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Abstract. We present a novel variational method for estimating dense disparity

maps from stereo images. It integrates the epipolar constraint into the currently

most accurate optic flow method (Brox et al. 2004). In this way, a new approach

is obtained that offers several advantages compared to existing variational meth-

ods: (i) It preservers discontinuities very well due to the use of the total variation

as solution-driven regulariser. (ii) It performs favourably under noise since it uses

a robust function to penalise deviations from the data constraints. (iii) Its min-

imisation via a coarse-to-fine strategy can be theoretically justified. Experiments

with both synthetic and real-world data show the excellent performance and the

noise robustness of our approach.

Keywords: computer vision, variational methods, stereo reconstruction, differ-

ential techniques, partial differential equations.

1 Introduction

The reconstruction of 3-D information from two views is one of the key problems

in computer vision. Since the prototypical approach of Marr and Poggio [11] three

decades ago, a variety of algorithms have been proposed for this purpose. Depending

on their strategy for solving the correspondence problem, these algorithms can be di-

vided into four classes: Feature-based algorithms [3,6] that make use of characteristic

image features such as corners or lines, area-based methods [8,15,16] that correlate im-

age patches by aggregating local similarity measures, phase-based approaches [4,5,7]

that estimate displacements via the phase in the Fourier domain, and energy-based tech-

niques [1,9,10,12,14,15] that seek to minimise variational formulations, where devia-

tions from data and smoothness constraints are penalised.

Variational methods offer one decisive advantage when compared to the other three

strategies: They allow for an estimation of correspondences at those locations where

no image information is available. Since they regularise the often non-unique solution

of their data constraints by assuming (piecewise) smoothness of the result, neighbour-

hood information is propagated to locations where such information is missing. As a

consequence, always 100% dense estimates are obtained. This so-called filling-in effect

is one reason why variational techniques have become increasingly popular during the

last few years.
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A second reason is the fact that this regularisation can be adapted such that it re-

spects discontinuities in the data (image-driven) or the solution (solution-driven). Thus,

objects boundaries are preserved and the accuracy of the reconstruction increases. First

approaches with image-driven regularisation go back to Mansouri et al. [10] who pro-

posed an anisotropic method that smoothes along object boundaries but not across them.

More recently, Kim and Sohn [9], presented a similar approach with non-convex regu-

larisation that gives even sharper results. However, both techniques are restricted to the

ortho-parallel case, where images have already been rectified and the correspondence

problem reduces to a search along the x-axis. In Alvarez et al. [1] a more general vari-

ational method with image-driven regularisation is proposed: By using knowledge on

the geometry of the scene this technique does not require an explicit rectification of the

input images but still satisfies the so-called epipolar constraint that relates correspond-

ing points in both views. A similar method, however with solution-driven regularisation

was presented by Robert and Deriche [12]. Apart from using a different regularisation

strategy, their approach was also the first one that considered constancy assumptions

on higher order image derivatives such as the image gradient or the Laplacian. This, in

general, yields a better performance under varying illumination.

While the previous methods already combine some successful concepts, recent

progress in variational optic flow computation shows that there are even more useful

strategies which should be integrated in the estimation. This problem is addressed in

our paper: We propose a novel variational method for estimating dense disparity maps

that is based on the currently most accurate optic flow technique: The optic flow method

of Brox et al. [2]. By integrating knowledge on the geometry of the scene we obtain a

general approach that introduces the following novelties to the field of variational stereo

reconstruction: Firstly, a robust data term is used. Although this concept is quite com-

mon for area-based reconstruction methods (cf. [15]), it has not been considered for

variational techniques so far. Secondly, we make use of the total variation (TV) [13].

During the last years this form of penalisation of both the smoothness and the data term

has become very popular and achieved good results in various research fields such as

deconvolution, image restoration and optic flow estimation. And finally, the proposed

approach allows to extend the theoretical justification of the warping strategy given by

Brox et al. [2] to the field of variational stereo reconstruction methods.

Our paper is organised as follows. In Section 2 we give a short review on the stereo

problem and discuss how knowledge on the geometry of the scene can be integrated

appropriately into the estimation of the correspondences. This motivates us to propose a

novel variational approach in Section 3 that transfers successful concepts of the highly

accurate optic flow method of Brox et al. [2] to the field of stereo reconstruction. In

Section 4 the performance of our approach is evaluated on both synthetic and real-world

data while a summary in Section 5 concludes this paper.

2 The Stereo Problem

Let us consider a stereo image pair g∗l (x) and g∗r (x), where the subscripts l and r stand

for the left and the right camera, respectively, and x = (x, y)⊤ denotes the location

within a rectangular image domain Ω. Then, projective geometry tells us that we can
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recover the depth of a point x in the left image by finding its corresponding point x
′

in the right image. In other words: If we are able to compute the displacement field

d(x) = x
′ − x between the two images (disparity) we can reconstruct the original

scene.

2.1 Epipolar Geometry

However, the displacement field d(x) cannot be arbitrary. Due to the geometry of the

scene the so called epipolar constraint [3] must hold. It is given by

x̂
′⊤F x̂ = 0 (1)

and relates the projective coordinates x̂ = (x, y, 1)⊤ and x̂
′ = (x′, y′, 1)⊤ of corre-

sponding points in both views via a 3×3 matrix of rank two – the so called fundamental

matrix F . For a given point x, this constraint describes a line in the right image on

which x
′ must lie: The epipolar line Φ. Defining the following abbreviations

a(x) := f11x + f12y + f13,

b(x) := f21x + f22y + f23,

c(x) := f31x + f32y + f33,

with fij being the entries of the fundamental matrix F , this epipolar line Φ can be

written as

a(x)x′ + b(x)y′ + c(x) = 0. (2)

2.2 Integration of the Epipolar Constraint

In order to allow for an accurate estimation of the displacement field d(x), the epipolar

constraint has to be integrated in the formulation of the correspondence problem. To this

end, we follow the idea of Alvarez et al. [1] and perform an orthogonal decomposition

of d(x) with respect to the direction of the epipolar line Φ. Thus, we obtain

d(p(x)) = p(x)
1

√

a2(x)+b2(x)

(
−b(x)

a(x)

)

︸ ︷︷ ︸

epipolar direction e(x)

+q(x)
1

√

a2(x)+b2(x)

(
−a(x)
−b(x)

)

︸ ︷︷ ︸

epipolar normal e⊥(x)

, (3)

where p(x) and q(x) stand for the component of the projection of the displacement field

d(x) in direction of and orthogonal to the epipolar line Φ, respectively. For a point x′

on the epipolar line Φ, however, q(x) is known. It is the distance of the point x to the

epipolar line Φ and can be computed via

q(x) =

(

a(x)x + b(x)y + c(x)
√

a2(x) + b2(x)

)

. (4)

Plugging this expression in equation (3) satisfies the epipolar constraint and restricts the

correspondence problem to the search of one unknown function, namely p(x).



36 N. Slesareva, A. Bruhn, and J. Weickert

3 From Optic Flow to Stereo

Recently, Brox et al. [2] proposed a highly accurate variational method for computing

the displacement field between two images. However, their method was designed to be

used in the context of optic flow estimation, where correspondences can be arbitrary.

Since we have seen that the epipolar constraint can be satisfied if a suitable decompo-

sition of the displacement field d(x) is performed, we can modify this approach such

that it meets all requirements for a stereo reconstruction method. In the following, we

present the new approach in detail.

3.1 The Variational Model

Let gr(x) and gl(x) be presmoothed versions of the original images g∗r (x) and g∗l (x)
that have been obtained by convolution with a Gaussian kernel of standard deviation σ.

Furthermore, let α and β be nonnegative weights. Then we propose to compute p(x) as

minimiser of the energy functional

E(p) = ED(p) + β ES(p), (5)

where the data term is given by

ED(p)=

∫

Ω

ΨD

(

|gr(x + d(p)) − gl(x)|2 + α |∇gr(x + d(p)) −∇gl(x)|2
)

dx dy, (6)

and the smoothness term reads

ES(s) =

∫

Ω

ΨS

(
|∇p|2

)
dx dy. (7)

While the first part of the data term models the assumption of a constant grey value

in both views, the second one renders the approach more robust against varying illu-

mination. This is achieved by assuming constancy of the spatial image gradient ∇g =
(gx, gy)

⊤. In accordance with equation (3) both assumptions are modified such that the

epipolar constraint is satisfied. Moreover, no linearisation of the data term is performed

to allow for a correct estimation of large displacements. Finally, in order to render the

approach more robust with respect to outliers, a robust function ΨS is applied to the

whole data term. As proposed in [2] we consider a regularised version of the total vari-

ation (TV) [13] for this purpose that is given by Ψ(s2) =
√

s2 + ǫ2 with ǫ := 10−3.

In the smoothness term we follow a different strategy: Instead of regularising the

total displacement field d(p(x)) we penalise deviations from the unknown function

p(x) directly. Also in this case, the regularised version of the total variation with ǫ =
10−3 is used as non-quadratic function ΨS . This solution-driven regularisation models

a piecewise smooth result and thus preserves discontinuities in the disparity map.

3.2 The Euler-Lagrange-Equation

Let us now derive the Euler-Lagrange equation that is a necessary condition for the

minimiser of the proposed energy functional. For better readability we use the following
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abbreviations for derivatives and differences:

g := gr (x + d(p)) , gxx := ∂xxgr (x + d(p)) ,

gx := ∂xgr (x + d(p)) , gxy := ∂xygr (x + d(p)) ,

gy := ∂ygr (x + d(p)) , gyy := ∂yygr (x + d(p)) ,

gz := gr (x + d(p)) − gl (x) , gxz := ∂xgr (x + d(p)) − ∂xgl (x) ,

gyz := ∂ygr (x + d(p)) − ∂ygl (x) .

Moreover, we define the components of the direction e of the epipolar line Φ by e =
(e1, e2)

⊤. Then, the Euler-Lagrange-equation can be written as

Ψ
′

D

(

g2

z + α
(
g2

xz + g2

yz

) )(

gz (gxe1 + gye2)
)

+α Ψ
′

D

(

g2

z + α
(
g2

xz + g2

yz

) )(

gxz (gxxe1 + gxye2) + gyz (gxye1 + gyye2)
)

−β div
(

Ψ
′

S

(
|∇p|2

)
∇p

)

= 0 (8)

with reflecting boundary conditions.

As proposed in [2] this coupled system of PDEs is solved by means of two nested

fixed point iterations. Thereby a coarse-to-fine warping strategy with downsampling

factor η is used. As for the original optic flow method it can be theoretically justified as

an approximation strategy to the continuous energy functional.

Fig. 1. Corridor stereo data set (http://www-dbv.cs.uni-bonn.de/stereo data/).

(a) Top Left: Left frame. (b) Top Center: Right frame. (c) Top Right: Ground truth disparity map.

(d) Bottom Left: Correlation method. (e) Bottom Center: Method of Alvarez et al. [1]. (f) Bottom

Right: Our method (σ = 1.55 , α = 1.1 , β = 5, η = 0.95). Computing time on a standard PC with

3.06 GHz Pentium4 CPU: 21 seconds.
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Table 1. Results for the Corridor scene. AADE = Average absolute disparity error.

(a) Overall performance (b) Impact of noise

Technique AADE Technique Noise level σ2

n
AADE

Correlation method [1] 0.4978 Our method 1 0.1952

Alvarez et al. [1] 0.2639 Our method 10 0.2519

Our method 0.1731 Our method 100 0.3297

4 Experiments

The proposed algorithm has been evaluated on two commonly used stereo test pairs:

The synthetic Corridor scene from the University of Bonn, and the areal photos of the

Pentagon building from the CMU image data base. In the case of the Corridor scene

the known ground truth allowed us to determine the estimation quality quantitatively.

This was done by computing the average absolute disparity error via

AADE =
1

N

N∑

i=1

|d truth

i − d estimate

i |. (9)

where N is the number of pixels.

In our first experiment we have tested the proposed approach on the Corridor data

set without noise. The achieved error is shown in Table 1(a), where it is compared

to results from the variational approach of Alvarez et al. [1] and a correlation based

technique with sub-pixel accuracy from the same authors. As one can see, our method

outperforms both techniques significantly.

The reason for the good performance becomes obvious in the corresponding dispar-

ity maps that are presented in Figure 1: Connected areas such as ceiling, floor, walls and

objects are estimated homogeneously while boundaries between them remain relatively

sharp. This is a straight consequence of using the total variation in both the data and the

smoothness term. In this context one should note that in accordance with Alvarez et al.

[1] a boundary layer of 15 pixels was omitted when computing the disparity error. From

the presented maps, however, one can see that this would not have been necessary for

our method.

In our second experiment we have evaluated the performance of our approach with

respect to noise. To this end, we used three variants of the Corridor scene, where

Gaussian noise of zero mean and different variance σ2

n has been added. While Scharstein

and Szeliski [15] claim that these data sets would be too difficult for a reasonable es-

timation, our results in Table 1(b) show that this is not the case. As one can see, they

are still very accurate. In particular, one should note that our result for the version with

σ2

n = 10 is still more precise than the results of the other two approaches for the original

data set without noise.

In our third experiment we have reconstructed the Pentagon scene using the com-

puted dense disparity map as hightfield. This is shown in Figure 2. Evidently, the whole

scene looks very realistic: The discontinuities between the different sectors of the build-

ing are well preserved, the huge bridge in the upper right corner of the image is recon-

structed accurately, and there are no outliers present that require the use of postprocess-

ing steps.
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Fig. 2. Pentagon stereo data set (http://vasc.ri.cmu.edu/idb/html/stereo/). (a)

Top Left: Left frame. (b) Top Right: Right frame. (c) Bottom Left: Computed disparity map height

field with lighting (σ = 1.05 , α = 1.1 , β = 6, η = 0.95). (d) Bottom Right: Computed Disparity

map height field with texture. Computing time on a standard PC with 3.06 GHz Pentium4 CPU:

83 seconds.

5 Summary and Conclusions

In this paper we have demonstrated that variational stereo reconstruction methods can

benefit from recent progress in optic flow computation. By embedding the currently

most accurate optic flow method into epipolar geometry, we achieved dense disparity

maps with high quality. They respect discontinuities and are very robust under noise.

It is our hope that this strategy serves only as a first step towards a generic and

mathemetically well-founded variational framework for solving the entire class of cor-

respondence problems with high accuracy. This is a topic of our ongoing work. Apart

from improving the model, e.g. by the explicit consideration of occlusions, we will also

investiagte highly efficient numerifcal methods for our framework. This in turn may

allow to obtain dense deformation maps for matching problems in real-time.
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