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Abstract:   In this paper we show that, in spectral regions where there are no orbital cladding 

resonances to cause transmission loss, the core mode of a continuously twisted photonic crystal 

fiber  exhibits  optical  activity,  and  that  magnitude  of  the  associated  circular  birefringence 

increases  linearly  with  twist  rate  and  is highly  reproducible.  A theoretical  model  based  on 

symmetry properties and perturbation theory is developed and used to show that both spin and 

orbital  angular  momentum  play  a  role  in  this  effect.  An  unexpected  finding  is  that  the 

degenerate  LC  and  RC  polarized  modes  of  the  untwisted  PCF  are  not  100%  circularly 

polarized, but contain a small amount of orbital angular momentum  caused by the interaction 

between the core mode and the hollow channels. 

 
Introduction  

 
Optical  activity  (rotation  of the elliptical  polarization  axis) occurs  in materials  where  left- and right- 

circularly (RC and LC) polarized light have different phase indices, i.e., there is circular birefringence. 

The relationship between ellipse rotation angle ψ and propagation distance z is given by: 

 

ψ = π (nRC − nLC ) z = π BC  z  (1) 
λ  λ 

 
 
where λ is the wavelength, nRC and nLC are the effective refractive indices of RC and LC polarized modes 

and BC is the circular birefringence. Optical fibers with high values of BC are able to maintain circular 

polarization state against external perturbations such as bending and mechanical stress, and are useful in 

applications  such  as  electric-current  monitoring  [1]  where  it  is  necessary  to  suppress  polarization 
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scrambling. Circular birefringence can be induced in optical fibers by mechanically twisting a linearly 

birefringent  fiber [2], and by spinning  (during the draw) a fiber with an off-axis core [3], a photonic 

crystal fiber with elliptical hollow channels [4], or a fiber incorporating anisotropic materials [5]. Theory 

confirms that a similar effect can be induced by incorporating chiral materials into the fiber structure [6]. 

 
In a recent paper it was shown that continuously twisted endlessly single-mode (ESM) photonic crystal 

fibers (PCFs) [7] exhibit dips in their transmission spectrum, associated with coupling to orbital angular 

momentum  resonances  in the cladding  [8]. Here  we show  theoretically  and  experimentally  that  such 

fibers   exhibit   circular   birefringence   within   the   high-transmission   spectral   regions   between   the 

transmission dips, despite there being no linear birefringence or anisotropy in the structure. This effect is 

caused by a subtle interplay between the twisted "six-spoke" modal field pattern and the polarization state. 

A  theoretical  model  based  on  symmetry  properties  and  perturbation  theory  is  used  to  analyze  the 

phenomenon. Excellent agreement is obtained between experiment and theory. 

 

 
 
 

Fig. 1. (a) Cut-back measurements (circles) and linear regression (lines) of the rotation angle of 

linear polarization  at a fixed wavelength  of 800 nm for PCFs with twist rates of 3.1, 6.3 and 

10.1  rad/mm,  with  corresponding  beat  lengths  of 57.1,  27.6  and  16.9  cm. (Inset)  Scanning 

electron micrograph of the PCF. (b) Relative rotation angle deviation of the output polarization 

state as a function of input polarization angle. 
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Experiment 
 
An ESM PCF with hole diameter ~1 µm and inter-hole spacing ~3 µm was used in the experiments (see 

the scanning electron micrograph in Fig. 1(a)). The twisted PCFs were fabricated by rigidly fixing one 

end while mounting the other at the center of a motorized rotation stage. While the motor was rotating, a 

focused continuous-wave CO2  laser beam was scanned along the fiber using a steering mirror fixed to a 

motorized linear translation stage. The laser power was chosen to heat the fiber to the glass-softening 

temperature – any residual torsional stress is relieved when the sample is dismounted. The circular 

birefringence of three ~5 cm long samples with twist rates of 3.1, 6.3 and 10.1 rad/mm were measured 

using a cut-back method. A tunable continuous-wave Ti:sapphire laser was used as the light source and 

the polarization states before and after the fiber were measured with a commercial polarimeter. 

 

 
Fig. 2 (a) Circular birefringence as a function of twist rate at a wavelength of  λ0 = 800 nm. The 

error is the difference between the numerically modeled (by solving the full Maxwell equations 

with a finite element method) and the values of BC calculated using perturbation theory; (b) BC 

as a function of wavelength for a twist rate of 10.1 rad/mm. 
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The results from a series of cut-back measurements with linearly polarized light at a fixed wavelength of 
 

800 nm are plotted in Fig. 1(a). The output polarization state remains predominantly linearly polarized but 

rotated by an angle ψ, as expected if circular birefringence is present. It is clear from Fig. 1(a) that the 

rotation angle is linearly proportional to the fiber length and therefore that the value of BC can be obtained 

by fitting Eq. (1) to straight lines. The dependence of the output polarization angle on the launched 

polarization angle was also measured for a sample with a twist rate of 6.3 rad/mm (Fig. 1(b)) and shows a 

deviation of less than ±0.5%. The ellipticity, defined here as the ratio of semi-minor to semi-major axis of 

the polarization states, was measured to be less than 0.05, showing that the circular birefringence is very 

weakly dichroic. We attribute this to inevitable small deviations from six-fold symmetry in the structure. 

 
The  values  of  BC  at  different  twist  rates  are  plotted  in  Fig.  2(a)  for  the  three  fibers  in  Fig  1(a).  A 

comparison  of the experimental  results with numerical  solutions  modeled  by a finite element  method 

applied to the full Maxwell equations in a twisted coordinate frame [8] shows excellent agreement; as 

expected, BC  increases with twist rate. Fig. 2(b) shows the measured wavelength dependence of BC  for a 

twist rate of 10.1 rad/mm. The modal field extends further into the cladding as the wavelength increases, 

resulting in a larger overlap with the cladding microstructure and increasing the effect. 

 
Theoretical model 

 
To understand the observed circular birefringence, it is useful to solve Maxwell’s equations both in a 

helicoidal coordinate system [9] and in the Cartesian laboratory frame. The full details of this analysis 

will be published elsewhere, but in essence, because the twist rate α (rad/mm) is relatively small (i.e., 

α ⋅ Λ << 1 , where Λ is the inter-hole spacing), Maxwell’s equations can be solved using a perturbation 
 

approach, based on accurate full-vector numerical solutions for the modal fields in the untwisted fiber. 
 
 

Modes of untwisted fiber 

The modes of the untwisted fiber fall into two categories: a core mode, which is exponentially localized in 

the vicinity of the glass core, and cladding modes (commonly referred to as space-filling modes), which 

are delocalized in the microstructured cladding. Here we are interested only in the core mode. All these 

modes   are   eigen-solutions   of  the   system  H un  = −i ∂  
,  where  H un    is  defined   in  the   paraxial 

 

approximation as: 
 
 

H un  = λ0 
4π n(ρ,φ, λ0 ) 

∇2    ,  (2) 
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∇ 

z 0  z 

⊥ 
2   is the transverse  Laplacian,  λ0  the vacuum  wavelength  and n(ρ,φ ) maps the transverse  refractive 

index profile of the fiber. The vector  
 = u , u

  
denotes the electric field vector profile in the transverse u  (  x  y ) 

direction, which in the case of fiber modes is given by  
 =  (ρ,φ ) exp (iΔβ un z ) , where ρ and ϕ are the

 
u w z 

 

radial and azimuthal coordinates and β un
 = β  + Δβ un

 is the modal propagation constant in the untwisted 
 
fiber and β0  is a reference wavevector. The orbital and spin angular momentum operators are  L = −i ∂φ 

and S = σ 2 , where σ 2 = [(0, −i), (i, 0)] is the second Pauli matrix; the total angular momentum operator J 

equals L + S. 

 
In an untwisted  PCF the hollow channels break the circular symmetry  and as a result the expectation 
value of the total angular momentum,  which we denote by 〈J 〉 , deviates  slightly  from ±1 due to the 

 

presence  of minor  contributions  from  eigenstates  with eigenvalues  j = ±1 + 6m (this follows  from  the 

six-fold rotational symmetry), where m is a positive or negative integer. 〈J 〉    can be separated into spin 

and  orbital  angular  momentum  contributions,  which  one  can  calculate  from  the  field  distributions 

(modeled numerically) in the untwisted fiber via the non-paraxial integral expression in Eq. (38) in Ref. 

[10] (this is more accurate than Eq. (3)). Numerical calculations based on the finite element method, using 

both Cartesian and cylindrical coordinates,  yielded the same values (to the fourth decimal place) for the 

individual  contributions  of spin and orbital angular momenta: (〈S 〉, 〈L 〉) = ± (0.9996, 0.0022) where (+) 
 

refers to LC and (−) to RC polarization, i.e.,   J  = ±1.0018 . The deviation of 〈S〉 from unity indicates 

that the modal solutions are not perfectly LC or RC polarized, as might perhaps be expected. Note that in 

the  untwisted  fiber  the  LC  and  RC  modes  are  degenerate,  i.e.,  their  axial  propagation  constants  are 

identical, which means that no optical activity will be observed, also as expected. Figure 3 shows the axial 

component of the spin and orbital angular momentum densities. The OAM density is non-zero only close 

to the air holes in the first ring, where significant contributions from the other eigenstates of J are present. 
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Fig. 3 (a) Axial component  of spin angular momentum  density, normalized  so that the total 

energy flux is unity. (b) Normalized axial component of OAM density. Note the small OAM 

contribution in the vicinity of the fiber core, which leads to a non-negligible contribution to the 

total  angular  momentum   density  and  becomes   dominant   when  circular  birefringence   is 

considered. 

 
Twisted fibers 

 
In a twisted fiber, however, the situation gets more complicated  and interesting. Upon introducing  the 

Ansatz   
 = exp (i α z[ L + S])  (ρ,φ ) exp (iΔβ tw z ) ,   one   can   show   by   perturbation   theory   that   the

 
u w z 

 

propagation constant of the core mode, evaluated in a helicoidal reference frame rotating with the twist, 
 

can be written: 
 

ρ d ρ dφ 
 
(L + S) 

 
 

tw  = β un − α ∫  = β un  
− α  J   .  (3)

 
ρ d ρ dφ     z 

∫ w†w 
 
 
This  indicates  that,  in the helicoidal reference frame, β tw is shifted  in proportion  to its total  angular 

momentum, weighted by  
 

, in agreement with perturbation theory.  This shift is opposite in sign for LC 

and RC polarized core modes, as confirmed by finite element modeling in figure xx of the paper by Wong 

et al. [8]. The shift in propagation  constant  in Eq. (3) is reminiscent  of Zeeman  splitting,  in which a 

magnetic field (analogous in our case with twist rate) induces an electronic energy level shift (analogous 

with  propagation  constant)  that  depends  on  the  total  angular  momentum.  We  intend  to  explore  this 

analogy in more detail in a future publication. 
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Twisted circular-‐symmetric fiber 

In a twisted circular-symmetric fiber the modes turn out to be eigenstates of J  with integral eigenvalues j 

= l + s (although l and s themselves are not in general exact integers, their sum is integral [11]). In order to 

return  from  the helicoidal  to the laboratory  frame,  a coordinate  transformation  is necessary.  For a 

circular-symmetric fiber this yields: 
 
 

lab 
z = β tw + α (l + s) = β un

 ,  (4) 
 
 
i.e., the quotient of integrals in Eq.(3) evaluates exactly to the integer  j = (l + s) so that the laboratory 

propagation constant exactly equals that of the untwisted fiber: as expected, twisting has no effect in this 

case. 

 
Twisted PCF 

 
In an untwisted PCF we have seen that the fiber mode consists of a linear superposition of all the J- 

eigenstates, with an expectation value   J   that is no longer an integer. When the PCF is twisted, Eqs. (3) 

and (4) lead to the result: 
 
 

lab 
z = βz + α ( j − J ) (5) 

 
 
in the laboratory frame, where j is the integral eigenvalue of the J operator corresponding most closely to 

 

the total angular momentum  of the PCF core mode. Since in our case one of the J-eigenstates  in the 
 

superposition is dominant (the one with eigenvalue j ), β lab
 

 

is consistently slightly different from β un
 
 
. It 

 

is this small disparity that gives rise to the observed optical activity. 
 
 
Evaluating  β lab

 in Eq.(5) for the LC ( j = +1) and RC ( j = −1) polarized modes, and taking the difference 
 
of the two values, we finally obtain an expression for the circular birefringence: 

BC = nRC − nLC  ≈ α λ0 ( J  − j) / π  .  (6) 

This estimate of BC, calculated using perturbation theory, is compared in Fig. 2(a) with the value obtained 
 

from a full numerical solution of Maxwell's equations. The error is less than 2%. 
 
 
Conclusions 

 
In  spectral  regions  where  the  transmission  is  high  (i.e.,  away  from  the  transmission  dips  caused  by 

excitation  of orbital resonances  in the cladding  [8]), continuously  twisted  ESM PCFs exhibit  circular 
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birefringence via a non-resonant geometrical effect that can only be understood if both spin and orbital 

angular momentum are considered. A theoretical model based on symmetry properties and perturbation 

theory is in excellent agreement with experimental and numerical data, and shows that the circular 

birefringence  is  caused  by  excitation  of  higher  order  angular  momentum  eigenstates  by  the  six-fold 

symmetric structure around the core. Since the structure are created by thermal post-processing and not 

mechanical stress, the value of BC is not limited by the ultimate strength of the glass [12], and furthermore 

can  be  fine-tuned  by  applying  mechanical  twist  [13].  Such  optically  active  twisted  fibers  may  find 

applications in polarization control, nonlinear optics and sensing. 
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