPRCP: approximate nearest neighbor
binary search algorithm for hybrid data
over WMSN blockchain
Huakun Liu1, Xin Wei1, Ruliang Xiao1,2,3* , Lifei Chen1,2, Xin Du1 and Shi Zhang1

Abstract

In order to prevent sensitive data tampering in the application of security monitoring, intelligent traffic, and other

sensitive Internet of Things, the research on WMSN (wireless multimedia sensor networks) application system based

on blockchain and IPFS (InterPlanetary File System) is of great significance. However, WMSN data are characterized

by high dimensionality, large scale, and multiple types, so it is challenging to search WMSN data efficiently over

blockchain system. This paper proposed a novel One Permutation with Rotation and cross-polytope locality-sensitive

hashing (OPRCP) method of approximate nearest neighbor binary query for querying binary hybrid data in the form of

WMSN multimedia data (containing two hybrid types of data, such as image-text and image-audio). Firstly, a binary

hybrid data index was built with the method of locality-sensitive hashing (LSH) to retain content similarity among

original data objects for performing accurate queries. Secondly, the approximate nearest neighbor search strategy was

used in place of the nearest neighbor strategy, to reduce querying time. Finally, a binary hybrid data model was

employed to cope with multiple types of data in WMSN and carry out collaborative search of binary hybrid data.

The experimental results show that compared with other mainstream methods, the proposed OPRCP method is

widely adaptive to massive high-dimensional data in multiple types and can improve the accuracy of query

results. The OPRCP method exhibits good performance, effectively saves resources, and reduces query time for a

variety of datasets. It is an effective solution to the binary hybrid search of approximate neighbors, and it is

applicable to the WMSN data search based on smart contracts in WMSN blockchain systems.

Keywords: WMSN hybrid data, Approximate nearest neighbor binary search, LSH, Blockchain, IPFS

1 Introduction

The wireless multimedia sensor network (WMSN) is a

new wireless sensor network developed based on wire-

less sensor networks (WSN) with multimedia data such

as videos, audios, and images. To date, WMSN has been

widely used in security monitoring, intelligent transpor-

tation, environmental monitoring, etc. We should pre-

vent some sensitive application data from tampering,

such as supervision data of farm products and violation

evidence data from intelligent transportation systems. At

present, a cutting-edge idea is to protect highly sensitive

data by using currently hot technologies of blockchain

and IPFS to build blockchain systems based on WMSN

[1–5]. Therefore, the solution of multimedia data search

will be basic design in the development of WMSN block-

chain systems. Generally, after preprocessing of WMSN

data [6], we filter massive data from the same network

through search operations based on multimedia data,

to obtain data results similar to query objects. It can

be seen from literature [3–5] that quick querying of

high-dimensional massive datasets has shown great

potential. Hence, for diversified WMSN data, how to

use different types of data to carry out collaborative search

and improve the precision of query results is of great sig-

nificance to the application of WMSN blockchain.

People usually construct a WMSN blockchain applica-

tion solution based on Ethereum and IPFS [7]. WMSN

data are processed on the blockchain after being stored

in the IPFS distributed structure, where such data can be

* Correspondence: xiaoruliang@fjnu.edu.cn
1College of Mathematics and Informatics, Fujian Normal University, Fuzhou

350117, China
2Digit Fujian Internet-of-Things Laboratory of Environmental Monitoring,

Fuzhou 350117, China

Full list of author information is available at the end of the article

© The Author(s). 2018 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made.

Liu et al. EURASIP Journal on Wireless Communications and Networking

 (2018) 2018:208

https://doi.org/10.1186/s13638-018-1221-3

http://crossmark.crossref.org/dialog/?doi=10.1186/s13638-018-1221-3&domain=pdf
http://orcid.org/0000-0003-2173-4612
mailto:xiaoruliang@fjnu.edu.cn
http://creativecommons.org/licenses/by/4.0/

searched or operated in other ways through smart con-

tracts. Previous work [8] indicates that query of massive

multimedia data is composed of three procedures: (1) ex-

traction of multimedia data features, (2) creation of query

indexes on feature data in datasets, and (3) mapping query

objects into the query index structure. To be specific, the

first step is to extract features of multimedia data, which

are usually converted into feature vectors for data prepar-

ation for the following procedures. The second procedure

of creating query indexes is very important and aims to re-

duce comparisons with data objects during search, thus

improving search efficiency. With regard to multimedia

data search on WMSN blockchain, existing methods are

challenged in three aspects as follows:

Problem 1 (curse of space): massive data storage on

WMSN blockchain and IPFS need a large space for data

themselves, but existing methods tend to consume space

several times larger than that for datasets when creating

index structures on the premise of ensuring accuracy, which

is undoubtedly a “curse of space” to massive datasets.

Problem 2 (curse of dimensionality): The processing of

data of a single type such as images or text can create

feature vectors which are high-dimensional data, let

alone the processing of hybrid data requires the consid-

eration of multiple data features at the same time, so the

processing of massive IPFS data on WMSN blockchain

is a “curse of dimensionality.”

Problem 3 (curse of growth): Against the background of

WMSN blockchain IPFS distributed storage, the rapid

growth of WMSN data requires relatively excellent scalabil-

ity of established index structures. The processing of massive

WMSN blockchain IPFS data is a “curse of growth.”

In view of the above problems in WMSN blockchain

IPFS systems, we proposed a novel hybrid data query

method named OPRCP (One Permutation with Rotation

and Cross-Polytope locality-sensitive hashing) in this

paper, in which we used a kind of approximate nearest

neighbor binary search of WMSN binary hybrid data, such

as image-text and image-audio. The OPRCP method im-

plements the hybrid locality-sensitive hashing method, ef-

fectively solving the problem of binary hybrid approximate

nearest neighbor search of WMSN hybrid data.

The OPRCP method is completely different from all

the existing methods, the highlights of which mainly in-

clude the following: First, we adopted the collaborative

filtering strategy rather than the existing method of sep-

arately querying and filtering data in multiple types, to

implement hybrid hash mapping of multiple types and

thus realize much more accurate query than previous

methods. Second, in hash mapping of a single type, the

methods of One Permutation with Rotation [9] and

cross-polytope LSH [10] were used respectively to map

similar data to the same index value, which compared

with the original LSH method [11] significantly improves

in terms of time and space. Third, the feature hashing

method [12] was applied to reduce the dimension of

high-dimensional sparse data from d to d′(d′≪ d), thus

maintaining precision to a large extent and reducing time

complexity. Lastly, the multi-probe locality-sensitive hash-

ing method [13] was used to cut down the space occupied

for storing indexes, overcoming the shortcoming of con-

suming large amounts of storage space in the LSH method.

Through a lot of comparative experiments, we find

that the OPRCP algorithm presented in this paper needs

less query time and storage space to achieve ideal query

results, showing good scalability in terms of data scale

and data types.

The remainder of this paper is structured as follows.

Section 2 introduces related work. Section 3 describes

relevant basic knowledge involved in this paper. Section 4

presents the OPRCP method. Section 5 is an analysis of

experiments and experiment results. Section 6 draws con-

clusions on the paper.

2 Related work

The privacy protection of the WMSN is a challenging re-

search hotspot due to the lack of related Internet of Things

(IoT) standards [4, 5]. Blockchain is usually used as a basic

decentralized technology for encrypting digital currency,

such as Bitcoin and Ethereum. In general, IoT is a central-

ized distributed structure. The centralized IoT data man-

agement and access control model has many problems,

especially the scalability issues of IoT systems, forcing users

to trust third-party intermediaries to manage their data

[14]. But the literature [7] presented a novel decentralized

privacy-preserving access control model based on block-

chain technology in IoT. So, for protecting privacy data

and sensitive data on the opened IoT of WMSN, it pro-

vided us a decentralized and secure technical guarantee ex-

ample [7]. But there is still a problem because that many

blockchain technologies such as Bitcoin and Ethereum do

not provide decentralized data storage capabilities. So, we

must borrow the InterPlanetary File System (IPFS) because

it provides us a high-throughput content-addressable block

storage model with content-addressable hyperlinks [15],

which forms a generic Melker-DAG. IPFS is well integrated

with blockchain technology [3, 5, 7, 14, 16]. Therefore, the

decentralized security and privacy protection model based

on IPFS data storage technology has become one of the re-

search hotspots of the WMSN Internet of Things.

In the field of data search over IoT of WMSN, search

strategy and index structure have always been the re-

search hotspots. These studies are generally devoted to

improving search performance in terms of structure and

algorithm. In terms of search strategy, for the similarity

search problem of low-dimensional data, many excellent

solutions have emerged for nearest neighbor queries.

However, in the high-dimensional case, these methods

Liu et al. EURASIP Journal on Wireless Communications and Networking (2018) 2018:208 Page 2 of 14

tend to have only a slight improvement in the linear

query time. A lot of researches [17–19] show that using

the approximate nearest neighbor search strategy, people

can break the bottleneck of linear search time, instead of

nearest neighbor search. In fact, in most application sce-

narios, the approximate nearest neighbor can achieve

similar results as the nearest neighbor. At present, there

are many feasible and effective methods for the problem

of approximate nearest neighbor search [17, 20].

In terms of index structure, for a single type of data,

people performed well with approximate similarity search

by constructing feature vector indexes. For example, for

image data, there are two index structures commonly.

The first one is the tree index, which was proposed in [21]

by Sunil Arya of the Hong Kong University of Science and

Technology and David M. Mount of the Maryland Univer-

sity. Another is the hash index, which was introduced in

[21] by TTIC’s Greg Shakhnarovich, Trevor Darrell of

UC Berkeley, and Piotr Indyk of MIT. In particular, for

the hash index structure, Andrei Broder proposed a

min-hashing method to effectively solve the approxi-

mate nearest neighbor search problem in Hamming

space [22]. For Euclidean space, Mayau Datar (Stanford

University) and Nicole Immorlica (MIT) introduced a

LSH method based on p-stable distribution in [11].

However, we need to consider multiple features at the

same time for hybrid data. At present, many researchers

usually try to first index a single type respectively, then

to integrate them. For example, such as image and text

data, Chen Liu, who comes from the National University

of Singapore, proposes a method of linking tagged re-

sources to concepts extracted from Wikipedia and imple-

ments cross-model search in [23]; Ju Fan, from Tsinghua

University, introduced a similarity search method SEAL

based on region-oriented space-oriented text data in [24].

A mixed LSH method based on p-stable LSH [11] and

min-hashing [22] method is proposed by Yu Ge, who

comes from Northeastern University, and proves that

using the LSH method can better solve the approximate

nearest neighbor search problem of multiple types of data

[25]. However, the main disadvantages of the method in

[25] are the large storage consumption and high computa-

tional complexity, which is not conducive to distributing

the calculations to the child computing nodes.

Up to date, the existing hybrid-type approximate search

methods have a large overhead in space, and there is still

much room for improvement in query efficiency.

Therefore, in view of these deficiencies, we propose a

novel hybrid data query method. We ingeniously com-

bine LSH method based on OPR and CP, which makes

further improvements. The proposed OPRCP method re-

duces the query time, consumes less storage space, and

gets the same accuracy as other methods. In addition,

ORPCP still guarantees better query performance with the

growth of data dimension. In the WMSN-blockchain IoT,

combining with the access control mechanism, by con-

structing a query index based on the OPRCP in the form

of a smart contract, we can construct a search transaction

and obtain a good application effect.

3 Preliminaries

We use the ldp to denote the space ℝ
d under lp norm.

For any point v ∈ℝd, we denote by k v!kp the lp norm of

vector v. We use Sd − 1 to denote the unit Euclidean

sphere in ℝ
d with the center being the origin.

The data model in this paper is a data object oriented to

the binary hybrid data type. To simplify the problem, we

mainly focus on the binary hybrid data in Hamming space

and Euclidean space. To be convenient for theoretical ana-

lysis, we assume that the two data types are independent

of each other. For Hamming space, we often use Jaccard

distance to represent the similarity between two objects,

see Formula (1), and for the Euclidean space, we use the

normalized Euclidean distance, see Formula (3).

v!
�

�

�

�

p
¼

X

d

i¼1

v
p
i

 !1
p

ð1Þ

J x; yð Þ ¼ 1−
x∩yj j

x∪yj j
ð2Þ

D x; yð Þ ¼
Euclidean x; yð Þ

Dmax

ð3Þ

The linear weighted sum is widely used in the problem

of calculating the similarity of multivariate hybrid data

types [26, 27]. We define the binary hybrid data similarity

as follows: Suppose X be the whole dataset, there are two

data types for every x ∈ X; we denote the Hamming space

data by x1, while the Euclidean space data by x2, and

x = (x1, x2). Then, for any x1, x2 ∈ X, α ∈ (0, 1) indi-

cates the proportion of data types, we have

dist x1; x2ð Þ ¼ α� J x11; x
1
2

� �

þ 1−αð Þ � D x21; x
2
2

� �

ð4Þ

3.1 Approximate nearest neighbor

In this paper, we focus on the approximate nearest neigh-

bor problem in Hamming space and Euclidean space.

Definition 1 [28] The (c, r)-approximate near neighbor

problem (ANN) with failure probability f is to construct

a data structure over a set of points P in metric space

(X, D) supporting the following query: given any fixed

query point q ∈ X, if there exits p ∈ P with D(p, q) ≤ r,

then report some p′ ∈ P such that D(p′, q) ≤ cr, with prob-

ability at least 1 − f.

We extend it to binary hybrid data and get Definition 2.

Liu et al. EURASIP Journal on Wireless Communications and Networking (2018) 2018:208 Page 3 of 14

Definition 2 The (c, r, d)-approximate near neighbor

problem with failure probability f is to construct a

data structure over a set of points P in metric space

(X,D), X = (X1, X2), supporting the following query:

given any fixed query point q ∈ X, if there exits p ∈ P

with D(p1, q1) ≤ r, D(p2, q2) ≤ d, then report some p′
∈ P

such that D(p′1, q1) ≤ cr, D(p′2, q2) ≤ cd with probability

at least 1 − f.

3.2 Locality-sensitive hashing

Searching on high-dimensional datasets, most solutions

are not entirely satisfactory and can only provide little im-

provement over a linear algorithm. In 1998, Indyk and

Motwani of MIT introduced an approximate similarity

search method with sublinear dependence on the data

size, called locality-sensitive hashing (LSH) [17]. The key

idea is to hash the points using hash functions so as to en-

sure that, for each function, the probability of collision for

the similar objects is much higher than those dissimilar

objects. This method is an important technique for solving

the (c, r) −NNproblem. A LSH family is defined as:

Definition 3 [28] A family H ¼ fh : X→Ug is (r1, r2,

p1, p2)-sensitive for (X,D) if for any q, p ∈ X we have

(1) If D(p, q) ≤ r1, then PrH½hðqÞ ¼ hðpÞ�≥p1

(2) If D(p, q) ≥ r2, then PrH½hðqÞ ¼ hðpÞ�≤p2

In order for a locality-sensitive hash family to be use-

ful, it has to satisfy inequalities p1 > p2 and r1 < r2.

To perform a hybrid search on two types of data, we

use two different LSH families for different types of data.

We describe them below.

3.3 One permutation with rotation and cross-polytope LSH

The min-hashing [22] method is popular for build data

structure for Hamming space. In [9], Anshumali from

Cornell University and Ping Li from Rutgers University

introduced an improved method based on one permu-

tation hashing, called One Permutation with Rotation

Hashing (OPR), which costs less computation and

resource-consumption, and gets the same level of query

performance as min-hashing. Next, we describe it.

We use D to denote the dimension of data in Hamming

space, then we can consider binary vectors in ℝ
D the same

as sets in Ω = {0, 1, 2,…,D − 1}.

Let S ⊆Ω = {0, 1, 2,…,D − 1} and consider a random per-

mutation π ⊆Ω→Ω, and we divide the space into k bins.

For the jth bin, where 0 ≤ j ≤ k − 1, we define the set

M j π Sð Þð Þ ¼ π Sf g∩
Dj

k
;

D jþ 1ð Þ

k

��� �

ð5Þ

We need to clarify two concepts:

1) If Mj(π(S)) is empty, then Mj(π(S)) =∅.

2) The minimum of Mj(π(S)) is the smallest nonzero

index in the bin.

If Mj(π(S)) =∅, then we denote the hash value of this

bin by OPRj(π(S)) = E. If the set is not empty, OPRj(π(S))

is the minimum of Mj(π(S)). In this paper, to simplify

the problem, we always assume D is divisible by k. That

is, when Mj(π(S)) ≠∅, we have

OPR j π Sð Þð Þ ¼ min M j π Sð Þð Þ
� �

mod
D

k
ð6Þ

Formally, if Mj(π(S)) =∅, the hash value is C plus the

hash value of the first non-empty bin on the right (circular).

We define

H j π Sð Þð Þ ¼
OPR j π Sð Þð Þ if OPR j π Sð Þð Þ≠E

OPR jþtð Þ mod k π Sð Þð Þ þ tC otherwise

�

ð7Þ

t ¼ min zð Þ; s:t:OPR jþzð Þ mod k π Sð Þð Þ≠E ð8Þ

Here C is a constant to avoid wrong collisions, and

C≥
D
k
−1.

In [29], Kengo Terasawa and Yuzuru Tanaka proposed

a novel and efficient LSH method to solve ANN prob-

lem in Euclidean space, called cross-polytope LSH. We

recall the definition of it.

Definition 4 [29] Consider the following hash family H

for points on a unit sphere Sd− 1 ⊂ℝd. Let A ∈ℝ
d× d be a ran-

dom matrix with i.i.d. Gaussian entries. To hash a point x ∈

Sd− 1, we compute y ¼ Ax
kAxk ∈S

d−1 and then find the point

closest to y from {±ei}1≤ i < d, where ei is the ith standard basis

vector of ℝd. We use the closest neighbor as a hash of x.

4 The OPRCP method

4.1 The overall framework of ANN binary query

In the WMSN blockchain IoT application, we referred to

[1, 3, 4] and proposed an inquiry transaction mechanism

based on the OPRCP method. Moreover, the intelligence

contract can be built and provide search applications for

WMSN blockchain users.

The same as the process of hybrid query that was men-

tioned in the first part (1), the hybrid search of multimedia

consists of three steps (Fig. 1):

(1) Extracting feature of multimedia data.

This is the phase of data preprocessing. After input of

the original WMSN multi-type data, the multimedia data

can be converted into a feature vector by characterizing,

see Phase 1, steps 1–2 in Fig. 1. In this step, TF-IDF

method is usually used to convert the text data into a

Liu et al. EURASIP Journal on Wireless Communications and Networking (2018) 2018:208 Page 4 of 14

feature vector, and extracting SIFT feature values is often

used to process image data.

(2) Constructing a data structure with feature vectors.

In Fig. 1 Phase 1 steps 2–3, after feature extraction

phase is finished.

(3) Mapping query object to data structure.

In the query phase (Fig. 1 Phase 2), given a query ob-

ject, the same hash calculation process is performed

after characterizing, then the query results are generated

from the data structure.

This paper mainly addresses the problems of the last

two steps of the WMSN data query process (Fig. 1 Phase

1 steps 2–3, Phase 2 steps 2–3).

4.2 Hybrid query data structure

For a large-scale WMSN hybrid dataset (such as picture-

text and picture-video), a simple processing method is to

construct a data structure for each data type, then query

each data type separately during the query phase, and fi-

nally, filter the results. We show a binary hybrid LSH

framework based on the method. This two-level

structure consists of two LSH methods that process a

single data type. After input of the hybrid data, we

search the approximate nearest neighbors of the cor-

responding type on each level, then return the inter-

section of two levels of query results, as shown in

Fig. 2.

Intuitively, the performance of this filter structure de-

pends on the order in which types of queries are per-

formed. If the performance of the second level is higher

than the first level, it is clear that it will be better to

process the second level first. However, these character-

istics are often different for different datasets. In order

to avoid this problem, we adopted a collaborative filter-

ing binary hybrid LSH framework.

The basic idea of the large-scale WMSN data binary

hybrid LSH is the same as the basic LSH method, that

is, to hash the hybrid data using hash functions to en-

sure that the probability of collision is much higher for

similar objects than dissimilar objects. The process con-

sists of three steps:

(1) Convert x1 to k1 hash values by (r1, r2, p1, p2)-

sensitive hash,

(2)Feature Vectorization(1)Input Query Data (3)Search

Phase 2:Search In Hash Tables

Phase 1:Preprocessing. Construct Search Index Structure

Hybrid Vector

Image

Video/Text

(1)For Each WMSN Hybrid

Data Point in

Ethereum blockchain based

on IPFS Distributed WMSN

Storage Network

(2)Feature Vectorization
(3)Calculate the hybrid

hash

Euclidean Norm

Hamming Norm
Hybrid

Hybrid Hash

Hybrid hashing

Hash Tables

Query Data Data Vector

Vectorization

Vectorization

Vectorization

Candidates

Data Vector

Hash Value

Hashing

Search in Hash Tables

Approximate Nearest Neighbor Binary Query for WMSN Hybrid Data Over WMSN-Blockchain

Store into Hash

Table

OPRCP

Fig. 1 The flowchart of approximate similarity binary search for WMSN hybrid data over Ethereum blockchain based on IPFS distributed WMSN

storage network

Liu et al. EURASIP Journal on Wireless Communications and Networking (2018) 2018:208 Page 5 of 14

(2) Convert x2 to k2 hash values by (d1, d2, p1, p2)-

sensitive hash,

(3) Combine k1, k2 hash values to get the hybrid hash

value,

as shown in Fig. 3.

In order to perform the binary hybrid approximate

nearest neighbor search, we need to preprocess data and

construct a hash index for each of the data types in the

dataset. Suppose parameters as are follows: (1) approxi-

mation factor c, (2) Hamming sensitive distance r, and

(3) Euclidean sensitive distance d. For X1, given a family

H1 of hash functions with parameters ðr; cr; p11; p
1
2Þ as in

Definition 3, and for X2, the hash family is H2 . We

choose k1 functions from H1 , k2 functions from H2 , and

combine them to get a new hybrid hash function. De-

fine a hybrid hash function G ¼ ðg : S→Uk1þk2Þ such

that g iðvÞ ¼ ðh11; h
1
2;…; h1k1 ; h

2
1; h

2
2;…; h2k2Þ , where h1i ∈H

1
;

h2i ∈H
2 . For an integer L, we choose L functions g1, g2,

…, gL from G , independently and uniformly at random.

For each hybrid data, we will get L hash values, then

store data into corresponding buckets of L different

hash tables. The construct process is as follows.

For an n-point dataset in a d-dimensional space, Al-

gorithm 1 achieves process time O(ndkL) and space

O(dn + nL). The space consumption mainly depends on

the number of hash tables L, which is linear with the

size of dataset. The processing time depends on k1 + k2
and the attributes of datasets such as d and n.

4.3 Hybrid query OPRCP method

There are many efficient LSH methods for Hamming space

and Euclidean space. In order to adapt to the characteristics

of the binary hybrid data, we combined a variety of efficient

methods to improve them. The proposed OPRCP method

is a fusion of the OPR method and the CP method:

(1) For the Hamming space, we use the One

Permutation with Rotation (OPR) method.

Compared with the well-known min-hashing,

OPR has a large improvement in time and space.

Specifically, OPR requires only one permutation,

which makes the running time greatly reduced.

(2) For the Euclidean space, we use the cross-polytope

LSH method (CP). This method has a query time

of O(nρ) for ρ ¼ 1
2c2−1. The LSH method based on p-

stable distributions in [11] can only obtain ρ ¼ 1
c2
.

In addition, CP method is easy to reduce storage

space by extending the query method.

Next, we introduce the basic OPRCP.

During construction of the data structure (see Algorithm

1), for every p ∈ P, in order to get hybrid hash value of p, we

need to perform OPR processing on the Hamming space

part of p, to get a k1-dimensional vector H1 ¼ ½h1; h2;…;

hk1 �. Then for the Euclidean space, we apply cross-polytope

LSH to get an index of the nearest standard basis vector

from point p, denoted as H2 = i, i ∈ {1, 2,…, 2d}. Finally, we

combine H1, H2 and get the hybrid hash H = [H1,H2], then

we use md5 to hash H again to get last hash value of p and

store p in corresponding hash bucket. To increase the

probability of collision for similar object, we need to repeat

above steps L times. After all points have been processed,

we will get L hash tables. Each hash table has multiple hash

buckets. The data points stored in the same bucket are

called collision points.

The pseudocode appears as Algorithm 2.

Fig. 2 Two-level LSH filter structure

Liu et al. EURASIP Journal on Wireless Communications and Networking (2018) 2018:208 Page 6 of 14

For once hash process, we use time Oðkd1 þ d2
2Þ ,

where d1, d2 are the dimensions of Hamming space and

Euclidean space of point p, as described in Algorithm 2.

The bottleneck is applying a random rotation, to multiply a

random matrix with a vector. It takes Oðd2
2Þ time. To re-

duce this time, we instead use fast Hadamard transform,

like the pseudo-rotation process in [30]. This method make

the random rotation can calculate in time O(d2 log d2).

Then, for L times and n points, we get the total time

O(nL(kd1 + d2 log d2)).

4.4 Multi-probe OPRCP for large-scale WMSN data

environment

To cope with the problem of storing large-scale LSH

data structure of WMSN datasets, we proposed a

multi-probe query method for OPRCP. This method can

effectively reduce the number of independent hash ta-

bles used in the OPRCP data structure to achieve the ef-

fect of reducing space.

The standard LSH method is a single-probe query

method. The main idea is as follows: Given a query

point q, we calculate its corresponding L hash values,

and all points stored in the same hash buckets are

taken as a candidate set. One of the major disadvan-

tages of the standard LSH method is the huge space

consumption, which uses O(nL) space to store hash ta-

bles. To reduce the space of storing independent hash

tables, a multi-probe query method has been proposed

in [13]. This method considers candidates from mul-

tiple hash buckets in each table. Points that are close to

q but fail to collide with q under hash function hi are

still likely to hash to a value that is close to hi(q). We

can probe multiple hash buckets close to hi(q), so that

we appropriately increase the “collision” probability

with approximate nearest neighbors (in this case, the

collision means be queried by multi-probe) and so we

can reduce the number of hash tables to reduce storage

space. Multi-probe LSH has been shown to perform

well in practice [13, 31].

The remaining problem is how to define a specific

multi-probe query method for OPRCP. In the next, we

describe the multi-probe version of the two data pro-

cessing methods in OPRCP:

(1) First, we introduced the multi-probe version

of cross-polytope LSH for Euclidean space.

For the standard cross-polytope LSH, we

define hi(q) as the point closest to q from

{±ei}1 ≤ i ≤ d after q rotation. Based on the

method, we consider that some points with

a high probability of collision with q are still

likely to hash different m values close to hi(q).

Let m be the range of multi-probe. Given a

query point q, we define Hi(q) = argsortj
Dist(q, e)1 ≤ j ≤m.

(2) For the OPR method for Hamming space,

it is difficult to directly define its multi-probe

version. As a result, we use the feature hashing

approach convert it to a feature vector through

an intermediate mapping. The vector can be

processed by cross-polytope LSH. In particular,

feature vectors correspond to a high-dimensional

and extremely sparse data in binary Hamming

space generated by characterizing data such

as text. This feature allows feature hashing to

effectively reduce dimensionality on the

premise of ensuring no deviation [12].

Therefore, we not only obtain feature vectors

that can be used for cross-polytope LSH

processing, but also use the method of

multi-probe version to achieve the effect

of reducing space, and the search time can

be further reduced after dimensionality

reduction. Specifically, we reduce the

dimension from d to d′ ≪ d by applying a

linear map x→ Sx, where S is a random

sparse d′ × d matrix, whose columns have

one non-zero ±1 entry sampled uniformly.

The feature hashing is also valid for Euclidean

space vectors.

The pseudocode for the multi-probe OPRCP appears

as Algorithm 3.

INPUT

OPR

CP

L1

L2

OUTPUTHybrid Hash

H1

H2

result

Fig. 3 Binary hybrid LSH filter structure

Liu et al. EURASIP Journal on Wireless Communications and Networking (2018) 2018:208 Page 7 of 14

In the process of approximate nearest neighbor search,

this algorithm has a hashing time of O(kdL). Then, one

can determine nearest neighbor by retrieving points

taken from the corresponding buckets. In general, the

number of candidates is much smaller than the size of

the dataset. So, the linear search process on the whole

dataset can be avoided by using OPRCP to filter dissimi-

lar data.

In this section, we introduce the OPRCP method, which

aims to solve the problem of constructing data structure

and query phase in hybrid query process in the WMSN

blockchain IoT application. There are respective merits for

both hash indexing frameworks. The two-level filter

method is simple and easy to implement, and it can dir-

ectly be extended by standard algorithm. However, due to

the impact of the actual application scenario, the universal-

ity is poor; OPRCP adopted a hybrid collaborative query

framework. By combining the OPR method and the CP

method, the hybrid hash data structure was constructed.

The query time is greatly improved compared to previous

methods. In particular, by designing multi-probe OPRCP

method, storage space of data structure is further reduced.

5 Experiments

5.1 Datasets

This experiment uses real datasets and synthetically gen-

erated datasets to evaluate the accuracy and efficiency of

the algorithm, and we implement the simple OPRCP

method and the complex OPRCP method of a two-layer

filter structure (TLOPRCP).

The data types in this paper are binary data for Ham-

ming space (text-characterized data) and numerical data

for Euclidean space (image-characterized data). In order

to verify the performance of the algorithm, we use real

datasets and synthetically generated datasets for testing.

The real dataset is MNIST [32]. MNIST is a standard

handwritten digit dataset, which is oriented to the Euclid-

ean space. We convert it to binary data by binarization

and combine it with the original Euclidean spatial data to

construct a binary hybrid dataset. The dimensions of the

six synthetic datasets are 32, 128, 256, 512, 1024, 2048,

and a data amount of 10,000. We considered randomly

generating all points in the Euclidean space, and then, the

Euclidean data is binarized. Binary data is obtained, which

is finally mixed into binary hybrid data. Using synthetic

datasets can adjust a condition while fixing another condi-

tion to evaluate the unilateral performance of the algo-

rithm. In this experiment, we adjusted the dimension

while fixing dataset size, in order to verify the perform-

ance and the optimal parameters of the algorithm in dif-

ferent dimensions; the performance of the algorithm

changes with the dimensional change. The specific data-

sets are described in Table 1.

We implemented the related method BHL [25],

TLBHL [25], and TLE2LSH [11] to compare with our

method. BHL [25] is an LSH method for binary hybrid

data that combines min-hashing [22] and E2LSH [11]

and builds a hybrid data structure on the data to imple-

ment the query. TLBHL is an extended version of the

BHL, which is a two-level filter structure, and TLE2LSH

is an extended version of E2LSH [11].

The experiment was run on a PC with an operating

system Arch Linux, Intel Corei7-4510U 3.1 GHz CPU

and 8 GB of memory. All the code used in the experi-

ment was implemented based on Python 3.6.

5.2 Metrics

In order to discuss the performance of the algorithm in the

experiment, each query can be divided into four cases: true

positive, false positive, true negative, and false negative, ac-

cording to the combination of its true condition and query

result, as shown in Table 2, using TP, FP, TN, and FN, re-

spectively, indicating their corresponding set size.

Seven performance metrics were used in all experiments:

hashing time, query time, recall, precision, F1-score, num-

ber of candidates, and memory occupied:

(1) Hashing time: calculating hash value is the main

step of the query. The hashing time means the time

consumed by applying hash functions.

Table 1 Description of the datasets

Datasets Dimension (Hamming
space, Euclidean space)

Dataset size

MNIST[32] (784,784) 70,000

SynSet-1e4d16 (16,16) 10,000

SynSet-1e4d64 (64,64) 10,000

SynSet-1e4d128 (128,128) 10,000

SynSet-1e4d256 (256,256) 10,000

SynSet-1e4d512 (512,512) 10,000

SynSet-1e4d1024 (1024,1024) 10,000

Liu et al. EURASIP Journal on Wireless Communications and Networking (2018) 2018:208 Page 8 of 14

(2) Query time: the time from the beginning of a query

process to return to the exact nearest neighbor,

which is also the total query time. This experiment

focuses on this metric.

(3) Recall: it is the fraction of the relevant instances

that has been retrieved over the total amount

of relevant instances. In search application,

it can be used to measure the coverage of query

results.

recall ¼
TP

TPþ FN
ð9Þ

(4) Precision: it is the fraction of relevant instances

among the retrieved instances, which can be used

to measure the quality of query results.

precision ¼
TP

TPþ FP
ð10Þ

(5) F1-score: it is a measure of a test’s accuracy. It

considers both the precision and the recall. In

search application, a good method should ensure

that both the recall and the precision are optimal.

However, the two metrics may conflict in practical

process. To balance the recall and the precision,

F-score is often used to conduct a comprehensive

assessment of the two. The most common of these

is the F1-score.

F1 ¼
2� recall� precision

recall þ precision
ð11Þ

(6) Number of candidates: it refers to the total number

of points stored in the same buckets, indicating the

number of filtered results. In query process,

number of candidates is the number of points that

need to be compared for similarity, which is a

critical factor for query time.

(7) Memory occupied: one of the disadvantages of LSH

method is that it needs to construct a relatively

large number of data structure to ensure a high

probability of querying the nearest neighbor for

sufficiently high dimensions. It leads to an increase

in memory occupied, so we compare memory

occupied as a metric.

The standard for setting each parameter in this experi-

ment is to ensure the probability of finding the exact

nearest neighbor Prfn is at least 0.9.

OPRCP method has three parameters: (1) the number

of hash tables L. To ensure Prfn is acceptable, we need to

choose an appropriate number of hash tables, so that near

neighbors collide with query point under a hash family at

least once; (2) the number of OPR bins k, which need to

be set to decrease the collision probability of dissimilar

points. Theoretically, with the increasing of k, the collision

probability of dissimilar points decreased. In the mean-

time, the collision probability of approximate nearest

points also decreased; we should improve it to achieve an

acceptable value by increased L; and (3) probe factor m,L

is increased in order to ensure Prfn is acceptable, which

leads to a corresponding increase in memory occupied.

The setting of m compromised less precision, in exchange

for a smaller L for the same collision probability.

Our experiment (on the same synthetic dataset:

SynSet-1e4d128, d = 128, n = 1e4) analyzes the impact of

different parameters by fixing other parameters and

adjusting the parameter to be analyzed.

5.3 The influence of probe factor m

In this section, we discuss the impact of probe factor m

on various metrics. Figure 4 presents the plots of the

performance of our method corresponding to L = 10, k =

2 with different choices of m. In order to reduce mem-

ory occupied of hash tables, we increase m to make up

for the reduction in Prfn caused by decreased L.

As m increases, Prfn and the recall gradually increase

and eventually approach 1. But at the same time, the

precision shows a decreasing trend, and F1-score also

begins to decrease when it increases to about 0.7

(Fig. 4a).

In Fig. 4b, the number of candidates also increases

with the increase of m, which increases the number of

near neighbors in candidates. This reflected in the in-

crease in recall and decrease in precision. Observing the

F1-score, we can find that m = 3 is a critical value, which

makes the F1-score reach the maximum. That is, when

m < 3, the rate of increase of recall is faster than the rate

of decrease of precision, but after that, the quality of

candidate tends to decrease.

The hashing time depends on the number of hash ta-

bles L. As described above, we already fixed L = 10, so

the hashing time grows slowly (Fig. 4c). But with the in-

creasing of number of candidates, in order to find the

nearest neighbor, we have to calculate the similarity be-

tween query object and all the points in candidates. The

total query time is mainly composed of two parts, one is

Table 2 Confusion matrix of search result

True condition Query result

Positive Negative

True TP (true positive) FN (false negative)

False FP (false positive) TN (true negative)

Liu et al. EURASIP Journal on Wireless Communications and Networking (2018) 2018:208 Page 9 of 14

the hashing time and the other is the time of calculation

of similarity. So, it is not hard to see the increase of

number of candidates will inevitably lead to the increase

of query time (Fig. 4d).

Based on the above experiments, we can conclude that

for this experiment, m = 3 is a balanced value. Approxi-

mate nearest neighbor search algorithm needs to con-

stantly balance the query time and the performance of

search, like precision, recall. For example, in order to re-

duce the query time, we need to decrease the number of

candidates, and this will inevitably lead to a decline in

the recall.

5.4 The effect of the number of hash tables L

We need take an appropriate L to ensure Prfn. Figure 5

presents L effects on the performance of the algorithm

when m = 1, k = 2.

With the increase in L, there is no doubt that Prfnwill

increase rapidly. But, unlike the impact of m on the per-

formance, the rate of precision declines very slowly

(Fig. 5a). This shows that the increase of L has less im-

pact on the quality of the candidates. On the other word,

OPRCP can guarantee that most (usually greater than

70%) points in candidates are the near neighbor of the

query object. This feature can also makes the F1-score

up to 0.8 (Fig. 5b).

In this experiment, the hashing time is rising quickly

due to the increase in L. Although the hashing time ac-

counts for a larger percentage of total query time, the

query time still depends on the number of candidates

(Fig. 5d).

5.5 The effect of the number of OPR bins k

In order to reduce the probability of collision for dis-

similar points, we can increase the number of OPR bins

k. Figure 6 shows that the performance of OPRCP corre-

sponding to L = 10, k = 2, 4, comparing the performance

of m = {1, 2,…, 8}.

Increasing the value of k , we decrease the probability

of collision for any two points. Thus, the Prfn of k = 2 is

always higher than k = 4 (Fig. 6a). Given Prfn = 0.9, k = 2,

it can achieve in m = 3, while k = 4 needs m = 5.

In Fig. 6b, as m increases, the change trend of preci-

sion or recall is the same under both conditions. Specif-

ically, increasing m decreases the precision and increases

the recall. We have analyzed the reason in 5.4. More in-

teresting is that the trends are completely different in a

comprehensive view. For k = 2, precision starts at 0.8, re-

call starts at 0.7, then, increasing the m precision quickly

dropped to 0.2 and the recall rose to 0.9. The gap be-

tween precision and recall is increasing. On the contrary,

precision starts at 0.95 and recall starts at 0.55 in k = 4.

Fig. 4 The effect of the probe factor m on the algorithm. a m versus the probability of find the nearest neighbor and precision/recall/F1. b m

versus the number of candidates and precision/recall/F1. c m versus the probability of find the nearest neighbor and query/hashing time. d m

versus the number of candidates and query/hashing time

Fig. 5 The effect of the number of hash table L on the algorithm. a L versus the probability of find the nearest neighbor and precision/recall/F1.

b L versus the number of candidates and precision/recall/F1. c L versus the probability of find the nearest neighbor and query/hashing time. d L

versus the number of candidates and query/hashing time

Liu et al. EURASIP Journal on Wireless Communications and Networking (2018) 2018:208 Page 10 of 14

Then, the precision slowly decreased to 0.75 and the re-

call increased to 0.6. The gap between them is decreas-

ing. As k increases, the probability of collision for

dissimilar points will decrease, so the precision at k = 4

is always higher than k = 2. At the same time, the prob-

ability of collision for similar points will decrease too.

This causes the recall at k = 4 is always lower than k = 2.

So, we can adjust the value of k according to different

application requirements for each metric. For example,

if we need high precision, we can set a bigger k, while a

smaller k should be taken if high recall is required.

We can further compare the precision and the recall

under two conditions by F1-score. Figure 6c shows that

when we achieve the same Prfn (Prfn = 0.9, m = 3 at k = 2,

m = 5 at k = 4), the F1-score of k = 2 is better than k = 4.

With the increase in m, the gap between k = 2 and k = 4

gradually decreases due to the decline of F1-score of k = 2.

This also reflects trends in both. More specifically, k = 2,

the gap between the precision and recall is increasing,

which leads to F1-score becoming smaller and smaller.

k = 4, the gap between the precision and recall is getting

smaller and more stable, which leads to F1-score in-

crease and eventually converge.

Due to the higher precision, the number of candidates

of k = 4 is always significantly less than k = 2. This makes

the query time of k = 4 slightly lower than k = 2 when

Prfn is the same (Fig. 6d).

5.6 Experimental results and analysis

Through experimental analysis of algorithm parameters,

we will compare the algorithm on the real dataset and

the synthetic dataset. The standard of setting parameter

is the minimized query time, and Prfn must achieve at

least 0.9.

Figures 7 and 8 show the comparisons of the various

metrics on the synthetic dataset. Figure 7a shows OPRCP

and TLOPRCP growth rates are lower than other algo-

rithms in hashing time as dimension increases exponen-

tially, which means that the two algorithms can solve the

problem of “curse of dimensionality” better than others.

AlthoughTLBHL can achieve low time in low dimensions,

its growth rate is gradually accelerating as dimension

increases.

The number of candidates determines the amount of

data to be calculated for similarity when finding the

nearest neighbor. The number of candidates should be

as small as possible, so as to get a smaller query time. In

Fig. 7c, the candidates of BHL is the least and much

lower than other algorithms. In order to get the least

number of candidates, BHL used more numbers of hash

Fig. 6 The effect of the bin number k on the algorithm. a m versus the probability of find the nearest neighbor and precision/recall/F1. b m

versus the number of candidates and precision/recall/F1. c m versus the probability of find the nearest neighbor and query/hashing time. d m

versus the number of candidates and query/hashing time

Fig. 7 Comparison of algorithms in different dimensional data-1. a k versus the hashing time between different methods. b k versus the find

nearest time between different methods. c k versus the rate of candidates between different methods

Liu et al. EURASIP Journal on Wireless Communications and Networking (2018) 2018:208 Page 11 of 14

functions in one hashing process. The more number of

hash functions, the lower probability of collision but the

more time of calculating hash value. In contrast, OPRCP

uses less hash calculation time (Fig. 7a) to obtain fewer

number of candidates (Fig. 7c). As a result, in (Fig. 7b),

OPRCP and TLOPRCP achieve a modest speedup of 2–

3 times compared to the other algorithm.

Precision and recall are important metrics for evaluat-

ing search algorithms; in order to make algorithm uni-

versal, OPRCP adopts a more balanced approach, which

is not overly biased to one of the precision and recall.

As the dimension increases, the precision and recall of

each algorithm steadily increased (Fig. 8a). In particular,

the precision of BHL is always higher than other algo-

rithms; OPRCP is second only to BHL but has the least

query time. The smaller number of candidates makes

the recall of OPRCP not too high, but as the dimension

increases, the gap in the recall of each algorithm is nar-

rowing. Comparing with the F1-score, we found that the

value of TLOPRCP is better than other methods. But for

OPRCP, the low recall makes its F1-score only achieve

the average value.

Figure 8d shows how the amount of space required to

store hash tables changes as dimension increases. Due to

the multi-probe query method being applied, OPRCP

and TLOPRCP use less hash tables to achieve the speci-

fied Prfn, which makes them better than other methods

in space occupied. Furthermore, as the dimension in-

creases, the storage of OPRCP and TLOPRCP grows

slowly, which makes the gap with other methods further

widen.

Figure 9 compares metrics of each algorithm on

MNIST dataset. TLOPRCP uses the least amount of

hash calculation time (Fig. 9b), which stored the least

amount of hash tables so as to minimize memory occu-

pied (Fig. 9g). Basically, the OPRCP method presents as

good as TLOPRCP in query time (Fig. 9a). The method

ensures the highest precision (Fig. 9d) and has a few

Fig. 8 Comparison of algorithms in different dimensional data-2. a k versus the precision between different methods. b k versus the recall

between different methods. c k versus the value of F1 between different methods. d k versus the cost of memory between different methods

Fig. 9 Comparison of algorithms in MNIST dataset. a k versus the find nearest time between different methods. b k versus the hashing time

between different methods. c k versus the rate of candidates between different methods. d k versus the precision between different methods.

e k versus the recall between different methods. f k versus the value of F1between different methods. g k versus the cost of memory between

different methods

Liu et al. EURASIP Journal on Wireless Communications and Networking (2018) 2018:208 Page 12 of 14

candidate sets (Fig. 9c); although it uses more hash tables

than TLOPRCP, it is still less than other methods. Owing

to the least number of candidates of OPRCP, OPRCP

makes its recall lower than other methods (Fig. 9e), even

though the F1-score of OPRCP is the best by comprehen-

sively evaluating recall and precision.

In this section, we have carried out sufficient experi-

ments on the proposed OPRCP method. These experi-

mental results have shown that the OPRCP method is a

very effective near neighbor hybrid search, and it can be

applied to construct an effective WMSN data search in-

telligent contract within the WMSN blockchain applica-

tion system.

6 Conclusions

In view of preventing sensitive data of WMSN IoT to

be tampered, it is a feasible solution to build a block-

chain application of WMSN IoT based on Ethereum

and IPFS. Within the smart contract mechanism of this

solution, it is of great significance to research on

WMSN-based hybrid data query transactions. This

paper aims at the search problem of high-dimensional,

large-scale, and multi-type multimedia data out of

WMSN IoT; we present a novel OPRCP method for

binary hybrid approximate nearest neighbor search

problem. Different from the existing work, we use a

kind of LSH method to perform similarity search on

the binary hybrid data and construct the query data

structure; by preprocessing the dataset, we can obtain a

more efficient dimension-insensitive query time. The

curse of dimensionality of binary hybrid data can be ef-

fectively solved. Besides, multi-probe query method is

used to solve the problem of massive space occupied in

LSH. In particular, we further analyzed the relationship

between the query time and the accuracy of query

based on LSH for binary hybrid approximate nearest

neighbor search. Therefore, we can choose different op-

timal parameters for different practical problems to

achieve different effects required. A large number of

experiments have proved that our method has lower

query time and space consumption than previous

methods, and it is universal for various datasets.

However, our method also has the disadvantage of a

single query scenario, which is reflected in the inflexible

data format. In the wireless multimedia sensor network

application, engineering implementation still has a long

way to go, and the application extension needs to be fur-

ther studied. It is necessary to construct an index struc-

ture that is insensitive to data format to adapt to the

query scenario of the WMSN blockchain application. In

future works, we will try to construct a binary hybrid

data search structure with missing values and extend the

approximate nearest neighbor search to solve the prob-

lem of incomplete data.

Abbreviations

CP: Cross-polytope LSH method; IoT: Internet of Things; IPFS: InterPlanetary

File System; LSH: Locality-sensitive hashing; OPR: One Permutation with

Rotation Hashing; OPRCP: One Permutation with Rotation and Cross-Polytope

locality-sensitive hashing; TLOPRCP: OPRCP method of a two-layer filter struc-

ture; WMSN: Wireless multimedia sensor networks; WSN: Wireless sensor

networks

Acknowledgements

The authors would like to express their gratitude to the authors’ institutions,

for their many convenient conditions.

Funding

This work was supported by the Great Project of Fujian Province Science

and Technology Plan (grant number 2016H6007) and the City School

Cooperation Project of Fuzhou Science and the Technology Bureau

(grant number 2016-G-40).

Availability of data and materials

� The MNIST dataset that support this study are available in MNIST

repository: http://yann.lecun.com/exdb/mnist/

The synthetic data that support this study was generated by the

author based on experimental requirements and is available in github

as follows,

� https://github.com/7thMar/synset/blob/master/OPRCP_synset.tar.gz.

� The data can be made available by sending a request via e-mail to

xiaoruliang@fjnu.edu.cn.

About the Authors

Huakun Liu was born in Fuyang City, Anhui, China, in 1996. He will be receiving

his B.S. degree in software engineering from Fujian Normal University, Fujian,

China, in 2019. Mr. Liu has received various scholarships. His current research

interests include machine learning and search technology.

Xin Wei was born in Ningde City, Fujian, China, in 1998. She will be receiving

her B.S. degree in software engineering from Fujian Normal University,

Fujian, China, in 2019. Miss Wei has received various scholarships. Her current

research interests include machine learning and search technology.

Ruliang Xiao was born in Loudi City, Hunan, China, in 1966. He is currently a

Professor at the College of Mathematics and Informatics, Fujian Normal

University (CN). He received his PhD in Computer Software and Theory from

Wuhan University (CN) in 2007. His research interests include System Security

Engineering (SSE) and Computing Intelligence (CI). He is the author of three

books and more than 20 patents for invention and has published more than

50 papers in international journals and conference proceedings. He was

awarded the prize of Fujian Provincial Science and Technology Progress

Award in 2016.

Lifei Chen received his bachelor’s degree in computer science from University

of Electronic Science and Technology of China in 1993; his MSE from Tsinghua

University, China, in 2004; and his PhD from Xiamen University, China, in 2008.

He is a professor at the Department of Computer Science, Fujian Normal

University, China. His research interests include machine learning and pattern

recognition.

Du Xin is currently an Associate Professor at the College of Mathematics and

Informatics, Fujian Normal University (CN). She received her PhD in Software

Engineering from Wuhan University (CN) in 2010. Her research interests include

Search-Based Software Engineering (SBSE) and evolutionary computation. She has

published over 30 papers including GECCO and CEC international conference.

Zhang Shi is currently an Associate Professor at the College of Mathematics

and Informatics, Fujian Normal University (CN). He received his PhD in Computer

Science from Shanghai Jiaotong University (CN) in 2008. His research interests

include Software Testing and Search-Based Software Engineering. He has

published over 20 papers.

Authors’ contributions

HL, XW and RL are the main writers of this paper. HL, XW and RL proposed

the main idea. HL and XW completed the experiments. XW analyzed the

results. HL, XW, and RL discussed feasibility analysis. LC, XD, and SZ gave

some important suggestions for this paper. All authors read and approved the

final manuscript.

Liu et al. EURASIP Journal on Wireless Communications and Networking (2018) 2018:208 Page 13 of 14

http://yann.lecun.com/exdb/mnist/
https://github.com/7thMar/synset/blob/master/OPRCP_synset.tar.gz

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in

published maps and institutional affiliations.

Author details
1College of Mathematics and Informatics, Fujian Normal University, Fuzhou

350117, China. 2Digit Fujian Internet-of-Things Laboratory of Environmental

Monitoring, Fuzhou 350117, China. 3Fujian Provincial Key Laboratory of

Network Security and Cryptology, Fuzhou 350007, China.

Received: 3 July 2018 Accepted: 2 August 2018

References

1. O. Novo, Blockchain meets IoT: an architecture for scalable access

management in IoT. IEEE Internet Things J 5(2), 1184–1195 (2018)

2. A. Reyna et al., On blockchain and its integration with IoT. Challenges and

opportunities. Futur Gener Comput Syst 88, 173–190 (2018)

3. Q. Xia et al., BBDS: blockchain-based data sharing for electronic medical

records in cloud environments. Information 8(2), 44 (2017)

4. A.C. Ekblaw, MedRec: blockchain for medical data access, permission

management and trend analysis (Diss. Massachusetts Institute of Technology,

Washington D.C., 2017)

5. M.S. Ali, K. Dolui, F. Antonelli, IoT data privacy via blockchains and IPFS,

International Conference on the Internet of Things (ACM, New York, 2017)

6. H. Cheng et al., Data quality analysis and cleaning strategy for wireless

sensor networks. EURASIP J Wirel Commun Netw 61, 1–11 (2018)

7. Rifi, Nabil, et al. Towards using blockchain technology for IoT data access

protection. Ubiquitous Wireless Broadband (ICUWB), 2017 IEEE 17th

International Conference on. IEEE, 2017.

8. C. Böhm, S. Berchtold, D.A. Keim, Searching in high-dimensional spaces:

Index structures for improving the performance of multimedia databases.

ACM Comput Surv 33(3), 322–373 (2001)

9. A. Shrivastava, P. Li, Densifying one permutation hashing via rotation for fast

near neighbor search. Int Conf Mach Learn 32, I–557 (2014)

10. A. Andoni et al., Practical and optimal LSH for angular distance. Adv Neural

Inf Proces Syst 1–9 (2015)

11. M. Datar et al., Locality-sensitive hashing scheme based on p-stable

distributions, Proceedings of the twentieth annual symposium on

Computational geometry (ACM, Brooklyn, 2004)

12. K. Weinberger et al., Feature hashing for large scale multitask learning,

Proceedings of the 26th Annual International Conference on Machine Learning

(ACM, Quebec, 2009)

13. Q. Lv et al., Multi-probe LSH: efficient indexing for high-dimensional similarity

search, Proceedings of the 33rd international conference on Very large data

bases (VLDB Endowment, Vienna, 2007)

14. A. Ouaddah, A.A. Elkalam, A.A. Ouahman, Towards a novel privacy-preserving

access control model based on blockchain technology in IoT, Europe and

MENA Cooperation Advances in Information and Communication Technologies

(Springer, Cham, 2017)

15. IPFS – the permanent web. Retrieved May 18, 2017 from https://github.

com/ipfs/ipfs. Accessed 16 Aug 2018

16. Y. Chen et al., An improved P2P file system scheme based on IPFS and Blockchain,

IEEE International Conference on Big DataIEEE (2017), pp. 2652–2657

17. P. Indyk, R. Motwani, Approximate nearest neighbors: towards removing the

curse of dimensionality, Proceedings of the thirtieth annual ACM symposium

on Theory of computing (ACM, Dallas, 1998)

18. J.M. Kleinberg, Two algorithms for nearest-neighbor search in high dimensions,

Proceedings of the twenty-ninth annual ACM symposium on Theory of

computing (ACM, Redmond, 1997)

19. E. Kushilevitz, R. Ostrovsky, Y. Rabani, Efficient search for approximate nearest

neighbor in high dimensional spaces. SIAM J. Comput. 30(2), 457–474 (2000)

20. A. Gionis, P. Indyk, R. Motwani, Similarity search in high dimensions via

hashing. Vldb. 99(6), 518–529 (1999)

21. S. Arya et al., An optimal algorithm for approximate nearest neighbor

searching fixed dimensions. J ACM 45(6), 891–923 (1998)

22. A.Z. Broder, On the resemblance and containment of documents, Compression

and Complexity of Sequences 1997. Proceedings (IEEE), Salerno, p. 1997

23. C. Liu et al., Cross domain search by exploiting wikipedia, Data Engineering

(ICDE), 2012 IEEE 28th International Conference on (IEEE, Washington D.C., 2012)

24. J. Fan et al., Seal: spatio-textual similarity search. Proc VLDB Endowment

5(9), 824–835 (2012)

25. ZhuMing-dong, S. De-rong, N.T.-z. Kouyue, Y. Ge, A LSH-based method for

similarity queries on binary hybrid data. Chin J Comput 40, 1–15 (2017)

26. L. Chen et al., Temporal spatial-keyword top-k publish/subscribe, Data Engineering

(ICDE), 2015 IEEE 31st International Conference on (IEEE, Seoul, 2015)

27. J. Lu, Y. Lu, C. Gao, Reverse spatial and textual k nearest neighbor search,

Proceedings of the 2011 ACM SIGMOD International Conference on

Management of data (ACM, Athens, 2011)

28. S. Har-Peled, P. Indyk, R. Motwani, Approximate nearest neighbor: towards

removing the curse of dimensionality. Theory Comput 8(1), 321–350 (2012)

29. K. Terasawa, Y. Tanaka, Spherical LSH for approximate nearest neighbor search

on unit hypersphere, Workshop on Algorithms and Data Structures (Springer,

Berlin, Heidelberg, 2007)

30. A. Dasgupta, R. Kumar, T. Sarlós, Fast locality-sensitive hashing, Proceedings of

the 17th ACM SIGKDD international conference on Knowledge discovery and

data mining (ACM, Sydney, 2011)

31. M. Slaney, Y. Lifshits, J. He, Optimal parameters for locality-sensitive hashing.

Proc. IEEE 100(9), 2604–2623 (2012)

32. UCI machine learning repository, MNIST, 1999. http://yann.lecun.com/exdb/

mnist. Accessed 16 Aug 2018

Liu et al. EURASIP Journal on Wireless Communications and Networking (2018) 2018:208 Page 14 of 14

https://github.com/ipfs/ipfs
https://github.com/ipfs/ipfs
http://yann.lecun.com/exdb/mnist
http://yann.lecun.com/exdb/mnist

	Abstract
	Introduction
	Related work
	Preliminaries
	Approximate nearest neighbor
	Locality-sensitive hashing
	One permutation with rotation and cross-polytope LSH

	The OPRCP method
	The overall framework of ANN binary query
	Hybrid query data structure
	Hybrid query OPRCP method
	Multi-probe OPRCP for large-scale WMSN data environment

	Experiments
	Datasets
	Metrics
	The influence of probe factor m
	The effect of the number of hash tables L
	The effect of the number of OPR bins k
	Experimental results and analysis

	Conclusions
	Abbreviations
	Acknowledgements
	Funding
	Availability of data and materials
	About the Authors
	Authors’ contributions
	Competing interests
	Publisher’s Note
	Author details
	References

