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OPTICAL ABSORPTION IN DEGENERATE SEMICONDUCTORS

By J. GAVORET, P. NOZIÈRES, B. ROULET and M. COMBESCOT,
Groupe de Physique des Solides E.N.S. (1), Faculté des Sciences de Paris, 9, quai Saint-Bernard, Paris, 5e (France).

(Reçu le 15 septembre 1969.)

Résumé. 2014 L’absorption optique dans les semiconducteurs dopés à gap direct, dans

lesquels la bande de conduction peut être considérée comme un système de Fermi dégénéré,
est étudiée au voisinage du seuil de Burstein. Le phénomène est traité dans un modèle simple
par les méthodes de perturbation en tenant compte de l’interaction dans l’état final entre les
electrons de conduction et le trou profond créé par absorption. Une attention particulière est
donnée aux processus de type Auger, qui jouent un rôle fondamental dans la détermination
du spectre d’absorption. On montre comment on passe continûment d’un spectre étalé par
effet Auger à un spectre résonnant, caractéristique d’un trou infiniment lourd. Une raie d’exciton,
distincte du seuil, n’existe jamais.

Abstract. 2014 The optical absorption in doped direct gap semiconductors in which the
conduction band may be considered as a degenerate Fermi system is studied near the Burstein
edge. The problem is treated within a simple model by the methods of perturbation theory
taking into account the final-state interaction between conduction electrons and the deep
hole created by the photon. Particular attention is paid to Auger processes which play a
fundamental role in the determination of the absorption spectrum. It is shown in detail
how one passes continuously from the usual Auger broadened Burstein edge to the resonant
spectrum characteristic of an infinitely heavy hole. In any case, an exciton line, distinct

from the threshold, never exists.

L,E JOURNAL DE PHYSIQUE TOME 30, NOVEMBRE-DÉCEMBRE 1969,

I. Introduction. - The optical absorption spectra
of insulators usually display an exciton resonance below
the absorption threshold. This exciton corresponds
to a bound state of the conduction electron and valence
hole created by the absorption process. Recently,
G. D. Mahan [1] considered the possible existence of
such an exciton in direct gap semiconductors, in which
the conduction band may be considered as a degenerate
Fermi system. In such a case the threshold for direct

processes (the so-called Burstein [2] edge) is displaced
by an amount :

where kF is the Fermi momentum and me and mh the
electron and hole masses. In his paper, Mahan

considered only the final state interaction between the
excited electron and hole, the remaining electrons being
frozen in the usual Fermi distribution. He found that
there existed a bound state below the Burstein edge
with binding energy A of the form :

03BEo is a cut-off comparable to the Fermi energy and
g an appropriately defined coupling constant.

Mathematically, such a calculation amounts to

summing the so-called ladder diagrams : it is directly
equivalent to the old calculation of Cooper in relation
to the bound state of particle-pairs [3]. The existence
of such a discrete state below the absorption threshold
is rather surprising; Mahan himself argued that such
an exciton should have a finite lifetime, which he took
into account phenomenologically in calculating the
actual absorption spectrum.
The exciton broadening is not only due to ordinary

impurity or phonon scattering, but also to Auger-type
transitions, in which the optical process is accompanied
by the excitation of one or several electrons across the
Fermi surface. In the latter processes, momentum can
be absorbed by the extra electrons at practically no
cost in energy : the indirect absorption threshold CùI is
thus lower than the direct threshold wD as shown on

figure 1. The difference corresponds to the recoil

energy of a hole with momentum k,. We show in this

paper that such Auger processes, which were ignored
in Mahan’s calculation, deeply alter the nature of the
absorption spectrum; when WD 2013 Cù1 is large (small
hole mass) the Mahan exciton disappears completely,
the threshold at WD, is just broadened with a tail

extending to Cùp When WD- Cù1 is comparable to

Mahan’s binding energy A, a resonance develops
between the two thresholds. An exciton line, distinct
from the threshold, never exists.
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FiG. 1. - Optical absorption in a direct gap semiconductor
with a degenerate conduction band. The direct coD
and indirect Mi threshold frequencies.

A similar situation was found in the X ray absorption
of metals [4, 5, 6]. In that case, the hole created in
the deep band can be considered as infinitely heavy :
the direct and indirect thresholds then coincide. It
was shown that the absorption spectrum is singular
near COD : in the case of weak electron-hole coupling,
to which we shall limit ourselves in this paper, the

absorption is infinite at threshold. There again the
key role is played by resonant Auger transitions, in
which many electrons are excited in the course of
the X ray process. One purpose of this paper is to

study in detail how one passes continuously from the
usual Auger broadened Burstein edge to the resonant
spectrum characteristic of an infinitely heavy hole.
Qualitatively we shall see that the X ray singularity
is broadened over the energy range wD - 6)1 and

disappears if that range is too large.
The mathematical formulation of the problem is set

up in section II, the respective role of self energy and
vertex renormalization is discussed in section III, while
section IV deals with the shape of the electron absorp-
tion spectrum.

II. Formulation of the problem. - We use a model
similar to that introduced in the study of X ray absorp-
tion in metals [4]. The only difference is that the
hole now has a finite mass : it is thus necessary to

specify its momentum. The hamiltonian of the elec-
tron-hole system is written as :

ruf HI , ’:f.

where a,+ and b’ are respectively the creation-operators
for conduction and valence electrons, and Eg is thefor conduction and valence electrons, and Eg, is the
direct gap-width. Here again we ignore the Coulomb
interaction among conduction electrons, which may
be taken into account by introducing suitably renor-
malized quasiparticles. The interband part of the
Coulomb interaction (involving terms such as a+ a+ ab)
is completely neglected : (3) includes only direct
intraband scattering of the electron and the hole.

The coupling to the electromagnetic field is described
by a perturbing hamiltonian :

(the momentum of the photon is assumed to be negli-
gible). The optical absorption may be deduced from
the response function :

which we shall calculate in the framework of pertur-
bation theory. In order to simplify the calculation,
we shall use a separable potential :

, -11 ’f’ I  yo

where §o is a cut-off of the order of the Fermi energy.
The strength of the interaction is measured by the
dimensionless parameter g = vo Y, where vo is the

density of state at the Fermi level for a given spin;
using for V a screened Coulomb interaction averaged
over the Fermi surface one finds that [1] :

where rs is the usual interparticle spacing measured
in Bohr radii. In typical doped semiconductors (Ge
or InSb) rs - 1 which leads to g - 0.1 to 0.2. In
the same spirit, we assume that Wk does not depend
on k. In doing such approximations, we loose all
information related to the angular symmetry of the
various bands; such effects might be included by per-
forming a partial wave analysis of the problem. We
shall not attempt to do so, since our main purpose is
to study the qualitative shape of the spectrum near the
absorption threshold.

Besides the angular dependence of the various fac-
tors, we neglect a number of other important physical
phenomena; for instance in doped semiconductors we
ignore the electron and hole scattering on the impuri-
ties. Such an interaction leads to renormalization of
the gap and the effective masses [7], which we suppose
has been carried out. It also gives rise to tails in the
density of states near band extrema, which will act
to smear out the spectrum. In particular, for an

n-type semiconductor, the tail in the valence band
broadens the indirect threshold. Fortunately, Bonch-
Bruevich [8] has shown that in non compensated
materials the tailing effect was mostly important for
majority carriers, and relatively small for minority
carriers. We can thus reasonably assume that the
shape of the valence band is unaffected by impu-
rities (2). The main effect of impurities is to smear

(2) The Burstein edge involves hole-states with momen-
tum of order kF for which the tailing effect is unessential.
Clearly the situation would be quite different if we stu-
died light emission (due to electron-hole recombination)
instead of light absorption. In that case the shape of
the band near its minimum is all important.
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out electron and hole wave functions in momentum

space; as a result, direct transitions no longer conserve
momentum. Because of the finite hole mass, such an

uncertainty in momentum smears out the direct
threshold Mp by an amount equal to the uncertainty

in the recoil energy of the hole. If T = 1 is the
’"t’

inverse collision time, it is easily found that the threshold

smearing is of order T3, where P = me is the mass
mh

ratio. Any structure in the spectrum will be blurred
over that range of energies.
Another complication arises when either the conduc-

tion or the valence band are anisotropic; in that case
the direct threshold wD varies over the Fermi surface,
which again acts to blurr any structure in the absorp-
tion discontinuity. As for impurity scattering, these
effects tend to disappear when the hole becomes
heavier and heavier. We shall discuss briefly at the
end of the paper in which circumstances these effects
could become important.

In order to calculate the response function S(t - t’),
we introduce the electron and hole Green’s functions :

The valence band being completely filled in the ground
state, c:g(k, t - t’) vanishes for t &#x3E; t’. The deep hole
can thus only propagate in the direction of the increa-
sing times, which bears two important consequences
for our problem :

i) The pole of (k, e), in energy representation, is
always to be found in the upper half plane of the
complexe variable E.

ii) The electron propagator G(k, s) cannot be renor-
malized by the electron-hole interaction and has the
value :

(in our diagrams, G will be represented by full lines
and g by dashed lines).
We wish to calculate the response function S(w),

given by all graphs of figure 2 (summed over c, E’, k

FIG. 2. - A contribution to the response function X(w).
Dashed and full lines refer, respectively, to deep and
conduction electron propagators.

and k’). Let us get rid of the dipolar matrix elements
by writing the response function S(w) in the form :

S(w) = W)2 x(m): (10)

The simplest approximation for Z(w) is obtained in
the previously discussed model of a rigid Fermi sea,
which amounts to a summation of the "ladder dia-

grams" represented on figure 3. In this model, one

FIG. 3. - A ladder graph contributing to X(6)).

takes into account the sole diffusion between the hole
created in the valence band and the electron excited
over the Fermi sea into the conduction band. The
other electrons do not participate in the diffusion

process and are frozen by the exclusion principle.
This calculation was performed by Mahan, and yields
the following result :

where Zo (co) is the zeroth order contribution to y (co) :

In order to calculate xo, we close the integration
path in the lower half E-plane and noticing that :

""II

we thus obtain :

where v is the reduced mass.

xo has a branch point for the value :

In the vicinity of this point :

where 03B8 (w) is the usual step-function.



990

This behaviour is characteristic of the direct transi-
tions : the absorption is discontinuous at the threshold,
which leads to a logarithmic divergence of the reactive
part of the function xo. Equation (11) yields the
following result for the absorption spectrum :

In this approximation, the continuum of absorption
still starts at to = (õD, and an exciton-type bound
state appears below the threshold at a distance Ço e -l/g
as shown on figure 4.

FIG. 4. - Im x (m) derived in the "ladder approximation".
Dotted line refers to zeroth order : 1m Xo(ù)).

Such a bound state, which exists in insulating semi-
conductors, has no physical meaning in the degenerate
case, where it would be immediately broadened by
excitation of other conduction electrons. In order
to introduce these processes in the calculation, it is

necessary to go beyond the scheme of a rigid Fermi
sea, and to allow for the propagation of conduction
electrons in both time directions. The simplest corres-
ponding diagrams are shown on figure 5.

e+w,k .

FIG. 5. - The two second order contributions to X(ù»
involving indirect transitions :

a) Corresponds to propagator renormalization.
b) Corresponds to vertex renormalization.

It is seen on figure 5 that the intermediate state
between the two interaction vertices introduces, in
addition to the electron and the deep hole, an excited
conduction electron-hole pair. As shown by an ele-
mentary calculation, the corresponding absorption is
continuous starting from the threshold (ÙI = EG -E- 03BC.
This behaviour, characteristic of an indirect transition,
expresses the fact that the momentum of the inter-

mediate hole can take any value. The excited pair
carries away the remaining momentum in order to
ensure momentum conservation.

In the weak coupling limit and when the two
thresholds wI and co, are well apart (p -- 1 ), the
behaviour of the absorption spectrum close to WI is

governed by these two diagrams, which give contri-
butions of the same order g2.

This is obviously no longer true in the vicinity ofmD,
where solutions of a Dyson equation for the propa-
gator g(k, c), and of a Bethe-Salpeter equation for
the electron hole scattering amplitude, have to be
found. In order to take the indirect transitions cor-

rectly into account, the deep hole propagator and the
electron hole interaction kernel should be renorma-
lized. In part III, the general characteristics of these
two types of renormalization are studied and their

respective effects on the correlation function are dis-
cussed. The response function and the absorption
spectrum are effectively calculated in part IV.

III. Renormalization. - Let us first consider the
renormalization of G. In the weak coupling limit,
the sole diagram involving one excited conduction
electron hole pair (shown on fig. 6), should be retained
in the calculation of the hole self energy E.

FIG. 6. - The lowest order self energy E of the deep hole
(summed over k3L, k’, e1, e’).

Let us see the consequences of this renormalization
on the elementary bubble of figure 7 where the double-
dashed line represents, as usual, the renormalized

FIG. 7. - The zeroth order contribution 7r,(co) to the
response function (summed over k, e). Double dashed
line refers to a renormalized deep hole propagator.

propagator. The corresponding contribution can be
written similarly to (eq. 14) :
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The absorption is no longer a step function as it was
for xo(w), but is now controlled by Im I. It is shown
in appendix A that Im 7to( ù) is continuous starting
from the indirect absorption threshold ooj. The dis-

continuity which appeared when the renormalization
of the propagator was neglected, is now broadened

over an energy range g2 fiy, where P == me is the mass
mh

ratio. Although weak, this broadening has important
analytical inferences : in particular the corresponding
reactive part of the response function is no longer
strictly divergent. Re 7to is a smooth function in co,
with a maximum of order Ln pg2 attained to for m - co,.
The summation of the ladder diagrams will be

affected by this result, which is a dramatic consequence
of the introduction of indirect transitions. Parti-

cularly in the case where g Ln fig2 « 1, this summa-
tion reduces to its first term, and the absorption is

simply given by Im 7to(Ù)’ Any singular behaviour
has vanished.

When g Ln Pg 2 &#x3E; 1, a solution of the Bethe-Salpeter
equation is required. Upon using for the irreducible
interaction I the first order vertex, one is directly lead
to the summation of ladder diagrams of renormalized
elementary bubbles. This amounts to replace Xo(Ù)
by co(co) in equation (16). One then finds an absorp-
tion spectrum with a double hump near the threshold
WD, which resembles that found by Mahan. Such a

manifestly spurious structure is the outcome of an
inconsistent procedure : one must use similar approxi-
mations in the self energy and vertex renormalization
in order to preserve conservation laws. Indeed, when
the renormalization of I is taken into account, this

spurious structure vanishes.
In order to remain consistent with our approximation

for E, we use for the irreducible interaction I the
lowest order diagrams of figure 8, limiting our study

FIG. 8. - The first two diagrams contributing to the
irreducible interaction I2 (summed over e1, ki) .

to the interaction kernel involved in the response
function : the electron and the hole enter the diagram
with the same momentum k, and leave with the same
momentum k’. This diffusion kernel is calculated in

appendix B. It should be noticed that I is calculated
with a non-renormalized hole propagator. Such a

renormalization would merely lead to a negligible
correction, in so far as I is not divergent (3). The
maximum value reached by its real part is of the order
of magnitude of Vg Ln P.
As soon as the parameter g Ln P becomes of the order

of unity, higher order diagrams contributing to I can
no longer be neglected. A similar analysis to the one
done in the case when P = 0 [4], shows that one
must sum up the so-called parquet graphs, built with
elementary bubbles of both parallel and antiparallel
lines. This calculation is done in the following section.
To conclude, let us recall the different cases which

may occur :

1) Strong curvature of the valence band : g Ln P  1.
In this case, the renormalization of g renders aimless
the summation of the ladder diagrams. The response
function is determined by the first renormalized

diagram :
x(m) = 7to ( Cù ) .

2) The valence band is almost flat. g Ln fi t 1.
The algebra of parquet diagrams is then necessary.

IV. Response function and absorption spectrum. -
We consider successively the two limiting cases of a
light and very heavy hole :

1. g Ln P  1 i.e. fiy &#x3E;&#x3E; o e- 119. - The distance
between the two thresholds is much larger than the
binding energy of the "Mahan exciton". Close to COD,
the absorption is then determined by the sole renorma-
lized elementary diagram of figure 7, the contribu-
tion 7to(Cù) of which (calculated in appendix A) leads
to the absorption spectrum shown on figure 11 a.

Any structure has been swept away by the indirect
transitions, and no trace of an excitonic level remains.

In the immediate vicinity of coj, the absorption is
controlled by the first two diagrams of the perturbation
expansion pictured on figure 5, and is shown to vary
as g2 (w - CùI) 7/2.

2. g Ln Z 1 i. e. o e - l/u. - The "peak" is
then in the vicinity of ooj, in a region where the conti-
nuum is either non existent or still very weak (4).
Every "parquet graph" has then to be taken into

(3) If P = 0, 1 is then divergent, but the renormaliza-
tion of the hole propagator brings about a negligible
correction to the absorption spectrum in the weak cou-
pling limit (see ref. [5] ) .

(4) The position of the exciton peak is shown in

Appendix C to be very sensitive to the renormalization
of the interaction kernel. Solving the B.S. equation
with I but unrenormalized propagators, we find that the
peak is all the more nearer to the direct transition
threshold COD as p is smaller. This implies that, in the
weak coupling limit, the peak is always to be found in
a region where the continuum is already built up. The
renormalization of 9 then ensures that the peak spreads
out into the continuum. Although slightly academic,
this calculation clearly displays the decay process of the
exciton peak, within the continuum associated with the
indirect transitions.
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account. The analysis performed in ref. [4] is briefly
recalled and adjusted to the actual problem.

Let h and I, be the contributions of all irreducible
diagrams in respectively the parallel and antiparallel
channels. A Bethe-Salpeter equation with the irre-
ducible kernel 12 has to be solved. Let us write down

this equation for the vertex part A(k, e, co), characte-
ristic of the problem we are interested in. The Bethe-

Salpeter equation for A is represented on figure 9, the
mathematical translation of which being :

FIG. 9. - The Bethe-Salpeter equation
for the vertex part A.

In order to carry out the integration over s’, we note
that the hole can only propagate in the direction of
increasing times. This ensures that the entrance

time tl of a dashed line in a kernel is strictly greater
than its exit time t2. Similarly, entrance and exit
times i and T’ of the electron line are necessarily to
be found between t1 and t2, as shown on figure 10 a.

FiG.10.

a) Time ordering of the entrance and exit vertices
of an interaction kernel.

b) Corresponding energy variables.

In the energy representation (fig. 10 b), it follows
that the poles of any interaction kernel, e. g. I, (e, E’, co),
can only be found in the upper half planes of the
complexe variables E and e’. A similar conclusion
holds for g. The integration over E’ is then easily
carried out by closing the contour in the lower half
plane. (18) reduces to :

For the same reason the equation for Z(co) :

,

It is thus only necessary to determine A for the
value :

k2

E == - (ù + - - fl.2m,,

h and 12 are solutions of two coupled integral
equations (eq. (20) of ref. [4]). These solutions have
been derived for the case where P = 0 and within
the framework of a logarithmic approximation. The

expression for 12 involved in the calculation of the
absorption spectrum, was then shown to reduce to
the contribution of the sole diagrams of figure 8. This
conclusion still holds for finite values of P, small enough
to let a logarithmic approximation be meaningful.
A solution to equation (19) will therefore be looked
for upon substituting for 12 the expression obtained
in appendix B.
An analytical solution may be obtained within the

framework of a logarithmic approximation similar to
the one previously used [4]. In so far as we are only
interested in determining the qualitative feature of the
absorption near the resonance, we shall only look for
the most singular behaviour of the vertex part A,
arising from the logarithmic singularities of the two
elementary components I and no in the neighbourhood
of the direct threshold (ÙD’ In this energy region, I can
be well approximated by the following simple expres-
sion (cf. appendix B) :

-- - , .. - . - , -

/ B
Substituting everywhere (- W + k2 - » for e

B 2m, /

and introducing the notations :
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equation (19) can be written as :

According to (A. 2), the self energy E itself can be
written :

We wish to find a solution to equation (22), taking
only into account the most divergent logarithmic
terms. In this approximation, the contribution to g
of the self energy becomes important only when
ç’ ;S g2 B03BC. Collecting the most divergent logarithmic
terms, we write (22) in the simplified form :

The lower boundary of the integral in (23) enters
through its logarithm. In the range under considera-

tion, in which g Ln P - 1, g  1, we may replace
Ln (pp. g2) by Ln fiy, with a logarithmically small error,
and then modify accordingly the boundaries of (23).
The same approximation may be applied to x, given
by (20), which becomes :

Equations (23) and (24) are then formally similar
to those found in ref. [4], except that 16) - 6)D I is

replaced by max (16) - 6)n I, Pp,). The same loga-
rithmic approximation may be used, and yields :
x. (6))

The absorption is determined by Im Z(co). The
easiest way to get it, is to add the relevant imaginary
part to the logarithmic term of (25). This logarithm
in the exponent is the real part of the one renormalized
bubble 7o; the associated imaginary f (w) is the spec-

trum modified by Auger broadening, but not by the
electron hole scattering resonance. Its general beha-
viour is shown on figure 11 a. Inserting this imaginary
part in (25), we find :

Figure 11 displays the main features of the absorption

spectra for different values of the parameter P = me
mh

which characterizes the curvature of the valence band.
It is possible to proceed continuously to the limiting
case of an infinitely flat band (3 = 0) previously
studied in the problem of X ray absorption in metals.
This case corresponds to the last graph of figure 11.

FIG. 11. - The shape of the absorption spectra

for different values of the parameter 6 = me .
Mh

The essential point is to compare the recoil energy
of the hole, characterized by the distance between
the direct and indirect thresholds, to the binding energy
of the bound state obtained while ignoring the indirect
transitions. In order to illustrate this discussion, we
indicate by a dotted line the position of this unstable
bound state.
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Conclusion. - We have shown that whenever the
conduction band of a doped semiconductor is filled

enough for the electrons to be treated as a degenerate
Fermi gas, the exciton level, as observed in the optical
absorption of weakly doped semiconductors, vanishes.
Indeed, such a bound state is then unstable, and
decays by excitation of conduction electron-hole pairs.
Taking correctly into account the associated processes,
we have displayed the importance of the valence band
curvature in the determination of the optical absorption
spectra.
We have been able to perform the calculation for

different values of the parameter 6 == me and derive
mh

the corresponding features of the absorption spectra.
When the hole mass increases a resonance develops in
the neighbourhood of the absorption threshold, and in
the limit where P = 0, it merges into the singularity
found in our previous study of metals. The disconti-

nuity observed for an infinite hole mass is spread over

a width PU which is a measure of the hole recoil energy.
In the case of heavily doped semiconductors, the

resonance is broadened by other means such as, for
instance, scattering of electrons on impurities. If r
measures the corresponding broadening of the spectral
density of conduction electrons, it is easily seen that
the resonance spreads over a width of order tB. In

particular when P = 0, the resonance is not affected

by impurity scattering; indeed, this resonance is linked
to the discontinuity of the Fermi function n(e) and
not to that of the distribution function of momenta n(k),
which alone is modified by scattering on impurities.
In so far as r is very small compared to y, the result
previously obtained can be considered unaltered by
the presence of impurities.

Appendix A. - CALCULATION OF THE IMAGINARY
PART OF THE SELF ENERGY. - To second order in the

interaction, the self energy of the deep hole propagator
is represented by the diagram ( fig. 6). Its contri-
bution is :

The integration over the energy variables is straightforward and leads to :

the calculation is tedious but not difficult : it can be performed upon using a sequence of transformations
into bipolar coordinates. Limiting our study to the expression of e involved in the calculation of no,
/ k2 B(S - 2m, - 03BC w ), and for values of to within the two thresholds, we find :B 2me 

03BC-w /

The calculation of the "elementary bubble" no with a renormalized propagator ( fig. 7) can then easily
be performed upon assuming that the small shift in energy associated with Re L is already included in the
definition of the interband gap EG :
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leading to :

In so far as we limit our study to values of (ù between (Oj and (ÙD, the most important contribution arises
for propagators with momenta close to kF. Thus in the term Im E involved in the denominator, k, is substi-
tuded for k. The behaviour of -rco(co) is then well described by the following formulae :

Appendix B. - CALCULATION OF THE INTERACTION KERNEL. - The second order irreducible inter-
action kernel J is represented by the diagram of the figure 8 b. Its contribution can be written :

Successive integration over el and transformation into bipolar coordinates lead to :

After a straightforward calculation, we get :
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The values of e and e’ explicitely involved in the
calculation of the response function are :

therefore :

with :

In so far as m’ = P  1 and for values of w close
mh

to WD, an expansion of Re J, up to first order in the
parameters P and Qkkf can be performed and leads to :

A study of the different limiting cases then allows
one to approximate Re J by the expression :

this simplified form of Re J is to be used for the kernel
of the Bethe-Salpeter equation.

Appendix C. - In this appendix, a solution of the
Bethe-Salpeter equation with the irreducible kernel I,
but unrenormalized propagators, is calculated within
the logarithmic approximation.

This equation, written for the vertex part, is :

In so far as we ultimately determine the response
function x(w) which is, within the same approximation,
given by :

we look for a solution of the Bethe-Salpeter equation
only for values of § larger than w - WD . A glance
at the expression of the integral kernel shows that,

when W- COD &#x3E; 03B203BC the argument of the logarithm,
within the logarithmic approximation, is equal to

max (03BE,03BE) . . The Bethe-Salpeter equation is then
o 

p q

easily solved and yields :

The B.S. equation still has to be solved in the energy
region w - mD ) £ Pp. where two determinations

of A(Cù, §) , according to the relative values of § and 03B203BC
have to be used. These two determinations are solu-
tions of the following system of integral equations :

In order to solve this system, it is convenient to use

logarithmic variables. We ultimately find :

Upon inserting this expression in x(w) :

which is valid if W- COD  B03BC
This result might suggest that the only effect of the

renormalization of the interaction kernel is to shift
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the binding energy of the Mahan’s exciton from 03BE0, e- 1117
to a new value P times smaller. Actually this is not
the case as much before I w - mD I reaches such a
small value, the renormalization of 9 has to be taken
into account.

When I Cù - (ÙD I ,$ pyg2 a little thinking shows
that the renormalization of the propagator of the deep
hole can be included in the B.S. equation by intro-
ducing a cut off or order pyg2 on the first integrals.
This is equivalent to substituting max ( (ù - CùD I, fLg2)
for the lower boundary I (ù - CùD I. - Within the energy

region we are interested in, the result is thus obtained
by substituting pyg2 for I (ù - coD 1; we get :

if I GJ - CJD I 
One can check on this expression that any possibility

of an excitonic peak is swept away by the renorma-
lization of g.

In the limit where g  1 one is lead again to re-
sult (26).

REFERENCES

[1] MAHAN (G. D.), Phys. Rev., 1967, 153, 882.

[2] BURSTEIN (E.), Phys. Rev., 1954, 93, 632.

[3] COOPER (L. N.), Phys. Rev., 1956, 104, 1189.
[4] ROULET (B.), GAVORET (J.) et NOZIÈRES (P.), Phys.

Rev., 1969, 178, 1072.

[5] NOZIÈRES (P.), GAVORET (J.) et ROULET (B.), Phys.
Rev., 1969, 178, 1084.

[6] NOZIÈRES (P.) et DE DOMINICIS (C. T.), Phys. Rev.,
1969, 178, 1097.

[7] WOLFF (P. A.), Phys. Rev., 1962, 126, 405.

[8] BONCH-BRUEVICH, Electronic theory of heavily doped
semiconductors, Elsevier Publ., 1966.


