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We investigate the optical absorption spectrum in a Holstein model for a molecular chain with Frenkel
excitons and linear coupling to one internal vibration. The model is extended for nearest-neighbor charge-
transfer excitons that mix with the Frenkel excitons. We represent the Hamiltonian in a displaced oscillator
�Lang-Firsov� basis and employ a problem-adapted scheme for the truncation of the phonon basis. For weak
and intermediate electronic coupling, the complete absorption spectrum and the structure of the relevant
eigenstates become accessible by direct numerical diagonalization. We discuss the structure of the phonon
clouds and the applicability of the molecular vibron model, in which only joint exciton-phonon configurations
are included. As examples, we model absorption spectra of PTCDA �3,4,9,10-perylenetetracarboxylic dianhy-
dride� and MePTCDI (N-N�-dimethylperylene-3,4,9,10-dicarboximide�.
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I. INTRODUCTION

There is revived interest in organic semiconductors based
on �-conjugated molecules. The reasons are commercially
attractive results in organic LED’s �e.g., Refs. 1–5�, promis-
ing demonstrations of solar cells �e.g., Refs. 6–10� and the
fundamental physics of high quality single crystals showing
band transport,11 ballistic hole transport,12 fractional quan-
tum Hall effects,13 charge injection lasers,14
superconductivity,15 or superconducting switches.16 There-
fore, a detailed understanding of various electronic excita-
tions becomes desirable.
In this article, we investigate the optical absorption spec-

trum in a Holstein model17,18 for a molecular chain with
Frenkel excitons and linear coupling to one internal vibra-
tion. We extend the model to include nearest-neighbor
charge-transfer �CT� excitons that mix with the Frenkel ex-
citons. Such a model is approximately realized by some
quasi-one-dimensional molecular crystals, in particular by
PTCDA �3,4,9,10-perylenetetracarboxylic dianhydride�,
MePTCDI �N-N�-dimethylperylene-3,4,9,10-dicarboximide�,
or related perylene derivatives. PTCDA has become a para-
digm because it readily forms highly ordered films,19,20 while
perylene derivatives have solar cells applications.6,7,9 Several
works have sought to understand the PTCDA absorption
spectrum and related properties of its electronic
excitations.21–27
A major advantage of PTCDA-related systems is simple

and accessible molecular behavior. The lowest �-�* excita-
tion is dipole allowed and well separated from higher states
�e.g. Refs. 28,29�. This excitation couples to several vibra-
tions of the carbon backbone,30 but the most strongly
coupled modes are almost degenerate and can be treated as
one effective mode �see, e.g., Ref. 31 or Sec. V�. Since the
vibrational quantum in the ground and excited state is almost
the same, we have a textbook example of linear exciton-
phonon coupling. Furthermore, other perylene derivatives
show similar molecular properties but form very different

crystal structures with correspondingly different crystal
spectra.32 All recent interpretations of crystal absorption
spectra24–27 use the framework of small-radius excitons.
However, there is no general agreement yet about the role of
CT excitons, about the choice between a complete Holstein
model or a molecular vibron model, and about the concrete
values of various interaction parameters.
Although motivated by perylene spectra, we will discuss

general aspects of relaxed excited states in the Holstein
model. This familiar one-dimensional model, as summarized
in Sec. II A, has harmonic potentials with quanta �� , linear
electron-phonon coupling g for each molecule, and an exci-
tation transfer integral J between neighbors. Taking g and J
in units of �� , we have two control parameters that encom-
pass many cases of interest.
In the molecular limit �no interaction, J�0), optical ab-

sorption creates only exciton-phonon configurations at the
same site. For finite J, these joint configurations can mix
with configurations in which the exciton and phonons oc-
cupy different sites. The resulting eigenstates have a complex
structure consisting of an exciton surrounded by a phonon
cloud. We focus below on the structure and modeling of
these phonon clouds.
The eigenstate structure varies widely with respect to g

and J. For optical spectroscopy, the analysis typically starts
with vibronic properties of isolated molecules and then in-
troduces electronic coupling. The limiting cases are called
weak �electronic� coupling and strong �electronic� coupling.
This classification was introduced by Simpson and
Peterson33 and is mainly used in spectroscopy �e.g., Ref. 34�.
In the weak coupling regime (J�g), the transfer of elec-
tronic excitation is ‘‘slow’’ compared to the nuclear relax-
ation time within the molecule. The crystal spectrum will
then resemble the vibronic structure of the isolated molecule.
In the strong coupling regime (J�g), the electronic transfer
is ‘‘fast’’ compared to the nuclear relaxation and a Born-
Oppenheimer separation between the electronic and vibronic
wave functions of the whole crystal can be made. Since the
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electronic excitation is now completely delocalized, the cou-
pling to the vibrational system vanishes and the spectrum
becomes a single narrow line. We adopt the spectroscopic
classification of the limiting cases and consider weak to in-
termediate coupling.
In the context of charge-carrier mobilities, by contrast, the

natural starting point is delocalized electronic excitations.
The coupling to vibrational modes of the lattice is then in-
troduced as the second step. From this point of view, the
relevant limiting cases are classified in the opposite spirit:
There is either ‘‘weak �electron-phonon� coupling’’ (g�J)
or ‘‘strong �electron-phonon� coupling’’ (g�J).
The Holstein Hamiltonian has been extensively studied

and reviewed in the context of mobility at zero and finite
temperatures.17,18,35–41 Since the Hamiltonian cannot be
solved analytically, the emphasis in these traditional works
lies on studies of perturbative limits. In the course of re-
newed interest in molecular crystals and other narrow-
bandwidth systems and in connection with increasing com-
puter capabilities, a variety of numerical studies have
recently been undertaken to explore the lowest state in the
full parameter range. These include variational
approaches,42–48 direct diagonalization,49–53 quantum Monte
Carlo calculations54–57 and density-matrix renormalization-
group techniques.58
Compared to this, the properties of higher states have

been much less investigated. These excited vibronic states,
however, are essential for an understanding of optical ab-
sorption spectra. The relevant issues were identified in the
initial studies of molecular crystals and limiting cases were
analyzed �see, e.g., Refs. 34, 59�. For intermediate coupling,
however, only a few quantitative studies have been pub-
lished. These include direct diagonalization studies of
dimers,60,24 variational and direct-diagonalization study of
linear aggregates,61–64 and a discussion of the second lowest
vibronic state in an infinite chain.53
In this article, we describe a direct-diagonalization ap-

proach to the complete optical spectrum of vibronic states.
For direct diagonalization, the choice of a proper basis set is
crucial to allow convergence and sufficient flexibility with-
out becoming inconveniently large. We consider an infinite
chain and include translational symmetry by using basis
states in momentum space. Thus, some of the finite-size is-
sues in aggregate studies are avoided from the outset. The
truncation of the basis set is done by considering only pho-
non clouds localized around the exciton. Furthermore, we
use a displaced oscillator basis �Lang-Firsov basis�, which is
exact for the molecular limit of no hopping. This scheme
allows a flexible description of weak and intermediate elec-
tronic coupling (g�1, �J��1). In this regime, optical spec-
tra can be calculated with an accuracy sufficient for compari-
son with experiments by diagonalizing matrices of
dimension �5000. Thus, standard eigenvalue routines can be
used and the nature of all excited states can easily be inves-
tigated. Our approach is extended to include charge-transfer
states. Applications to absorption spectra of PTCDA and
MePTCDI are given as examples.

II. THE FRENKEL PROBLEM: REPRESENTATION AND
SCHEME FOR NUMERICAL SOLUTION

A. The Holstein Hamiltonian

The Holstein model17,18 assumes a one-dimensional mo-
lecular chain. Each molecule has one vibrational and one
electronic degree of freedom. Vibrationally, each molecule n
has one effective configuration coordinate �n . The vibra-
tional potential is Vn

gr��n
2 in the electronic ground and Vn

ex

�(�n�g)2 in the excited state. All energies are measured in
units of the vibrational quantum �� . The dimensionless
exciton-phonon coupling constant g is related to the vibra-
tional relaxation energy �Franck-Condon energy� of the ex-
cited molecule by EFC�g2. Creation and annihilation opera-
tors for vibrations in the potential Vn

gr are denoted by bn
† and

bn .
Electronically, molecule n can be either in the ground

state or in the first excited state. Operators an
† are introduced

to create an excitation at site n from the electronic ground
state of the chain �0el	. In the Holstein model, the quasipar-
ticle an

†�0el	 can be either an exciton or, as originally dis-
cussed, a charge carrier. The hopping integral J �in units of
��) describes the nearest-neighbor transfer of the quasipar-
ticle as in a tight-binding model.
Using these definitions, the complete Holstein Hamil-

tonian for a Frenkel exciton �FE� can be written as

Hhol
FE�Helec

FE �Hph�HFE-ph, �1�

Helec
FE �J


n
�an
†an�1�an�1

† an�, �2�

Hph�

n
bn
†bn , �3�

HFE-ph�

n
an
†an��g�bn

†�bn��g2� . �4�

Here, the last term HFE-ph couples linearly the otherwise in-
dependent exciton and phonon systems. Thus, the Holstein
Hamiltonian operates on states that generally consist of both
exciton and phonon excitations. Such states, if they contain
at least one exciton, are called vibronic states.
The Holstein Hamiltonian conserves the number of exci-

tons. We are interested only in the states with exactly one
exciton. Therefore, Eqs. �1�–�4� are already written for this
subspace of ‘‘one-exciton states,’’ and the exciton counting
term 
nan

†an is omitted. The constant g2 in Eq. �4� is added
to align the zero of the energy axis with the lowest vibronic
state of the molecular limit (J�0). This energy scale reflects
the exciton viewpoint, in which the states of the isolated
molecules including their internal exciton-phonon coupling
are used as reference states. The lowest vibronic state from
our one-exciton space should not be confused with the total
ground state of the crystal, in which there are neither exciton
nor phonon excitations.
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B. Basis set and matrix elements

Our aim is to find numerically the low energy eigenstates
of the Holstein Hamiltonian �1� within the one-exciton mani-
fold. As basis functions, we use the eigenstates �n	 from the
limiting case of zero exciton hopping (J�0). We call this
the molecular limit, since all intermolecular interaction terms
are turned off now. In the molecular limit, an exciton local-
ized at site n is stationary and the vibrational wave functions
at this site are given by oscillator functions in the displaced
potential Vex. At all other sites, which we count relative to
the position of the exciton, the vibrational wave functions are
oscillator functions in the ground state potential Vgr.
Thus, the basis functions can be written as

�5�

�6�

Here, the first factor �‘‘electronic’’� describes the electronic
part of a localized Frenkel exciton at site n. The second
factor �‘‘displaced’’� describes internal phonons at this site n
of the exciton. The displaced ground state is denoted by �0̃n	
and the operator b̃n

†�bn
†�g creates phonon excitations in

this potential. The third factor �‘‘undisplaced’’� describes in-
ternal phonons at all sites different from n in the undisplaced
potential. The choice of the displaced basis functions from
Eq. �5� corresponds to applying the polaron canonical trans-
formation �Lang-Firsov transformation� to a set of basis
functions, in which all vibrational functions �including the
site n of the exciton� are oscillator functions in the ground
state potential �Ref. 35 or see, e.g., Ref. 39, p. 98, Ref. 40, p.
25�.
The phonon-cloud state �	 contains the phonon occupa-

tion numbers m around the exciton for all lattice sites. In
long notation �•••�1̃01•••	, the special position of the
exciton (m�0) is denoted by a tilde. A complete phonon-
cloud basis for a chain of N molecules consists of N-boson
states and leads to huge basis sets even for small occupation
numbers. But a far smaller basis is sufficient to calculate the
absorption spectrum. Optical absorption from the electronic
and vibrational ground state only creates phonons at the site
of the electronic excitation, i.e. only states of the form
�•••000̃0000•••	. Excited states with any m�0 for m
�0 cannot be reached optically.
For J�0, these ‘‘dark’’ states cannot mix with the opti-

cally active basis states either. Then, instead of the N-particle
states �	 we can use the one-particle states �0	. For �J�
�0, the dark basis states can mix with the optically active
states. That means that optical absorption creates a state in
which phonons are excited at arbitrary distance from the ex-
citon site. However, the contribution of such separated con-

figurations decreases with increasing exciton-phonon separa-
tion. Thus, the exciton will be surrounded by a localized
phonon cloud. The localized nature of phonon clouds is the
motivation for our choice of basis functions. Instead of
N-dimensional cloud states �	, a finite range ��M••• ̃0•••M	, with M denoting the extension of the phonon cloud,
will be sufficient. Numerically, M can be increased until con-
vergence is reached.
With the restriction to local phonon clouds around the

exciton, we Fourier transform the basis states �5�:

�k	�
1

�N 
n eikn�n	. �7�

These states represent an exciton ‘‘dressed’’ with a local pho-
non cloud. The index k gives the quasimomentum of the
whole object, i.e., the dressed exciton, and k is a good quan-
tum number due to translational symmetry. Thus, for any
given k the basis set consists only of a set of phonon cloud
configurations. We emphasize that in contrast to the real-
space basis �5�, the momentum-space basis functions �7� are
not Born-Oppenheimer separable into a product of a purely
electronic and a purely vibrational part.
Having specified the basis states, the Hamiltonian can be

represented as a matrix. Application of HHol
FE to the real space

states from Eq. �5� yields the matrix elements

�m��HHol
FE �n	��m ,n���	


i
 i

�J��m ,n�1F�1� � � ��m ,n�1F�1� � � � .
�8�

The first term in this compact notation results from the op-
erators Hph and HFE-ph. They contain no interactions between
different sites and thus simply count the phonons in the
Lang-Firsov basis. The overlap factor ���	 stands for the
total overlap of two phonon clouds centered at the same lat-
tice site. It is nonzero only for identical clouds due to the
orthogonality of the oscillator functions

���	��
i
�� i� i	, �9�

where ���	��� is the overlap between oscillator func-
tions in the same potential.
The second term in Eq. �8� results from the purely elec-

tronic Frenkel transfer process Helec
FE . The vibrational part of

the basis functions factors out and leads to the Franck-
Condon overlaps F	1 for the total vibronic overlap of the
phonon cloud  centered at n and the phonon cloud � cen-
tered at m�n	1:

F�1�S� �0�1
� S� 0

��1
� �
i�0,1

�� i� i�1	, �10�
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F�1�S� 0

��1
� S� �0

�1
� �
i��1,0

�� i� i�1	 . �11�

Here, S(�
 ) is the overlap between a displaced oscillator

function with quantum number  and an undisplaced func-
tion with quantum number � �Ref. 65�

S� � ��� 1

��!
�b†��0� 1�! � b̃†�0	

�
e�g2/2

��!!


i�0

min(� ,)
��1 ��ig���2i�!!

i!���i �!��i �!
. �12�

It is obvious that in the Lang-Firsov basis the strength g of
the exciton-phonon coupling enters only through the magni-
tude of the factors F	1 in the intersite hopping term.
In the momentum space representation �6�, the Hamil-

tonian matrix becomes

�k��HHol
FE �k	����	


i
 i

�J� e�ikF�1� � � �e�ikF�1� � � � . �13�

For general momenta k, these matrix elements are complex
numbers. For our intended application to spectroscopy, the
values at the Brillouin-zone edges (k�0,�) are of interest
and there the matrix elements are real. Representing the final
eigenstates as

�� j�k �	�


u j�k ��k	, �14�

we obtain the eigenvalue problem



�
�k��HHol

FE �k	u� j�E ju j �15�

for the real matrix �k��HHol
FE �k	. Its eigenvalues E j and

eigenstates �� j(k)	 are the stationary solutions of the Hol-
stein Hamiltonian �1�.

C. Transition dipoles and phonon clouds of the eigenstates

The properties of the eigenstates �14� are easily com-
puted. We start with the transition dipole moment between
the eigenstates and the total ground state. For a light wave
with wave vector q, the transition dipole operator is

P̂q�
1

�N 
n e�iqn�an
†�an�, �16�

The normalization is such that the absolute squared transition
dipole per unit cell becomes p�M

2 , with p�M being the molecu-
lar transition dipole. The transition dipole of a state �� j(k)	
will be nonzero only for q�k . Therefore, we introduce a
k-dependent transition dipole

P j�k ���� j�k �� P̂k�0tot	. �17�

Inserting the explicit expression �13�, one obtains

P j�k ��


u j* S� 00 ��

r�0
�r�0	. �18�

The squares of these transition moments are the spectral
weights of the corresponding states and obey the sum rule



j
P j
2�k ��1. �19�

For k�0, P j(0) gives the transition dipole for optical exci-
tation, and P j

2(0) determines the spectral weight of the state
in an absorption spectrum. For general k, the spectral weight
P j
2(k) can be viewed as the exciton character of state

�� j(k)	 since P j(k) is the projection of this state onto a
Frenkel exciton without phonon excitations.
As an illustration, we show in Fig. 1 the results of such a

calculation for k�0 and the parameters J�0.5 and g�1.
The energy levels E j of the eigenstates are arranged at a
vertical energy axis in the left part. Their spectral weight P j

2

is indicated by the horizontal length of each stick. The lowest
state appears as a solitary stick at E1�0.0074. At higher

FIG. 1. Illustration of the eigenstates and their properties for a
numerical solution of the Holstein model �1� with parameters J
�0.5 and g�1 at total momentum k�0. In the left panel, the
optically active eigenstates are shown at a vertical energy axis. The
sticks indicate the spectral weight P j

2 of each state according to Eq.
�17�. For a visualization of the resulting spectrum, the stick spec-
trum is convolved with a Gaussian �standard derivation ��0.15)
and the broadened spectrum is scaled for easy superposition �here,
area � f (E)dE�0.5�. In the right panels, the occupation number
clouds �N̂m	 and displacement clouds ��̂m	 are shown for two par-
ticular eigenstates �see comments to Eqs. �20� and �21��.
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energies, the spectrum consists of many densely packed lines
resulting from the mixture of the various phonon cloud con-
figurations in the basis set. The numerical spectrum remains
discrete only because the basis is finite. To illustrate the
dense vibronic manifold, we always convolve stick spectra
with a Gaussian of constant standard derivation (��0.15)
and show the broadened spectrum using a convenient scaling
factor.
Another important property of a vibronic state �� j(k)	 is

the internal structure of its phonon cloud. One measure to
characterize it is the set of expectation values �N̂m	 for the
occupation number operators

�N̂m	��

n
an
†anbn�m

† bn�m	 . �20�

These occupation numbers show how many phonons are ex-
cited at the oscillator that is m lattice spacings from the ex-
citon. Note that they depend on the displacement chosen for
the oscillator functions in the basis set. Thus, they are no
observable quantities. They are mainly important for choos-
ing a reasonable basis set: Since numerically for each rela-
tive site m, only states up to a predefined number m

max can be
included in the basis set, it must be assured that �N̂m	
�m

max . These phonon occupation numbers are again illus-
trated in Fig. 1 for two representative eigenstates of high
spectral weight. For the lowest state at E1�0.0074, there are
0.16 phonons at the exciton site (m�0), and the total pho-
non number is 
m�Nm	�0.34. In the molecular limit, this
state would be the zero-phonon state, but the hopping term J
leads to a nonzero phonon occupation number. At a higher
state E41�2.28, the total phonon number is 2.12 with a peak
value of �N̂0	�1.05. This state originates from the two-
phonon state in the molecular limit. Electronic delocalization
leads to broad phonon clouds.
A description of the phonon cloud that is independent of

the basis set can be provided by the expectation values of the
displacement operators

��̂m	��

n
an
†an
bn�m
† �bn�m

2 	 . �21�

This displacement cloud ��m	 gives the average distortion
from equilibrium �along the dimensionless normal coordi-
nate �) at a molecule which is m sites from the exciton. Note
that the exciton itself is completely delocalized in real space
and so is the displacement cloud. With respect to the basis
representation �5�, the displacement cloud of a state �� j(k)	
�14� is obtained as

��̂m	�

�
u� j* u j
� �

r�m
��r�r	 � ��m�1

2 ��m�m�1	

�
�m
2 ��m�m�1	�g�m ,0��0�0	 � . �22�

Again, Fig. 1 may serve as an illustration. There, the dis-
placement clouds are shown for the same representative
states that were analyzed in terms of occupation number

clouds. The narrow clouds show that the actual lattice distor-
tion is much more localized around the exciton than the
broad occupation number clouds might suggest. This differ-
ence results from the fact that the vibronic wave function in
the actual eigenstates cannot be accurately represented by
single oscillator functions of the special Lang-Firsov basis.

D. Truncated phonon basis and symmetry adaptation

By now, the formal tools for calculating and analyzing the
eigenstates of the Holstein Hamiltonian �1� have been col-
lected. The only remaining issue is how to truncate the infi-
nite phonon-cloud basis to a number that allows numerical
diagonalization. For this, we first restrict the basis to cloud
states of the form

�M	���M••• ̃0•••�M	. �23�

This means that only phonon clouds localized at the 2M
�1 molecules around the exciton are included whereas free
phonons can only be approximated using large M.
Second, for each position in the phonon-cloud we restrict

the maximum occupation number

m�m
max. �24�

In this way, the localized nature of the phonon cloud can
better be taken into account by considering only small occu-
pation numbers m

max at sites far away from the exciton. A
typical cutoff vector as used for the calculation in Fig. 1 has
M�5 and �max	��123456̃54321	.
Third, among these states we include only those for which

the total number of phonons does not exceed a given maxi-
mum



m

m� tot
max . �25�

In this way, high-energy basis states are excluded. Since the
overlap factors for states with high vibrational excitation de-
crease rapidly, these states do not appear in the absorption
spectrum. Condition �24� is only effective for  tot

max

�
mm
max , but typically it can be used as a strong restriction

�e.g.,  tot
max�6 in Fig. 1�.

Now, we have arrived at a fairly complex description for
the cut-off conditions of the basis set, given by the numbers
M, max,  tot

max . However, this complex scheme allows to
choose a basis just large enough to represent the optically
active eigenstates of the Hamiltonian.
The minimum radius M�0 is an important special case

of the phonon basis in which electronic and vibrational ex-
citations are always at the same site, just as in the J�0 limit.
These joint exciton-phonon configurations can be considered
as distinct molecular excited states and treated within the
standard framework of Frenkel exciton theory. Following
Broude, Rashba, and Sheka �Ref. 66, p. 185�, we call this the
molecular vibron model:

M�0. �26�
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The molecular vibron model follows naturally from the ex-
citon concept and was successfully applied to early interpre-
tations of crystal spectra.67 The approximation is additionally
justified if—beyond the simplest Holstein Hamiltonian �1�—
the phonon energy differs between the electronic ground and
excited state of the molecule �see Ref. 34, p. 87ff or Ref. 66,
p. 198f�.
To find a suitable phonon basis for concrete calculations,

we start with the molecular vibron model and gradually in-
crease the phonon basis until the obtained absorption spec-
trum converges. This procedure is demonstrated in Sec. �III�.
In addition to the general truncation scheme, in some

cases the dimension of the phonon basis can be reduced by
symmetry. For the Frenkel exciton problem in this section,
we have inversion symmetry about the exciton’s site. So we
can introduce symmetry adapted basis states �k		 in which
the phonon cloud is either symmetric (�) or antisymmetric
(�) with respect to inversion about its center. Inversion of
the phonon cloud in the nonadapted basis �7� shall be de-
noted by an overbar:

�̄	: ̄n��n . �27�

Even the nonadapted basis contains some symmetric
phononclouds ( ̄�). For all other states, a symmetry adap-
tion has to be chosen. Thus, the symmetry adapted states can
be obtained as

�k	��
 �k	 for ̄� ,

1
�2

� �k	��k ̄	 � for ̄� ,

�k	��
1
�2

� �k	��k ̄	) for ̄� . �28�

Now, the symmetric subspace spanned by the �k	� states
does not mix with the antisymmetric subspace spanned by
the �k	� states and the diagonalization can be done sepa-
rately for both subspaces. For a large cutoff radius of the
phonon cloud, the dimension of the two subspaces is roughly
one half of the original basis. Furthermore, the transition
dipoles of all antisymmetric states vanish exactly and only
the symmetric space is needed for the absorption spectrum.

III. FRENKEL EXCITON SPECTRA

A. Overview

The Holstein Hamiltonian �1� contains two parameters:
The exciton hopping integral J and the exciton-phonon cou-
pling constant g. Both are already scaled in units of the third
physical parameter of the system: the vibrational quantum
�� . Thus, the parameter space cannot be reduced to less than
two dimensions anymore. The qualitative character of the
solutions strongly depends in a complicated way on both
control parameters. We will explore only a certain region of
this parameter space.
In Sec. III B, the molecular limit (J�0) and the case of

weak electronic coupling (J�g) is considered. The zero-

phonon and the one-phonon space will be analyzed for arbi-
trary g using perturbation theory. This analysis illustrates
what type of phonon basis is needed in various situations.
In Sec. III C, numerical solutions will be presented for

some intermediate coupling situations (J�0.5 and J�1).
This coupling range is considered only for g�1 since in the
intended applications g typically is in this order.

B. Perturbative limit for weak coupling

One extreme case is the molecular limit J�0. In this case,
all basis states �7� are eigenstates and the molecular vibron
model (M�0) is sufficient to describe the optically active
states. The spectrum is the nondispersive vibronic progres-
sion of an isolated molecule:

E j
(0)�k �� , � j �� j�1�0,1,2, . . . , �29�

P j
2�k ��S2� 0 � �

g2

! e
�g2, �30�

For g�1, the lowest and second lowest state have equal
spectral weight (P1

2�P2
2) and the weight of higher states

decreases rapidly. The displacement cloud is strictly local-
ized at the site of the exciton

��m	�g�m ,0 . �31�

For finite J�g , one can start with the molecular limit and
apply first order perturbation theory in the parameter J.
The lowest state of the unperturbed system is �k	 with �	
��•••00̃0•••	 . This state at E1(0)�0 is nondegenerate, and
application of first order perturbation theory gives immedi-
ately

E1
(1)�2J cos �k �S2� 00 � �2J cos �k �e�g2. �32�

This result is well known from small polaron theory for zero
temperature. The width 4J of the purely electronic band is
renormalized by the overlap factor e�g2 since the exciton
moves together with its displacement cloud.
Little attention has been paid, however, to the fate of

higher vibronic states under the effect of the small perturba-
tion J. Let us consider the one-phonon states in more detail.
In the molecular limit, the only optically active one-

phonon state has the cloud �	��•••0001̃000•••	 with one
on-site phonon. This state is degenerate with all other dark
basis states that contain one phonon excitation at an arbitrary
exciton-phonon separation n. A perturbation J�0 will mix
all these states and lift their degeneracy. This can be analyzed
by writing down the matrix elements �13� for the states of the
one-phonon manifold. The phonon cloud of the state �k(n)	
has the structure  i�� i ,n and analogously for �k�(m)	: � i
�� i ,m . The matrix representation �13� then becomes

Hmn��k��m ��HHol
FE �k�n �	��m ,n�Je�g2�Wmn�g2Vmn�,

�33�

where
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Wmn��m ,n�1•e�ik��m ,n�1•e�ik, �34�

and Vmn is a matrix that has nonzero elements only for
�m�,�n��1. That means, Vmn only mixes the states where the
phonon is located either at the exciton site or at its nearest
neighbor.
The two contributions Wmn and Vmn in the nondiagonal

perturbation term of Eq. �32� act in completely different
ways. Let us first discuss the case of g�1 and neglect Vmn .
For k�0 or k�� , Wmn is the Hamiltonian of a nearest-
neighbor hopping particle on an infinite chain with open
boundary. This gives a wavelike solution. In contrast to the
ordinary hopping problem, the exact consideration of the
specific boundary conditions is essential now. Only then, the
correct amplitude at the special site n�0 can be obtained;
and this amplitude alone determines the spectral weight.
Thus, one obtains the eigenstates

�� j	�
1

�M�1



n��M

M

sin� n j�
2M�2 � �k�n �	 �35�

with

j�1,2, . . . ,2M�1. �36�

Their energies are

E j
(1ph,g�1)�1	2Je�g2 cos� j�

M�1 � , �37�

where 	 refers to k�0 and k�� , respectively. The spectral
weight of state j at k�0 follows from definition �17�. It has
only two values depending on the index j:

P j
2�
 1

M�1 g
2e�g2 for odd j ,

0 for even j .
�38�

The M states with even j and zero spectral weight belong to
the subspace of the antisymmetric states in the symmetry
adapted basis �28�. The M�1 optically active states with
odd j are the symmetric states. These active states form a
band of equally absorbing states with a total width of
4Je�g2. The total spectral weight of these active states sums
up to g2e�g2 representing the value of the molecular limit. In
all these states, the phonon cloud is not localized around the
exciton but consists of a standing phonon wave. We empha-
size that this behavior is the limit for small g. In this limit,
the total spectral weight of the considered one-phonon band
is only a small feature in the overall spectrum since the ma-
jor part of the spectral weight is concentrated in the zero-
phonon state.
Complementary, the Vmn part in the perturbation �33�

mixes only the cloud states with phonon excitations at or
next to the exciton site. Therefore, in the limit of large g, the
basis set can be reduced to include only local phonon cloud
configurations up to the nearest neighbor (M�1). Using the
symmetry adapted basis functions �28�, the symmetric one-
phonon subspace consists only of two phonon configurations

��1(k)	��k	�01̃0	� and ��2(k)	��k	�10̃0	� . The Hamil-
tonian in the representation of these two states takes the form

Hmn��mn�2Je�g2 cos �k �� g2
1�g2

�2

1�g2

�2
1
2 g

2 � �39�

with eigenvalues

E	
(1ph,g�1)�1�2J cos �k �g2e�g2



3
4 � 1	�1�

16

9g2
�
8

9g4
� . �40�

Thus, the zero-order energy E�1 splits into two bands
E	(k). Similarly to the perturbation-in-J treatment of the
lowest state �32�, the electronic bandwidth 4J is multiplied
by an overlap factor g2e�g2 which corresponds to the inter-
action of the transition-dipole moments of the molecular
one-phonon state. However, there are two states now. In the
limit g→� , their energies tend to

E�
(1ph,g→�)→1�2J cos �k �g2e�g2


3
4 , �41�

E�
(1ph,g→�)→1. �42�

In this limit, both states still have spectral weights of P�
2

→ 2
3 and P�

2 → 1
3 .

This splitting into two states which both carry spectral
weight is entirely caused by the delocalization of the phonon
cloud. Such a delocalization is neglected in the simplest ap-
proach of the molecular vibron model �26�, which would
mean the neglect of state ��2(k)	 in Hamiltonian �39�.
Looking at the nondiagonal term in Hamiltonian �39� sug-
gests, and closer inspection of the full one-phonon subspace
Hamiltonian �33� confirms: For the special value g�1, the
molecular vibron state �k(n�0)	 decouples from all other
phonon cloud configurations. Only in this case, the molecu-
lar vibron model becomes exact �in the one-phonon sub-
space� and yields one energy band at

E (1ph,g�1)�1�2J cos �k �g2e�g2 �43�

which carries all the spectral weight g2e�g2.
To give an illustration of the phenomena in the one-

phonon subspace and to show the relevance of the described
limiting cases, we show a numerical solution in Fig. 2. For
this, we solved the Hamiltonian �32� numerically for a pho-
non cloud of radius M�20 at the total momentum k�0. For
k�� , the spectra only have to be mirrored with respect to
E�1.
In Fig. 2�a�, the ‘‘exact’’ numerical results �graph 1� are

shown for a relatively small g�0.5. The tendency of a broad
band with constant spectral weight is clearly visible. This
bandwidth is compared to the width the free phonon part
Wmn from Eq. �37� in graph 2. Both agree very well. The
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molecular vibron model (M�0) would give a single active
state at (E�1)/J�0.389 �position indicated by graph 3�.
This state would represent the weighted center of the exact
band �also at (E�1)/J�0.389 in this case� but it would veil
the large splitting (�E/J�1.55).
In Fig. 2�b�, we show the solution for g�1. There, the

one active state of the molecular vibron model (M�0) is the
exact solution.
In Fig. 2�c�, the numerical solution is shown for a rather

large g�1.5 �graph 1�. It clearly approaches the two active
states from the nearest-neighbor cloud �radius M�1) given
by Eq. �40�, which are shown in graph 2. For comparison,
the result of the molecular vibron model (M�0) is also
shown in graph 3. As for g�1, the molecular vibron model
can only represent the weighted center of the one-phonon
states but not their qualitative splitting. Note that for both
cases g�1 and g�1 the correct splittings of the one-phonon
states are in the same order as the perturbation parameter J.
The situation for energies above the one-phonon subspace

becomes more complex and will not be considered here. Al-
ready in the two-phonon subspace, which is spanned by all

zero-order basis states with a total phonon number 2, there
occurs a high degeneracy of various cloud configurations.
The numerical calculations in Sec. III C confirm that for not
too strong electronic coupling (J�0.5) and g in the order of
1, the approximation of highly localized phonon clouds or
even the molecular vibron model yields a good description of
the full absorption spectrum.

C. Numerical solutions for intermediate coupling

In the intermediate electronic coupling regime, the exci-
ton hopping integral is of the order of 1. In this case, the
perturbative approach from Sec. III B breaks down since,
e.g., the bandwidths for the zero-phonon subspace �32� or the
one-phonon subspace �40� would not be small compared to
the vibronic spacing. In this case, numerical solutions using
the basis from Sec. II B can be used. We will discuss the case
of g�1, which is approximately realized for the optically
coupled C-C stretching modes in many conjugated molecules
�conjugated polymers, polyacenes, PTCDA derivatives�.
In Fig. 3, we show the convergence for J�0.5 and g�1

FIG. 2. Perturbative treatment J→0 of the one-phonon sub-
space for three coupling parameters g. The ‘‘exact’’ stick spectra are
numerical solutions of the one-phonon Hamiltonian �33� for a
phonon-cloud radius of M�20. The envelopes are convolutions of
the stick spectra with Gaussians of appropriate width. Figure 2�a�
represents the small-g case, where a broad one-phonon sideband is
formed. The ‘‘exact’’ solution in graph 1 is compared to the band-
width of the free-phonon part �Wmn from Eq. �37�� in graph 2 and
to the position of the single active state from the molecular vibron
model �26� in graph 3. Figure 2�b� represents the g�1 case, where
the molecular vibron model becomes exact. Figure 2�c� represents
the large-g case, in which the exciton interacts mainly with a
nearest-neighbor phonon cloud. The ‘‘exact’’ numerical solution in
graph 1 resembles the approximate solution �39� for a nearest
neighbor cloud (M�1) in graph 2. The single state from the mo-
lecular vibron model (M�0) is shown in graph 3.

FIG. 3. Convergence of absorption spectra at the top of the band
for J�0.5 and g�1 �intermediate coupling, rather small J). Panel
a shows the results for the molecular vibron model �26�. Panels �b�
and �c� show spectra for a large phonon cloud basis. Going from �b�
to �c�, the maximum cloud radius M is increased from 5 to 6 and on
each relative site m the maximum occupation number m is in-
creased by 1. This increases the number of symmetric basis states
from 1587 in panel �b� to 4485 in c. The sticks always show the
spectral weight according to Eq. �17�. The solid lines are convolu-
tions of the stick spectra with a Gaussian as in Fig. 1 �normalized to
area 0.5�. The shape of the thus broadened spectrum in panel c has
almost converged, particulary for energies E�2.5. The inset in
panel c shows the displacement cloud of the lowest state as in
Fig. 1.
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at the top of the band (k�0). This parameter set was already
used in the illustrations from Fig. 1. Figure 3�a� gives the
spectrum in the molecular vibron model �25� with a maxi-
mum phonon number of  tot

max�6. In this model, one obtains
 tot
max�1 vibronic states. Compared to the molecular limit,
the molecular vibron states are shifted and their spectral
weight is redistributed to higher energies due to the effect of
the positive hopping integral J.
Figures 3�b� and 3�c� show the solutions for large basis

sets. Only the optically active states �k	� from Eqs. �28�
were calculated. In both cases,  tot

max�6 was retained as for
the molecular vibron model. Only the cutoff vector �	max

was increased from �	max��12346̃4321	 in Fig. 3�b� to
�	max��123456̃54321	 in Fig. 3�c�. This means that in Fig.
3�c� the cloud radius M is increased from 4 to 5 and at each
cloud position the allowed number of phonons is increased
by 1. This increases the number of symmetric basis states
from 1587 to 4485. The broadened spectra clearly show that
this increase in basis size changes the result only very little
and mainly at energies E�2.5. The obtained accuracy is
completely sufficient for interpreting experimental absorp-
tion spectra, since effects not included in the model Hamil-
tonian will be larger anyway.
The properties of the lowest state and a representative

high-lying state with large spectral weight were already
shown in Fig. 1. The occupation number clouds �N̂m	 of both
states are strongly localized around the exciton site and their
decay patterns justify the pattern of the cutoff vector �	max.
The occupation cloud is more localized for the high-lying
state than for the lowest state. Therefore, the molecular vi-
bron model �26� is more accurate for the high-lying state,
which can be seen from the comparison of Figs. 3�a� and
3�c�. The main effect of the delocalized cloud basis in the
high energy region is a broadening of the spectra. The lowest
state, however, moves considerably from E1�0.229 in the
Fig. 3�a� to E1�0.0074 in the largest basis set of Fig. 3�c�.
The displacement clouds ��̂m	 show the same delocaliza-

tion tendencies. Remarkably, the displacement pattern of the
lowest state alternates with distance from the exciton site.
This behavior can be rationalized on the level of a variational
mean-field theory �as in Ref. 36� by the competition between
exciton delocalization and exciton-phonon coupling: At the
top of the band, the �purely electronic� exciton hopping in-
creases the energy of the lowest state. With inclusion of
exciton-phonon coupling, the hopping term gets multiplied
by a vibronic overlap factor between the oscillator at the
exciton site �displacement ��̂0	) and the oscillator at the
nearest neighbor �displacement ��̂1	). To lower the energy,
the effective hopping, i.e., the vibronic overlap, should be
decreased. This can be achieved by maximizing the differ-
ence in the displacements ��̂0	 and ��̂1	. Since the total
displacement is fixed by the sum rule 
m��̂m	�g �e.g. Ref.
31�, an alternating displacement pattern minimizes the en-
ergy. At the bottom of the band, the same argument demands
a large effective hopping and thereby the smallest possible
difference in displacements, which results in a uniformly de-
caying displacement cloud as shown in the following Fig. 4.

At the bottom of the band (k�� , Fig. 4�, convergence is
much easier to obtain for intermediate J. This is clear since
the bottom of the band corresponds to the real ground state
of the Hamiltonian, whereas the k�0 states at the top corre-
spond energetically to phonon excitations of the k�� states
at lower energies. The convergence is shown for the same
parameters and basis sets as at the top of the band �Fig. 3�.
The inset in Fig. 4�c� shows again the displacement cloud of
the lowest state, which now has the nonalternating pattern as
discussed in the previous paragraph.
For larger values of J, the delocalization of the phonon

cloud is more pronounced and larger basis sets are needed
for the same level of accuracy. In Fig. 5, we demonstrate the
convergence at the top of the band for J�1 and the same
basis sets as in Fig. 3. Now, the molecular vibron model in
Fig. 5�a� deviates from the complete solution even on the
energy scale of the vibronic quantum. The energy of the
lowest state is overestimated by 0.88, and also the maximum
of the broadened spectra deviates by almost 0.5. Even the
solution in Fig. 5�b� still shows notable differences from the
solution for the largest basis set in Fig. 5�c�. Only the posi-
tion and spectral weight of the lowest state have already
converged to about two significant figures. The lowest state
in panel 5�c� lies at �0.563, which reproduces two signifi-
cant figures of the high-accuracy ground state calculation
(�0.5689•••) reported in Ref. 53.
The convergence for J�1 at the bottom of the band (k

��) is shown in Fig. 6. As for J�0.5, the convergence is
much better at the band bottom with almost no change of the
broadened spectra for the basis set increase from Fig. 6�b� to

FIG. 4. Convergence of absorption spectra at the bottom of the
band for J�0.5 and g�1. Panels �a�, �b�, and �c� show the results
for the same basis sets as in Fig. 3. The broadened spectra are again
normalized to area�0.5.
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Fig. 6�c�. The energy of the lowest state changes from
�1.46955 to �1.46961 and then agrees up to five significant
figures with the results from Ref. 53.
For values of J much above 1, the Lang-Firsov basis be-

comes increasingly inefficient. While approaching the strong
electronic coupling regime J�g , the lattice displacement is
not localized around the exciton anymore in very contrast to
the premises of our truncation scheme. In the strong coupling
limit, the exciton hopping is ‘‘fast’’ compared to the exciton
phonon coupling and the Born-Oppenheimer approximation
should be applied to the whole crystal as one object �see Ref.
33�. The total lattice displacement 
��̂m	�g is now equally
distributed over the N→� molecules. Therefore, the total
relaxation energy EFC�g2
��̂m	2 tends to zero. Figuratively
speaking, the very fast exciton looses its phonon cloud.
Compared to the molecular limit �lowest state at E�0), the
lowest state will now be given by the purely electronic band
at E�2J cos k�g2. Because of the vanishing relaxation en-
ergy, higher vibronic states have no spectral weight and the
absorption spectrum consists of a narrow line at the elec-
tronic energy.

IV. INCLUSION OF CT STATES

The Holstein Hamiltonian for Frenkel excitons �1� can be
very naturally extended to include charge-transfer �CT�
states. The relevance of CT states is a major point in the

discussion of PTCDA and other quasi-one-dimensional crys-
tals �see Sec. I�. Let cn , f

† be the creation operator for a nearest
neighbor CT state in which an electron is transferred from
lattice site n to site n� f ( f�	1). The molecular limit is
again defined as the case where no transfer interactions �nei-
ther Frenkel exciton transfer nor charge transfer nor
Frenkel-CT interactions� are considered. Then, the electronic
CT Hamiltonian is

HCT�D

n , f
cn , f
† cn , f , �44�

with D being the on-site energy of a CT state in the molecu-
lar limit �relative to the Frenkel exciton on-site energy at
zero in our energy units�.
The electron or hole excitation of the CT state are as-

sumed to couple to the same effective vibrational coordinate
� as the Frenkel exciton. With the electron-phonon coupling
constant ge and the hole-phonon coupling constant gh , the
linear coupling between CT states and phonons is described
by the Hamiltonian

HCT-ph�

n , f
cn , f
† cn , f��gh�bn

†�bn�

�ge�bn� f
† �bn� f ��gh

2�ge
2� . �45�

These expressions are analogous to the Frenkel-exciton-
phonon coupling in Eq. �4�. The term gh

2�ge
2 is the vibra-

tional relaxation energy of a CT state in the molecular limit.

FIG. 5. Convergence of absorption spectra at the top of the band
for J�1 and g�1. Panels �a�, �b�, and �c� show the results for the
same basis sets as in Fig. 3. With increasing number of states, the
spectral weight of the individual states in the higher energy region
decreases. Therefore, the y-axis scaling and the normalization of the
broadened spectra is different in each panel. �Area � 0.5 in panel
�a�, area � 0.3 in panel �b�, and area � 0.09 in panel �c�.�

FIG. 6. Convergence of absorption spectra at the bottom of the
band for J�1 and g�1. Panels �a�, �b�, and �c� show the results for
the same basis sets as in Fig. 3. The area of the broadened spectra is
normalized to 0.45.
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As in Eq. �4�, this term is added to align the on-site energy D
of the CT states to its value in the molecular limit.
The mixing between Frenkel and CT excitons can be de-

scribed by the Hamiltonian

HFE-CT�

n
� te�an

†cn ,�1�an
†cn ,�1�

�th�an
†cn�1,�1�an

†cn�1,�1��H.c.� . �46�

The charge-transfer integrals te (th) describe the transfer of
an individual electron �hole� between the site of a Frenkel
exciton and its nearest neighbor �see Refs. 24, 25�. We ne-
glect the dispersion �hopping� of CT states since this would
involve a simultaneous hop of two particles and is expected
to be on a much smaller energy scale. Thus, the extended
Holstein-Hamiltonian for Frenkel and CT excitons becomes

HHol
FCT�HHol

FE �HCT�HCT-ph�HFE-CT. �47�

This Hamiltonian corresponds to the dimer Hamiltonian used
in Ref. 24.
A natural extension of the basis states �n	 from Eq. �5� is

obtained by including the new electronic degree of freedom
f. The value f�0 shall denote the former Frenkel exciton
basis states

� �n f	] f�0��n	. �48�

A Lang-Firsov-type basis for CT states ( f�	1) is defined
by

�49�

Here, �0̃n
h	 is a ground state oscillator function displaced by

the hole-phonon coupling constant gh and �0̃n
e	 is an oscilla-

tor function correspondingly displaced by ge . bn
†�gh and

bn
†�ge create phonon excitations in these displaced oscilla-
tors.
The real-space basis states from Eq. �49� can again be

Fourier transformed to momentum-space basis states with
total momentum k:

�k f	�
1

�N 
n eikn�n f	. �50�

As for the Frenkel problem, the matrix elements of the
Frenkel-CT Holstein Hamiltonian �47� can be derived in a

straightforward way. The final expressions become lengthy
due to various overlap factors and we omit them here. The
basis can be reduced to a manageable size by a truncation
scheme as for the Frenkel problem. Then, the eigenstates
�� j(k)	 at k�0 or k�� can again be obtained by standard
diagonalization methods for real matrices.
From the eigenstates, the transition dipole moments can

be reduced to the transition moments of the basis states. The
Frenkel excitons a†�0	 give rise to a Frenkel transition di-
pole operator as in Sec. II C:

P̂FE�q ��
1

�N 
n e�iqn�an
†�an�. �51�

An equivalent operator can be introduced for CT states. In
this case, the most elementary excitation always involves a
unit of two molecules at n and n	1. As argued in Ref. 25,
the symmetric CT excitation

1
�2

�cn ,�1
† �cn�1,�1

† ��0	

can have a significant transition dipole moment p� CT . On the
other hand, the transition dipole of the antisymmetric CT
excitation

1
�2

�cn ,�1
† �cn�1,�1

† ��0	

is strictly zero for symmetry reasons. Therefore, we analyze
only the q-dependent symmetric CT transition operator

P̂CT�q ��
1

�N 
n e�iqn� cn ,�1† �cn�1,�1
†

�2
�H.c.� .

�52�

Then,

PFEj�k ���� j�k �� P̂FE�k ��0tot	 �53�

gives the Frenkel part of the transition dipole along p�M and

PCTj�k ���� j�k �� P̂CT�k ��0tot	 �54�

gives the CT part of the transition dipole along p� CT . At k
�0, the absolute transition dipole for absorption of visible
light is obtained as

P� j�PFEj�0 �p�M�PCTj�0 �p� CT . �55�

These transition dipoles are now determined by two indepen-
dent contributions. However, in a first approximation the CT
transition dipole will be small and P� j will mainly be given
by its Frenkel component. As for the Frenkel problem �see
Eq. �19��, the k-dependent spectral weights PFEj

2 (k) and
PCTj
2 (k) represent the electronic character �Frenkel or sym-
metric CT� of state j.
A representative calculation is shown in Figs. 7 and 8 for

the parameters J�0.5, g�1, D�0, te�th�0.5. The Fren-
kel part of this parameter set corresponds to the calculation
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in Fig. 1. The basis cut-off vector for the phonon-space was
�	max��12345̃4321	 with  tot

max�5, resulting in 4332 basis
states. An additional CT state is assumed at resonance with
the Frenkel state (D�0). The charge-transfer integrals te
and th are chosen equal to the Frenkel hopping integral to
give an illustration for strong Frenkel-CT mixing.
For the electron and hole coupling parameters, we used

ge�gh�g/�2, which gives equal relaxation energy for the
CT state and the Frenkel exciton. Perylene’s � system is
alternant. Simple Hückel theory then gives equal and oppo-
site charges in the cation and anion, with half-filled HOMO
and LUMO, respectively, while both are half-filled in the
excited state. We have ge�gh�g/2 for noninteracting elec-
trons. The Pariser-Parr-Pople model of interacting � elec-
trons yields ge�gh for systems with electron-hole symmetry.
The bond order changes and relaxation energy of the singlet
excitation in anthracene or trans-stilbene are now approxi-
mately half that of the triplet, which in turn is comparable to
the relaxation energy of dication or dianion.68,69 Our initial
choice of equal relaxation energy for the Frenkel and CT
excitation follows the correlated case, although this is a
guess and PTCDA does not have e-h symmetry.
At the top of the band (k�0), the energetic degeneracy

and the large charge-transfer integrals lead to a strong mixing
of Frenkel and CT states throughout the whole spectrum. The
overall distribution of the spectral weights gives more Fren-
kel character to the higher states as a result of the positive J.
The FE character in Fig. 7 should be compared to the
Frenkel-only problem from Fig. 1. In the Frenkel-only prob-
lem, the lowest state gave rise to a single peak in the broad-
ened spectrum at E�0. This peak is now split into two well
separated peaks at E��1 and E�0. In such a way, strong
mixing with CT states can add new features to the absorption
spectrum even if their intrinsic transition dipoles are zero
(p� CT�0). This phenomenon is commonly described by the
figurative phrase that the CT states ‘‘borrow’’ oscillator
strength from the Frenkel states.
At the bottom of the band (k�� , Fig. 8�, the symmetry of

the CT integrals (te�th) in this special case decouples the
electronic Frenkel and CT states �see Ref. 24�. Therefore, the
spectral weight of all states has either pure Frenkel or pure
CT character. Only some indirect mixing is introduced by the
phonon part of the Hamiltonian, which mainly affects the
vibronic structure of the CT-character states.

V. DESCRIPTION OF EXPERIMENTAL ABSORPTION
SPECTRA

In Sec. IV, the energies E j and transition dipoles P j �55�
of the eigenstates of the one-dimensional Holstein problem
were obtained. These quantities are essential but not yet suf-
ficient for the description of a real absorption spectrum of a
quasi-one-dimensional molecular crystal. Let us first return
from the dimensionless quantities E, J, D, t, and P to abso-
lute values, which are denoted by a tilde to prevent confu-
sion. The absolute excitation energy of state �� j	 is then
given by

Ẽ j�Ẽ00�E j•�� , �56�

FIG. 7. Eigenstates of the extended Holstein model for
Frenkel-CT mixing �47� at total momentum k�0. Parameters J
�0.5, g�1, D�0, te�th�0.5, ge�gh�1/�2. The Frenkel pa-
rameters and the illustration correspond to Fig. 1. PFE

2 shows the
spectral weights �Frenkel character� of the Frenkel-part, PCT

2 shows
the spectral weights of the symmetric CT part. The broadened spec-
tra are both normalized to an area of 0.5.

FIG. 8. Eigenstates of the extended Holstein model for
Frenkel-CT mixing �47� at total momentum k�� . Parameters as in
Fig. 7. Because of te�th , the electronic FE and CT states do not
mix and all eigenstates have either pure FE or pure CT character.
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where Ẽ00 is the absolute energy of the lowest eigenstate
with respect to the electronic and vibrational ground state of
the crystal. Furthermore, we will only consider the Frenkel
contribution to the transition dipoles in Eq. �55�:

P�̃ j�p�M•PFEj . �57�

In PTCDA and MePTCDI and many other organic crys-
tals, the unit cell contains two nonequivalent molecules. We
now assume that all interstack interactions are on a much
smaller energy scale than the in-stack interaction J. That
means, the energy spectrum of the one-dimensional model is
in first approximation not affected. Only the transition di-
poles of the two molecules A and B couple and form two
Davydov components (��p ,s) with two orthogonal transi-
tion dipoles

P�̃ j��
p�M�A�	p�M�B�

�2
•PFEj . �58�

If � is the angle between the two nonequivalent molecular
transition dipoles, the absolute value of the Davydov compo-
nents can be written as

P̃ j��p�•PFEj , �59�

with the transition dipoles per unit cell p� :

pp�pM cos
�

2 , �60�

ps�pM sin
�

2 . �61�

For the crystal structure of PTCDA and MePTCDI, the p
direction is given as the crystallographic b axis. The s direc-
tion lies approximately in the �102� plane because the mo-
lecular planes of both inequivalent molecules are roughly
parallel to the �102� plane �within 5° �Ref. 70� for PTCDA
and within 10° for MePTCDI, derived from Ref. 71�.
Knowing the transition dipoles per unit cell, the trans-

verse dielectric constant for perturbation by an external light
wave polarized along the ��p ,s directions can be expressed
as a sum over the excited states �see, e.g., Refs. 72, 73�:

��
0 � Ẽ ��1�

8�
v
p�
2

j

PFEj
2 Ẽ j

Ẽ j
2�Ẽ2�i��Ẽ

. �62�

Here, v is the volume of the unit cell and ��1 the life time of
the excited states.
Equation �62� is rigorous for any quantum system if all

excited states are included. However, we are considering
only the lowest electronic excitation. Therefore, we include
the contribution of the higher states �mixing of molecular
configurations� by using a phenomenologically modified for-
mula for the dielectric function

��� Ẽ ����
bg�

8�
v
� f �
bgp��2


j

PFEj
2 Ẽ j

Ẽ j
2�Ẽ2�i��Ẽ

. �63�

Here, ��
bg is a background dielectric constant that represents

the value of ��(0) corresponding to a crystal in which the
considered lowest electronic excitation would not exist. f �

bg is
a screening factor describing the modification of the acting
field by the higher transitions. Furthermore, the higher tran-
sitions will modify the Frenkel exciton hopping integral J
and thereby all the eigenstates of the system. Since we treat
J as an effective fitting parameter anyway, the effect of the
higher transitions onto J is not important here but should be
remembered in any microscopic interpretation of J. Such a
background modification of the dielectric function was dis-
cussed for a simple model system of one purely electronic
Frenkel exciton in a cubic crystal in Ref. 39. In our general
case, the effect of the higher transitions represented in the
background parameters is also anisotropic in nature.
The dielectric function �63� includes a Lorentzian broad-

ening of the individual eigenstates due to a finite lifetime
��1. In a typical situation, however, there are several other
sources of a much larger broadening: �i� coupling to further
low-energy vibrations, �ii� splitting of the main vibrational
mode, which consists actually of several nearly degenerate
modes, and �iii� inhomogeneous broadening. To account for
all these effects empirically, we replace each eigenstate of
the Holstein model �� j	 by a Gaussian distribution of states
with standard deviation � j as, e.g., done in Ref. 74. The
individual broadenings � j have no microscopic meaning and
should be seen as no more than a convenient tool to compare
the spectrum from the eigenstates of the Holstein model to
an experimental spectrum. Practically, we assigned constant
values of � j for 4 separate regions of the spectrum in order
to have only four different broadening parameters. The indi-
vidual Lorentzian linewidth is assumed to be much smaller
than the � j and does not contribute anymore.
From the complex dielectric function �63�, the complex

refractive index (n�i�)2�� and the absorption coefficient
 �2Ẽ/(�c)•� can be calculated for the special light waves
that propagate perpendicular to the p-s plane and are polar-
ized along the p or s direction. For general directions, the
complex rules of crystal optics would have to be considered.
For PTCDA, it is possible to create vapor-deposited poly-

crystalline films with a high preferential orientation such that
the �102� crystal planes always lie parallel to the substrate.
Furthermore, the anisotropy between the p and s direction is
expected to be very small due to the almost right angle be-
tween the molecules (��82°). Thus, �p��s can be directly
probed by a vertical incidence absorption measurement on
such films. For thicknesses above �30 nm, the influence of
interface reflections and interference effects is small and the
absorption coefficient follows directly from the optical den-
sity and the layer thickness. The layer thickness, however, is
difficult to determine accurately. Haskal et al.22 report abso-
lute absorption coefficients for PTCDA on glass, deposited at
low substrate temperature. We determined absolute absorp-
tion coefficients for PTCDA on mica at room temperature.
The orientation of the �102� planes parallel to the substrate
was verified by x-ray diffraction and the layer thicknesses
�e.g., 30 nm� were determined by atomic force microscopic
investigation of step profiles. Our results for the integral ab-
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sorption coefficient agree within 7% with the ones from Ref.
22. Using our value of � dẼ�2.2
10�5 cm�1 eV �in the
range 2–3 eV�, we calibrate the low-temperature absorption
spectrum of PTCDA reported in Ref. 25 to absolute values.
This spectrum is shown in Fig. 9�a�.
For MePTCDI, the angle between the two nonequivalent

molecules is ��37° �derived from Ref. 71� and thus the
anisotropy between the p and s direction is expected to be
strong (pp

2/ps
2�9.0). Polarized low-temperature absorption

spectra of MePTCDI were reported in Ref. 25, but there the
absolute scaling was not known. To provide an approximate
scaling, we assume that the isotropic average of the integral
absorption coefficient should equal that of PTCDA ��( p
� s)dẼ�� (PTCDA)dẼ� since the molecular transition
dipoles of the two materials are very similar25 and only their

crystal structure differs. The resultant p-polarized spectrum
is shown in Fig. 10�a�. At this stage, we do not intend to
explain the dependence of the spectral shape on polarization.
Such a dependence might be affected by contributions of a
nonzero intrinsic CT transition dipole,25 by nonzero inter-
stack coupling,27 and by the anisotropy of the dielectric
background contribution. By concentrating on the
p-polarized spectrum, at least the CT contribution would be
minimized.
We note that the consideration of the absolute absorption

coefficient is essential for describing the shape of solid state
spectra. The microscopic models provide predictions only
about the relative spectral distribution of the transition di-
poles, which determines the shape of the imaginary part
�2(Ẽ) of the dielectric function. The shape of the absorption
spectrum  (Ẽ), however, is strongly influenced by the varia-
tion of the refractive index in the absorption region � 

�Ẽ/(�c)•�2 /n� and the variation of n is again determined

FIG. 9. Experimental low temperature absorption spectra of
PTCDA and model fit. Panel �a� shows the comparison for the
absorption coefficient  . The model fit �parameters see text� is done
with a large phonon basis �as in Fig. 7� but a comparison with the
molecular vibron model for the same parameters is also given.
Panel �b� shows the optical constants n, � corresponding to the
model fit. Panel �c� shows the actual eigenstates and the Frenkel
part of their spectral weight. In panel �d�, the CT part of the spectral
weight is given. The stick spectra are broadened by Gaussians with
a constant width ��48 meV corresponding to the width of the
lowest state in the fit.

FIG. 10. Experimental absorption spectra of MePTCDI and
model fit. Panel �a� shows the comparison for the p-polarized  
spectra, the parameters are given in the text. The model spectrum is
shown for a large phonon cloud basis �as in Fig. 7� and the molecu-
lar vibron model. Panel �b� gives the optical constants from the
model. Panels �c� and �d� show the actual eigenstates and their
composition as explained in Fig. 9. The broadening in �c� and �d� is
constant ��28 meV as for the lowest peak in the experimental
spectrum. Due to the variable broadening in the fit, the second large
peak at �2.3 eV from panel �c� appears in the  and � spectra of
panels �a� and �b� only as a broad feature with lower peak value.
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by the absolute absorption coefficient. Only if  is very
small, as typically for spectroscopy of solutions, n does not
vary and the shape of the absorption spectrum is directly
given by the shape of the transition dipole distribution �‘‘di-
lute limit’’�. The best approach would be, of course, to obtain
the complex dielectric function from experiment. Such data
is presently available only for films of unknown degree of
orientational order.75
The dielectric function �63� allows a direct fit of the ab-

sorption spectra in which �bg and f bg have to be considered
as fitting parameters. �bg can be chosen from the indepen-
dend criterion that the refractive index n below the absorp-
tion region is matched. For PTCDA, we used the value of
�(Ẽ�0.962 eV)�4.07.76 For MePTCDI, the anisotropy in
the �102� plane is not known. We use an estimate of �(Ẽ
�0.962 eV)�4.66 based on long and medium axis molecu-
lar polarizabilities of the PTCDA molecule77,78 and the dif-
ferent relative orientations of MePTCDI. For such relatively
large values of the low energy dielectric constant, the precise
number does not affect the results.
The eigenstates of the Holstein model are determined by

the parameters �� , J̃�J•�� , g, Ẽ00 for the Frenkel part and
ge , gh , D̃�D•�� , t̃ e�te•�� , t̃ h�th•�� for the
Frenkel-CT mixing. We assume that the intramolecular vi-
brational quantum �� and its coupling g to the intramolecu-
lar excitation are not affected by the surrounding crystal and
can be derived from the absorption spectrum of isolated mol-
ecules in solution. A fit of the solution spectrum of
MePTCDI in CHCl3 �Ref. 25� to a simple vibronic progres-
sion �with freely adjustable Gaussian broadenings� gives
���0.17 eV and g�0.88. We use the same values for
PTCDA, since the absorption spectrum of PTCDA in
CH2Cl2 from Ref. 79 is identical within graphical accuracy
apart from an absolute energy shift of 23 meV. For the elec-
tron and hole coupling parameters we used ge�gh�g/�2 as
in Sec. IV. Furthermore, we use only one charge-transfer
integral t�te�th , since the electronic problem at k�0 is
only determined by the sum te�th .24,25 With these assump-
tions, four unknown empirical parameters remain in the Hol-
stein model at k�0: J̃ , Ẽ00 , D̃ , and t̃ . This freedom in the
parameter space is still too large to obtain definite values
from the absorption spectra alone. We determined parameter
sets by global fitting procedures in order to find some rel-
evant values that are useful to discuss the absorption spectra.
For PTCDA, a representative fitting result is shown as the

model spectrum in Fig. 9�a� in comparison with the experi-
mental spectrum. The parameters are J̃�42 meV, D̃
�97 meV, t̃�85 meV, and Ẽ00�2.23 eV. This parameter
set corresponds to a strong mixing of Frenkel and CT exci-
tons as can be seen from the FE and CT contributions shown
in panels �c� and �d�. The  spectrum follows roughly the
absorption index � in panel �b�. The characteristic difference
between the absorption ( ) spectrum in 1�a� and the distri-
bution of the spectral weight in 1�c� is entirely caused by the
spectral shape of the refractive index n, which becomes small
at energies above the major absorption region. The phonon
basis for the model spectrum was chosen as in the calcula-

tions for Figs. 7 and 8. Additionally, we show a model spec-
trum for the same parameters �including the broadenings� but
using the molecular vibron model. Molecular vibrons for the
CT states are naturally defined by all configurations that al-
low phonons only at the site of the electron or the hole. The
comparison with the large phonon basis shows almost no
differences apart from the larger broadening in the large ba-
sis. This close resemblance is mainly caused by the relatively
small values of the transfer integrals and a coupling constant
g�1. Thus, at least for the Frenkel part of the problem, the
parameters are close to the scenario of Fig. 2�b�, where the
molecular vibron model becomes exact.
We emphasize that similarly good fits of the experimental

spectra can be obtained for different parameter sets with
varying degree of CT mixing. Even total neglect of CT states
would give a satisfactory fit with a Frenkel transfer integral
of 70 meV. Such a value corresponds to the three-
dimensional Frenkel exciton model for PTCDA in Ref. 27
with a nearest-neighbor hopping of 82 meV.
For MePTCDI, a fitting result is shown in Fig. 10�a�. The

parameters are J̃�46 meV, D̃�240 meV, t̃�115 meV,
and Ẽ00�2.13 eV. As for PTCDA, the obtained parameter
set represents a strong mixing of Frenkel and CT excitons.
Since the spectrum of MePTCDI shows a more pronounced
peak structure, there is not as much freedom in choosing the
parameters. In particular, only the inclusion of the CT states
can reproduce the typical shape with four pronounced peaks.
In contrast to the fit for PTCDA, in MePTCDI the molecular
vibron model shows visible differences compared the large
phonon basis. Nevertheless, it captures the situation accu-
rately enough regarding the overall uncertainty of the inter-
pretation.

VI. DISCUSSION

In this article, we modeled absorption spectra and dielec-
tric responses of molecular crystals in the simplest context of
a one-dimensional Holstein model. Our procedure for con-
structing k�0 or k�� states with a tailored basis is general
and also appropriate for models with more coupled modes or
more electronic states. However, the computational effort in-
creases dramatically in particular with the number of modes.
Practically, only the regime of weak up to intermediate elec-
tronic coupling can be calculated at sufficient accuracy. For
strong electronic coupling, the underlying concept of a local-
ized phonon cloud becomes inappropriate.
We used this approach to model absorption spectra of two

closely related molecular crystals �MePTCDI and PTCDA�.
At the present stage, the comparison between models and
experimental data still involves serious compromises. The
model neglects or approximates several effects whose influ-
ence is not accurately known: �i� three-dimensional Frenkel
exciton hopping, �ii� coupling to several vibrational modes,
and �iii� mixing of higher electronic states. In spite of these
simplifications, the model still contains too many parameters
to derive unique values alone from the optical absorption
spectra. Our present parameters are meant to illustrate spec-
troscopic applications of Holstein models to actual materials,
but their precise magnitudes remain to be found.
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We used microscopic arguments to derive the exciton-
phonon coupling constants g, ge , gh from solution spectra of
isolated molecules. The inclusion of charge-transfer states is
motivated �i� by the strong and nearly isotropic electro-
absorption response of PTCDA �as in the interpretation of
Ref. 24�, �ii� by the polarization dependence of MePTCDI
spectra,25 and �iii� by the detailed structure of the MePTCDI
spectrum, which demands extensions of the pure Frenkel ex-
citon Hamiltonian from Eq. �1�. As a guiding principle, we
tried to explain two related compounds within the same
scheme. This favors our present choice with similar exciton
hopping integrals for PTCDA and MePTCDI. In addition, we
concentrated on low-temperature absorption spectra. These
show some structure even for the broad high-energy absorp-
tion band of PTCDA (2.3�2.9 eV).
The differences between the scenario presented here and

other recent interpretations results from the inclusion of dif-
ferent aspects. In Ref. 24, a comprehensive picture was given
for absorption, emission, and electroabsorption of PTCDA.
The underlying model Hamiltonian was identical with our
present one �Eq. �46�� but the k�0 states were calculated
within a dimer approximation. Furthermore, the absorption
spectrum was approximated in the dilute limit without using
a dielectric function. The obtained key parameters in Ref. 24
are J̃�180 meV, D̃�22 meV, and ( t̃ e� t̃ h)/2�89 meV.
The larger value of J̃ mainly results from the assignment of
the strongly redshifted emission spectrum. Furthermore, the
inclusion of the dielectric function would redistribute spec-
tral weight in the absorption spectrum to higher energies.
This solid state effect is not included in Ref. 24 and thus is
compensated by a larger value of J̃ . The general picture of
strong Frenkel-CT mixing caused by a Frenkel-CT separa-
tion D̃ in the same order as the charge-transfer integrals t̃
corresponds to our present study.
In Ref. 25, a model was used that considered Frenkel-CT

mixing as in our present study and some extensions for
three-dimensional crystals. The effect of the dielectric func-
tion was approximately included by the way of extracting the
transition dipoles from the spectra. However, the Hamil-
tonian was explicitly constructed within the molecular vibron
model and the vibronic replicas of the CT states were ne-
glected. The obtained key parameters for MePTCDI are J̃
�110 meV, D̃��80 meV, and ( t̃ e� t̃ h)/2�50 meV. Be-
cause of the severe simplifications, the overall shape of the
spectra and the CT position D̃ were only very roughly de-
scribed. The emphasis in Ref. 25 lay on the observed polar-
ization ratios and Davydov splittings. Both effects are still
beyond the presently studied Hamiltonian. The mixing of
Frenkel and CT states, which was supported by the polariza-
tion ratios, agrees qualitatively with the present study.
In Ref. 26, a three-dimensional crystal model with Fren-

kel and several CT excitons is used for absorption and elec-
troabsorption spectra of PTCDA and MePTCDI. The mo-
lecular vibron model was used as in Ref. 25 and the
absorption spectrum was calculated for the dilute limit as in

Ref. 24. The overall outcome is a significant Frenkel-CT
mixing with, e.g., J̃�200 meV, D̃�120 meV, and ( t̃ e
� t̃ h)/2�90 meV for MePTCDI.
In Ref. 27, a three-dimensional Frenkel-exciton Hamil-

tonian within the molecular vibron approximation and a di-
electric function model were used for modeling optical con-
stants of PTCDA. The resulting nearest-neighbor Frenkel
exciton transfer integral is J̃�82 meV. Polarization ratios
and Davydov splittings of PTCDA were explained by the
three-dimensional Frenkel interactions, which are beyond
our present study. The proposed value of J̃ agrees with our
model for PTCDA if we would neglect CT states �see Sec.
V�.
In our present study, the changes of the absorption spectra

in the solid state compared to the much narrower solution
spectra are mainly caused by the dielectric function model,
by the mixing with CT states and—to a smaller degree—by
the positive Frenkel hopping integral. All three effects dis-
tribute spectral weight in the absorption spectrum to a higher
energy region. The Frenkel-CT mixing and the inclusion of
separated exciton-phonon configurations explain the ten-
dency towards spectra with more features spread over a wide
energy range. The scenario of Frenkel-CT mixing corre-
sponds roughly to Refs. 24, 25, or 26. We emphasize that the
Frenkel-CT mixing in our study is only manifested in the
detailed structure of the MePTCDI spectrum.
Obviously, the exact situation and reliable parameter val-

ues can only be obtained if all relevant effects are included in
one model: separated exciton-phonon configurations, three-
dimensional interactions, the possibility of Frenkel-CT mix-
ing, a dielectric model and mixing with higher states. In
order to determine the multitude of arising parameters, a
broad set of experimental information has to be obtained and
critically used.
The major goal of this article was to investigate the struc-

ture of phonon clouds for molecular crystals of current inter-
est, in which the exciton-phonon coupling constant typically
is in the order of 1. We illustrated that the molecular vibron
model �Eq. �26�� with joint exciton-phonon configurations is
justified only for g�1 and J�1. This regime is approxi-
mately realized in our interpretation of PTCDA and
MePTCDI spectra (J�0.27). For larger values of J, the ef-
fects of delocalized phonon clouds become significant �see
Figs. 3 and 4 for J�0.5). Such larger values are also used
for PTCDA in the literature, and they are of interest for many
other applications. In these cases, an extended phonon cloud
basis should be used for the calculation of the vibronic states.
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70M. Möbus, N. Karl, and T. Kobayashi, J. Cryst. Growth 116, 495
�1992�.
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