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Glaucoma is the second leading cause of loss of vision in the world. Examining the head of optic nerve (cup-to-disc ratio) is very
important for diagnosing glaucoma and for patient monitoring a	er diagnosis. Images of optic disc and optic cup are acquired
by fundus camera as well as Optical Coherence Tomography. �e optic disc and optic cup segmentation techniques are used to
isolate the relevant parts of the retinal image and to calculate the cup-to-disc ratio. �e main objective of this paper is to review
segmentation methodologies and techniques for the disc and cup boundaries which are utilized to calculate the disc and cup
geometrical parameters automatically and accurately to help the professionals in the glaucoma to have a wide view andmore details
about the optic nerve head structure using retinal fundus images. We provide a brief description of each technique, highlighting its
classi
cation and performance metrics. �e current and future research directions are summarized and discussed.

1. Introduction

Glaucoma is a chronic eye disease in which the optic nerve
is gradually damaged. Glaucoma is the second leading cause
of blindness a	er cataract, with approximately 60 million
cases reported worldwide in 2010 [1]. It is estimated that
by 2020 about 80 million people will su�er from glaucoma
[1]. If undiagnosed, glaucoma causes irreversible damage to
the optic nerve leading to blindness. �erefore diagnosing
glaucoma at early stages is extremely important for an
appropriate management of the 
rst-line medical treatment
of the disease [2–4].

Accurate diagnosis of glaucoma requires three di�er-
ent sets of examinations: (1) evaluation of the intraocular
pressure (IOP) using contact or noncontact tonometry also
known as “air pu� test” or Goldman tonometry, (2) eval-
uation of the visual 
eld, and (3) evaluation of the optic
nerve head damage [5]. Accurate diagnosis of glaucoma
requires more control parameters, that is, gonioscopy and
assessment of retinal nerve 
bre layer (RNF) [4]. Since both

elevated-tension glaucoma and normal-tension glaucoma
may ormay not increase the IOP, the IOP by itself is not a suf-

cient screening or diagnosis method [6]. On the other hand,
visual 
eld examination requires special equipment which
is usually available only in tertiary hospitals, if they have a
fundus camera and OCT [6]. In routine practice, patients
with POAG can be manifested with inconsistent reports
between SD-OCTand SAP. In elderly, higherC/D ratio, larger
cup volume, and lower rim area on SD-OCT appear to be
associated with detectable VF damage. Moreover, additional
worsening in RNFL parameters might reinforce diagnostic
consistency between SD-OCT and SAP [7].

�erefore, the optic nerve head examination (cup-to-disc
ratio) is the most valuable method for diagnosis glaucoma
structurally [8]. �e visual 
eld test, on the other hand, diag-
noses glaucoma functionally through detecting the damages
done to the visual 
eld.

Determining the cup-to-disc ratio is a very expensive
and time consuming task currently performed only by
professionals. �erefore, automated image detection and
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assessment of glaucoma will be very useful. �ere are two
di�erent approaches for automatic image detection of the
optic nerve head [6]. �e 
rst approach is based on the
very challenging process of image feature extraction for
binary classi
cation of normal and abnormal conditions.�e
second and more common approach however is based on
clinical indicators such as cup-to-disc ratio as well as inferior,
superior, nasal, and temporal (ISNT) zones rule in the optic
disc area [6].

�e optic disc is made of 1.2 million ganglion cell axons
passing across the retina and exiting the eye through the
scleral canal in order to transit the visual information to brain
[8]. Examining the optic disc helps clarify the relationship
between the optic nerve cupping and loss of visual 
eld in
glaucoma [8]. �e optic disc is divided into three di�erent
areas: neuroretinal rim, the cup (central area), and sometimes
parapapillary atrophy [9]. �e cup-to-disc ratio (CDR) is
the ratio of the vertical diameter of the cup to the vertical
diameter of the disc [10].

Di�erent techniques have been used for optic disc (OD),
optic cup (OC), or optic disc with optic cup segmentation.
In this paper, we critically review the OD and OC seg-
mentation methodologies that automatically detect OD and
OC boundaries. �ese techniques help professionals with
diagnosing and monitoring glaucoma by providing them
with clear and accurate information regarding the ONH
structure. �e uniqueness of this paper is in demonstrating
the segmentation methodology by creating a �owchart for
each technique. We introduce the algorithms applied to OD
and OC segmentation, discuss the pros and cons of each
method, and provide suggestions for future research.

�e paper is organized in 
ve sections. In Section 2
we describe the materials used for analysis of metrics per-
formance of OD and OC segmentation. In Section 3, the
techniques for OD and OC segmentation separately and
together are introduced and described. Section 4 provides a
brief discussion. We conclude the paper in Section 5.

2. Retinal Image Processing

2.1. Fundus Photography. Fundus photography is a compli-
cated process. Fundus camera is equipped with a low power
microscope and is designed to capture the image of the
posterior pole of the eye as well as the whole retina.

Fundus photography allows three types of examination:
(1) color, in which white light is illuminated on the retina to
examine it in full color; (2) red-free in which the contrast
among vessels and other structures is improved by removing
the red color through 
ltering the imaging light; and (3)
angiography in which the contrast of vessels is improved by
intravenous injection of a �uorescent dye [11].

2.2. Optical Coherence Tomography (OCT). OCT is an optical
signal acquisition method for capturing 3D images with
micrometer resolution from within optical scattering media.
OCT applies near infrared light.

�e long wavelength light has the advantage of pene-
trating into the scattering medium. OCT is usually used
for imaging the retina due to its ability to provide high

Figure 1: Optic disc in fundus image [14].

resolution cross-sectional images [12]. It is also a useful
imaging technique in other areas such as dermatology and
cardiology [13].

2.3. Optic Disc and Optic Cup Segmentation. Optic disc
is one of the most important parts of a retinal fundus
image [15] (Figure 1). OD detection is considered a prepro-
cessing component in many methods of automatic image
segmentation of retinal structures, a common step in most
retinopathy screening procedures [16]. �e OD has a vertical
oval (elliptical) shape [17] and is divided into two separate
zones: the central zone or the cup and the peripheral zone
or neuroretinal rim [6].

Changes in the color, shape, or depth of OD are indica-
tions of ophthalmic pathologies such as glaucoma [18]; there-
fore, OD measurements have important diagnostic values
[19, 20]. Accurate detection of the central point of OD is
important in such measurements. Furthermore, correct seg-
mentation of OD requires accurate detection of the boundary
between the retina and the rim [17]. Pathological cases
occurring on the OD boundaries, such as papillary atrophy,
in�uence the segmentation accuracy. OC segmentation is
further challenged by the density of blood vessels covering
parts of the cup and the gradual change in color intensity
between the rim and cup. �e kinks in the blood vessels
sometimes help detecting the cup boundaries and sometimes
make it more challenging. Bad image acquisition also a�ects
cup segmentation. Accurate disc and cup segmentation is
very important in all pathological cases since errors in disc
and cup segmentation may mislead the professionals and
hence a�ect their diagnosis.

2.4. Publicly Available Retinal Image Datasets. Most of the
retinal optic disc and cup segmentation methodologies pre-
sented in this survey are tested on various publicly available
datasets, for example, RIGA, DRIVE, STARE, MESSIDOR,
and ORIGA. In this section we provide a brief summary of
these datasets.

2.4.1. DRIVE Dataset. �e Digital Retinal Images for Vessel
Extraction (DRIVE) dataset [21] consists of 40 color fundus
images.�e imageswere acquired fromadiabetic retinopathy
research program inNetherlands. Seven images of the dataset
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Figure 2: Retinal images from DRIVE: (a) normal image, (b) pathological image.

have pathology. Figure 2 shows an example of a normal
(Figure 2(a)) and a pathological (Figure 2(b)) image.

A Canon CR5 nonmydriatic 3CCD camera with a 45∘


eld of view was used to obtain the images. �e images were
divided into two groups, a training set and a test set, with
20 images in each group. �ree experts manually segmented
the images in order to have reference images for evaluating
the techniques by comparing themanually segmented images
with those segmented automatically.

2.4.2. STARE Dataset. �e Structured Analysis of Retina
(STARE) dataset [22] is funded by the US National Institutes
of Health. �e project has 400 fundus images. Each image is
diagnosis. �e blood vessels are annotated in 40 images. �e
ONH is localized in 80 images. A TopCon TRV-50 fundus
camera with 35∘ 
eld of view was used to capture the images.

2.4.3. MESSIDOR Dataset. MESSIDOR [23] contains 1200
images in two sets; the images were captured in three oph-
thalmological departments by a research program sponsored
by the French Ministries of Research and Defense. Two
diagnoses are provided by the medical experts for each
image, retinopathy grade, and risk of macular edema. A color
video 3CCD camera on a Topcon TRC NW6 nonmydriatic
retinography with a 45∘ 
eld of view was used to capture the
images.�e images are saved in uncompressed TIFF format.

2.4.4. ORIGA Dataset. �e Online Retinal Fundus Image
Dataset for Glaucoma Analysis and Research (ORIGA) [24]
consists of 650 images acquired through Singapore Malay
Eye Study (SiMES). Critical signs for glaucoma diagnosis are
annotated.

SiMES is conducted by the Singapore Eye Research
Institute (SERI). �e images were marked by experts based
on an algorithm proposed in [25] and are stored in a
centralized server.�edataset includes 168 glaucomatous and
482 nonglaucoma images.

2.4.5. DIARETDB0 Dataset. �e Standard Diabetic Retinop-
athy Database Calibration level 0 DIARETDB0 [26] consists

of 130 color fundus images, 20 normal and 110 with signs
of diabetic retinopathy, acquired from the Kuopio University
Hospital in Finland. �e images were captured by a digital
fundus camera with 50∘ 
eld of view.

2.4.6. DIARETDB1 Dataset. �e diabetic retinopathy
database and evaluation protocol DIARETDB1 [27] consists
of 89 color fundus images acquired from the Kuopio
University Hospital in Finland. �e dataset consists of 84
images with diabetic retinopathy and 4 normal images. �e
images were captured by a digital fundus camera with 50∘


eld of view. Four experts annotated the microaneurysms,
hemorrhages, and hard and so	 exudates.

2.5. Performance Metrics. �e outcome of optic disc seg-
mentation process is pixel based. Figure 3 shows the three
distinctive areas: (1) the true positive area representing the
overlapping area between the manually marked (ground
truth) and automatically marked (segmented image) areas,
(2) the false negative area where a pixel is classi
ed only
in the manually marked area, and (3) the false positive
area where the pixel is classi
ed only in the automatically
segmented area. Sensitivity measures the proportion of the
actual positives which are correctly identi
ed. A higher
sensitivity value implies a higher validity of results [28].

On the other hand, there are di�erent measurements
used in image classi
cation of the optic disc and optic cup
segmentation to determine whether an image is normal or
glaucomatous. Cup-to-disc ratio is de
ned as the ratio of
vertical distances between pixels at the highest and lowest ver-
tical position inside the cup and disc region [41] (Figure 4).

Table 1 summarizes the OD and OC segmentation algo-
rithms performance metrics.

Variousmethods are used for image classi
cationwhich is
a clinical assessment of the ISNT rule for the optic nerve [26].
�e ISNT rulewas considered to be an observer to the gradual
decrease or no change in rim width at the following position
order: inferior (I) ≥ superior (S) ≥ nasal (N) ≥ temporal (T)
(Figure 5).
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Table 1: Performance metrics for optic disc and optic cup segmen-
tation.

Measurement Description

Optic disc overlap TP/TP + FN + FP

CDR error CDR (GR) − CDR (PRP)

ISNT rule
Optic disc-optic cup (obtain the
thickness in all the four quadrants)

Speci
city (SP) TN/TN + FP

Sensitivity (SN) TP/TP + FN

Accuracy (Acc) TP + TN/TP + FP + FN + TN

Positive predictive
accuracy (PPA)

TP/TP + FP

Dice metric (DM) 2 ∗ TP/FP + TP + FN

Relative area di�erence
(RAD)

FP + FN/GT

Automatically
marked area

Manually marked

area (ground truth)

Area falsely

marked as

positive (FP)

Intersection

(overlapping

areas, true

positive, TP)

Area falsely

marked as

negative (FN)

Figure 3: �e relation between the ground truth and automatically
marked area [9].

Sensitivity is the probability of an abnormal class to be
identi
ed as abnormal. Speci
city is the possibility probabil-
ity of a normal class to be identi
ed as normal. Accuracy rep-
resents the ability or quality of the performance. �e positive
predictive accuracy represents the precision in detecting the
normal and abnormal cases. �e true negative represents the
number of normal images identi
ed as normal; false negative
represents the number of glaucoma images identi
ed as
normal; true positive represents the number of glaucoma
images identi
ed as glaucoma; and false positive represents
the number of normal images identi
ed as glaucoma images
[42].

3. Segmentation Approaches

In this section technical information will be provided, where
there are three main techniques for segmentation, namely,
thresholding, edge-based methods, and region-based meth-
ods [43]. �ese techniques have also been applied in the

Figure 4: Measurement of cup-to-disc ratio for a tilted disc [44].

Figure 5: Measurement of the ISNT rule [45].

image processing methodologies of the optic disc and optic
cup segmentation in this paper.

Here, we consider three segmentation methodologies: (1)
optic disc segmentation approaches, (2) optic cup segmenta-
tion approaches, and (3) optic disc and optic cup segmenta-
tion together. Where most of the papers are concerned with
just the optic disc approaches, few are concerned with the
optic cup approaches and some are concerned with optic disc
and optic cup segmentation together.

3.1. Optic Disc Segmentation Approaches. Optic disc extrac-
tion or segmentation is performed using segmented reference
images called “ground truth” on which the optic disc is
accurately marked by ophthalmologists. �e OD processing
includes two main steps: localization (detecting the center
point ofOD) and segmentation (detecting the disc boundary)
[32]. Di�erent OD detection and segmentation algorithms
have already been introduced; however, many of them have a
number of limitations [36] such as using images with a clear
color variation across OD boundary.

Preprocessing methods are important steps for analyzing
an image by enhancing the images and 
nding the region
of interest (ROI). �e OD segmentation approaches are
summarized in Table 2 and their results are shown in Table 3.
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Table 2: Optic disc segmentation methods.

Authors Year Image processing technique
Performance

metrics
Dataset

Number of
images

Lupaşcu et al. [29] 2008
Circles passing through three noncollinear
points

Success rate DRIVE 40

Youssif et al. [17] 2008
Normalized DFI by means of a vessels’
direction matched 
lter

Success rate STARE 81

Zhu and Rangayyan [30] 2008
Edge detection using canny and sobel methods
and through transform

Success rate
DRIVE
STARE

40
82

Welfer et al. [31] 2010 Adaptive morphological approach Overlap (Acc)
DRIVE

DIARETDB1
40
89

Aquino et al. [32] 2010
Morphological, edge detecting, and feature
extraction techniques

Overlap (Acc) MESSIDOR 1200

Tjandrasa et al. [33] 2012 Hough transform and active contours Overlap (Acc) DRIVE 30

Yin et al. [34] 2011 Model based segmentation Overlap (Acc) ORIGA 650

Cheng et al. [35] 2011 Peripapillary atrophy elimination Overlapping error ORIGA 650

Lu [36] 2011 Circular transformation Overlap (Acc)
MESSIDOR

ARIA
STARE

1200
120
81

Dehghani et al. [37] 2012 Histogram matching Success rate
DRIVE
STARE
Local

40
81
237

Zhang et al. [38] 2012
Projection with vessel distribution and
appearance characteristics

Success rate DRIVE 40

Fraga et al. [39] 2012 Fuzzy convergence and hough transform Success rate VARIA 120

Sinha and Babu [40] 2012 Optic disc localization using L1 minimization Overlap (Acc)
DIARETDB0
DIARETDB1

DRIVE

130
89
40

Kumar and Sinha [28] 2013 Maximum intensity variation
Overlap (Acc)

SN
MESSIDOR
DIARETDB0

40
130

Fraga et al. [39] presented a methodology for the OD
segmentation containing di�erent stages (Figure 6). In order
to decrease the contrast variability and increase the process
reliability, the retinal image was normalized by means of the
retinex algorithm [46].

Two di�erent techniques were used to localize the optic
disc: (1) analyzing the convergence of the vessels [47] to
detect the circular bright shapes and (2) detecting the
brightest circular area based on a fuzzy Hough transform
[48]. A	er detecting the OD, the segmentation techniques
were conducted using the region of interest speci
ed by a
di�erence of Gaussian 
lter. �e vessel tree boundaries were
segmented by Canny 
lter to compute the edges. �e vessels
edges from the Canny output were suppressed using the
vessel tree segmentation. Finally, the histogram information
was included to measure the accuracy of segmentation. �e
methodology was evaluated on 120 images from the VARIA
dataset. �e method achieved 100% of OD localization for
both fuzzy convergence and Hough transform. Using brute
force search, the segmentation success rates were 92.23%
and 93.36% for the fuzzy convergence and Hough transform,
respectively.�e aforementionedOD segmentation approach
did not involve pathologic retinal images a�ecting the OD.
�is is a limitation which should be addressed in the future
work in order to develop a robust methodology.

Welfer et al. [31] present a new adaptive method based
on a model of the vascular structure using mathematical
morphology for the OD automatic segmentation (Figure 7).
�is methodology has two main stages: (1) detecting the OD
location from the information of the main vessels arcade,
where the vessels were detected to determine the foreground
and background of the green channel image; in this stage, the
RMIN operator (which detects the regional minima pixels)
was used to identify the background region; (2) detecting the
optic disc boundary. In order to detect the OD boundary
using the watershed transform, based on the previously
detected vascular tree an internal point to the optic disc and
other points in vicinity of the internal point were identi
ed
using the following three steps: (1) using a speci
c algorithm
to 
nd the OD position and to determine whether it is on
the right or le	 side of the image (morphological skeleton
and pruning cycle are used in this step), (2) locating the
optic disc by removing the less important vessels from the
pruned image, (3) describing the shape of the optic disc. �e
methods were tested on 40 images obtained from DRIVE
dataset and 89 images fromDIARETDB1 dataset.�e success
rate in optic disc localization was 100% and 97.75% for the
DRIVE and DIARETDB1 datasets, respectively. Future works
should consider detecting other important retina structures,
such as fovea, based on the proposed method.
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Table 3: Performance results for the optic disc segmentation.

Authors Year Database Sensitivity
Average

overlapping
Overlap
error

Success rates (Acc)
Computation

time (s)

Lupaşcu et al.
[29]

2008 DRIVE
95% localization

70% identi
cation of OD
60

Youssif et al.
[17]

2008
DRIVE
STARE

100% localization
98.77% localization

210

Zhu and
Rangayyan
[30]

2008
DRIVE
STARE

92.5%
40.24%

N/A

Welfer et al.
[31]

2010
DRIVE

DIARETDB1
100%
97.7%

1083

Aquino et al.
[32]

2010 MESSIDOR
99% localization
86% segmentation

1.67
5.69

Yin et al. [34] 2011 ORIGA 11.3% N/A

Cheng et al.
[35]

2011 ORIGA 10% N/A

Lu [36] 2011
MESSIDOR

ARIA
STARE

98.77% detection
97.5% detection, 91.7% segmentation
99.75% detection, 93.4% segmentation

5

Tjandrasa et
al. [33]

2012 DRIVE 75.56% N/A

Fraga et al.
[39]

2012 VARIA
100% localization

93.36% segmentation
0.6

Dehghani et
al. [37]

2012
DRIVE
STARE
Local

100%
91%
98.9%

27.6

Zhang et al.
[38]

2012

DRIVE
Self-selection

STARE
DIARETDB0
DIARETDB1

100%
97.5%
91.4%
95.5%
92.1%

13.2

Sinha and
Babu [40]

2012
DIARETDB0
DIARETDB1

DRIVE

96.9%
100%
95%

3.8

Kumar and
Sinha [28]

2013
MESSIDOR
DIARETDB0

93% 0.895 90

Aquino et al. [32] proposed a new algorithm for OD
segmentation (Figure 8), where the localizationmethodology
obtains a pixel from the OD called optic disc pixel. �e
methodology contains three di�erent detection methods
(Figure 9). Each method has its own OD candidate pixel,
and the 
nal pixel is chosen by a voting procedure. �e
green channel has been selected since it provides the best
contrast. Two of the three detection methods are called max-
imum di�erence method andmaximum variance method. In
general the maximum variation occurs between the bright
region (OD) and the dark region (blood vessels in the
disc). �erefore, the maximum variation was used to select
the OD pixel of those two methods. In addition, statistical
variance for every pixel was calculated in the maximum
variance method and the bright pixels were obtained by
blue channel thresholding via Otsu method [49]. �e last
method was low pass 
lter method, where the OD pixel
was the maximum gray level pixel in the 
ltered image.
Finally, the maximum variance method has been chosen

as the 
nal OD pixel according to the voting procedure.
On the other hand, the OD segmentation methodology
was applied on two components “red and green” and the
better segmentation was selected (Figure 10). �e procedure
was based on removing the blood vessels by employing a
special morphological processing and then applying edge
detection and morphological techniques to obtain a binary
mask of the OD boundary candidates. Finally, the circular
approximation of the OD was computed using a circular
Hough transform.�e methodology was evaluated using the
publicly available MESSIDOR dataset. �e localization was
successful in 99% and 86% of the segmentation. �e current
research is concentrated on improving the algorithm for
executing a controlled elliptical deformation of the obtained
circumference.

Tjandrasa and colleagues [33] applied the Hough trans-
form as an initial level set for the active contours for optic
disc segmentation. �e algorithm procedure is shown in
Figure 11. �e OD segmentation steps start by converting
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Retinal image

Preprocessing

Luminosity and contrast 
normalization by multiscale 

retinex algorithms

Optic disc location

Fuzzy Hough
transform

Fuzzy convergence 
of the blood vessels

Optic disc segmentation

Segmentation of 
the vessel tree

Canny �lter
Suppression of the

vessel edge tree
segmentation

Compute the 
histogram of 

the ROI

Figure 6: Flowchart for algorithm proposed in [39].

the image to a grayscale image and then implementing
the image preprocessing (image enhancement). �erefore,
homomorphic 
ltering is applied to reduce the e�ect of
uneven illumination. Homomorphic 
ltering has two stages:
(1) applying a Gaussian low pass 
lter, (2) obtaining the

ltered edge by performing dilation. �e blood vessels are
removed in the next step to facilitate the segmentation
process.�e threshold is applied to detect the low pixel values
in the image and followed by applying the median 
lter to
blur the blood vessels. �e next step in OD segmentation
is detecting a circle which matched the location of OD by
performing a Hough transform. Subsequent to this, an active
contour model is used to obtain the OD boundaries that are
as close to the original OD boundaries as possible. �e active
contour model is applied with a special processing termed
Selective Binary and Gaussian Filtering Regularized Level Set
(SBGFRLS) [50]. �e algorithm achieved 75.56% of accuracy
using 30 images from DRIVE dataset. Further work can be
done to segment the cup disc in order to classify the images
into normal and glaucomatous.

Lupaşcu and colleagues [29] presented an alternative
technique (Figure 12) to detect the best circle thatmatches the
OD boundary.

�e technique uses a regression based method and
texture descriptors to identify the circle which 
ts the OD
boundary. �e variation in the intensity of pixels describes
the appearance of the OD, and therefore it was used in this
algorithm for detecting OD. Since the color fundus images
have a dark background the background pixels were not

considered. A mask image is computed with zero values
for background pixels and one for the foreground pixels.
�e maximum intensity pixels within the green component
provide the highest contrast and therefore were selected. �e
initial point was established based on the center of themass of
the region, where eight directions, 45∘ apart from each other,
were considered. �e directions were obtained by moving
counter clockwise in steps of 45∘. Each directionwas based on
the rapid variation of intensity. �ree points were considered
for each direction; thus in total there were 24 points. �e
Euclidean distances (the distances between the initial point
and each of the 24 points of interest) were computed and their
mean value was calculated. �e circles were created using
three noncollinear points. Hundreds of circles were obtained;
however, based on their speci
c properties, less than twenty
circles were selected as the better ones and the rest were
removed. Using bilinear 
ltering the selected circles were
mapped into polar coordinate space.�e next step was to 
nd
themaximumderivatives in�direction by applying the linear
least squares 
tting technique.�e correlation coe�cient was
computed to measure the quality of the 
tting. �e circle
with the maximum correlation coe�cient was chosen as the
best circle matching the OD. �e algorithm was tested on
40 images. An ophthalmologist manually marked the ground
truth of OD boundary using standard so	ware to select some
pixels on the OD boundary.�e success rate was 95% for OD
localization and 70% for OD contour (circle) identi
cation.
�is method causes false detection of OD in low quality
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Retinal image

Optic disk location 
detection

Vessels arcade 

Detecting an internal 
point to the OD in 3 steps 

Watershed transform

Optic disc boundary detection 

(1) Find the OD position (in

right or in le� image side

(2) Locate approximately the 
OD

(3) How the OD is located
in the image

Figure 7: Flowchart for algorithm proposed in [31].

images; therefore, further study is needed to improve the
algorithm by re
ning the selection of the initial points.

Yin et al. [34] have recently proposed a novel technique
that consists of edge detection, circularHough transform, and
a statistical deformable model to determine OD (Figure 13).
�e Point DistributionModel was utilized tomodel the shape
of the disc using a series of landmarks. A preprocessing step
was performed to analyze the image and reduce the e�ect
of blood vessels. �e optimal channel was also selected by
applying a voting scheme based on heuristics.

Subsequently the OD was approximated by a circle using
circular Hough transform to determine the optic disc center
and diameter. Ultimately, the statistical deformable model
was applied to 
ne tune the disc boundary according to the
image texture. �e direct least squared ellipse 
tting method
was executed to smooth the OD boundary (Figure 14). �e
ORIGA dataset was used to test the algorithm. �e average
error in the overlapping area was 11.3% and the average
absolute area error was 10.8%.

Cheng et al. [35] proposed an OD segmentation method
based on peripapillary atrophy (PPA) elimination. �e algo-
rithm included three parts: edge 
ltering, constraint elliptical
Hough transform, and �-PPA detection (Figure 15). Extract-
ing the region of interest and detecting the edges of OD were
the initial steps in this algorithm. In the aforementioned steps
a low pass 
lter was applied to remove the noise, and then
the 
rst derivative from each row of the region of interest

(ROI) was computed. �e 
rst PPA elimination was edge

ltering (EF). �ere are two types of PPA: � and �. �-PPA
is pigmentary and includes a structural irregularity of retinal
pigment epithelial cells (darker than OD), while �-PPA is a
complete loss of the retinal pigment epithelial cells (similar
color to OD). �e �-PPA was simply detected by comparing
the ROI with the threshold, that is, the mean intensity in
the ROI, followed by a morphological closing processing.
Due to the elliptical shape of PPA together with OD, a
second elimination of PPA was conducted by a constrained
elliptical Hough transform. Finally, the third PPA elimination
was conducted by �- PPA detection. �-PPA is much more
di�cult than �-PPA due to the similarity of its color with
that of OD. To avoid false segmentation between the PPA
and the OD, a ring area was determined from the detected
disc boundary and was divided into quarters. Inspired by
the texture within �-PPA compared with OD, the local
maximums and minimums were extracted within the ring
and were named as feature points. �-PPA was considered
present in a quadrant when the number of feature points
in a quadrant exceeded the threshold. �e threshold level
was obtained by comparing the cases with and without �-
PPA. �en the edge points along the detected disc boundary
were removed from the quadrant. Finally, the constrained
elliptical Hough transform was reapplied to obtain the new
disc boundary (Figure 16). �e ORIGA dataset with 200
images with PPA was used to evaluate the algorithm. Results
showed an average overlapping error of 10%, an average
absolute area error of 7.4%, and an average accuracy vertical
disc diameter error of 4.9%. In the future studies, the
method should be reapplied to segment OC for diagnosis of
glaucoma.

Zhu and Rangayyan [30] proposed an automated seg-
mentation method based on Hough transform to detect the
center as well as the radius of a circle that approximates the
boundary of OD (Figure 17). Gonzalez and Woods in [51]
and Canny in [52] also used this method to detect the edge
of OD. To calculate reference intensity for circle selection,
a preprocessing step was conducted by normalizing the
color image components and converting them to luminance
components and then thresholding the e�ective region of the
image. Finally, morphological erosion was used to remove
the artifacts from the DRIVE dataset which was used to test
this algorithm. Amedian 
lter was applied to remove outliers
from the image. �e components of horizontal and vertical
gradient of the Sobel operator were obtained by convolving
the preprocessed image with speci
ed operators. �e binary
edge map was obtained by a threshold applied to the gradient
magnitude image. On the other hand, Canny operator was
applied to detect the edges based on three criteria: multi-
directional derivatives, multiscale analysis, and optimization
procedures. A	er edge detection, Hough transform was
applied to detect the center and radius of the circle. �e
algorithm was tested on two datasets: DRIVE and STARE.
�e algorithmachieved 92.5% (DRIVE) and 40.24% (STARE)
success rates for Sobelmethod, and 80% (DRIVE) and 21.95%
(STARE) success rates for Canny method. �e algorithm
needs to be improved by applying additional characteristics
of OD.



Journal of Ophthalmology 9

Retinal image

Optic disc location

Maximum di�erence 
method

(median �lter)

Maximum variance 

method (statistical

variance)

Low pass �lter method

Optic disc boundary 

segmentation 

(1) Elimination of blood 

vessels

(morphological processing)

(2) Obtaining OD boundary 

candidates

(binary mask)

(3) OD boundary 

segmentation

(circular Hough transform)

Voting type algorithm

Figure 8: Flowchart for algorithm proposed in [32].
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Figure 9:ODPdetermination. ((a), (b), and (c))Original images. ((a1), (b1), and (c1))ODpixels provided by themaximumdi�erencemethod.
((a2), (b2), and (c2)) OD pixels provided by the maximum variance method. ((a3), (b3), and (c3)) OD pixels provided by the low-pass 
lter
method. ((a4), (b4), and (c4)) Final ODP determination.



10 Journal of Ophthalmology

(C)

(R) (R1) (R2) (R3) (R4) (R5)

(G) (G1) (G2) (G3) (G4) (G5)

(C)

(R) (R1) (R2) (R3) (R4) (R5)

Figure 10: �e calculation process of the circular OD boundary approximation. (R) Red channel. (G) Green channel. ((R1) and (G1)) Vessel
elimination. ((R2) and (G2)) Gradient magnitude image. ((R3) and (G3)) Binary image. ((R4) and (G4)) Cleaner version of the binary image.
((R5) and (G5)) Circular OD boundary approximation.
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Figure 11: Flowchart for algorithm proposed in [33].
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Figure 12: Flowchart for algorithm proposed in [29].

Dehghani and colleagues [37] proposed a novel tech-
nique that uses histogram matching for localizing the OD
and its center in the presence of pathological regions. �e
methodology is summarized in Figure 18. Four retinal images
from DRIVE dataset were used to create three histograms
from the color image components (red, blue, and green) as
a template. An average 
lter was applied to the image to
reduce noise. �e next step included extracting the OD for
each retinal image using a window with a typical size of the
OD. �en a template was created by obtaining a histogram
for each color component for each OD and calculating the

Retinal image
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based on 

heuristics

Edge detection and circular Hough

transform

Optic disc boundary extraction 

(statistical deformable model)

Shape and 

appearance

Figure 13: Flowchart for algorithm proposed in [34].

mean of the aforementioned histograms. To reduce the e�ect
of pathological regions with high intensity, the histograms
with intensity of lower than 200 were used. �e correlation
between the histograms of each channel was calculated
in order to gain the similarity of two histograms. Finally,
thresholding was applied on the correlation function to
localize the center of the OD. �e methodology was applied
on three datasets: 40 images from DRIVE, 273 images from
a local dataset, and 81 images from STARE. �e success rates
were 100%, 98.9%, and 91.36% for the datasets, respectively.
In the future work, the OD center will be used as the 
rst step
for localizing the boundary as well as for human recognition
based on the retinal image.

Zhang et al. [38] proposed a novel OD localization
technique based on 1D projection (Figure 19). �e vascular
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Figure 14: Optic disc segmentation using the proposed method (red), level set method (blue), FCM method (black), CHT method (cyan),
and ground truth (green).
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Figure 15: Flowchart for algorithm proposed in [35].

scatter degree was used to determine the horizontal location
ofOD.�e vertical location ofODwas obtained by brightness
and edge gradient around OD. A preprocessing step was
necessary in which a binary mask obtained by morpholog-
ical erosion operation was used to identify the region of
interest of the retinal image. Blood vessels extraction was
then conducted using nonvessel boundary suppression based
on Gabor 
ltering and multithresholding process [53]. �e
structure of the main vessels is more critical in measurement
of vascular scatter degree; therefore, vessels smaller than 30
pixels were neglected. A	er preprocessing, a vertical window
was de
ned and was slid over the vessels map to calculate
the vascular scatter degree in order to obtain 1D horizontal
projection signal and locate the horizontal location of the OD
at theminimumposition of horizontal projection curve.�en
a rectangular window was de
ned, centered at horizontal
location of OD, and slid over Gabor 
lter map and gray

intensity image to obtain the 1D vertical projection signal,
where the location of the maximum peak of vertical projec-
tion curve was the vertical location of the OD.�e algorithm
was evaluated on four publicly available and one self-marked
dataset: (1) 40 images from DRIVE (achieved 100% success
rate); (2) 81 images from STARE (achieved 91.4% success
rate); (3) 130 images from DIARETDB0 (achieved 95.5%
success rate); (4) 89 images from DIARETDB1 (achieved
92.1% success rate); and (5) 40 images from self-selection
(achieved 97.5% success rate). Future studies should test the
algorithm using a larger dataset.

Lu [36] proposed an alternative technique for automatic
segmentation of OD (Figure 20). �e technique is based on a
circular transformation other thanHough.�e circular trans-
formation was conducted to detect the circular boundary
and color variation across the OD boundary simultaneously.
A preprocessing step was essential to improve the accuracy
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Figure 16: (a) �e results (blue: without EF, red: with EF, and green: ground truth). (b) �e results (cyan: before �-PPA detection, magenta:
a	er �-PPA detection, red: with ellipse correction, and green: ground truth).

of OD segmentation. �e intensity image was 
rst derived
from the given retinal image by combining the red and
green components since these components contain most
of the structural information about OD. Several operations
were performed to speed up the process and to improve the
accuracy. To decrease the computation cost, image size was
reduced to one-third.�en the imagewas 
ltered by amedian

lter to repress speckle noise as well as variation across

the retinal vessels. �e OD search space was minimized
using the OD probability map based on Mahfouz’s method
[54]. Designing the circular transformation was based on
observing the variation of the distance from the point within
a circular area to the boundary area which reaches the
minimum when the point lies exactly at the centroid region.
In particular, each pixel detects maximum variation pixels
(PMs) along several evenly oriented radial line segments
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Figure 18: Flowchart for algorithm proposed in [37].

of speci
c length. In the next step the PMs were 
ltered
and 
nally the OD map was obtained by converting the
image. In this map, the maximum value represents the OD
center and the PMs detected for the pixels at the identi
ed
OD center lie on the OD boundary. �e algorithm was
evaluated on three public datasets: MESSIDOR containing
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Figure 19: Flowchart for algorithm proposed in [38].
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Figure 20: Flowchart for algorithm proposed in [36].
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Figure 21: Flowchart for algorithm proposed in [17].

1200 image, ARIA containing 59 images from individuals
with diabetes and 61 normal images, and STARE containing
31 normal and 50 pathological images. �e OD detection
accuracies were 98.77%, 97.5%, and 99.75%, respectively. �e
OD segmentation technique was applied only on STARE and
ARIA datasets, and the accuracies were 93.4% and 91.7%,
respectively.

Another OD detection algorithm based on matched 
lter
inspired by the means of vessel direction was introduced by
Youssif et al. [17] and is summarized in Figure 21. In the pre-
processing step a binary mask was generated by thresholding
the red component image, and then amorphological operator
was applied to label the pixels on the ROI. �e aforemen-
tioned was followed by equalizing the illumination using the
Hoover and Goldbaum equation [47] to avoid the negative
e�ects of an uneven illumination on OD localization process
[56]. �e adaptive histogram equalization was applied to
improve and normalize the contrast and in turn assist in
detecting the small blood vessels with low contrast levels.
�e blood vessels were segmented based on an algorithm
proposed by Chaudhuri et al. [57], where the similarity
between the prede
ned 2DGaussian template and the fundus
image was maximized. To model the retinal vascular in all
di�erent orientations, twelve 
lters were generated to obtain
the maximum response for each pixel. To detect the OD,

direction match 
lter was used to match the direction of the
vessels at the OD. �e algorithm was tested on 40 images
from DRIVE dataset and 81 images from STARE dataset, and
the success rates were 100% and 98.77%, respectively. �e
futurework should aim to improve blood vessel segmentation
by applying other pre- and postprocessing techniques, using
other OD parameters or vascular-related OD (e.g., vessel
density and diameter), as well as using a larger dataset for
testing the algorithm and employing other vessel segmen-
tation algorithms where the vessels direction map can be
obtained. A di�erent methodology introduced by Sinha and
Babu [40] and Kumar and Sinha [28] is summarized in
Figure 22.

�e methodology had two main parts. �e 
rst part
was OD localization using L1 minimization [40] in which a
scale embedded dictionary was created based on manually
marked 
xed-size subimages with OD at the center. �ese
subimages were represented as a column vector to obtain
the dictionary elements. Two sets of sparse coe�cients,
one for the gray intensity image and the other for the red
channel image, were obtained. �e information from sparse
coe�cient of each subimage was converted to a single value
termed con
dence measure. Con
dence measure calculated
the probability of the OD center falling in a given subimage.
�e dot products of the con
dence values were obtained.
�e dot products were rearranged over the 2D image grid
to form the probability map representing the possibility of

nding the OD. A convolution operation was conducted with
Laplacian of Gaussian (LoG) blob detector on the map and
the location with the most response was declared as the OD.
�e second part of this methodology was OD segmentation
[28]. �e method considered the di�erences between the
intensity of OD region and the surrounding area. To simplify
the process, the search space was minimized by cropping the
red channel. �e maximum intensity variation points along
both horizontal and vertical directions were obtained. �e
points that did not lie on the OD boundary were considered
“false” points and were removed. A Bezier curve was de
ned
by a set of control points to obtain the best closed curve.

�e curve was then smoothened to obtain the 
nal OD
boundary (Figure 23).

�e localization algorithm [40] was evaluated onmultiple
datasets DIARETDB0, DIARETDB1, and DRIVE and proved
to be successful in 253 out of the total of 259 images from
the three dataset (97.68% success rate). �e segmentation
algorithm [28] was evaluated on 152 images based on two
dataset: DIARETDB1 and MESSIDOR. �e average overlap-
ping obtained was 89.5%.

3.2. Optic Cup Segmentation Approaches. Due to the high
density of blood vessels in the optic cup, segmentation in
this region is more di�cult than optic disc segmentation.
Furthermore, the gradual intensity change between the cup
and neuroretinal rim causes extra complications for cup
segmentation. In addition, glaucoma changes the shape of
the cup region.�e OD and OC segmentation techniques, in
addition to the techniques used only for OC segmentation,
are illustrated in Table 4 and the performance results shown
in Table 5.
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Figure 23: Representative results.

Ingle andMishra [55] discuss the cup segmentation based
on gradient method (Figure 24).

Gradient is the variation in the intensity or color of an
image. �e gradient images were obtained from an original
image convolved with a 
lter. Two methods were used to

nd the gradient: (1) linear gradient, (2) radial gradient.

�e contrast was improved for all image components (red,
blue, and green) by Contrast Limited Adaptive Histogram
Equalization [67].

�e initial threshold was set for red (R), blue (B), and G
(green) components a	er much iteration to detect the region
where R channel pixel value is less than 60 and B and G



16 Journal of Ophthalmology

Table 4: Categorization optic disc with optic cup segmentation methods.

Authors Year Image processing technique OD/OC
Performance

metrics
Datasets Number of images

Wong et al. [58] 2008 Variational level-set approach OD/OC CDR SERI 104

Wong et al. [59] 2009 Vessel kinking OD/OC CDR SERI 27

Narasimhan and Vijayarekha [60] 2011 �-mean clustering OD/OC CDR-ISNT ratio AEH 36

Ho et al. [61] 2011
Inpainting and active contour
model

OD/OC CDR-ISNT ratio CMUH N/A

Mishra et al. [62] 2011 Active contour method OD/OC CDR ODO, UK 25

Yin et al. [63] 2012 Model-based segmentation OD/OC DM, RAD ORIGA 650

Narasimhan et al. [64] 2012 �-means and openCV code OD/OC CDR-ISNT ratio AEH 50

Cheng et al. [6] 2013 Superpixel classi
cation OD/OC CDR ORIGA + SCES 2326

Annu and Justin [42] 2013 Wavelet energy features OD/OC
SN – SP – Acc –

PPA
N/A 20

Chandrika and Nirmala [65] 2013
�-means clustering and
Gabor wavelet transform

OD/OC CDR N/A N/A

Damon et al. [66] 2012 Vessel kinking OC Overlap error SERI 67

Ingle and Mishra [55] 2013 Gradient method OC N/A N/A N/A

Table 5: Performance results for the optic disc and optic cup segmentation.

Authors Year Database OD/OC Sensitivity Speci
city Overlap error
Success rate

(Acc)
AUC

Computation
time (s)

Wong et al.
[58]

2008 ORIGA OD/OC 4.81% NA

Wong et al.
[59]

2009 SERI OD/OC 0.813 0.455 NA

Narasimhan
and
Vijayarekha
[60]

2011 AEH OD/OC 95% NA

Ho et al. [61] 2011 CMUH OD/OC N/A NA NA NA NA

Mishra et al.
[62]

2011 ODO OD/OC 100% NA

Yin et al. [63] 2012 ORIGA OD/OC
9.72% (OD)
32% (OC)

NA

Narasimhan
et al. [64]

2012 AEH OD/OC NA NA NA NA NA NA

Cheng et al.
[6]

2013 ORIGA + SCES OD/OC
9.5% (OD)
24.1% (OC)

0.800 (ORIGA)
0.822 (SCES)

10.9 (OD)
2.6 (OC)

Annu and
Justin [42]

2013 NA OD/OC 100% 90% 95% NA

Chandrika
and Nirmala
[65]

2013 NA OD/OC NA NA NA NA NA NA

Damon et al.
[66]

2012 SERI OC N/A NA

Ingle and
Mishra [55]

2013 NA OC NA NA NA NA NA NA

pixel values are greater than 100. Subsequently, other pixels
were eliminated by shi	ing their values to zero. �en the
radial gradient was obtained in the images in all directions.
�e intensities were computed and linearly transformed to
the range of (0-1). �e G and B channels were considered

more e�ective for OC segmentation. �e circular structural
elements were used to 
ll the blood vessels region in order
to obtain a continuous region. �e algorithm was evaluated
based on the accuracy of the cup and disc area in all directions
as well as CDR, instead of relying on the accuracy only in
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Figure 24: Flowchart for algorithm proposed in [55].

one direction. �e algorithm can be extended to distinguish
between the glaucomatous and normal images.

Another system for automatic detection of the optic cup
proposed by Damon et al. [66] is based on vessel kinking
(Figure 20). To detect the kinks, 
rst the vessels must be
detected. �e smaller vessels are harder to detect. �erefore,
a segmentation technique for small vessel detection was
introduced by fusing pixel features and a support vector
based classi
cation. Patches of interest (POI) were generated
within the optic nerve head.�en features for detecting small
vessels were generated, where the green channel was chosen
for the feature generation due to its better visibility for the
vessels. Awavelet transformwas generated for eachPOI using
Gabor 
lter to detect the overall architecture of vessels. A
Canny edge detector was applied to detect all possible vessels.
Finally, the feature in the vessels segment based approach
was fused instead of pixel classi
cation for the vessels and
nonvessels. Kinking was localized by analyzing the identi
ed
vessels segments and locating points of maximum curvature
on the vessels (i.e., to 
t the segment to a curve). To avoid
over or under 
tting, a rigorous, nonparametric method was
used based on the multiscale shi	ing window technique.
Consequently, the optic cup contour was recognized. �e
pallor-based cup detection was conducted to detect the cup
from the superior to nasal and inferior zones. However, the
temporal zone was detected by the kinks. �e algorithm was
tested on 67 images from the SERI. Figure 25 shows �owchart
for algorithm proposed in [66].

3.3. Optic Disc and Optic Cup Segmentation. To calculate the
CDR and ISNT, the optic disc and optic cup should be seg-
mented simultaneously.�e increased intraocular pressure in
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Figure 25: Flowchart for algorithm proposed in [66].

glaucoma increases the cup size. �erefore, changes in the
cup size and CDR are considered important indications of
glaucoma [6, 68]. �e neuroretinal rim is an e�ective factor
in glaucoma evaluation according to the ISNT rule, when the
optic disc and cup are precisely detected [45, 69].

Wong et al. [59] described a novel technique for detecting
blood vessel kinks for optic cup segmentation (Figure 26). A
preprocessing step was conducted using a level set method
to obtain the optic disc and to estimate the initial optic
cup boundary. �erefore, a region of interest was extracted
and the disc center was identi
ed by thresholding of the
red component. Next, variational level set method [70] and
direct ellipse 
tting approach [71] were applied to obtain and
smoothen the optic disc. �e initial contour was obtained by
extracting the OD region in green channel. �e results were
then ellipse-
tted in order to provide an approximation of the
cup boundary based on pallor. Square pixel size patches were
used as guide based on the pallor cup boundary to locate the
kinks within the optic disc. Canny edge detection andwavelet
transform were applied separately in the green channel to
detect the kinks on the intradisc vessel edges. To avoid
the e�ects of protrusion along some of the detected edges,
a polynomial application was used to smooth each edge,
followed by vectorizing the vessel edges and dividing them
into 15 segments.�e kinks were identi
ed by calculating the
change in the angle between each of the two edges. Finally,
the kinks and the additional points with the direct ellipse

ttingmethod were used to determine the OC boundary.�e
algorithm was evaluated with 27 images from SERI.

�e CDR calculated by the kink and pallor methods were
compared with the ground truth CDR and the average errors
of each method was calculated.�e average errors were 0.139
and 0.093 for pallor method and kink method, respectively.
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Figure 26: Flowchart for algorithm proposed in [59].
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Figure 27: Flowchart for algorithm proposed in [63].

Yin et al. [63] introduced a statisticalmodel basedmethod
that combines circular Hough transform and a novel optimal
channel selection for OD and OC segmentation.�emethod
is summarized in Figure 27.

�e active shape model using 24 landmark points around
the OD was used as the 
rst step. A preprocessing was
conducted to decrease the e�ect of blood vessels, and the
best image was determined based on the image contrast ratio.
Identifying the OD center and approximating the OD size
requires a good initialization.�erefore, Canny edge detector
and circular Hough transform were applied to obtain the
edge map and approximate the OD, respectively. �en the
statistical deformable model was initialized to adjust the OD
boundary. To update the OD segmentation, the landmark

position by minimizing the Mahalanobis distance was con-
ducted, followed by the direct least squared ellipse 
tting
method to smooth the boundary of the contour (Figure 28).
On the other hand, the OC boundary was extracted by
applying the active shape model in the green channel of the
image without blood vessel. �e optic cup center is close
to the OD center; therefore, the model was initialized by
translating themean cupmodel to the OD center (Figure 29).
�e ORIGA dataset consisting of 650 images was used to
evaluate the algorithm. �e average Dice coe�cient for the
OD andOC segmentationwas 0.92 and 0.81, respectively.�e
mean absolute CDR error was 0.10.

Superpixel classi
cation based optic disc and optic cup
segmentation for glaucoma screening system was introduced
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Figure 28: OD segmentation using proposed method (red), level set method (blue), and FCMmethod (black) with ground truth (green).

by Cheng et al. [6] and is illustrated in Figure 30. Classifying
each superpixel as disc or nondisc in the OD segmentation
was done based on histograms and center surround statistics.
On the other hand, in the OC segmentation the location
information was also included.

A Simple Linear Iterative Clustering algorithm [72] was
used to gather nearby pixels into superpixels. Extracting OD
features was achieved by enhancing the contrast using the
histogram equalization for the three image components (R,
B, and G) and computing the center surround statistics to
avoid color similarity in the group of pixels forming the
superpixel. A Library for Support VectorMachine (LIBSVM)
[73] was used as classi
er to extract the OD boundary
(Figure 31). Detecting theOCboundarywas based on the fea-
ture extraction where the histogram feature was computed.
Red channel histograms were excluded. �e center surround
statistics was computed similar to the OC feature extraction.
Finally, LIBSVM was used as classi
er to extract the OC
boundary (Figure 32). Knowing the OD and OC, the CDR
could be computed. �e algorithm was evaluated based on
2326 images from two resources: SiMES and SCEN. Results
showed an average overlapping error of 9.5% in optic disc
segmentation and 24.1% in optic cup segmentation using only
the SiMES dataset.

Mishra et al. [62] proposed an active contour method to

nd the CDR in order to determine glaucoma (Figure 33).
�e green channel image was used in the segmentation
process similar to the previous algorithms. Illumination was
corrected using a mathematical morphology in which the
background of the image was estimated by morphological

opening process.�e blood vessels were removed by applying
a morphology based vessel segmentation proposed by Fraz
and colleagues [74]. Subsequently, image inpainting was used
to replace the blood vessel region with plausible background.
Multithresholding and active contour method were used to
determine the OD and OC boundaries. �us, the CDR could
be calculated. �e method was tested on 25 images obtained
from an optic disc organization in UK. Preprocessing tech-
niques were required to improve the results.

Wong et al. [58] proposed an automatic CDR detec-
tion algorithm based on a variational level set approach
(Figure 34). Localizing the OD using intensity information
was the 
rst step.�erefore, an image histogramwas obtained
in which pixels with the highest intensity were selected to be
the disc region. Also, the image was divided into 64 regions,
and the disc center was the region with greatest number of
high intensity pixels. �e ROI was identi
ed by a circle with
a radius twice as long as the typical normal OD radius. �e
variational level set algorithm was applied to detect the OD
boundary using red channel. Next, ellipse 
tting was applied
to smooth the boundary. Due to the high density of the blood
vessels in the OC region, the green channel was selected to
be processed. �e OC was segmented by applying threshold
initialized level set from the segmented disc. �e boundary
was smoothed by ellipse 
tting. �e CDR was calculated as
the 
nal result. �e methodology was evaluated using 104
images from SiMES and the results produced up to 0.2 CDR
units from manually graded samples.

To calculate CDR, �-mean pixel clustering technique
and Gabor wavelet transform [65] were used to segment the
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Figure 29: Optic cup segmentation using the proposed method (blue), ASM method without vessel removal (red), and level set method
(black) with ground truth (green).
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Figure 30: Flowchart for algorithm proposed in [6].

OD and OC separately (Figure 35). �e �-mean clustering
classi
es the data into a number of clusters. For each cluster
� centroids were de
ned and each point in the data was
associated to the nearest centroid to create groups. �e 
rst
step is completed when no point is pending and an early
group is created.�en�was recalculated to new centroids as

barycenters of the clusters of the previous step. As the result,
a new binding had to be made between the same data and
the nearest new centroid. A loop was created to track the
location of the centroids until centroids did not move any
more in order to reduce the objective function (squared error
function). �e �-mean clustering was conducted on ROI
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(a) (b) (c) (d) (e) (f) (g)

Figure 31: Sample results of the optic disc. From le	 to right columns: (a) the original images, (b) the manual “ground truth,” and ((c)–(g))
outlines by the MCV, CHT-ASM, EHT, and MDM.

identi
ed by a mask. Finally, OC and OD were segmented
using green plane to choose mean value for background
blood vessel. �en the disc and cup were replaced, where the
image was mapped in 4 iterations to calculate the mean value
of the matrix distance.

Morphological feature was performed to smooth the
cup and disc boundary. Gabor wavelet transform was also
executed to avoid problems due to the presence of blood
vessels. Since the vessels have directional pattern, the Gabor
wavelet transform was tuned for speci
c frequencies and
orientations to 
lter out the background noise.

Ho et al. [61] developed a novel technique for automatic
fundus image analysis for glaucoma screening (Figure 36).
�e technique involved two major steps. Detecting the blood
vessels was the initial step and was conducted using two
structural characteristics: shape and continuity feature. A
Canny edge detector was applied to detect general edges
containing the boundaries of blood vessels, where the green

channel was used in the analysis. Bayesian rules were used
to generate an accurate con
dence map by combining the
horizontal and vertical con
dence maps from the shape and
continuity feature. Fast Marching Method was employed to

ll the vessels free spaces and then the peak thresholding from
inpainted image histogram was executed for segmentation,
where the image was segmented into three regions. Firstly,
in order to estimate the disc boundary, the three regions
were 
tted with two circles and the active contour model
was applied to extract the boundaries of the inner cup
and surrounding disc. �en the CDR parameter and ISNT
rule were calculated. A dynamic histogram equalization
technique may be applied to enhance the image contrast and
to avoid wrong identi
cation of the CDR and ISNT due to
nonclear OC on vessels free images.

Narasimhan and Vijayarekha [60] introduced a new
system for glaucoma detection based on �-mean clustering
technique to extract OD and OC and also an elliptical 
tting
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(a) (b) (c) (d) (e)

Figure 32: Sample results of the optic cup. From le	 to right columns: (a) the original images, (b) the manual “ground truth,” and ((c)–(e))
outlines by the proposed method before ellipse 
tting.
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Figure 33: Flowchart for algorithm proposed in [62].

technique to calculate the CDR. In addition, a local entropy
thresholding approach was applied to detect the blood vessels
and compute ISNT. �e system consists of three phases
(Figure 37). �e 
rst phase was ROI extraction considering
green plane. �e second phase was the feature extraction
through �-mean clustering [65]. ROI covered the OD, OC,

and small part of the region near to the OD in the retinal
image; thus, the � value was chosen as 3. �e clusters not
belonging to theODandOCwere removed. As the result, two
clusters from the OD region remained, since the operation
was conducted to 
ll the holes and spaces inside OD and OC
clusters.
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Subsequently connected component technique was
applied to form rectangles that represented the entire OD
and OC. To calculate CDR, elliptical 
tting technique was
executed on OD and OC and the areas of the ellipse, OC,
and OC were computed using a speci
c formula. �e ISNT
was computed by measuring the area of the blood vessels in
the four quadrants. �erefore, a local entropy thresholding
was used to segment the blood vessels and then a mask was
applied to measure the four areas. �ree classi
ers, that is,
KNN, BAYES, and SVM, were used to test 15 normal and
21 glaucomatous images. KNN achieved 93.3% and 80.9%
success rates; BAYES achieved 86.6% and 95.23% success
rates; and SVM achieved 100% 95.23% success rates for
normal and abnormal images, respectively.

Annu and Justin [42] proposed another method for auto-
mated classi
cation of glaucoma by wavelet energy feature.
�e technique uses texture features within the image by
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Figure 36: Flowchart for algorithm proposed in [61].

applying energy distribution over wavelet subbands and e�-
cient glaucoma classi
cation based on Probabilistic Neural
Network. Figure 38 illustrates a summary of the algorithm.
�e wavelet features were gained from the Daubechies (db3),
symlets, and biorthogonal wavelet 
lters. Z-score normal-
ization was applied to the images to equalize the irregular
illumination associated with the image. �e feature of the
retinal image was extracted to simplify the classi
cation
process since it provides characteristics of input pixel to
the classi
er. �erefore, the wavelet transform was applied.
Various textures have di�erent energy in the space frequency
domain; hence, the energy obtained from the coe�cient was
used to distinguish between the normal and glaucomatous
images. Finally, a Probabilistic Neural Network was used
as classi
er to analyze image properties and classify the
dataset. �is involved two phases: a training phase and a
testing phase. In the training phase the known data was given
and in the testing phase the unknown data was used. �e
algorithm was applied on 10 normal and 10 glaucomatous
images, and 15 images were used for training. �e results
showed sensitivity, speci
city, positive predictive accuracy,
and accuracy of 100%, 90%, 90%, and 95%, respectively.

�e OD and OC segmentation technique proposed by
Narasimhan and colleagues [64] implements the openCV
library functions based on �-mean clustering and elliptic

tting (Figure 39) to calculate CDR.

�e cvMinAreaRect2() was used to draw the ellipse and
the blood vessels were extracted usingmatched 
lter in which
cv2DRotationMatrix and cvWarpA�ne were used to rotate
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Figure 37: Flowchart for algorithm proposed in [60].
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Figure 38: Flowchart for algorithm proposed in [42].

the kernel. Finally local entropy thresholding was applied
to compute ISNT ratio. �e openCV was mainly used to
increase the operation speed. �e method was evaluated on
50 images obtained from Aravind Eye Hospital in India.

4. Discussion

We provided a comprehensive review of the algorithms used
for OD and OC detection and segmentation that help with
diagnosis of glaucoma by detecting the main structures
of the ONH. Many algorithms were limited due to the
complexities of ONH structure which is very variable among
people and among di�erent pathologies. �e variabilities
in the ONH structure also cause di�culties in diagnostic
observations. Papillary atrophy causes some di�culties for
disc segmentation due to its similarity in intensity to disc
boundaries. However, there are some algorithms that can
segment the disc with PPA perfectly. On the other hand,
disc drusen causes greater di�culty for segmenting the disc
since the changes that appear on the disc boundaries make
the discs completely covered, especially in advanced cases.
No current segmentation technique considers disc drusen
based on retinal fundus images due to the rarity of the
case and its complexity in terms of image processing. Blood
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Figure 39: Flowchart for algorithm proposed in [64].

vessels play an important role in accurate segmentation of cup
boundaries. �is is a challenge facing many researchers and
there are limited segmentation techniques that address this
challenge. �e algorithms performed di�erently depending
on the datasets of images. Some approaches used a small
dataset, while some used large datasets to train and test
the algorithm. Many methods were tested only on normal
retinal images, and those that were evaluated on pathological
images used di�erent number of glaucomatous images. Also,
the severity of the disease was di�erent among the datasets
used in di�erent techniques; therefore, the corresponding
algorithms cannot be compared with each other.

Most of the OD segmentation was based on the circular
Hough transform along with other detection techniques.
Aquino et al. [32] obtained excellent results based on a large
dataset (MESSIDOR) for both localization and segmentation
of OD; however, errors occurred due to ellipse eccentricity
that was not suitable for circular approach. Yin et al. [34]
introduced an edge detection, circular Hough transform
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to estimate the OD center and diameter, and a statistical
deformable model to adjust the disc boundary according
to the image texture. Utilizing a large dataset, the method
gained good results. Cheng et al. [35] also achieved good
results by eliminating the peripapillary atrophy based on
edge 
ltering, constraint elliptical Hough transform, and
peripapillary atrophy detection. Due to the low contrast
of the disc boundary, OD boundary was not detected in
some images. �erefore, a preprocessing stage to select the
best image component is necessary to improve the results.
Lu [36] gained excellent results based on three datasets:
STARE, ARIA, and MESSIDOR. A circular transform was
designed to determine the circular shape of OD and also
the image variation across the OD boundary with a very
short computation time of only 5s. �ree sources of error
contributed to segmentation failure for a few images; these
were as follows: (1) the large color variation across the OC
boundary might have caused the PMs to fall on the cup
boundary instead of disc boundary, (2) due to ultralow image
variation across the OD boundary, much of the OD bound-
ary had no PM detected and therefore the OD boundary
remained undetected, and (3) the error introduced by the
PMs was created based on symmetry. On the other hand,
Cheng et al. [6] obtained perfect results using an OD and OC
segmentation algorithm based on superpixel classi
cation
utilizing histograms and center surround statistics. However,
a preprocessing step was essential to improve the image. Also,
to create a robust algorithmmultiple kernel learning [75] was
required for enhancement and extraction of blood vessels to

ne-tune the cup boundary. Sinha and Babu [40] proposed
an algorithm to localize the OD based on L1 minimization.
�e algorithm achieved a high success rate in localizing the
OD; the algorithm failed in only 6 out of 259 images. �e
fails were due to the scaling factor which needs to be 
xed
at the start of a trial for the dataset to downsample the image
to suitable size in tune with those in the dictionary. �e OD
detection was then followed by segmenting technique [28].
�is approach sometimes results in false segmentation due
to the blood vessels and nerves crossing the OD that appear
darker than OD and therefore restrict the search space in the
retinal image.

In general, in addition to blood vessel extraction, a
preprocessing step including image channel selection, illumi-
nation normalization, and contrast improvement is necessary
for a robust approach in OD and OC segmentation. Retinal
pathological images that have captured the e�ect of the
disease on the optic nerve head must be considered in order
to obtain correct computations of the CDR and ISNT for the
glaucoma screening. Precise OD and OC localization lead
to perfect segmentation. �e aforementioned highlights the
importance of utilizing an accurate localization technique.
Evaluating algorithm based on various datasets will increase
the reliability of the outcomes.

5. Conclusion

Segmentation of the optic disc and optic cup has captured
the interest of many researchers. Although there are many
promising approaches, there is still room for improvement in

segmentation techniques. Only few of the existing method-
ologies, whether for optic disc or for optic cup segmentation,
can be applied for glaucomatous retinal images. Also, most of
the current methods have been tested on a limited number
of datasets such as DRIVE and STARE. �ese datasets do
not provide images with many di�erent characteristics. Fur-
thermore, the generally low resolution of the images (ranging
from 0.4 to 0.3 megapixels) has made the segmentation
process even more challenging [76]. An advanced camera
capable of taking high volumes of high resolution retinal
images will facilitate glaucoma screening. In order to achieve
good outcomes for the images captured by di�erent systems,
robust and fast segmentation methods are required. Most of
the retinal images used to evaluate segmentation methods
have been taken from adults. �e retinas of infants, babies,
and children have di�erent morphological characteristics
than that of adults, and this di�erence must be considered
in segmentation methodologies [76]. �e glaucoma screen-
ing system complements but does not replace the work
of ophthalmologists and optometrists in diagnosis; routine
examinations have to be conducted in addition to the fundus
image analysis. However, the system facilitates diagnosis
by calculating the disc and cup structural parameters and
showing greater details of ONH, such as the disc and cup
areas, the vertical and horizontal cup-to-disc ratios, and cup
to disc area ratio, and also checking the ISNT arrangement.
�is is a shareable opinion that could associate the worlds of
consultant ophthalmologists, optometrists, orthoptists, and
engineers.

�e main contribution of this paper is in introducing
a survey of current optic disc and optic cup segmentation
methods for calculating the CDR and ISNT. �e optic disc
segmentation methods were covered 
rst, followed by two
optic cup segmentation methods. Finally, the optic disc
with optic cup segmentation methods were covered. �e
main objective was to present some of the current detection
and segmentation methodologies and to give the reader an
overview of the existing research. �e current trends and
challenges and the future directions in optic disc and optic
cup segmentation were also discussed.

Conflict of Interests

�eauthors declare that there is no actual or potential con�ict
of interests, 
nancial or otherwise, associated with this paper.

Acknowledgment

�e authors would like to acknowledge University of Water-
loo and Ryerson University for funding of this research.

References

[1] H. A. Quigley and A. T. Broman, “�e number of people with
glaucoma worldwide in 2010 and 2020,” 
e British Journal of
Ophthalmology, vol. 90, no. 3, pp. 262–267, 2006.

[2] C. Costagliola, R. dell’Omo, M. R. Romano, M. Rinaldi, L.
Zeppa, and F. Parmeggiani, “Pharmacotherapy of intraocular
pressure: part I. Parasympathomimetic, sympathomimetic and



26 Journal of Ophthalmology

sympatholytics,” Expert Opinion on Pharmacotherapy, vol. 10,
no. 16, pp. 2663–2677, 2009.

[3] C. Costagliola, R. dell’Omo, M. R. Romano, M. Rinaldi, L.
Zeppa, and F. Parmeggiani, “Pharmacotherapy of intraocular
pressure—part II. Carbonic anhydrase inhibitors, prostaglan-
din analogues and prostamides,” Expert Opinion on Pharma-
cotherapy, vol. 10, no. 17, pp. 2859–2870, 2009.

[4] European Glaucoma Society, Terminology and Guidelines for
Glaucoma, PubliComm, Savona, Italy, 4th edition, 2014.

[5] W. C. Stewart, Clinical Practice of Glaucoma, SLACK Incorpo-
rated, �orofare, NJ, USA, 1990.

[6] J. Cheng, J. Liu, Y. Xu et al., “Superpixel classi
cation based optic
disc and optic cup segmentation for glaucoma screening,” IEEE
Transactions on Medical Imaging, vol. 32, no. 6, pp. 1019–1032,
2013.

[7] I. Toprak, V. Yaylalı, and C. Yildirim, “Diagnostic consistency
and relation between optical coherence tomography and stan-
dard automated perimetry in primary open-angle glaucoma,”
Seminars in Ophthalmology, vol. 19, pp. 1–6, 2015.

[8] M. T. Nicolela, “Optic nerve: clinical examination,” in Pearls of
GlaucomaManagement, J. A. Giaconi, S. K. Law, A. L. Coleman,
and J. Caprioli, Eds., pp. 15–21, Springer, Berlin, Germany, 2010.
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