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We demonstrate that light propagating in an appropriately designed lattice can exhibit dynamics akin to

that expected from massless relativistic particles as governed by the one-dimensional Dirac equation. This

is accomplished by employing a waveguide array with alternating positive and negative effective coupling

coefficients, having a band structure with two intersecting minibands. Through this approach optical

analogues of massless particle-antiparticle pairs are experimentally realized. One-dimensional conical

diffraction is also observed for the first time in this work.
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The Dirac wave equation, formulated in 1928 by Dirac

[1], represents one of the great breakthroughs of theoreti-

cal physics. This equation unifies the principles of quan-

tum mechanics and special relativity, suggesting in

particular a new form of matter: antimatter, that predated

its experimental discovery [2]. Importantly, the Dirac

theory does not only describe massive particle-antiparticle

pairs but also potentially massless fermions, such as neu-

trinos and anti-neutrinos [3]. However, direct experimen-

tal observation of such entities is highly intricate since

such particles do only weakly interact with matter [4].

Classical optical emulators of the Dirac equation recently

received a great deal of interest since, with their help,

various relativistic phenomena can be experimentally

observed in tabletop experiments [5–9]. In all of these

demonstrations, a biatomic superlattice waveguide array

was used to simulate the spinor-type wave function of the

Dirac equation. However, this carries the intrinsic draw-

back that a band gap opens between the two minibands,

which is physically equivalent to a mass in the emulated

Dirac equation leading to the fact that only massive Dirac

particles can be simulated. To date, the only known optical

realization of a massless Dirac equation is in the two-

dimensional (2D) setting of honeycomb photonic lattices

[10,11] that consists of two shifted hexagonal lattices.

Therefore, this structure represents a superlattice with

identical waveguides and, hence, without a gap between

the bands of eigenmodes. The honeycomb structure,

which resembles the geometry of electronic graphene,

can consequently be used for realizing optical simula-

tions of the 2D versions of Klein tunneling [12] and

Zitterbewegung [13]. It is usually believed that gapless

superlattices exist only in settings with two transverse

dimensions, and one-dimensional (1D) superlattices always

exhibit an interband gap. However, 1D systems are particu-

larly useful in isolating certain phenomena associated with

the Dirac equation that may be too intricate to generate in

systems with higher dimensions.

As it is commonly known, the band structure of a mass-

less Dirac equation features a particular conical intersec-

tion point between the two minibands—the Dirac point

(also called ‘‘diabolic’’ point). These points, that were first

described by Hamilton in the context of biaxial crystals

[14], are characterized by their singularity; i.e., no

uniquely defined group velocity exists at such points.

Importantly, this gives rise to the peculiar phenomenon,

amongst others, of conical diffraction [14], where a light

beam, launched into a biaxial crystal at the direction of the

diabolic points, spreads in a conical fashion. The light

forms a thin ring with an increasing radius during propa-

gation, but the thickness of the ring stays constant over the

whole propagation distance. Following Hamilton’s predic-

tion, conical diffraction was first experimentally observed

by Lloyd [15] and is, therefore, the first theoretically

predicted physical phenomenon ever. Interestingly, conical

diffraction attracts attention until today [16–21]. Even

though this concept was introduced in the field of crystal

optics, it can be transferred to other fields of physics, where

such diabolic points exist. This became particularly clear in

the work of Peleg et al. [10], where conical diffraction was

associated with the diabolic points in the honeycomb

structure, although the physical origin is slightly different

in that system. To date, diabolic points have never been

realized in a 1D structure, and—consequently—conical

diffraction has never been observed in a 1D geometry.

In our work, we present the first experimental imple-

mentation of the 1Dmassless Dirac equation that exhibits a

conical intersection in the band structure. We demonstrate

the optical analogue to a massless relativistic particle and

its antiparticle moving away from each other. Additionally,

we draw a connection from this phenomenon to 1D conical

diffraction, a surprising result that emphasizes the close
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analogy between conical diffraction and the evolution of

massless Dirac particles. In order to implement a conical

intersection in a 1D system, we show that the Dirac equa-

tion in its discretized form can be mapped on a lattice with

alternating positive and negative coupling, a setting that

was theoretically introduced only recently [22]. Note, that

our setting provides a superlattice with two identical sites

per unit cell, preventing the opening of a gap between the

bands and facilitating the formation of a conical intersec-

tion point. This is in contrast to all 1D settings that were

realized before, in which the superlattices were imple-

mented by alternating refractive indices of adjacent wave-

guides opening a photonic gap between two minibands of

eigenmodes.

To theoretically introduce our ideas, we assume a

waveguide array that consists of single-mode waveguides

sinusoidally curved along the propagation direction z with
the transverse position of the waveguide centers �0ðzÞ ¼

A cosð2�
P
zÞ, where A is the modulation amplitude, and P is

the period. A sketch of the setup is shown in Fig. 1(a). The

propagation of light in such weakly coupled waveguides

with nearest-neighbor interaction is described by the tight-

binding model [23]:

i@z�j þ cj�j�1 þ cjþ1�jþ1 þ €�0ðzÞxj
2�n0
�

�j ¼ 0;

(1)

where �j is the amplitude of the optical wave in the jth

waveguide, xj is the waveguide position, n0 is the

refractive index of the bulk, and cj is the coupling constant

between the jth and ðj� 1Þth guide in a straight array with
�0 � 0 for a certain distance xj � xj�1. The superlattice

geometry is introduced by an alternating change of the

spacing between the identical sites. The effective coupling

coefficient after every period of the sinusoidally curved

waveguides can be computed using averaging methods and

is given by [23]

ceff ¼ cjJ0

�

A
4�2n0
P�

ðxj � xj�1Þ

�

; (2)

where J0 is the lowest-order Bessel function of the first

kind. By varying the distance between adjacent guides, the

effective coupling constant changes. If we assume that �1

and �2 are two subsequent roots of the Bessel function, we

can find values �1 < �1 <�2 < �2, so that J0ð�1Þ has a
positive sign and J0ð�2Þ a negative sign [for explanation

see also Fig. 1(b)]. Hence, for certain values of the spacing

between adjacent lattice sites d1 and d2, we can meet the

following requirements:

ceff ¼ cðd1ÞJ0ð�1ðd1ÞÞ � ceff ¼ cðd2ÞJ0ð�2ðd2ÞÞ:

Therefore, we are able to create a superlattice with alternat-

ing positive and negative effective coupling by an alterna-

tion of the distances between adjacent guides. Importantly,

the refractive indices of all sites are identical. The resulting

effective coupled mode equations read

i@z�j þ ceffð�1Þjð�j�1 ��jþ1Þ ¼ 0: (3)

Equation (3) was introduced in [22]; however, our imple-

mentation is different from the one suggested in that work,

where the alternating coupling was achieved by a longitu-

dinal modulation of the refractive index of the waveguides.

Interestingly, a 1D lattice with alternating positive and

negative coupling can be transformed to a 1D Dirac equa-

tion of a massless relativistic particle. If the lattice described

in Eq. (3) is divided into two sublattices with propagating

amplitudes aj and bj, the coupled mode equations

i@zaj � ceffðbj � bj�1Þ ¼ 0 (4)

i@zbj � ceffðaj � ajþ1Þ ¼ 0 (5)

can be rewritten as

i@zAj þ iceffðBj � Bj�1Þ ¼ 0 (6)

i@zBj þ iceffðAjþ1 � AjÞ ¼ 0; (7)

using the substitutions aj ¼ Aj and bj ¼ �iBj. With the

definition of the discrete derivative @xA ! Ajþ1 � Aj and

@xB ! Bj � Bj�1, the two-component spinor � ¼

ðA; BÞT , and the Pauli matrix �x, one finally arrives at a

discretized 1D Dirac equation for a massless particle:

i@z�þ iceff�x@x� ¼ 0; (8)

FIG. 1 (color online). (a) Scheme of the waveguide setup.

(b) Zero-order Bessel function with two marked values needed

for the calculation of the special effective coupling modulation.
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where ceff as the effective coupling constant is the analogue
of the speed of light. Due to the equivalence of Eq. (3) and

the 1D Dirac equation [Eq. (8)], the spatial propagation of

a monochromatic light field in our waveguide lattice directly

simulates the temporal evolution of a massless relativistic

particle in one spatial dimension. This analogy also mani-

fests in reciprocal space, in the band structure of the system.

In a regular array with constant spacing, the relation

between the longitudinal wave number! and the transversal

wave number q reads ! ¼ �2c cosðq d
2
Þ, with d as the

spacing between next-nearest sites and is shown in

Fig. 2(a). In contrast, for our superlattice structure the dis-

persion relation reads ! ¼ �2c sinðq d
2
Þ. This can be calcu-

lated directly from the coupled mode equations [Eq. (3)] by

making a plane wave ansatz �jðqÞ � expðiqj d
2
� i!zÞ. A

graphic presentation of the band structure is shown in

Fig. 2(b). Two minibands are formed, which intersect at

q ¼ 0. Importantly, in the vicinity of this intersection point,

the minibands have a slope that is approximately linear, as a

Taylor expansion of the dispersion relation shows. Hence,

FIG. 2 (color online). (a) Dispersion relation of a straight

lattice with equal spacing. (b) Dispersion relation of the lattice

demonstrated here, which shows an intersection of the two

minibands and a linear slope (marked by the dotted lines) in

the center of the first Brillouin zone.

FIG. 3 (color online). (a) Fabrication of the waveguides by laser writing process, cross section of the resulting mode field, and

refractive index profile. (b) Simulation of the light propagation. Parameters are given in the text. (c) Experimental fluorescence image,

at which in (d) the sinusoidal waveguide structure was digitally straightened and losses were removed. (e) Center of mass and

(f) variance of upper and lower part of (d).
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this intersection point resembles aDirac or diabolic point that

was described above. If an initial beam is perpendicularly

(q0 ¼ 0) launched into such a waveguide array, the wave

splits into two equal parts that propagatewith opposite group

velocities (defined by the 1st derivative of the dispersion

relation) and zero diffraction (defined by the 2nd derivative).

This is exactly what conical diffraction means. Note that due

to this exceptional point, there is no gap between the

minibands.

For our experiments, we fabricated a waveguide array

by employing the femtosecond direct-writing approach [24]

as shown in Fig. 3(a). The parameters of the writing

procedure can be found in [24]. The sample consists of 40

sinusoidally shaped waveguides with alternating distances

between adjacent lattice sites equal to d1 ¼ 13:9 �m and

d2 ¼ 18:1 �m, that are written into a 10 cm long fused

silica wafer. The curvature of the guides has a period of

P ¼ 6 mm, and the amplitude is A ¼ 10:1 �m. These

parameters yield effective coupling coefficients of ceff �
�0:2 cm�1. A sketch of the setup is shown in Fig. 1(a).

For visualizing the light propagation, we employ a fluo-

rescence microscopy technique [25]. We launch a broad

Gaussian beamwith awavelength of 633 nm, covering about

5 waveguides, straight into the array. The light used for the

excitation was linearly polarized in a direction perpendicular

to the lattice plane. A simulation and the associated experi-

mentally obtainedfluorescence image are shown inFigs. 3(b)

and 3(c). In Fig. 3(d), the sinusoidal shape and the losses of

the waveguides were digitally removed for a better compari-

son of the experimental image with the simulated image.

The splitting of the ray bundle into two nonspreading parts

moving away from each other in a constant fashion is clearly

seen. To confirm this observation, we computed the center of

mass [Fig. 3(e)] and the variance [Fig. 3(f)] of the upper and

lower half of Fig. 3(d). The centers of mass of both beams

move away from each other, in a linear fashion, as shown in

Fig. 3(e). Additionally, the variance of both beams, plotted in

Fig. 3(f), stays nearly constant during propagation. These

effects are characteristic for the phenomenon of conical

diffraction and is based on the linear slope of the band

structure [marked by the dotted line in Fig. 2(b)] in the

vicinity of the singularity. In contrast to our simulations,

there is a very slight broadening of both beams visible

in the experiment. The minor discrepancies in Figs. 3(e)

and 3(f) between experimental and theoretical data are due

to higher order coupling, which is not contained in the tight-

binding approach in Eq. (1), and due to small inaccuracies

occurring during the writing process that result in slightly

different values for the coupling constant in experiment and

simulation. However, the broadening of both beams is still

much weaker than that of a Gaussian excitation in a lattice

with similar spacing but only positive coupling coefficients,

where the spreading is 10 times stronger than in our setting.

The splitting of the initial wave packet into two separate

beams can also be interpreted in terms of relativistic quan-

tum mechanics, based on the Dirac equation. The two

counterpropagating beams in Figs. 3(b)–3(d) represent an

optical analogue to two massless fermions (a particle and

the corresponding antiparticle, e.g., a neutrino-antineutrino

pair) moving away from each other. In the quantum me-

chanical analogue, the relativistic momentum of a particle

reads p ¼ �ððV � EÞ2 �m2c4Þ1=2=c, which simplifies in

the massless case without potential (m ¼ 0, V ¼ 0) to

p ¼ �E=c.
In conclusion, we demonstrated the optical emulation

of the evolution of 1D massless Dirac fermions. We

furthermore provided the first experimental proof of

1D conical diffraction. Our results yield surprising evidence

for the close relationship between the two seemingly

unconnected phenomena of 1D conical diffraction and the

evolution of massless Dirac particles. In order to experi-

mentally implement our results, we mapped the discretized

version of the 1D Dirac equation to a lattice with alternating

positive and negative coupling between adjacent sites and

realized this setting using periodically curved waveguides in

a position-based superlattice. Our work is a leap into the

emulation of 1D relativistic phenomena of massless parti-

cles on a lattice, a concept which is not restricted to wave-

guide arrays but is also applicable to other systems like

ultracold quantum gases and trapped ions [26]. As the

interaction among particles in many-body systems in a

mean-field approximation can be described by a nonlinear

term in the evolution equation, we envision on our platform

further optical experiments employing nonlinearity that will

allow the emulation of relativistic interacting particles [27].
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