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S E C T I O N I

INTRODUCTION AND SUMMARY

1.1 INTRODUCTION

The development of laser communication systems for space is

a vital step toward providing the nation with the capability for synchron-

ous relays, deep space probes, and ground stations. The special

properties of laser systems make such links possible without the need

for large antenna structures, and the need for high power as required

by microwave systems. Such a capability is particularly required,

within this decade, to furnish wideband data links from low altitude

satellites with high resolution sensors to earth synchronous communica-

tion terminals from which the information may then be relayed to

ground stations.

Spaceborne communication systems must necessarily operate

near theoretical thresholds. The demands against weight, prime

power, information rate, cost, reliability, and other factors do not

allow a large safety margin to compensate for overlooked degradations.

For this reason and others, the present computer program, LACOMA

(LAser COMmunicator Analysis program), has been developed to

accurately simulate optical configurations of heterodyne communication

systems and to evaluate the effects of aberrations, distortions and mis-

alignments on the heterodyne performance of these systems. The pro-

gram has been developed with the communication engineer in mind. It

has been designed to be easy to program and easy to interpret. Output

is specified in terms of antenna gain to allow results to be directly

applied to system calculations. Absolute power values are also printed

out to provide actual signal levels for evaluation.



1.2 COMPARISON WITH OTHER OPTICAL COMPUTER PROGRAMS

LACOMA represents a major advance in the optical analysis

of laser heterodyne communication systems. It also represents an

advance in general optical system analysis since it includes the effects

of gaussian pupil functions. Some of the optical analysis programs with

which LACOMA might be compared are:

1. POLYPAGOS —Aerospace Corporation

2. SLAP (Spectral Lens Analysis Program)— PAGOS
Corporation

3. MTF— D. Grey Associates

4. ACCOS-GOALS— Scientific Computations Inc.

These represent a cross section of the generally available opti-

cal analysis programs and will serve as benchmarks to compare

LACOMA.

LACOMA is a direct descendant of SLAP which is in turn an

updated version of POLYPAGOS, so that one would logically expect

more similarities between these programs. An overview of the pro-

grams is provided by the tabular check sheet of Table I r l . A major

difference between these programs is the Fourier transform algorithms.

LACOMA (also SLAP and POLYPAGOS) utilizes an algorithm which per-

mits the specification of number and location of the output points for the

computed spread function (ASF, PSF) results. For a given optical

system or telescope, LACOMA allows sampling of the Airy disc via

grid sizes from 2x2 to 101x101 or any other arrays between these

extremes. This is not possible with the algorithms used by the other

programs. Not included in the table is a cost comparison. If it were

possible to set up a cost or running time comparison, the Gray-MTF

might show somewhat better due to its heavy emphasis on machine

language programming for the CDC 6600. The ACCOS-GOALS would

probably score as the most costly. Some of the tabulated categories

are subjective such as the ease of input, but they reflect more than a

single view.



TABLE 1-1.

Comparison of Optical Computer Programs

Feature

Heterodyne Power

Detector Power

Multiple Detectors

Multiple Beams

Optimization Capability

Interactive Operation

Gaussian Input Pupil

Transmittance

Output Grid Selection

Deformed Surfaces

Perfect Surface

3-D Tilts and Decentrations

Geometrical Analysis

Generalized Aperture Description

Ease of Input

LACOMA

X

X

X

X

X

X

X

X

X

X

X

SLAP

X

r

X

X

X

X

X

X

X

POLY-
PAGOS

X

X

X

X

X

X

X

MTF-
GREY

X

X

ACCOS/
GOALS

X

X

X

X

X

T1199



LACOMA constitutes a new tool in the optical communications

field. It is unique in its ability to perform an accurate analysis of the

laser communication system.

1.3 RECOMMENDED ADDITIONS FOR INCREASED VERSATILITY

LACOMA has been shown to be a unique and useful tool in the

analysis of heterodyne systems (see Section III). During the course of

using the program, it was often tempting to use it as a design tool.

This led to an investigation into the possibility of modifying the present

program to combine the features of design and analysis. The result

of this study led to the following list of recommended additions, some

of which would provide some design or optimization capability, and

others that would enhance the analysis function.

a. Optimization— Conventional optimization techniques will

not necessarily produce optimum optics for laser communication sys-

tems, especially for the transmitter and local oscillator. A gaussian

beam amounts to an aperture weighting function which should be included

in the optimization process. Also, ideally, the received signal optics

and local oscillator optics should be optimized on the basis of their

combined beams. It is recommended that work in the optimization

area occur in stages.

(1) Focus optimization— optimization of best focus posi-
tion for a given system configuration.

(2) General optimization Phase I— Development of
algorithms and approach to optimization for trans-
mitter and receiver.

(3) General optimization— Phase II— Development of
optimization program based on algorithms and
approach spelled out in Phase I.

b. Tolerance Analysis — Automatic determination of toler-

ance budgets necessary to maintain specified level of performance.

This can be a separately addressable subroutine of an optimization

program.
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c. Perturbed Focal Surface— Revisions to permit tilted,

decentered, curved focal surface without dummy surfaces.

d. Return Option for Tilted-Dec entered Surfaces — To auto-

matically restore coordinate system after tilt and/or decentration

without dummy surfaces.

e. Aberrated Entrance Pupil — Accommodation of aberra-

tions of entrance pupil due to tilts-decentrations, input beam inclination.

f. Potato Chip Aspheres — Generalize deformed surface

options to include more generally deformed surfaces due to thermal-

mechanical stresses or potato chip aspheres.

g. Pseudo-diffraction Intensity Function — Geometrical

analysis to be used for evaluation of systems without involving full scale

diffraction-heterodyne analysis.

h. Transmittance — Subroutine to compute losses due to

absorption losses, Fresnel reflection losses, antireflection films,

multilayer thin films.

Polarization — extension to determine orthogonal polarization

components of beam.

i. Graphics — Isometric and contour representation of wave

function, pupil function, spread functions, etc.

Interactive graphics — for analysis and optimization.

j. Fresnel Diffraction— Modification of diffraction integrals

of LACOMA to permit computation of amplitude or intensity function out

of Fraunhofer plane.

k. Thermal-mechanical Structural Analysis — Extension of

LACOMA to interface with thermal-mechanical analysis programs such

as STARDYNE, NASTRAN, etc., to perform overall system analysis.

Some of the listed modifications are contained in other programs

as seen in Table 2-1, while others, such as transmittance, are unique.

Transmittance in particular should be considered for LACOMA, since

this parameter affects the amplitude distribution across the exit pupil,

which, in turn, can make a significant difference in phase distribution

across the focal plane, and can also cause a shift in the location of the

5



focal plane. Other modifications that are considered particularly

appropriate to heterodyne systems are focus optimization, perturbed

focal surfaces, and the related Fresnel diffraction modification.

1.4 SUMMARY

Section II of this report is designed to be a self-contained user's

manual. An engineer familiar with heterodyne optical systems should

be able to utilize LACOMA with this manual and a minimal amount of

help from computer personnel..

Section III contains an analysis of the sample system, the opti-

cal mechanical subsystem developed for NASA under contract NAS-

5-21859. This analysis includes a "perfect" reference system, several

runs for the system with no distortions or errors, and finally analyses

with tilts and distortions that might be introduced by manufacturing

tolerances or by mechanical or thermal stress. This section has been

arranged to provide a specific example for using LACOMA.

At the end of Section III, two additional analyses are summarized,

one that establishes bounds on the field of view of heterodyne receivers,

and a second that analyzes a telescope designed for a terrestrial system.

This last example was selected because there is sufficient aberration to

cause significant performance degradation, thus providing a means for

illustrating the advantages of LACOMA over conventional optical

programs.

Section IV contains a detailed discussion of the program.

Specific equations and computational flow diagrams are discussed.

Error sources and their probable magnitudes are covered at the end

of this section.



S E C T I O N II

LACOMA USER'S MANUAL

2. 1 GENERAL PROGRAM DESCRIPTION

The program has been developed to allow prediction of laser

communication system performance and to permit tradeoff analysis in

the design of these systems. The program is set up to allow the

optional analysis of transmitter or receiver optics.

For the transmitter, the program starts with the data for the

specified laser beam and propagates the beam through the optical train

to determine the far-field intensity function.

For the receiver, the program carries the received signal beam

through the optical train to the detector. The local oscillator laser

beam is also traced to the detector where the two beams are combined

and the various quality criteria computed.

The computation for the receiver requires the entry of two sets

of optical data— one for the received signal optics and another for the

local oscillator optics. The program checks whether one or two sets

of data have been entered (see Fig. 2-1). If there is only one set, it

performs the transmitter analysis. Two sets of data precipitate the

receiver analysis.

a. Transmitter— For a single set of optical data the pro-

gram computes the gaussian beam profile and any specified quadratic

phase on the input beam and traces it through the optical train, carrying

the complex amplitude function through in the form of an amplitude

array B (i, j), and the optical path difference array W (i, j) (see Fig. 2-2) .

At the exit pupil it computes the rms wavefront error crW and the

normalized Strehl intensity I (<r) for the (systematic) system wavefront.
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It forms the pupil function F (u,v) (= complex amplitude array at the

exit pupil).

F(u,v) = B(u,v) • exp [-KW(u.v)] (2-1)

2"i
\£ — _____

X

u, v = pupil coordinates

The Fourier transform of F(u, v) yields the far-field amplitude

spread function ASF(x, y)

ASF(x,y) = ^"F(u,v) (2-2)

^denotes Fourier transform.

Squaring the modulus of the complex amplitude spread function

gives the far-field intensity or point spread function PSF (x, y)

PSF(x,y) = |ASF(x,y)|2 (2-3)

b. Transmitter Quality Criteria— The far-field intensity

function is itself a measure of the transmitter performance. This is

augmented by the computation and output of: the peak far-field intensity-

value, optical transmission, maximum antenna gain, and the overall

transmitter efficiency.

• Peak intensity — This is simply the peak value of the
far-field intensity function and is included in the
quality criteria in case the investigator chooses
not to print out the entire far-field intensity
function.

• Optical Transmission— This is the ratio of the
exit pupil power P to the total laser power P

P
Optical Transmission = -p^ (2-4)

o
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Transmission losses accounted for here are those due
to vignetting and obscuration.

Maximum Antenna Gain — This is computed for the
exit pupil area A .

4-nA
Maximum Antenna Gain = r— (2-5)

Overall Transmitter Efficiency — This value relates
the computed peak far-field intensity of the trans-
mitter to that for an ideal transmitter with the same
input power and effective exit pupil area

I rR
2X2

Overall Transmitter Efficiency = . p— (2-6)
e e

I = Transmitter peak intensity

R = Range

c. Receiver— When two sets of optical data are entered,

the program performs the receiver analysis. The optical data are

entered sequentially. That is, there is a total of N surfaces entered

where

N = Nj + N2

The first set of N, surfaces represents the received signal

optical train and the following N_ surfaces are for the local oscillator

optical train. The program (Fig. 2-3) computes the received signal

pupil function F,(u, v).

11
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_ P D
Nonheterodyne Detection Efficiency = •=— (2-12)

L.O. illumination Efficiency_— This efficiency com-
pares the heterodyne power P, for the two given
signals with no phase error wvth the optimum
heterodyne power value for two signals of cor-
responding power

Ph

L. O. Illumination Efficiency = — (2-13)

Maximum Antenna Gain— This is the theoretical
gain for the effective entrance pupil area A of
the received signal optical train.

4irA
Maximum Antenna Gain = —j- (2-14)

Receiver Efficiency to i.f. — Assuming a quantum
efficiency of 1, this efficiency relates the square
of the heterodyne power P^ to the product of the
total received power PQ and the L.O. power PL,
and is a measure of overall receiver performance.

Receiver Efficiency to i.f. = p ^ (2-15)
<> L

2. 2 DATA DISC USSION

The program performs analyses on laser communication system

optics as summarized in Section 2-1 with the detailed computational

procedure described in Section IV of this document. The analyses per-

formed by the program are briefly listed here.

Paraxial Analysis (Section 4. 1)

Ray Trace-Optical Path Difference (Section 4.3)

15



Amplitude and Point Spread Function (Section 4. 8)

Receiver Quality Criteria.(Section 4.9)

Transmitter Quality Criteria (Section 4. 10)

Numerous options are available for handling of the data, choice

of computations, output data, etc. Two data arrays IPRQ0G and IDETEC

control the major functions and are discussed in detail.

Some optical system parameters and/or configurations which

can be accommodated by LACOMA include:

• Catoptric systems

• Catadioptric systems

• Dioptric systems

• Spherical surfaces

• Aspheres

• Cylindrical surfaces

• Toroidal surfaces

• Surfaces with slight cylindrical error or warpage

• Periodic surface errors

• Misaligned (tilted, and/or decentered) systems

• Composite vignetting and obscuration

• Afocal systems (via perfect imaging lens)

Any of the analyses can be performed for any of the system

parameters or configurations.

a. Data Requirements — A certain minimum amount of data

must be entered to obtain any results. These minimum data require-

ments can combine with built-in data or default conditions to give a

complete system analysis. These data are listed here with their

associated program variable names and text references.

16



Data Variable Name Text Reference

Number of surfaces N 2.6, Fig. 2-1

Surface curvature RHOS (p ) 2.6, 4.1, 4.3,
s Fig. 2-1, 4-1

Surf ace-surf ace spacing TS (t ) 2.6, 4.1, 4.2, 4.3,
3 Fig. 2-1, 4-2

Refractive index XMUS (PL ) 2.6, 4.1, 4.3,
8 Fig. 2-1

Entrance pupil semi-diameter BETAO (p ) 2.6, 4.1, Fig. 2-1

With these data input, quality criteria will be obtained for a transmitter

or receiver depending on the entry of values for N(l) only or N(l) and

N(2). The computations will be performed under the following default

conditions.

(1) Plane wavefront input-Uniphase energy

(2) Analysis performed at paraxial image position

(3) Axial analysis only— no inclination of input beam

(4) Entrance pupil at first surface

(5) No misalignment

(6) No vignetting or obscuration

(7) All surfaces rotational!/ symmetric spheres or aspheres

(8) Wavelength = 0. 010611385 (mm)

(9) Data assumed input in millimeters

(10) For receiver— single circular detector, centered
on optical axis, detector radius = radius of AIRY
disc for uniformly illuminated unobscured aperture
of specified semi-diameter.

(11) Pupil array = 51 x 51

(12) Spread function array = 5 1 x 5 1

(13) Detector array = 21 x 21 (round)

(14) Output data = Paraxial analysis, wavefront statistics,
quality criteria

(15) Gaussian beam truncation point assumed 1/e intensity
point.

17



b. Data Discussion— System parameters and program

options effected by the default conditions are listed below. The rele-

vant variable names available to override the default conditions are

given in parentheses with page references for descriptions of the

variables.

(1) Input wavefront or object distance Section 4. 1, 4.7

XLJNV (Lo"1)

MAG

(2) Image (or detector) location Section 4. 2

IFLG1

TS(N-l) ( t N _ x )

TS (N) (tN)

(3) Inclination of input beam Section 4.7

H

(4) Entrance Pupil location Section 4. 1

M

(5) Misalignment Section 4. 6

DLTAX (Ax)

DLTAY (Ay)

DLTAZ (Az)

THTAX (6x)

THTAY (6y)

THTAZ (6z)

(6) Vignetting or obscuration Section 4.4

BETASX (6 )vrsx

BETASY (p )

18



(7)

(8)

(9)

(10)

BETAPX (p )

BETAPY (p )

VZER0 (V )

VPI (VJ

GZER0 (GQ)

GPI (GJ

UZER0 (U )

Special surfaces

RH01 ( P )

(p2)

CC (b)

CRS (a)

PHI (4>)

AMP (C )

<c3)

'Us>

FREQ (C2)

C3

USI

vsi (V2)

Wavelength

VLAMDA (\)

Section 4. 3

Section 4. 8

System units of length — All Dimensional Data Must Be
Input In Same Units as Wavelength.

Detector Parameters

IDETEC

NDET

Section 4. 8

19



(11) Pupil Array Section 4.7

NXY

(12) Spread function array Section 4.7

. NFRS

DELFS

(13) Detector Array

IDETEC Section 4. 8

DELFS

(14) Output Data

IPR0G

(15) Gaussian beam parameters Section 4.7

Z0MEGA (w )

PZER0(P )

2.3 SETTING UP THE DATA DECK

The data deck consists of the following:

• Title Card— one card with any combination of
characters in columns 1 to 80.

• First Data Card— The first card must contain SftNP
in columns 2 to 5, followed by a blank. Data may
begin on this card or the next.

• Data Cards — As many as necessary with data in
cols. 2 to 80.

• End of data card — the last card must contain
#END in cols. 2 to 5.

The details of the input format of these cards are discussed in

the Input Format, Section 2.5.

20



The details of the individual data are given in Input Parameters,

Section 2.6.

2.4 DATA PREPARATION PROCEDURE

For the receiver analysis, two sets of data are entered sequen-

tially. The first N(l ) surfaces are the received signal optics. These

are immediately followed by N(2) surfaces representing the local

oscillator optics. A total of N(l) -f N(2) surfaces are entered, surface

No. 1 is the first surface of the received signal optics, surface No. N(l)

is the last (detector) surface for the received signal optics, surface

No. (N(l) + 1)) is the first surface of the local oscillator optics and

surface No. (N(l) + N(2)) is the last (detector) surface for the local

oscillator optics. The system parameters for the received signal

optics versus the LO optics are defined by two component arrays with

the first component representing the received signal optics in all cases.

Examples: The sample case entitled "RECEIVER TEST CASE

#2", (Appendix D) indicates surface data for a total of twenty

surfaces. Also input are

• N ( l ) = -12, -8, where the negative signs indicate
that data is input in radius form rather than
curvature, the first twelve surfaces are the
received signal optics and the following eight are
the LO optics, thus accounting for the twenty
surfaces.

• BETAO(l) = 53.975, 2.621, the received signal
optics semi-diameter is 53. 975 mm and that for
the LO is 2.621 mm.

Notice that, as discussed in Input Format, Section 2. 5,

N(l) = -12, -8,

is the same as

N(l) = -12, N(2) = -8,
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and

BETAO(l) = 53.975, 2.621,

is the same as

BETAO(l) = 53.975, BETAO(2) = 2.621,

The program indication of whether a transmitter or receiver

is being analyzed is based on the value of N(2)

If N(2) = 0 — Transmitter analysis

If N(2) 4 0 —• Receiver analysis.

It is recommended that the user refer to the facsimile input

sheet, Fig. 2-4. All of the variables are shown on this sheet.

The user can look at each variable, decide whether it applies

to his problem, enter an appropriate value if it does and move

on to the next variable. This procedure guarantees that no

data is overlooked. Notice that the variables may occur in

' any order in the data deck which may or may not correspond

to the order in which the variables appear on the facsimile

input sheet.

2.5 INPUT FORMAT

Input data consists of two groups, both of which must be present

for each case, in the following order:

a. One title card— any combination of blanks, letters,
numerals, and the characters + -, = / $ ( ) . * in
columns 1 to 60.

b. One or more cards of numerical data in colums 2 to 80,
which are read in by means of the NAMELIST input
feature, as described below.
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$INP N(l) = , , M(l) = , , BETAO(l) = , , XLINV(I) = , , MAG(l) = , ,

IFLGl(l) = , , H(l) = , , RHOS(l) = , , , , TS(1) = , , , , XMUS(l) = , , ,

SKAPA(l) = , , , DFORM(IJ) = , , , RADS(l) = , , , RH01(1) = , , ,

RH02(1) = , , , PHI(l) * , , , AMP(1) = , , , FREQ(l) = , , , USI(l) = , , ,

VSI(l) = , , , C3(l) = , , , CRS(l) = , , CC(1) = , , THTAX(l)

THTAY(I) = , , THTAZ(l) = , , DLTAX(l) = , , DLTAY(l) = , , OLTAZ(l) = , ,

BETAPX(I) = , , ,.BETAPY(1) , , , BETASX(l) = , , , BETASY(l) = , , ,

VZERO(l) = , , , VPI(l) = , , GZERO(l) = , , , GPI(l) = , , UZERO(l) = ,

VLAM.DA = , NFRS = , DELFS = , NXY = , PZERO(l) = , , ZOMEGA = ,

IPROG(l) = , , , IDETEC(l.l) = , , , NDET = , FLAG = ,

SEND

Fig. 2-4. Facsimile input sheet.

NAS 5-Z1898
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NAMELIST REQUIREMENTS j

a. Column 1 must be blank on all cards. j

b. The first card of the data must contain $INP >
in columns 2 to 5, followed by a blank space. I
Variable values may begin on this card or on '•
the next card. The termination of a data set
is indicated by the characters $END in columns \
2 to 5. The appearance of the character $ any-
where else will cause an error.

c. Variable names

1. Single-valued variables are input in the form

(name.) = (value)

Example: NPTS = 16, DX = 0.02,

2. . Commas follow every numerical value.

3. Arrays may be put in as single elements with
the subscript or by listing the consecutive
values:
Examples: A(l) = 3, A(4) =-1.69, A(5) = 32.1,

or .

A = 3, 0., 0., -1.69, 32. 1,

4. Double-subscripted arrays must be input
columnwise.
Example: A 4 x 3 matrix A may be input in the

order

A = a l l » a2T a3T a41' a!2' a22' a32' a42' a!3'

a23' a33' a43

5. A string of consecutive elements in an array may
be entered by giving the name and subscript of
the first element.
Example: To input elements 19 through 23 of
array A, write

A(19) = a , & , a , a , a
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d. Value formats

1. Whole numbers may be input with or without a
decimal point. Exponents (power of ten) may be
indicated by an E followed by the power, or the
E may be omitted and a signed integer used
for the power.

7.46 x 10 may be written 7.46E6,
7.46E+6, 7.46+6, or
7.46+06:

7.46 x 10"6 may be written 7. 46E-6,
7.46-6, or 7.46-06

2. No plus signs are necessary for positive values
or exponents. Negative values or exponents are
indicated with a minus sign.

Example: -4.396 x 10"8 becomes -4.396E-8
or -4.396-8

3. Double precision numbers take a D instead of
an E to indicate the exponent. If a double
precision number contains less than nine sig-
nificant digits, it must have a D plus exponent
for proper conversion.

Examples: 3. 141592653587973 is written just
like that, while 3. 14159 becomes
3.14159DO.

4. Identical consecutive values of an array may
be abbreviated by writing an integral multiple
and an asterisk(#) in front of the value.

Example: if A, = A- = 2, and A, = A. ...

= A33 = -4,

write

A = 1., 2., 31*-4,
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e. Errors

1. If the $INP followed by a blank does not appear
as the first punches in the first card (excluding
column 1), the computer will ignore that card
and continue reading, trying to find $INP in the
next cards. This process continues until $INP
is found or there are no more cards. No error
message is given if the wrong cards are being
read and rejected.

2. If a variable name is misspelled, the computer
will give an error trace, terminate execution,
print the following message: "Namelist name
not found."

f. Order multiple cases

1. Variables may appear in any order.

2. Not all data need appear in any set. On suc-
cessive cases where it is desired to change
just a few values, only those variables need
be input, with the rest retaining their values
from previous cases.

3. Values are all zero initially, unless other-
wise specified. Thus, it is necessary to
input only nonzero values. If runs are
stacked, however, any data not written over
will carry over from the preceding run.

4. The same variable name may appear two or
more times in a data set. The value physically
last in the deck will override any previous
values. Thus, it is not necessary to repunch
cards to change numbers, just place a card
with the changed value (and variable name
with proper subscript, if any) somewhere
following the old value.
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2.6 INPUT PARAMETERS

Variable
Name

BETAO(I)

XLINV(I)

MAG (I)

Description, Comments, Text References

One-dimensional array of length (2), specifying number

of surfaces. Count the image surface but not the

entrance pupil or object. A negative sign affixed to

N indicates input of RADS (radius) instead of RH0S

(curvature). If N(2) = 0, transmitter analysis is to be

performed. If N(2) x 0, N(l ) specifies the number of

surfaces in the received signal optics and N(2) is the

number of surfaces in the local oscillator optics.

One-dimensional array of length (2) for surface number

of aperture stop. M(l) = surface number of received

signal (or transmitter) aperture stop. M(2) = LO

aperture stop surface number. Default values:

M(l) = 1, N(2) + 1.

One-dimensional array of length (2) for semi-diameter

of entrance pupil. BETAO(l) — received signal or

transmitter. BETAO(2) — LO.

One-dimensional array of length (2) specifying inverse

of radius of incident wavefront at entrance pupil.

XLINV(l) — Received signal or transmitter.

XLINV(2) — L.O.

Default values: XLINV(l) = 0. , 0. ,

One-dimensional array of length (2) specifying mag-

nification of output versus input wavefront radius.

MAG = -RN/RQ

where

RN ^

R =

output wavefront radius

input wavefront radius
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and the sign conventions on R , R.., are standard.

MAG(l) — Received signal or transmitter.

MAG(2) — L.O.

Default: MAG(l) = 0., 0.,

IFLG1(I) One-dimensional array of length (2) controlling location

of image (or detector).

IFIFLG1 = 0 T^ j = BF + T

IFIFLG1 = 1 T'N j = TN j + TN

where

T' , = spacing used in analysis as spacing

from surface (N-l) to image

BF = Paraxial back focus

T N _J = input value TS(N-l)

TN = input value TS(N)

IFLGl(l) — Received signal or transmitter

IFLG1(2) — L.O.

Default: IFLGl(l) = 0,0,

NOTE: For IFLG1 = 1 and TN * 0, TN_ j will not

revert to its previous value when running

consecutive cases.

H(I) One-dimensional array of length (2) specifying obliquity

in radians of input beam.

H(l) Received signal or transmitter

H(2) L.O.

Default: H(l) = 0., 0.,
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RH0S(I) One-dimensional array of length (101) for the spherical

curvature (or base curvature of an asphere) for the I

surface when N is positive. The sign convention to be

applied to RH0S is that the curvature of a surface is

positive when the center of curvature lies to the right

of the surface.

RADS(I) One-dimensional array of length (101) for the spherical

radius (or base radius of an asphere) for the I*n optical

surface. The sign convention for RADS is the same as

that for RH0S.

N must be entered negative when data is input into this

array.

RADS(I) = 0 defines a plane surface.

TS(I) One-dimensional array (101) for the axial separation

between surface I and I + 1.

The sign convention for TS is that TS is positive for

spacings measured from left to right.

XMUS(I) One-dimensional array (101) for the index or refrac-

tion of the medium between surfaces I and I + 1.

A sign change between XMUS (I- 1) and XMUS(I) indicates

a reflection at surface I.

Default: XMUS(I) = 1.

DF0RM(J, I) Two-dimensional array (5, 101) for aspheric deformation

coefficients of the 2(J+1) power terms at surface I

. DFORM(1,I) = a

DFORM(2,I) = J

DFORM(3,I) = Y

DFORM(4,I) = 6"

DFORM(5,I) = 7
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SKAPA(I)

The aspheric expression is

,2
PQ

1 + (1 -K P
2Q2)2

+ QQ4 + (3Q6 + YQ8 + . . .

where

~2 2 .. Z
Q = x + y

x,y = surface intercept points

p = RH0S = base curvature

K = (1 - £ ) = conic coefficient— SKAPA

One-dimensional array (101) for conic coefficient of

surface I

where

SKAPA = K = 1 - €
 2

£ = conic eccentricity

£ =

RH01(I)

RH02(I)

S2 - Sl

S, = distance from first focus to conic

S_ = distance from conic to second focus

One- dimensional array (101) for base curvature of

aspheric (acircular) cylinder. Input in addition to

RH0S(I). RH01 is used for tracing exact rays through

surface I while RH0S is used in the paraxial ray trace,

determining the first order parameters of surface I.

One- dimensional array (101). Toric rotation curvature

of surface I. RH02 used (with RH01) for exact ray

trace. RHC&S used in paraxial analysis. The optical

axis and the axes of RH01 and RH02 are mutually

orthogonal.
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CRS(I)

CC(I)

PHI (I)

AMP (I)

FREQ (I)

One-dimensional array (101). Constant of rotational

symmetry at surface I. CRS(I) = 1., for rotationally

symmetrical surface of curvature RH01(I). CRS(I)

= -1. identifies surface I as a "perfect" surface.

Cylindrical constant. When CC(I) = 0 and CRS(I) = 0.

surface is cylinder with curvature RH01 or RH02

depending on which is nonzero. If RH01 and RH02

are nonzero, surface is toric.

One-dimensional array (101). Angular rotation of

cylindrical axes. For PHI(I)=0 the axis of the RH01

cylinder is parallel to the y axis and the axis of the

RH02 cylinder is parallel to the x axis.

One-dimensional array (101). Amplitude term for

periodic surface error function at surface I.

One-dimensional array (101). Frequency component

associated with sine function portion of periodic sur-

face error. A surface of semidiameter BETAO

will exhibit NZ sine function zeroes between the center

and the edge for

NZ
BETAO

< FREQ <
NZ + 1

BETAO

C3(I) One-dimensional array (101). Frequency component

associated with cosine function portion of periodic

surface error. A surface of semidiameter BETAO

will exhibit NC complete cycles between the center

and the edge for

2NC
BETAO

2 (NC+1)
BETAO
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USI(I)

VSI(I)

DLTAX(I)

DLTAY(I)

DLTAZ(I)

THTAX(I)

THTAY(I)

THTAZ(I)

BETAPX(I)

BETAPY(I)

One-dimensional array (101). Displacement in

x direction of origin of periodic surface error at

surface I.

One-dimensional array (101). Displacement in

y direction of origin of origin of periodic surface

error at surface I.

One-dimensional array (101) for displacement Ax

of coordinate system at surface I.

One-dimensional array (101) displacement Ay of

coordinate system at surface I.

One-dimensional array (101), displacement Az of

coordinate system at surface I.

One-dimensional array (101) for angular rotation

or tilt 6x in radians around the y axis at surface I.

If THTAX(I) input greater than ITT, it is assumed

to be degrees.

One-dimensional array (101), angular rotation or

tilt 6y in radians (or degrees if 0y > ZTT) around the

x axis at surface I.

One-dimensional array (101), angular rotation in

radians (degrees if 6z > 2ir) around the z (optical)

axis at surface I.

One-dimensional array (101), semiaperture of

obscuration in x direction at surface I.

One-dimensional array (101), semiaperture of

obscuration in y direction at surface I. If both

BETAPX and BETAPY are entered, the obscuration

is rectangular. If only one is entered, the obscuration

is circular (i.e., BETAPX = 12., BETAPY = 0. , ) .
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BETASX(I) One-dimensional array (101), semiaperture of

vignetting in y direction at surface I.

If BETASX and BETASY are both nonzero, the clear

aperture is rectangular. If only one is nonzero, the

clear aperture is circular.

NOTE: Normally, only those rays are traced which

lie inside BETASX, BETASY and outside BETAPX,

BETAPY. If anegative sign is attached to any of

the four values at surface I, the logic is reversed

so that only rays are traced which fall inside

BETAPX, BETAPY or outside BETASX, BETASY.

This produces the effect of an annular obscuration.

VZER0(I) One-dimensional array of length (2). Allows repre-

sentation of percent vignetting of upper edge of

entrance pupil. Expressed as fraction so that

VZER0 = 0.5 reduces clear aperture of upper edge

to BETAO/2. VZER0 = 0. or 1. represent no

vignetting.

VZER0(1) — Received signal (or transmitter)

VZER0(2) — L.O.

Default: VZER0(1) = 0., 0.,

VPI(I) Same as VZER0 but for lower edge of entrance

pupil.

GZER0(I) One-dimensional array (2). Entrance pupil

obscuration parameter. Distance from center of

entrance pupil to edge of upper obscuring aperture.
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GPI(I)

UZER0(I)

VLAMDA

NFRS

GZER0(1) -» Received signal or transmitter

GZER0(2) -. L. 0.

Default: GZER0 (1) = 0., 0.,

One-dimensional array (2). Same as GZER0 but for

lower edge of obscuring aperture.

One-dimensional array (2). Radius of obscuring aperture.

Arc of radius UZER0 passes through GZER0 (concave

downward) and through GPI (concave upward). No rays

are traced below the arc through GZER0 or above the arc

through GPI. For a circular, centered obscuration

UZER0 = GZER0, UZER0 must be nonzero if GZER0

and/or GPI are entered.

UZER0(1) — Received signal or transmitter

UZER0(2) - L. O.

Default: UZER0(1) = 0., 0.,

Spectral wavelength of operation of system being

analyzed. All dimensional data (TS, BETAO, etc.) must

be in same units as wavelength.

Default: VLAMDA = 0.010611385 (mm)

Integer input specifying number of intervals or output

points for which spread function (ASF, PSF) arrays are

computed. Dimensions of spread function array

= (2-NFRS-1) x (2-NFRS-1) •

NFRS < 51.

Default: NFRS = 26

(giving spread function arrays = 51 x 51).
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DELFS

NXY

PZER0(I)

Spread function interval size. Nominally 1/10 the Airy

disc radius. Detector parameters are specified as inte-

ger multiples of this value.

Default: DELFS +
0.61 FL

10-BETAO

where FL, and BETAO are respectively the focal length

and semiaperture for the received signal or transmitter

optics.

Integer input specifying number of grid points over

entrance pupil semidiameter. The total pupil array

is (2 • NXY + 1) x (2. NXY + 1)

NXY < 50

Default: NXY = 25

(giving pupil array = 51x51) .

Receiver— PZER0(1) = Radiant power density at entrance

pupil of received signal optics. If PZER0(1) input

negative, PZER0(1) = total radiant power incident

(uniformly) on entrance pupil. PZER0(2) = total radiant

power in truncated gaussian beam of L. O. laser.

Transmitter— PZER0(1) = total radiant power in

truncated gaussian transmitter laser beam.

Default: PZER0(1) = !.,!.,
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Z0MEGA

IPR<Z>G(1)

IPR0G(3)

IPR0G(4)

IPRg)G(5)

IPR0G(6)

Radius of 1/e intensity point of transmitter or L.O.

gaussian laser beam.

Default-transmitter: Z0MEGA = BETAO(l)

Default-receiver: Z0MEGA = BETAO(2)

One-dimensional array of integer flags for various

program options.

Default: IPR0G(1) = 1 , 0 , 0 , 0 , 0 , 0 ,

= 0 - Paraxial analysis only

= 1 - compute receiver or transmitter quality criteria

= 0 - Pass

= 1 - Output receiver ASF arrays or transmitter PSF

array.

= 0 - Compute receiver quality criteria with detector

centered on optical axis, received signal and L.O.

beams shifted due to effect of input beam obliquity,

misalignments, IMC error, etc.

= 1 - Center received signal and L.O. chief rays on

detector

= 2 - Center respective peaks of ASF for received

signal and L.O. on detector.

= 0 - Pass

= 1 - Print un-normalized transmitter PSF

= 0 - Pass

= 1 - Print OPD (w(u, v)) arrays

= 0 - Pass

= 1 - Print pupil function
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NDET

IDETEC(I, J)

IDETEC(I, J)

Integer input specifying number of detectors to be

analyzed.

Default: NDET = 1,

Two-dimensional array (5, 5) defining parameters of

detectors to be included in analysis.

= a, b ,c ,d , e,

I = a, b, c, d, e,

J = Detector number

IDETEC(1, J) = a = circular, rectangular flag

1 - circular detector

2 - rectangular detector

IDETEC(2, J) = b = Integer input specifying number of grid points

across x dimension of detector. Total width Sx of detec-

tor in x direction is Sx = 2-b-DELFS

IDETEC(3, J) = c = Integer input specifying number of grid points

across y dimension of detector. Total width Sy of detec-

tor in y direction is Sy = 2-c'DELFS. For circular

detector c = 0 and Sx = circular diameter.

IDETEC(4, J) = d = Integer input specifying number of grid points

by which detector center is to be displaced from the

optical axis in the x direction. Detector displacement

= Dx, and Dx = d-DELFS.

IDETEC(5, J) = e = Integer input specifying number of grid points by

which detector center is to be displaced from the optical

axis in the y direction. Detector displacement = Dy

and Dy = e-DELFS
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Default: a = 1

b = 10

c = 0

d = 0

e = 0

NOTE: Any combination of b and d; c and e; or off-axis

chief ray shift causing the detector to fall outside the

spread function array (NFRS) will abort the run.

FLAG An integer flag used to reinitialize data. Primarily

used between consecutive runs to wipe out all data from

a previous run. This is submitted as an independent data

deck with title card, #INP card with FLAG = 1, and

$END card. Stacking this between two data decks

accomplishes the initialization for the second set of data.

2.7 INTERPRETATION OF OUTPUT DATA

The amount of output data printed is controlled by the IPR0G

flags. The system parameters as input will always be printed; the

paraxial ray traces and computed first order parameters will always be

printed. For the full transmitter or receiver analysis the full set of

quality criteria will always be printed.

a. Paraxial Data

• Entrance pupil position T(0) = , the value printed here
is the distance from the paraxial entrance pupil to
the first surface. A negative value indicates that the

- entrance pupil lies to the right of the first surface.

• TEXET — Paraxial exit pupil position, TEXIT = distance
from surface (N-l) to paraxial exit pupil.

• XLINV — Inverse object distance as input or as computed
from input of MAG.

• FOCAL LENGTH — computed paraxial focal length.
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BACK FOCAL, LENGTH — computed paraxial back
focal length = distance from surface (N-l) to paraxial
focal plane.

TS (N- 1) — Spacing actually used in analysis as
distance from surface (N- 1) to image or detector
surface. Depends on IFLG1, TS(N), etc.

FL-whenXLINV 4 0. FL = MAG/XLINV so that
an input wavefront radius at the entrance pupil of
R = L = 1 /XLINV will give an output wavefront
radius of FL.

Chief Ray Data

Field Angle — is the value input as H

Chief Ray Coordinates — x, y, z are the coordinates
of the intersection of the chief ray with the image
surface.

Direction Cosines — 1, m, ri for chief ray in image space.

RW — Radius of reference wavefront to be used to
compute OPD values over exit pupil.

TR — Location of reference wavefront, TR = Axial
distance from surface (N-l) to reference wavefront.
For axial case TR = TEXIT.

XTILT — For off-axis case, reference wavefront
may be tilted or rotated XTILT = THTAX for refer-
ence wavefront.

YTILT— = THTAY for reference wavefront.

XDISP— with tilts and decentrations, the chief ray
may become a skew ray so that it does not intersect
the optical axis. XDISP is the distance from the chief
ray to the optical axis at its'point of closest approach.

XDISP = DLTAX for reference wavefront.

YDISP— Same as XDISP, YDISP represents distance
from optical axis to chief ray at point of closest
approach.

YDISP = DLTAY for reference wavefront.
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c. Wavefront Error Information

After all the OPD (W(u, v)) values have been computed

over the reference wavefront, wavefront statistics are computed.

SI =
U V

S2 =
u v

STD DEV . - (f )

RMS = { Vf

• Maximum un-normalized error = WMAX

• Minimum un-normalized error = WMIN

• Maximum normalized error = WMAX/X.

• Minimum normalized error = WMIN/X.

WMAX = maximum value of W(u, v)

WMIN = minimum value of W(u, v)

• Approximate Strehl ratio = I(cr)

I(cr) = 1. - (2 -TT-STD DEV)2

d. Spread Functions - (ASF and PSF) IPROG(2) = 1. -

For the receiver analysis, selection of this option prints out the arrays

FR and FI for the received signal and the local oscillator (ASF(x, y) =

FR(x,y) + iFI (x,y)) .

labelled

"ASF (REAL), FOR RECEIVED SIGNAL" (FR1)

"ASF (IMAGINARY), FOR RECEIVED SIGNAL" (FI1)
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"ASF (REAL), FOR LOCAL OSCILLATOR" (FR2)

"ASF (IMAGINARY), FOR LOCAL OSCILLATOR" (F12)

"PHASE" is also printed where PHASE = ARCTAN (FI/FR).

The ASF values are normalized to 100 for compactness and

the normalizing factor is printed. The ASF arrays will be (2- NFRS- 1)

x (2«NFRS-1) up to 72 x 72 beyond which only the central 72 x 72 points

will be printed.1- If the array is smaller than 36 x 36, the entire array

will be on a single page. Arrays larger than 36 x 36 will be printed

one quadrant per page. The quadrants are related as per Fig. 2-5

with the 0, 0 point in the upper left hand corner of quadrant 4.

3079-4

0,0

Fig. 2-5.
Output quadrants for ASF, PSF, pupil
function.

PSF — The PSF or intensity value for a point in an array is

PSF(x.y) = (FR(x,y))2 + (FI(x,y))2. The PSF array is printed for

the transmitter. All the comments for the ASF printout apply here.

INTERVAL — This is the spacing between adjacent ASF or PSF

points. INTERVAL = DELFS.

NUMBER INTERVALS = 2-NFRS-1

e. IPR0G(4) = 1. — This option causes the printing of the

floating point tabulation of the transmitter PSF (intensity) values.

f. IPR0G(5) = 1. — This option causes the floating point

tabulation of the OPD values to be printed.
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g. IPROG(6) = 1. - This option prints the complex

components of the pupil function normalized to 100. As with the ASF

and PSF, the output may include only the central 72 x 72 of a larger

array.

2.8 COORDINATE - SIGN CONVENTION SUMMARY

The coordinate system for ray tracing is a local coordinate sys-

tem where the vertex of the surface being traced is the origin. The

spacing TS combines with any misalignment parameters to transfer

the coordinate system from surface to surface with the ray. Some

key points regarding sign conventions and coordinates are summarized

here.

• Surface parameters — A surface parameter with a
positive sign causes the surface to be deviated to
the right of the tangent plane, hence the negative
sign indicates a deviation to the left of the tangent
plane. Some of those parameters are:

RH0S, RH01, RH02, RADS, DF0RM, AMP.

• Spacing — TS. A positive value for TS(I) specifies
that surface I + 1 lies to the right of surface I.

• Finite object— nonuniphase input beam. A positive
value for XLINV indicates that the entrance pupil
lies to the right of the object point. The input wave-
front is thus divergent. For MAG input positive for
a system with a positive focal length, the input
wavefront is divergent and the exiting wavefront is
convergent.

• H-input beam obliquity — A positive H indicates an
input beam incident on the entrance pupil from below
the optical axis.

• Misalignments - DLTAX, DLTAY, DLTAZ, THTAX,
THTAY, THTAZ- refer to Section 4. 6.

• Detector— The optical axis is the reference here.
For a centered system with no input beam obliquity,
the detector, the received signal and the L. O. beam
will be centered on the optical axis. If there is an
input beam obliquity or misalignment in either the
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received signal or the local oscillator, that beam
will be shifted from the center of the detector
while the other beam remains centered. The
detector will always remain centered regardless
of the shift in the beams unless the IPR0G(3)
option is invoked or the detector is displaced
via IDETEC(4, J) and/or IDETEC(5, J). Notice
that IPR0G(3) centers the spread functions on
the detector while IDETEC(4 and 5, J) shift the
detector with respect to the optical axis without
changing the location of the beams.

2.9 SAMPLE CASES

Computed results are included for four sample cases. There

are two transmitter cases and two receiver cases. The descriptions

of these cases are as follows:

a. "TRANSMITTER TEST CASE", Appendix A - This very

simple case is an example of an analysis using a "perfect surface".

Surface No. 1 is a dummy surface, surface No. 3 is the image surface

and surface No. 2 is the perfect imaging surface. For this perfect

system, the focal length and back focal length are equal at 100 mm.

The transmitter quality criteria are determined at the (Fraunhofer)

focal plane. The overall transmitter efficiency is 92% rather than

approaching 100% because of the gaussian beam.

An examination of the data deck for this case would indicate

the presence of data for a complete receiver. The transmitter analysis

results from setting N(2) = 0.

b. "TRANSMITTER TEST CASE No. 1", Appendix B - This

system consists of a meniscus lens represented by surfaces No. 2 and

No. 3 and a paraboloidal mirror represented by surface No. 5. Sur-

face No. 1 is a dummy located at the position of the laser input; surface

No. 4 is a dummy at the mutual focus of the meniscus and paraboloid.

The combination of the meniscus and paraboloid produces a perfectly

collimated beam so that surface No. 6 is a perfect surface chosen to

focus the beam at a distance of 8 km (back focal length —

8.00178987- 10 mm). The laser beam defaults to a total power of
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1 W. The 1/e radius is specified to be 0.925 mm (Z0MEGA = 0.925)

and the far field intensity is sampled in increments of 50 mm (DEL.FS

= 50. 0). The reference wavefront has a radius of 7. 9 km

(RW = 7. 93148013-10 mm) and is located 70 m to the right of surface

No. 6 (TR = 7. 03097397- 10 ). The quality criteria are essentially

self-explanatory with the added comment that the apparently low value

for overall transmitter efficiency is due to the disparity between the

1/e radius (0.925 mm) and the truncation radius (BETAO = 2.25).

c. "RECEIVER TEST CASE No. 1", Appendix C - The

received signal optics for this system are for a real system. The

local oscillator optics is a perfect surface of aperture and focal length

to give an Airy disc about five times the diameter of that for the

received signal. The peak value for the ASF(REAL) for the received

signal (FR1) is 1304. 5 while the peak value for the ASF (Imaginary) for

the received signal (FI1) is 600. 1 indicating that the peak intensity is

2.062. 10 and that the focus can be improved (to reduce FI1). The

ASF values for the local oscillator indicate good focus so that the peak

intensity will be 2. 0042 = 4. 0160.

The ASF arrays are output for the two beams allowing an examina-

tion of the respective distributions. The FI arrays are converted to

phase and exhibited since default conditions are relied on for the quality

criteria. They are based on a circular detector of diameter equal to

that of the Airy disc for a system of clear, uniformly illuminated

aperture, and relative aperture = 8. 0.

d. "RECEIVER TEST CASE No. 2", Appendix D- This data

is for a typical set of received signal and local oscillator optics. The

quality criteria are determined for the default case plus three other

detectors:

(1) Detector No. 1 — Default case— circular, centered
detector with diameter equal to the Airy disc.

(2) Detector No. 2 — Square, centered detector with
sides equal'to the diameter of the Airy disc.
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(3) Detector No. 3 — Circular detector with same
dimensions as Detector No. 1 but shifted from the
beam center by a distance equal to the radius of
the Airy disc.

(4) Detector No. 4— Square detector with the same
dimensions as Detector No. 2, but shifted from
beam center by the Airy disc radius.
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S E C T I O N I I I

SAMPLE SYSTEM ANALYSIS

The system chosen for exercising this computer program is the

optical mechanical subsystem (OMSS) developed for NASA under con-

tract NAS 5-21859. This package is intended as an engineering model

of a spaceborne data link and is one of the most advanced systems

designed specifically for heterodyne communications work. The system

has been designed and analyzed using existing optical computer programs

and represents a nearly perfect optical system. As will be seen, the

excellent performance predicted by a conventional program, ACCOS V

is confirmed by LACOMA. Since the performance is nearly perfect,

the differences between LACOMA and conventional programs are masked.

An example of a less perfect system is presented at the end of this

section to illustrate the advantages of LACOMA over programs that

optimize intensity.

The OMSS consists of two focusing reflective surfaces, a para-

bolic primary and an elliptic secondary. This particular configuration

provides essentially perfect performance when properly aligned, and,

even in the presence of reasonable tilts and decentrations, performance

is still excellent.

The analysis was carried out in three steps. First, a reference

case using the same size optics with the same obscurations but with a

"perfect" surface in the receive and the L. O. paths was analyzed to

provide a measure of the best possible performance under the given

restraints. The configuration of this system is shown in Fig. 3-1; the

optical input data and the results are listed in Table 3-1.

Preceding page blank
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TABLE 3-1.

Reference System Specifications and Results

Specifications

Receiver F/No. F/8
Entrance Pupil Diam 16.51 cm
Obscuration Diam 3 . Z O cm
L.O. F/No. F/40
Detector Diam 0. 199 mm

LACOMA Results

Phase Match Efficiency
Optical Transmission
Direct Detection Efficiency
L.O. Illumination Efficiency
Theoretical Antenna Gain
Receiver Efficiency to I. F.
Effective Antenna Gain

- i .ooo
0.964
0.743
0.823

0.504

-0.00 dB
-0. 16 dB
-1.29 dB
-0.84 dB
93.78 dB
-2.98 dB
90.80 dB

T1200

The second step of the analysis was to evaluate the system

without alignment errors to compare it with the reference case. Four

configurations were evaluated; an on-axis case with and without a beam-

splitter that will be used to add a beacon to the system, and an off-

axis case also with and without the beamsplitter. The off-axis angle

was chosen to equal the maximum angle encountered during the signal

acquisition phase. The third step of the analysis was an evaluation of

system sensitivity to manufacturing tolerances.

The optical configuration for the second and third parts of the

analysis is shown schematically in Fig. 3-2. Several dummy surfaces

were included to allow restoration of axes and to provide means to

perturb optical elements without changing the basic constants of the

system. The surfaces and their functions are listed below:

' (1) Parabolic primary mirror

(2) Dummy used to restore tilts and displacements of
the primary mirror, or to add spacing errors between
the primary and secondary.
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(3) Elliptical secondary mirror

(4) IMC mirror

(5) Dummy to restore the optical axis to 90° after
reflection from the IMC. The sum of the tilt
angles of surfaces 4 and 5 must always equal
90°.

(6) Aperture stop

(7) First beamsplitter surface

(8) Second beamsplitter surface

(9) Dummy to restore tilted axis introduced by surface
No. 7

(10) Dummy to restore offset between optical axis and
chief ray caused by the beamsplitter

(11) Detector plane for receiver path
r

(12) L. O. perfect surface and aperture stop

(13) Detector plane for L.O.

The constants to describe each surface for the nominal on-axis

case are listed in Table 3-2. These values were determined during the

OMSS design phase, and have been optimized for best Strehl ratio

(diffraction focus). Note that there are three reflective surfaces in

the system; both the refractive index and the direction of propagation

(spacing) reverse sign at these surfaces.

Local Oscillator — At the time of this analysis, there was no

final design data for the L.O. Accordingly, to avoid introducing

degradation from this source, the basic design data was used to gen-

erate a "perfect" L.O. The planned L.O. will operate as a f/40 system

with a gaussian beam distribution truncated at the 1/e points, and

with no central obscuration. A perfect L.O. that meets these criteria

is also shown in Fig. 3-2, and is specified in Table 3-2.

Figure 3-3 shows a printout of the data deck as it appeared after

being input to the computer. Additional parameters shown in Fig. 3-3

are defined in Section II.
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TABLE 3-2.

Input Data for Nominal OM Subsystem Surfaces

Surface

Primary

Dummy

Secondary

IMC

Dummy

Stop

Beamsplitter

Beamsplitter

Dummy

Dummy

Detector

Lens /Stop

Detector

No.

1

2

3

4

5

6

7

8

9

10

11

12

13

Radius
RADS

-820.0

0

141.80175

0

0

0

0

0

0

0

0

400

0

Spacing
TS

( - )O

-502. 90985-

133.44387

(-)O

-12. 7

-98.425

-2

( - ) o

-54.6358

( - )O

( - ) O

400

0

Index
XMUS

-1

-1

1

-1

-1

-1

-4. 00062

- 1

-1

-1

-1

1

1

Obscuration
BETAPX

16

Surface Modifications
CRS

- 1

SKAPA

0

]

0. 71736

1

1

I

1

1

1

1

1

1

1

Tilts
THTAY

0

0

0

-0. 7854

-0. 7854

0

0.7854

0

-0 .7854

0

0

0

0

Displacements
DLTAY

0.25396

Entrance Pupil
Radius BETAO

82. 55

5

T1201

All lengths in millimeters, angles in radians
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Fig. 3-3. Input deck for OM system.
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The results for the runs without alignment errors are shown in

Table 3-3. The results show that the aberrations caused by off-axis

operation and the astigmatism caused by the beamsplitter are both

negligible. (In this table the overall efficiency to the i.f. is shown in

dB degradation below the theoretical maximum antenna gain, and is

also normalized to the results of the reference case. )

For the third step of this analysis, the distortions introduced

into the OMSS were selected to allow comparison with the analysis

conducted using ACCOS V as listed in the design report for the OMSS.

Four perturbations were analyzed:

(1) The primary-secondary spacing was varied

(2) The detector was displaced from the focal plane

(3) The primary mirror was transversely displaced

(4) The primary mirror was tilted.

The results are presented graphically in Figs. 3-4 through 3-7.

For the first two cases where the evaluation is conducted on-axis, the

results are directly comparable to those obtained using ACCOS V. The

plots show Strehl ratio, normalized heterodyne efficiency, direct

detection efficiency, and local oscillator efficiency. There are several

interesting results:

(1) Because the local oscillator has been spread out by
the f/40 optical system, the amplitude profiles of
the L.O. and received signal tend to become more
closely matched as the received signal is defocused,
thereby increasing the local oscillator efficiency
and partially compensating the loss in signal power.

(2) Heterodyne efficiency is not as sensitive to focus as
is the Strehl ratio, partially because of the above
observation.

(3) The region around the focal plane of the detector
would be symmetrical in the absence of aberrations.
The aberrations that are present cause a slight
asymmetry in the Strehl ratio, which is barely
evident on the curves. However, the heterodyne
efficiency shows amuch greater asymmetry,
implying that small aberrations affect the phase
of the signal more than the amplitude.
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TABLE 3-3.

Results for Nominal OMSS Configuration

Reference System

OMSS- No Beamsplitter

On- Axis

0. 13° Off -Axis

OMSS w /beamsplitter

On -Axis

0.13° Off- Axis

Phase
Match

Efficiency

1.000

0.996

0.993

0.990

0.990

Direct
Detection
Efficiency

0.743

0.742

0.735

0.741

0.736

L.O.
Efficiency

0.823

0.820

0.820

0.821

0.824

Receiver Efficiency to I. F.

Decimal

0.504

0.496

0.488

0.495

0.489

dB

-2.98

-3.04

-3.12

-3.05

-3. 11

Relative

1.000

0.985

0.967

0.983

0.970

U1
(Jl

T1202



3079-7
1.0

0.9

0.8

0.7

RELATIVE

HETERODYNE

EFFICIENCY
APPROX
STREHL
RATIO

0.6 -
»*•

r

DIRECT DETECTION

EFFICIENCY

0.05 0.10 0.15

ERROR, mm

Fig. 3-4. Primary-secondary separation error.

NAS 5-21898
Final Technical Report
Fig. 3-4 56



3079-8

RELATIVE
HETERODYNE
EFFICIENCY

APPROX
STREHL
RATIO

EFFICIENCY

PROPAGATION
DIRECTION

SIGNAL POWER

0.7 -

0.6 -

-1.5 -0.5 0 0.5

DETECTOR PLANE DEFOCUS, mm

Fig. 3-5. Effects of detector position.

NAS 5-21898
Final Technical Report
Fig. 3-5 57



3079-9

1.0

0.9

0.8 -

0.7 -
*-•

r_

RELATIVE

HETERODYNE
EFFICIENCY

APR R OX

STREHL
RATIO

DIRECT DETECTION EFFICIENCY

I r
0.1°

PRIMARY TILT

0.2°

Fig. 3-6. Effects of tilted primary.

NAS 5-21898
Final Technical Report
Fig. 3-6 58



1.0
3079-10

0.9

0.8

0.7

DIRECT
DETECTION
EFFICIENCY

APPROX
STREHL
RATIO

RELATIVE
HETERODYNE
EFFICIENCY

0.5 1.0

PRIMARY DECENTRATION, mm

Fig. 3-7. Effects of primary offset.

NAS 5-21898
Final Technical Report
Fig. 3-7 59



For cases 3 and 4 where the primary has been tilted or

displaced, the results cannot be compared directly with previous results

due to differences in methods used to evaluate the system. For the

L.ACOMA runs, the input beam was introduced along the undisturbed

optical axis and the IMC was adjusted to place the chief ray of the

received signal onto the detector center as would occur during the track

mode in the operating system. The values for IMC correction were

determined by paraxial ray trace using a desk calculator. The LACOMA

option to place the peak intensities of the two beams on the center of

the detector was selected to eliminate residual errors in IMC position

and to compensate for peak shift due to off-axis aberrations. An alter-

native approach leaves the IMC centered and compensates for the

angular displacement by evaluating a received signal from an off-axis

location. The aberrations caused by the first approach are more

severe, as is evident if the Strehl ratios in Figs. 3-6 and 3-7 are com-

pared with corresponding figures in the OMSS design report.

For these cases, as shown in Figs. 3-6 and 3-7, the heterodyne

efficiency falls off more rapidly than the Strehl ratio. This result is

not unexpected, as the heterodyne signal is more sensitive to wavefront

tilt, thus the phase match efficiency suffers. Also of interest is the

L.O. illumination efficiency which decreases for these cases, thus

adding to the degradation.

Overall, the results of this analysis tend to confirm the con-

clusions reached in the OMSS design report. The heterodyne signal

has been shown to be more sensitive to alignments that cause angular

errors than those that cause only defocusing. This result is beneficial

to the OMSS, since the primary-secondary spacing is the most difficult

parameter to control.

Other Analyses

The LACOMA program has been used to analyze several other

problems of interest; two of these are summarized here.
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Field of View — The nominal field of view of a heterodyne

receiver has been generally considered to be k\/d, where d is the

receiver aperture diameter, and k is a constant dependent upon the

illumination factor, detector size and definition of field of view. To

evaluate k for a round detector equal in diameter to the Airy disc,

LACOMA was used with a perfect system and a series of detectors

spaced sequentially at varying distances from the optical axis..

Figure 3-8 shows the results for a uniform L.O. illumination. From

this curve, the full field of view to the 3 dB points implies that k should

be 1.38 for the uniform case.

Germanium Galilean Telescope — A four-element telescope

configuration meant for use in a 10.6-^.m heterodyne system is shown in

Figure 3-9. This telescope was designed for maximum Strehl ratio,

using existing design programs. (This particular telescope has suf-

ficient spherical aberration in this configuration to reduce the Strehl

ratio to about 0. 7. ) Since this system was designed as an afocal sys-

tem, a perfect surface was introduced into the afocal beam to provide

a focal plane for evaluation, and a perfect f/40 L.O, was also selected.

The lens system was evaluated, using the predicted optimum spacings,

to determine the degradation caused by the spherical aberrations; also,

with the spacings between the first and second elements increased by

0.25 and 0.5 mm to ascertain the effects of spacing tolerances. The

results, shown in Figure 3-10, were unexpected; the overall efficiency

increased from -4. 55 dB to -2. 58 dB, which is better than the -2. 74 dB

expected from a perfect system with a uniform L.O. This result can be

explained by reference to the phase match efficiency and the L.O.

illumination efficiency. Both of these values have increased sig-

nificantly from the nominal position, even though the total signal power

has dropped. This means that at a location significantly away from the

best energy focus, the wavefront is nearly plane and the energy dis-

tribution is more uniform. Thus, in the presence of significant aber-

rations, optimum performance for a heterodyne system does not neces-

sarily correspond to that for a direct detection system. LACOMA is

the first program to put a quantitative value on this phenomena.
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S E C T I O N IV

DETAILED PROGRAM DESCRIPTION

Upon reading the input data, the program determines whether

it is to execute a transmitter analysis or receiver analysis based on the

input of one or two sets of optical data. Specifically, it checks whether

values are entered for N(l) and N(2) which identify the number of sur-

faces in the two sets of data for received signal optics and local oscil-

lator optics, respectively. If N(2) = 0, then a transmitter analysis is

performed. In addition to the surface number parameter, many of the

other system parameters are two-element arrays; e.g., M(l) = surface

number of aperture stop for received signal (or transmitter) optical

train while M(2) = surface number of aperture stop for local oscil-

lator optical train as is the case for H(l), H(2), FL(1), FL(2), etc'.

As most of the computations to be discussed are performed identically

for transmitter, receiver, and local oscillator, the subscript notation

will be omitted except where confusion might arise and the distinction

between transmitter and receiver will be omitted except for those

computations unique to a given case.

4. 1 FIRST ORDER PARAMETERS

Two paraxial rays are traced through the optical trains to deter-

mine the first order parameters of the particular optical train. These

parameters are:

a. Paraxial entrance pupil position T is the distance
from the paraxial entrance pupil to the first optical
surface.

b. Paraxial exit pupil position TEXIT or TR is the
distance from the last optical surface (surface N-1)
to the paraxial exit pupil.
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c. Inverse object distance XLINV or L. is the inverse
of the distance from the object plane to the paraxial
entrance pupil.

d. Focal length

e. Back focal length, which is the distance from the (N- 1)
surface to the paraxial focal surface.

f. TS(N-l) is based on the input data and control param-
eters, and is the spacing actually used in the analysis
as the back focus.

g. Paraxial Computations are where the two paraxial
rays are traced with starting values at the first sur-
face of the optical train.

P0 = input

b = 0.
o

ao = 1/(3o

a = 0.
o

With this data as input the two paraxial rays are traced using

J3 = p + b . t ,/V (4-1)
* s ' s - l s - 1 s - l / h s - l

as-l

as = as-l

The parameters of these paraxial rays are illustrated in Fig. 4-1.

The data for the paraxial rays at the first surface, the aperture stop,

and at the rear surface are then used to compute the desired first

order parameters. This data is designated as follows:
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(B , b , a , a ) at the first surface
o o o o

*Pm' bm' °m' &m^ at the aPerture st°P

(3 , b , a , a ) at the rear optical surface

(The r subscript denotes the next to last or (N- l)st surface)

(4.5)

(a R - a (3 )
T

 m Pr r m_

EXIT a B -a b
r rm m r

The focal length F and back focal length BF for infinite con

jugates are computed:

(4-7)

r rBF = — Z-^- (4-8)
b
r

If a finite conjugate distance is entered in the form of L

(XLJNV) to introduce a quadratic phase component into the input beam,

the focal length and back focal length are recomputed;

F =
b + a L

r r o

-(3 + a L ~* B 2Lr

B F = l — ^ r—^ j^-4 (4-10)
b + a L B

r r o o

68



Optionally, a value may be specified for magnification as the

ratio of the input beam divergence versus the output beam convergence:

-b
Magnification = mag = -r— (4-11)

r

from which the inverse object distance is computed for use in the other

calculations,

_ -mag
Lo pQ U + mag (3oarJ

Notice that for the finite conjugate case, BF is the location of the

paraxial image for the given object position and the focal length FL is

not the classical paraxial focal length but is

FL = mag • LO. (4-13)

This value is used in the computation of the input ray angles

for tracing rays.

4.2 IMAGE LOCATION

The actual value used to locate the image surface of intensity

plane is subject to several options. The program computes the parax-

ial back focus BF based on the specified object location. There is a

value input as t-. , for the spacing between the last ((N-l)st) surface

and the image (detector or intensity) plane. The option is available

for specification of which of these is to be used in the analysis. The

parameter IFLG1 controls this option.

= 0 /,,
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*N-1 = *N-1

where

t,^ i is the value to be used in the analysis.

Additionally, the value t~, which is usually ignored since it has

no meaning, can be used to specify an incremental shift of the image

location. Thus, the value of t., is always added to the back focus or

image distance.

tN_1 = BF + tN if IFLG1 =0 (4-14a)

t N _ j = t N _ j + tN if IFLG1 = 1 (4-15a)

For example, if it is known that the best focus for a given sys-

tem is 0.001 from the paraxial focus, the program can compute the

paraxial back focus very accurately and then shift by 0. 001 to the posi-

tion of best focus. The value of t-, , thus determined is printed out as

TS (N-l).

4.3 RAYTRACE-OPD

The LACOMA ray trace constitutes an optimal combination of

accuracy and speed of computation. The ray trace equations are the

result of many years of development, and permit the trace of both

meridional and skew rays through any surface which is continuous and

analytic.

Notation— (Figure 4-2). A given ray is described by the

parameters X , Y , Z , 1 , m and n . X , Y and Z are the
* s s s s s s s s s
coordinates of the point of intersection of the ray with surface "s". The

origin of the coordinate system is at the vertex of the surface. The

Z axis is the optical axis, the Y axis the meridional axis and X the

skew axis. The optical direction cosines of the ray exiting surface "s"
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are 1 , m and n . In a medium following surface "s", the refractive
s s s

index is u and
s

! 2 + m 2 + n 2 = u 2 (4-16)
s s s s v

Surface "s" itself is specified by some sagitta function t, = £,(Q) and,

for a general rotationally symmetrical asphere,

1 217^s
2

[1- Kp L Q
\ rso

(4-17)

Q2 = X 2 + Y 2

s s

p = vertex curvature of surface = 1/R
so so

en, p, Y, etc. = general aspheric deformation coefficients

(not related to a or p for paraxial ray

trace)

2
K = ( l - « ) = conic coefficient of surface

s s

Conic sections — If the conic section surface is thought of as a

mirror with two aplanatic foci F. and F? as in Figure 4-3, the conic

eccentricity can be related to the distances S^ and S.,, respectively,

measured from the first focus F to the mirror and from the mirror to

F_. In Fig. 4-3, S.. is positive and S_ is negative. The vertex curva-

ture for the conic section is

p s o =l( i -1)
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p =1/2(1/S2- 1/S,)

e =

S1+S2

S1-S2

Fig. 4-3. Conic eccentricity parameters.

NAS 5-21898
Final Technical Report
Fig. 4-3
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and the eccentricity is

Sl + S2
cJ s^ (4-19)
Sl ' S2

Eccentricities for some typical surfaces are

Surface _«_ _K_

Sphere 0. 1.

Paraboloid 1. 0.

Ellipse 0 < € < i. 0 < K < 1

Hyperboloid € >1. K < Q.

The sagitta expression for a sphere would be

P Q 2

S° S
 r (4-17a)

soSO

and for a paraboloid

2
P Q

s° (4-17b)

a. Ray Trace Equations — Denoting surface "s" with the

"s" subscript and the preceding surface by the "s-1" subscript.

Surface-to-surface transfer equations are

X = X , + -^il /t - Z . + Z ) (4-20)
s s-1 n , \ s-1 s-1 s/ v

s- 1

m , , .
Y = Y . + S (t . - Z . + Z (4-21)

s s-1 n , \ s-1 s-1 s/ x
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Refraction at surface "s" converts optical direction cosines
l s- l> ms-l' and n s _! into la> mg, ng.

l

or

and
i t

p = the inverse of the subnormal

ms = ms-l + P s s K - l ' V <4'23)

II

X n
i S S

m = m - p Y n (4-23a)
s so s s s v '

where

2 = £ , + P X n . (4-24)
so s-1 s s s-1

m = m , + p Y n , (4-25)
so s-1 s s s-1 v

P " = 7i 7n = - 7 - PS? ? \ i y ? + 4^ Q 2 + 6 p Q4 + 8Y Q6

s U d U 1 / K P ^ O V s s s s s s
s so w

(4-26)

For the general asphere the appropriate values of Z and n
S S

are found by iteration. Dropping the "s" subscript temporarily and

75



substituting i and i + 1 to indicate successive iterated values, the

iterations on Z and n are

r Z. p." (H . X. + m , Y.)
b. _ 11 s-1 i s-1 i

n .
Zi + 1 = pT1!! i X. + m m (4-27)x s-1 i s- 1 i

n
s- 1

H 2 + n.2 - i2 - m.2 - 2 p " n. (£. X + m. Y )
S 1 1 1 rS 1 1 S 1 S

2 fn. - p " (X 2. + Y m.)l
LI r s s i s i - l

(4-28)

, 2 - f 2 - m 2 + n . 2 ( l + p » Q 2 )KS so so i \ Hs s / .. .

[ / »'? ? \ II 1 V*~t-7i
n. ( 1 + p Q - p (!> X + m Y )

1\ ^S S / ^S l SO S SO S'J

using starting values of Z. = 0 and n. = p. .

b. Spherical Surfaces — Though the above algorithms include

spherical surfaces as a special case, the tracing through spherical

surfaces is handled separately to expedite computing time. The trans-

fer equations are

X = X + H S> , (4-30)
s so s s-1 v

Y = Y + H m . (4-31)
s so s s-1
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Z = H n ,
s s s-1 (4-32)

X = X
so s- + JLadL(t T-z \n , \ s-1 s-1/

s- 1
(4-33)

Y = Y ,
so s-1

m 1 ,
+ -^li ft ,-z .-n , \ s- 1 s-1/

s- 1
(4-34)

The refraction equations are

2 = I . - P p X
s s-1 s ^s s

m = m . - P p Y
s s-1 s "s s

n = n , - P / p Z - 1 )
s s-1 s \ s s /

(4-35)

(4-36)

(4-37)

where H and P are determined as follows:
s s

/ 2 2 v
(A) = p X + Y )v ' Hs \ so so/

(4-38)

(B) = n , -v ' s-1
I . + Y m .)

so s-1 so s-1/
(4-39)

ls = C5L2 . (4-40)

H =
(A)

s (B) + fjL cos i
S ** ••• S

(4-41)
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p. cos r =
's s

Ls- l
COS

(4-42)

ps =
cos i (4-43)

These algorithms are listed here in the form they are used in the com-

putation which is necessary to preserve proper sign conditions.

c. Special Surface Forms — Some surface forms which can

be accommodated are noted below; most of them can be combined.

Cylinders

Toroids

Normal surfaces with cylindrical error

Periodic surface forms

These surface forms, mentioned above, are described by the

summation

(4-44)

?>1 is the expression for a cylindrical surface of curvature p, whose

axis may be rotated through an angle (p, Fig. 4-4. £,_ can combine

with £, to generate a toroidal surface where the surface (curve) gen-

erated by £- is rotated such that its vertex describes an arc of radius

l / p o - The arcs of p, and p2 lie in orthogonal planes. In Fig. 4-5(a)

it can be seen that the cylinder is generated by p.. when (p = p_ = 0.

Figure 4-5(b) is the cylinder generated by p_ when p, = (f> = 0. The

surface (curve or arc) C, may be the cross section of a sphere, any

conic or higher order surface form.

The periodic surface errors £ may be a radially symmetrical

sinusoidal (cosine in this case) variation of sagitta, a radial sine func-

tion or a combination of the two. These radial periodic errors may be
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+Y

RH01*0
PHI (0 )^0

RH02 = 0

Fig. 4-4. Cylindrical surface due to RH01 but
with ^ w 0.

NAS 5-21898
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Fig. 4-5(a). Cylindrical surface due to RH01 only.

NAS 5^21898
Final Technical Report
Fig. 4-5(a). 80



Fig. 4-5(b).
CyLindrical surface due to RH02 only.

NAS 5-21898
Final Technical Report
Fig. 4-5(b) 81



displaced with respect to the axis by U and V in the X and Y directions,

respectively, Figs. 4-6, 4-7, 4-8, 4-9, and 4-10.

In the formulation of these surface sagitta, the following defi-

nitions are used:

p = curvature of cylinder ( = 1/RJ (RH01)

p? = toric rotation curvature or secondary cylinder
^ curvature ( = 1 / R ) (RH02)

a = constant of rotational symmetry (CRS)

b = cylindrical constant (CC)

= angular orientation of

= angle between cylinder axis
and X axis for P

1
cylinder (PHI) , u ,. ,

= angle between cylinder axis
and Y axis for P_

K = conic coefficient (p. surface)

0 ,P ,v , = higher order (aspheric) surface coefficients (p, surface)
etc

€ . , £ _ , € , = periodic surface error coefficients (AMP, FREQ, C3)

U and V = displacement in X and Y of axis of radial symmetry of
periodic surface error (USI, VSI)

Q2 = xj + Y2 (4-45)

Q2 = X2 (a + b sin is)2 + Y2 (a + b cos cp)2 + 2b2X Y sinvcostf
I S S S S

(4-46)
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0 = X cos <f> + Y sin <p - 2X Y sin w cos
2 s ^ s ^ s s ^

(4-47)

Qe
2 = (Xg + Us)

2 + (Yg + Vg)2 (4-48)

The sagitta expressions are:

•1 - , , /, ... 2^TTT72 + *Q14 + PQ16 + YQ18 + •'• (4-49)20
| 1 - Kp1 Uj

P / Q 2 .
7T (4-50)

i P

"2 =T^T7- (4-5D

sin C? irQ \
C.Q e ) c o s C 3 . Q e (4-52)

Note that C, is an amplitude term while C,, and C_ control

frequency.

The ray- tracing equations for these special surfaces are:

Zsi
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n

- n - n .
s s 0 s 0 si

s(i+D
2 i

(Y)]

(4-54)

where

. (4-56)

and

2 . , 2
,. (X) = p, X . (a + b sin <p) + b Y . sin (p cos <p \ (4-57)l J . L S I s i J

' (Y) = p'' [Y . (a + b cos (/?)2 + b2 X . sin(/?cos(p| (4-58)
1 X I S I S I J

IIpl = PI
l/2 (4-59)

(4-60)

' (X) = p'' (x . cos2 (O - Y . sin </> cos <p\ (4-61)
Z i \ si ^ si T V

= P2 (Ysi Sin . sin cos (4-62)

2 ^ 2\ 1/2
(4-63)
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r, (Q ) = d; /dCJ (4-64)
6 6 6 6

The refraction equations corresponding to eqs. 4-22 and 4-23

are:

m . = m . + V (Y ) (n . - n .) (4-66)
si s-1 s v s ' * s-1 si v '

or instead of eq 4-22a and 4-23a

& . - I - ?,' (X ) n . (4-67)
si so s v s si v '

m . = m - C' (Y ) n . (4-68)
si so 's s si l

d. Perfect Surfaces — Another kind of special surface

which has proved of considerable utility is the option of interspersing

one or more "perfect" surfaces in a system being analyzed. The most

obvious application of this is the conversion of an afocal system into

an image-forming system without introducing additional aberrations.

The ray trace equation for this surface utilizes the standard intercept

computations for a conventional plane surface.

Xs = Xs-l +l
s- 1

m ,
Y = Y . +—^-(t , - Z .) (4-70)

s s-1 n i s-1 s-1 x

s- 1

Z = 0
s
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The refraction equations are

«8 Vl
- Pa X. (4-71)

ns ns-l s s

m in ,
= —— - P Y (4-72)

n n .. s ss s-1

[l -MVV2 + ( m s / n g ) 2 j

(4.73)

where P is the power of the perfect surface and it is input in place of
S

p (RH<pS) or as RADS=R = 1/P . A perfect surface is identified by
S S S

the input of the rotational symmetry constant (CRS) for that surface

as CRS = -1.

e. Applications — Except for perfect surfaces, these equa-

tions can represent most, if not all, optical surfaces generated by

design or inadvertence. This includes spheres, cylinders, toroids,

axicons, roofs, rotationally symmetrical surfaces with small cylindri-

cal error, and numerous combinations of these as well as the periodic

errors.

The matrix in Table 4-1 illustrates some of the surface forms

which may be represented by these equations.

f. Optical Path Difference or Wavefront Phase Er ror— The

optical path length D of a ray is the product of the length d along the

ray and the refractive index ^ of the medium.

D = optical path length
(4-74)

D = d-(jL
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TABLE 4-1

Surface Forms

Sphere

Conic

Asphere

Cylinder

Cylinder

Toroid

Cylinder, acircular

Cone, axicon

Roof

Sphere with cylinder error

Sphere with sinusoidal
error

Sphere with sine type
error

Sphere with combined
periodic errors displaced

Perfect Surface

Pl

X

X

X

X

0

X

X

Pg-CO

ps— «
X

X

X

X

p
s

P2

0

0

0

0

X

X

0

0

0

0

0

0

0

0

a

1

1

1

0

0

0

0

1

0

1

1

1

1

-1
(flag
only)

b

0

0

0

1

0

1

1

0

1

b « 1

0

0

0

0

K

1

K ± 1

1

1

1

1

1

K < 0

K < 0

1

"

1

1

0

0

a, P r Y, etc

0

0

X

0

0

0

X

0

0

0

0

0

0

0

C1'C2

0

0

0

0

0

0

0

0

0

0

0

X

X

0

C1'C3

0

0

0

0

0

0

0

0

0

0

X

0

X

0

u,v

0

0

0

0

0

0

0

0

0

0

0

0

X

0

\D
tv

T1203



Defining the optical path length for a ray passing from surface s-1 to

surface s to be D , it can be shown that
s

_ ( t s - l - Zs-l + Zs} 2 (4-75)
ns-l H"1

The total path length through the complete system is the sum

of all the surface-to-surface values and is defined to be D*.

n

D* = D + D (4-76)
s- 1

which is in practice the summation from entrance pupil to exit pupil.

D is the distance along the ray from the object point to the entrance
o -1

pupil for a finite object, i.e. L ^ 0.

0) (4-77)

For infinite conjugates, D is the distance from the incident plane wave

to the entrance pupil.

D = m y (L "-1 = 0) (4-78)
o o o o

where

y E entrance pupil ray intercept.

Note that for the infinite conjugate axial case m = 0., hence

D = 0. The difference between the total optical path length D* for

an arbitrary ray and that D* for a reference ray is the optical path

difference or wavefront departure W for the given ray.
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W = D* - D* . (4-79)

W can be expressed as the sum of a set of W's at each

surface

N N

>
T

W = D + \ D - D - \ D
o /, s co /, cs

= D - D + \ (D - D )
O CO S CS

N

I
N

0

or, defining

(Dg - Dcs) (4-80)

W = D - D . (4-81)s s cs v '

Then, for the ray corresponding to exit pupil coordinates (u, v)

the overall optical path difference for that ray is W(u, v) and

N

W(u,v) = W . (4-80a)
s = 0 s

Denoting the ray parameters for the arbitrary ray with the

subscript s and those for the reference ray with the subscript cs and

substituting (4-75) into (4-81),

2
H-- i [

W = Z—i n . (Z - Z ,) -n ,(Z -Z ,)
s n , n , I cs-1 x s s-1 s-1 cs cs-1

+ ts-l *ncs-l " ns- l ) l (4-82)
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Generalizing (4-82) to allow treatment of tilted and/or decentered

surfaces

2

W = W -- — ̂  - In' . (Z - Z *) -n' . (Z - Z *) ]
s so ' ' I cs-1 v s s ' s-1 v cs cs '

(4-83)

ns-lncs-l

where

2

W
so

[i 1 r
= - — - (n , -n . ) t , -n . Z Z + n , Z I

n , n , lv cs-1 s-1 s-1 cs-1 cs-1 s-1 s-1 cs-1
s- 1 cs- 1 J

(4-84)

The primed and starred quantities of equation (4-83) are defined

in Section 4.6 on tilt and decentration. W represents the path dif-
S O

ference from surface "s-1" to the nominal tangent plane of surface "s".

The remainder of eq. (4-83) represents the path difference from the

nominal, untilted tangent plane of surface "s" to the tilted and/or

decentered surface itself.

g. Perfect Surface OPD — When using the perfect surface

option, the optical path difference for the surface is computed as

follows:

W = W - P
s so

2\ / 2 2 \+ Y ^ . n (X + Y ) . n
s / s \ cs cs/ cs

u. + n u + n
s s s cs

(4-85)
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4.4 VIGNETTING AND OBSCURATION

a. Vignetting — Vignetting must be accommodated and

L.ACOMA handles it in two ways; at the entrance pupil or on a surf ace-

by-surf ace basis.

If the nature of the vignetting at the entrance pupil is known,

this vignetting may be described by the input of a value V_ = VZERO

or VTT = VPI representing the fractional vignetting, respectively, in

the upper or lower portion of the entrance pupil. A different set

(V_, V^) must be input for each field fraction K. The interpretation of

the magnitude of the input value of V is as follows:

V = 0 or 1. 0 no vignetting

0 < V < 1. 0 normal vignetting

The other means for handling vignetting can replace or augment

the pupil vignetting. This is accomplished by the input of clear aperture

data for each surface. As each ray is traced through the surface, a test

determines whether the ray falls outside the clear dimensions in which

case it is terminated.

b. Obscuration — As with vignetting, there are two

approaches to obscuration, either in the entrance pupil or on a surf ace-

by-surface basis. At the entrance pupil, the descriptive data are:

UZERO for the radius of the obscuration; GZERO representing the

distance from the center of the entrance pupil to the upper edge of the

obscuration; and GPI, the distance from the center of the entrance

pupil to the lower edge of the obscuration. A set (UZERO, GZERO,

GPI) is required for each field angle to be traced. A circular centered

obscuration would have
•

GZERO = UZERO = - GPI

Other cases can of course be accommodated.
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In case (GZERO-GPI) > 2 • UZERO, such as in Fig. 4-11, no

rays will be traced through the racetrack-shaped obscuration. If

(GZERO-GPI) £ 2 -(BETAO + UZERO), the effect is that of a rectangu-

lar obscuration as per Fig. 4-12.

When UZERO > (GZERO-GPI), the effect is that of a rectangular

obscuration rotated 90° from that of Fig. 4-13.

The other mode of obscuration input is via obscuration at each

surface.

c. Surface by Surface Vignetting and Obscuration — The

parameters BETAPX, BETAPY, and BETASX and BETASY can be

used to describe a circular obscuration or clear aperture, rectangular

obscuration or clear aperture, annular obscuration, and segmented

apertures. These are illustrated by Figures 4-14, 4-15 and 4-16.

Some of the possible aperture configurations which can be described

are shown in Fig. 4-17.

4.5 REFERENCE WAVEFRONT

f~Ti
The N surface to which the OPD values are summed is

analogous to the gaussian sphere discussed in the previous literature.

The relevant characteristics of this reference wavefront or gaussian

sphere are obtained from the chief ray data. As with any other optical

surface, the reference wavefront is defined by its radius of curvature

RW, its spacing TR from the (N-l)st surface, its decentration AX,

AY and tilt 6X, 6Y.

For the axial case where there is no tilt or decentration of the

reference wavefront, its location is given by TR = Texit.

Where Texit is due to eq. 4-6 and RW = l' ^ - TR

Where T1 , was determined by eq. 4-14a or eq. 4-15a.

Off-Axis Wavefront— For an optical system with tilts and/or

decentrations or with an off-axis input beam the full set of descriptive

parameters for the reference wavefront will be required.
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Fig. 4-11.
Racetrack obsuration (U
UZERO).

Fig. 4-12.
Rectangular obscuration.

3079-32

NAS 5-21898
Final Technical Report
Figs. 4-11, 4-12, and
4-13.

Fig. 4-13.
Rectangular or near-
rectangular obscuration
oriented 90 away from
Fig. 4-12. (G =
GZERO, G = °GPI).
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CLEAR APERTURE RADIUS = RQA

OBSCURATION RADIUS = ROBS

BETASX = RCA AND BETASY = 0

OR BETASY = RCA AND BETASX =0

BETAPX = RQBS AND BETAPY= 0

OR BETAPY = RQBS AND BETAPX= 0

Fig. 4-14. Circular clear aperture and obscuration.

NAS 5-21898
Final Technical Report
Fig. 4-14 99
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rCA

'•DBS-

'OBS

BETASX = XCA

BETASY = YCA

BETAPX = XQBS

BETAPY = YQBS

Fig. 4-15. Rectangular clear aperture and obscuration.

NAS 5-21898
Final Technical Report
Fig. 4-15
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ANNULAR OBSCURATION

RAYS TRACED INSIDE RM)N OR OUTSIDE RMAX

RAYS BLOCKED BETWEEN RM|N AND RMAX

BETAPX = RM,N AND BETAPY = 0

OR BETAPY = RM|N AND BETAPX = 0

BETASX = RMAX AND BETASY = 0

OR BETASY = RMAX AND BETASX = 0

(ONE OF THE ABOVE VALUES MUST BE INPUT NEGATIVE)

Fig. 4-16. Annular obscuration.

NAS 5-21898
Final Technical Report
Fig. 4-16 101
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Fig. 4-17. Sample aperture configurations.
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Final Technical Report
Fig. 4-17 102



RW is the distance along the chief ray from its intersection or

point of closest approach to the optical axis (exit pupil position) to its

point of intersection with the image surface. The angular components

of the chief ray give the tilt of the reference wavefront, etc. The com-

putation of RW, T , 6X, 6Y, AX and AY is as follows.

Given i , m , n , for the chief ray exiting the optical train and

the chief ray intercepts X , Y and Z at the focal surface, if m 4 0
c c c c

Y v- i
RW = c

m
n" i (4-86)
c

Y n
TR = T ' , —- + Z (4-87)

n- 1 m c ^

s. y
= X —- (4-88)

c m v '
c

AY = 0.

If m =0 and i 4 0
c c

X ^ ic n"A (4-89)
c

X n
TR = T' —- + Z (4-90)

AX = 0.

m RW
AY = Y . (4-91)

c v- irs- 1
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The reference wavefront tilt angles are

6X = ARCTAN (I /n ) (4-92)

6Y = ARCTAN
m

c

nc

(4-93)

For a case with an IMC so that the reference wavefront is off-

axis but X —• Y —- 0, TR is defined as that for the axial case and

(T' - TR)
Hj,,! (4-94)

I RW
AX = X - _j= (4-95)

C K

m RW
AY = Y - — . (4-96)

Equations 6X and 6Y are defined per eqs. 4-92 and 4-93.

4.6 TILT AND DECENTRATION

The tilt and decentration procedure utilizes conventional

coordinate transformation matrices.

The procedure is to trace a ray to the tangent plane for the cen-

tered surface and then locate the intersection point of the ray with the

tilted-dec entered tangent plane, transform the optical direction cosines

of the ray into the rotated coordinate system, and then trace the ray

from the new tangent plane to the surface.
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The transformation matrix represents the relocation of the

origin by AX, AY and AZ followed by rotation of this displaced coordi-

nate system. The rotation begins with a 6Z around the optical axis fol-

lowed by the rotation 6Y around the X' axis where the X1 indicates the

new X axis due to the Z rotation. 6X is the rotation about the Y1 axis

which is the result of the BZ, 8Y rotations.

Representing the new optical direction cosines with primes,

£' = g . (cos 9X cos 6Z + sin ex sin 6Y sin 6Z)
S — -I S ~ J-

-m , cos 6Y sin 6Z + n .
s-1 s- 1

(cos 6X sin 6Y sin 6Z - sin 6X cos 6Z) (4-97)

m ' , = m , cos 6Y cos 6Z - n , (sin 6X sin 6Z -f cos 6X sin 6Y cos 6Z)
s-1 s-1 s-1

+ I . (cos 6X sin 6Z - sin 6X sin 6Y cos 6Z) (4-98)
s- 1

n' , = n , cos 6X cos 6Y + g . sin 6X cos 6Y + m , sin 6Y .
s-1 s-1 s-1 s-i

(4-99)

The values X*, Y* and Z* represent the intercept coordinates

of the ray with the nominal tangent plane expressed in the transformed

coordinate system relative to the new tangent plane.

X* = (XSO-AX) (cos 6X cos 6Z + sin 6X sin 6Y sin 6Z)

-(YSO-AY) • cos 6Y sin 6Z - AZ

(cos 6X sin 6Y sin 6Z - sin 6X cos 6Z) (4-100)
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Y* = (YSO-AY) cos 6Y cos 8Z + AZ (sin 6X sin 6Z + cos 6X sin 6Y cos 6Z)

+ (XSO-AX) (cos 6X sin 6Z = sin 6X sin 6Y cos 6Z) (4-101)

Z* = (XSO-AX) sin 6X cos 6Y + CYSO-AY) sin 6Y - AZ cos 6X cos 6Y .

(4-102)

Thus X' and Y' represent the intersection of the ray with the new
SO SO

tangent plane and

Xso = X * - ~ - Z* (4-103)

m' .
r = Y* — Z* (4-104)
SO ni i

s- 1

Zso =

a. Sign Convention — The origin (surface vertex) of the trans-

formed coordinate system has the coordinates AX, AY, AZ relative to

the original origin (Fig. 4-18). Viewed along the positive direction of

the optical axis, +6Z represents a counterclockwise rotation about the

optical (Z) axis. Similarly, a tilted surface has its optical axis oriented

at the angles 6X and 6Y with respect to the axis of the preceding optical

surface. A surface tilted by +6Y (or + 6X) has it axis rotated such that

its new direction relative to the original axis is the same as would a

ray having positive direction cosines m and n. For example, a ray

parallel to the original axis (j0 = m = 0, n= 1), and incident upon a

surface tilted by a positive 6Y will have transformed incident direction

cosines so that m < 0 (see Fig. 4-19).
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b. Coordinate Restoration — If a surface is tilted or

decentered, all the surfaces following will be aligned with the tilted or

decentered surface. Therefore, the tilt or decentration of a single

surface amounts to tilting or dec enter ing the system following the tilt

with respect to the portion of the system preceding the tilt. If it is

desired to misalign a given surface in the midst of a centered optical

system, it is necessary to introduce a reverse tilt or decentration

immediately following the misaligned surface to restore the coordinate

system. If there is a combination of AX, AY, AZ and/or 6X, 6Y, 6Z

at the surface, then because of the sequence of the operation of the

decentrations and tilts the combination of -AX, -AY, - 6X, -6Y, etc.

will not necessarily restore the proper coordinates. The following

are rules to follow in the restoration of the coordinate system after

traversing a misaligned surface:

1. Restoration after a single tilt 6Y or a single
decentration AX is accomplished with the inser-
tion of a dummy surface following the misaligned
surface with p = 0, Tg_ ^ = 0 and the refractive
index (J-s the same as that following the misaligned
surface. The dummy plane should have a tilt of
-6Y or a decentration of -AX.

«
2. For a surface having tilts 6X, 0Y, 6Z and decen-

trations AX, AY, AZ. Four dummy planes must
be inserted:

Dummy plane No. 1 with -6X
Dummy plane No. 2 with -6Y
Dummy plane No. 3 with -6Z
Dummy plane No. 4 with -AX, -AY, -AZ

3. For surfaces with more than one but less than the
full six misalignment components the sequence of
the operations must remain the same removing
dummy planes which do not apply. For a surface
with 6X, 6Z and AY three dummy planes are used:

Dummy plane No. 1 with - 0X
Dummy plane No. 2 with - 6Z
Dummy plane No. 3 with -AY
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4.7 PUPIL, COMPUTATIONS

All the ray trace and OPD computations are initiated at the

entrance pupil. Part of the input is "M" which is the surface number

of the aperture stop which provides for the computation of the paraxial

entrance pupil location T from eq. (3-5). The rays are input at the

pupil in a uniform square grid as in Fig. 4-20. The input parameter

NXY determines the number of grid intervals across half the pupil so

that there will be (2NXY + 1) grid points across the pupil. The pupil

semidiameter is divided by NXY to give

- = < y = *FxV <4-105>

for the intervals between rays. The ray coordinates X and Y at the

entrance pupil are then obtained by incremental steps of ex and ey.

Combining these with the input values of L and H for any angular

obliquity of the input beam the ray input direction cosines 1 , m and

n are determined
o

AA = ARCTAN (X L ~l) (4-106)

BB = ARCTAN ((Y L " l -I- Tan (H)) cos (AA)) (4-107)

1 = sin (AA) cos (BB) (4-108)

mQ = sin (BB) (4-109)

n = cos (AA) cos (BB) . (4-110)

At this point W is determined to be used in equation (4-80a)
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For L ~ = 0
o

For L "1 4 0
o

(4-111)

w = J, I
o n cos (H)

(4-112)

Pupil Amplitude Values (B(u, v)) — The pupil coordinates are

here referred to as u, v which coincides with the notation used in dis-

cussing computation of the amplitude spread function (Section 4. 8) u

and v apply to the exit pupil coordinates while X and Y represent the

entrance pupil coordinates for the given ray.

The entrance pupil amplitude values axe determined as follows:

Transmitter — Truncated gaussian amplitude distribution with

total radiant power per input parameter P .

Receiver — (Received signal)— Uniform amplitude distribution

if P0 is input positive it is the uniform intensity value I . If P is input

negative it is the total radiant power, then

Io = |PJ/A0 (4-113)

where

then

A = entrance pupil area

Receiver- Local Oscillator— Truncated gaussian amplitude dis-

tribution with total radiant power per input parameter P .

I l l



Truncated Gaussian Intensity Function— The pupil amplitude

function B(u, v) for a gaussian amplitude distribution is defined as

follows:

P = Total input beam power (W)

I = peak intensity of gaussian beam

w = 1 /e intensity radius

(3 = maximum input beam radius or truncation radius

2 2 , 2
r = u + v

2P
I = - 5 - ,- ? - =• (4-115)
o 2 . -2 Pr/ /w 2 v 'r

o
. - r /w(1 - e r° / 10

2 , 2
r /Wo (4-116)

B(u,v.) = v / I (u ,v ) . (4-117)

The amplitude expressions, eq. (4-114) and (4-117), assume unit

magnification between entrance and exit pupils. If the pupil magnifica-

tion mP is not unity it will modify B(u, v).

., .c. .. TD entrance pupil diameter ,A 1 1 0»
pupil magnification = mP = exit pupil Diameter (4-118)

B'(U,V) = mP • B(u,v) . (4-119)

4. 8 AMPLITUDE SPREAD FUNCTION

The complex impulse response function or amplitude spread

function ASF(x, y) at the Fraunhofer plane is the two dimensional Fourier

transform of the pupil function F(u, v).
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r
For the received signal

ASFl(x,y) = FRl(x.y) + i FIl(x,y) (4-123)

PSFl(x,y) = |ASFl(x,y)|2 (4-124)

and for the local oscillator

ASF2(x,y) = FR2(x,y) + i FI2(x,y) (4- 123a)

PSF2(x,y) = |ASF2(x,y)|2 . (4- 124a)

Signal power, local oscillator power and heterodyne power are

obtained by numerical integration over the specified detector dimensions.

The computed ASF and PSF values are obtained for a uniform

grid of intervals AX, AY.

Signal Power = POWER(l) = Z 2PSF1 (x,y) AX AY (4-125)
x y

L.O. Power = POWER (2) = LSPSF2 (x.y)AXAY . (4-126)
x y

Heterodyne Power — If the nominal phase difference between the

receiver signal beam and the local oscillator beam is zero, heterodyne

power is obtained with J12 (x,y).

Heterodyne Power = POWER(3) = 2 ZJ12(x,y) AX AY (4-127)
x y

where

J12(x,y) = FRl(x.y) FR2(x,y) + FIl(x,y) F12(x,y) (4-128)
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ASF(x,y) = ff. F(u,v) (4-120)

^"denotes Fourier transform

F(u,v) = B(u,v) • exp [-1K • W(u, v)] (4-121)

K = 2ir /X .

With B(u,v) from (4-114) or (4-117) and (4-119) with W(u, v)

from (4-80a).

ASF(x,y) = ~^ f/F(u,v) • exp [^(ux + vy) dudv. (4-120a)

The complex amplitude function ASF(x, y) is represented by the

real function FR(x, y) and the imaginary function FI(x,y).

ASF(x, y) = FR(x,y) + i FI(x, y) . (4- 12 Ob)

The intensity function or point spread function is PSF(x.y)

PSF(x.y) = |ASF(x,y) | 2 (4-122)

= [FR(x,y) + i FI(x,y)] [FR(x, y) -iFI(x,y)] . (4- 122a)

The functions ASF(x, y) and PSF(x, y) provide the basis for the

quality criteria for the receiver and transmitter.

4.9 RECEIVER QUALITY CRITERIA

The amplitude spread function ASF(x, y) and point (intensity)

spread function PSF(x, y) are determined for the received signal beam

and the local oscillator (L.O. ) beam.
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or for brevity,

J12 = FR1 FR2 + FI1 F12 . (4-128a)

If there is a. nominal phase difference (A<J>) between the two beams, that

phase component must be removed to obtain J12:

Heterodyne power = POWER(3) = 22 J121 (x, y) AX AY
x y

(4-129)

J12' = FR1' FR2 + FIT F12 (4-130)

J12' = (FRI cos A4> - FI1 sin A<)>) FR2

+ (FI1 cos A<|> + FRI sin A4>) FI2

J121 = (FRI FR2 + FI1 FEZ) cos A$

+ (FI2 FRI - FI1 FR2) sin Acj>

J121 = J12 cos A4> + K12 sin Atf> (4-130a)

where

K12 = FI2 FRI - FI1 FR2 (4-131)

Phase minimization — The value of J121 will be maximized when

d(J12'/d(A<j>) = 0.

= J12 sin A* + K12 cos A6 (4-132)

with

d(J12')
d

115



J12 sin A<J> = K12 cos A<J>

sin AA K12 ,
2 - tan

The value of A<f> is then obtained by the summation over the

specified detector as follows

Tan = Z2K12 (X Y)
x y

SSJ12 (X Y)
x y x

(4-133)

The remaining received signal quality criteria are determined

as follows:

Phase Match Efficiency = (4- 134)

POWER (3) = Heterodyne power

POWER (5) =2Z [PSF1(X,Y) PSF2(X,Y)]1/2AXAY
x y

(4-135)

Optical transmission = PZERQ (4-136)

POWER(6) = Exit pupil power

PZERO = Total received power

Focusing Efficiency = (4-137)

Nonheterodyne detection efficiency = — pzERQ (4-138)

T _ ... . .. „. . POWER(5)
Li.O. illumination efficiency =•— •*•"* TTT

(POWER(l) POWER(2) '
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4"TT A
Maximum Antenna Gain = _ o (4- 140)

A = entrance pupil area

X. = spectral wavelength

Receiver efficiency to I. F. = ' <4' 141>

4. 10 TRANSMITTER QUALITY CRITERIA

The point (intensity) spread function PSF(X, Y) is determined for

the transmitter at the specified range. The quality criteria for the

transmitter are:

Peak intensity = IP = maximum value of PSF (X, Y) (4-142)

Optical transmission = Pp^^j6) (4-143)

Maximum antenna gain = 4TT PQWER(7? (4. 144)

*•

POWER(7) = Effective exit pupil area

X- = Spectral wavelength

IP (RW X)
Overall transmitter efficiency = pzgRQ pQWER(7)' ^4

where RW = Range.
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4.11 ERROR ANALYSES

The errors associated with these computations come from

numerous sources. The major error sources are discussed here with

some indication of guidelines to be followed to keep them to a minimum.

a. Aberrations — The conventional Fraunhofer diffraction

integrals used in these computations are derived based on certain

approximations. The fundamental integral involves the exponential

exp [iK(W + S)] (4-146)
S

where W = OPD error for a given point on the wavefront and S is

defined to be the distance from the gaussian sphere to a. given observa-

tion point in the intensity (or amplitude) plane as illustrated in

Fig. 4-21.

The assumption is that S=R in the denominator of eq. (4-146)

where R = radius of gaussian sphere. It is also assumed that in the

numerator of eq. (4-146)

(x u + y v)S-R _J

where u, v represent the coordinates of a given wavefront point and x, y

are the coordinates of the observation point in the intensity plane. As

the aberrations become large, these approximate representations begin

to break down and the computed results lose accuracy. There is no

well defined threshold of aberrations where the diffraction integrals

become inaccurate; but, in general, it can be said that results are best

when WA « 1.

b. Aperture Description— The pupil amplitude B(u, v) and

OPD W(u, v) data are obtained for a rectangular array of points uniformly

distributed over the pupil. For a circular aperture the process of fitting

118



3079-28

W

GAUSSIAN REFERENCE SPHERE

ABERRATED WAVEFRONT

Fig. 4-21. Deviations from the gaussian sphere.

NAS 5-21898
Final Technical Report
Fig. 4-21 119



square pegs in the round aperture hole can only represent the aperture

boundary accurately if there are a large number of small square pegs.

This effect is further compounded by circular obscuring apertures, or

even rectilinear blockages such as spiders or support struts which do

not line up with the u, v coordinate system. Figure 4-22 illustrates how

the rectangular u, v array describes a circular aperture boundary. The

uncertainty of determination of the area of the pupil, hence signal

power, etc. will be ± dA where

dA = «X cY (4-147)

There are techniques for weighting the amplitude values of array ele-

ments lying on the boundary for which there is an accuracy improvement.

The tradeoff of accuracy gain versus increased computational complex-

ity of these weighting techniques must be compared against a simple

increase in grid size (number of array points).

In terms of some representative values of NXY, the normalized

uncertainty dA/A would vary per following tabulation.

NXY dA/A

10

15

20

25

30

40

50

0.0032

0.0014

0.0008

0.0005

0.0004

0.0002

0.0001

c. Circular Detector ~ The errors associated with a circu-

lar detector sampled via the square spread function grid will follow the

same rules as the aperture description. The uncertainties in the com-

puted results associated with the detector would follow Table 4-2
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with NXY replaced by IDIM. IDIM is the array size for the

detector.

TTYTTV/T Circular Detector Diameter
IDIM = - 2 DELFS -

IDIM = IDETEC (2, J)

= 10 (Default)

d. Aliasing — The computed Fraunhofer diffraction function

is based on a discrete complex amplitude array (pupil function). This

discreteness results in a series of replicated, overlapping far-field

patterns as illustrated in Fig. 4-23 which constitute an infinite periodic

function. The spacing between these replicated patterns is directly

proportional to the array size or number of points across the pupil.

These patterns overlap so that each computed ASF or PSF value repre-

sents the superposition of all the replicated spread functions at a given.

point in the image plane. Thus, a point midway between two replica-

ted spread function peaks will have a value twice that of either spread

function plus a contribution from all the other surrounding spread

functions. The larger the number of sample points across the beam,

the greater the separation between these replicated spread functions,

hence, the lower the errors in the spread function due to aliasing or

overlapping.

Aliasing errors increase with aberration since the effect of

aberrations is to increase the spread function values away from the

center while reducing the central spread function values.

e. Effect of Defocusing on Aliasing — As indicated in

Fig. 4-23, the distance between peaks of the replicated overlapping

spread functions is Axrep and

Axrep = Z\ NXY f#
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where

X = spectral wavelength

NXY 5 number of grid points over entrance pupil semidiameter

f# = relative aperture

Aberrations and/or defocusing which cause geometrical spread

approaching Axrep will destroy the accuracy of these computations.

A defocusing AF resulting in a geometrical spread of Axrep would be

AF = 2 f# Axrep

= 4X NXY (f#)2

which is obviously excessive as would be a defocusing of half or one-

fourth that amount. It can be said, therefore, that to minimize aliasing

error due to defocusing

AF« X NXY(f#)2

and preferably

AF — 0.

f. LACOMA Test Case — Numerical Results — A test case

was devised to check accuracy. It consists of diffraction limited

received signal and L. O. optics. The relative aperture of the received

signal optics is 10, and for the L,. O. is 100. The matrix of optical

path differences indicates zero (10 ) over the pupil. The (complex

amplitude) pupil function indicates a uniform 100%. A peak value of

1. 0013013 rather than 1. 0 indicates a slight demagnification of the

exit pupil as used for the analysis. The ASF for the received signal is

real with a peak value of 73. 74928 compared to a predicted value of

74.0147
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A = entrance pupil area

P = total input power

F = focal length

representing an error of 0.3%. Signal power is computed to be

65.6453 which compares with a predicted diffraction limited value of

65.82 for an error of 0. 3%. Both these errors are to be expected from

the value of IDIM = 10 and the predicted uncertainty of 0.0032 for

NXY = 10 per Table 4-2.

The local oscillator results were examined in terms of the peak

ASF value a . The computed value is 0. 8018 while the predicted value

is a =0. 8352. The 4% error here is due to the gaussian pupil function

changing rapidly at the edge of the aperture where the aperture sampling
2

errors are thereby enhanced. The further the 1/e point is from the

aperture edge or truncation point (in either direction) the lower this

error will be.

Review of numerical results for the various sample cases indi-

cates that the above accuracy values represent a realistic range to be

encountered in the analysis of typical systems.
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APPENDIX A

••• TRANSMITTER T?ST CASE •••
IINP
3 £ T A O ( i ) *?., .5, KID * ],., HID -a., a., XLINVIII =o.,:.
NAu(l) -i..,j., IFLGK1) = w,u,

RHOSI1I =j.,.Jl,0., D.,.J1,;.,

TS(l) *G., ItQ.,U.,J.,1kJ.,u.,
XMUS<1) = 0*1.,

MFRS = 10, OELFS = .LI,
NXT = 25,

JEMO
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LACOMA - LASER CanMUNICATOR ANALYSIS PROGRAM

...'.. P4GOS CORPORATION .....

••» TRANSMITTER TEJT CASE •••

N 3 8:.TAO 5.UO..ji;,JE»l)0 H 0.

H C . XLINV 0. MA; 0. IFLG1 0

SURFACE PARAMETERS

SURF. CURVATURE SEPARATION INDEX OBSCURATION D A T A VIGNETTING O A T A

NO. RHOS T5 XMUS 9 E T A P X BETAPT B £ T A S X BETAS?

I E . 0 .

3 C. 0.

SPECIAL SURFACES

SURFACE RHD1

2 L.

i . t o o u O J a.
. • i tip + i ? i r i ft ii n i iJ b U U t + b c I c L J U U u J J •

1 . C C O I O O 3 .

RH02 CRS

} . - l . C C O J O O O

C.

C.
C.

CC

D . C O O C 1 C C

b •

C.

PHI

0 . O O O O O C .

0.

• 0.

0.

AHP

c. j o o o g o o

FREQ

0 . 0 0 0 0 0 0 0

(ANGLES INFUT GREATER THA.V 6.283 ARE ASSUHEO TO BE IN DEGREES!

FIELD ANGLc. = 9.

NX» = Z<, NDET = 1 NFRS = 13
DELFS = l .u lOOUOi)LE-C2 ZOUEGA s C. VLAHOA - 1.:611385ut-Q2

DETECTOR NO. 1 IOETEC = 1 0 0 0 0
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PiSAXIAL mi TRACE

PETA R ALPHA A
5.. CO.CLjilE»Jt J. 1. 3.CJ00030CE-J1
5. .lull uO JE»-Jl -5.0 JJ^J JCOE-OZ 0. 2. 00000 J OUE-O I

E»01 3.0 J000300E-Q1

PAI?«XIAL ENTRANCE PUPIL POSITION T ( O I = -0. TE«IT=

INVERSE OBJECT DISTANCE XL INV = 0.

FOCAL LTNGTH t 1. L J Oi, J Ju uE» J2 BACK FOCAL LENGTH = I. DOG 1 Oil )CE

TS(N-l) = 1 . Cu J jl, jC j£»0i FL = 1. j C i O O u O J O E » J2
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••» TPSMSIiTTc^ T£?T CAS£ •••

CHIFF pt\ U C T A FO< TRANSII fTEK.

FIELCI AN&L: (J.ioisfsi = i .o iOoCiJi ;

CHIEF F.1Y COCFJIN4TE5 ON SJ*Fac; N

> r 7
o . : . c .

DIRECTION c:<5jN-s 01. SUSFA;; N-I

L 1 N

o. .. I.CJO;I.JU:E»O]

9»oius RH «MO POSITION TR IF inn PU^IL

iH • T*

i.t. L.. :^.û •l,^ ;.

TILT AND CISBLaCEMTNT OF iKIT P'JPIL IN X- AN3 Y-OIRECT IONS

XTUT TTILT XOISP »TISP

C. ,. C. 1.

KAVtFRONT t^ROR INFOK1ATION

VARIANCE =

RMS = <..3C3
HAVtLENuTH = l.a61J385S£- J2
MAXIMUM UHNDRMALIZtn ER«0*= 1 . 33226763E-1 5

MINIMUM UNNO^rALIZEC ERRO<=- 1 . 3 J2Z6763E- 1 5

MAXIMUM NORMALIZtD E«ROR= 1 . Z55 5 J 7 77 E- 1 3
MINIMUM NORMALIZED ERPOR=-1. 3555a777£- 13

APPROXIMATc. STREHL fATIO = 1 . 30 j Ji)3 J3£»C3
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••• TRANSMITT£S TiSI CAS; •••

TR&NSHITUR RAT&,

PEAK INTENSITr = t.U1223l9£»wl
OPTICAL TRftNSMSSION = 9. J-tS68a6£-01 ( -.COZ 09 1
MtXIHUH UNTiNNA GAII = 8.73ll9b9E» J6 ( 69.mi OR )
OVERALL TRSNSHTTEP. £FFICI£NCY = 9.32df 7 33E-t t ( -.31-9 OB )
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APPENDIX B

TRANSMITTER TEST CASE •!

I1NP BETAim = 2.25, Hdl = J., IFLG1C1) = 0, N(l) = -7,
RAOSUI

TS ill 3

ZOMEGA =

XftUS (1)
S K A P A ( S )

C«S(6) =

- i .

0.9
s 1 .

-1.

VJ.ftSSZ, t>/ r.b55^'., 0.,-l^Za.,8.

5,

t

MfRS = 51, !5ELFS = 50,
t£NO
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LCCOMA - LASER CJrlMUKlCarOR ANALYSIS PROGRAM

• • • • • PAi05 CORPORATION • • • • •

T Z A N S M I T T E * TIS1 CASE »1

N -7 Ri lA jJ 2 . ? 5 0 0 J Q J J £ » J O

" 0 XLINV u.

M 0.

MAG 0.

PZCRO 0.

IFLG1 0

SURF. C U R V A T U R E S E P A ^ A T I O * INDEX OBSCI
NO. «HCS ri XMUS R E T A P

1 G » 4 * . l > * j j 3 ; *3E t02 l . C O O w O O J.

3 l«;,/6,j77^£-Ci S.bllJi jbJE^Ol l . C Q O b O O 3*
<« C» S . l ^ * j J jo3E + o2 l i C O O C O M U.

7 (,, 0. -1 .100JOO 0.

JRATION DATA VIGNETTING 0
X 6ETAPV B E T A S X

C. C. 0.
C . 0 . 0 .
C. C. 0.
E. C. 0.
E. C. 0.
C. 0. 0.
C. 0. 0.

SPECIAL SURFACES

BETAS*

SURFACE

6

SURFACE

5

PM01 RH03 CRS

- l . t O O J O u O

cc

u.0000:011

PHI

o.o iooo; .

(ANGLES INPUT GREATER THAN 6.263 ARE ASSUMED TO BE IN OEGREESI

SKAPA ALPHA BETA

I. ;. 3.

AMP

C.3COOOOO

ASPHERIC COEFFICIENTS
GAMMA OELTA

FREQ

0.0000000

EPSILON

FIELD ANGLE =

NXY = 25 NDET t 1
OELFS = 5. O t O y U i i u ( E » 0 1

NFRS = 51
20MEGA = 9.2500tO( iOE-01 V L A M O A 1. j61138SiJE-02
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PARAKIAL PAY TUSCE

P=TA B ALPHA A

2£ui ; : jOo£»Jl J. C. "t.<."»<.<.lt<«<«<»£-;]l

l t . i < t ( JO jOOOE»03 -1.23509257E»01
Z 1.77i2i".9<ii; »OZ -i.<>6l.09<i9<.E»0 0

Z 1.6626481 J£»01 -t>.i>6<»09a9i>E»l 0
-3..91J73'.lE»jl 8.6".3628L*E-tO -2. 27791 99NE»C3 -3.231.86 181f -0 2

-3.i.9137337E»ul -1.8S3352JSE-06 -2.29".5'»686E»(13 -3.263".8365f-0 2
-3.09157337E»J1 -3.8633S237E-06 -2.29".5-,i>86£»CJ -3.253".8365E-0 2

P4HAXIAL ENTRANCE Pt'PIL POSITION T ( 0 > = -0. TEXIT= 7.; Ji. 97397E* 3<>

IMVtRSt OBJLCT QISTAMCt X1.IMV - 0.

FOCAL L£MGTH = 5 .8239S753£»JS BACK FOCAL L£MGTH - 8.a01789S7£»06

TS(N-l ) = B.LJ178987£»06 FL = 5.82395753E*:S
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TRANSMITTED TEST CtSE •!

CHIEF RAY D6T6 FOR TRANSMITTER.

FIELD ANDLL (RAOIAKSI = u. jijjj0.no

CHIEF RAY COORDINATES ON SJRFAC; N

X Y Z

0. -. C.

DIRECTION COSINES ON SURFA:E N- 1

L I N
G. J. - l .C ' JC00030E»CO

RADIUS RW ASO POSITION T^ 3F EXIT PJPIL

^H TR

7.93li.6C13£»36 7 . 0

TILT «NO OISDLAC£M£NT OF £<IT P'JPIL IN X- AND Y-OIRECTIONS

>TILT YTILT XOISP

HAVEFRONT £<?"?OR INFORMATION

VARIANCE =
RMS = 7.fcS377uii5E-lii.
WAVELENGTH = I.]bll385i)£-j2
MAXIMUM UNND^MALIZET ER»0^= 1.3811Za?6£-10
HININUM UNNORMALIZ£C ERRO*"1 . 77fl<.6895£-05
MAXIMUM NORMALIZED E*ROR= 1. 3J151.8 J»E-36
MINIMUM NORMALIZED f *ROR = -1. 668i.6171t- 33
APPROXIMATE STKEHL SATIO = 9.9^?77899E-C1
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TRANSMITTER TEST CASE »1

TRANSMITTER OATA.

PEAK INTENSITY = 1. 1.16?JJUE-07

OPTICAL TRANSMISSION * 9.999998'.E-a 1 ( -.COO 09 )
MAXIMUM ANTENNA GAIK = 3.3319166E»08 ( 95.337 OS I

OVERALL TRANSMITTER cFFICIiNCY > 3. 366C7 71.E-01 ( -1..739 09 )
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APPENDIX C

RECEIVER TEST 3ASE 'I
t INP B c T A i d l = 82 .5t l .34 , H ( l > = U . . C . , X L I N V ( t ) * l i . t O . , « A G ( l )
N i l ) - -9, -7, M ( l ) = 5,6, I F L & K U : 1,0.
R A O S ( l ) = ... -320. ,0., 1.1.80175, 6*0., 111.2, 0.,
TSUI e 3bb .72S, 0., -5;a.9J985, 1*6.11.387,96.1.25, 2., -2.,
T S I S ) = 5b.775, 0.. 0., 111.2. C.,
X M U S I 1 I * 1.. -1..-1., 1., I.. u . J O O b Z i 6*1..
S K A P 4 I 2 ) * u., 1,, .71736,
CRS<11) = -1.,
T H T A » ( 6 ) = -.78539616, <. . , -.78539816,
B E T A P X ( l ) = 12.1.5,

I P R O G ( l ) = 1,1, 1,J,
SEND

Preceding page blank
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ISCOMA . LASER COMMUNICATOR ANALYSIS PROGRAM

..... pfljos CORPORATION .....

RECEIVER TEST CASE •!

RECEIVED SIGNAL OPTICAL TATA.

N -9 BETAO 8.250CU.«uE»01

M 5 XLINV C.

P2ERO 3.

IFLG1 1

SURFACE PARAMETERS

SURF.

NO.

1

2 -
3

5̂

6
7

8
9

C.
1.

0.
7.

C.

0.

0.
0.
C.

TILT AND

SURF.

6
' 8

SURFACE

2

4

I
u

CUkVATURE SEPARATION

RHOS T;

3.b8725J6E»02

2195122E-J3 0.

1
1

-5.029J4B5E*32 -1

05Z..991E-03 l.»&l»J87E»G2

9. 8*25 JOOE*0 1
2. jtjJJw JE*CO

-2.0C3uOOOE*0-G
5.6775000E*ul

0.
DISPLACEMENT DATA

THTAX THTAY

7.6S39816E-J1

-7.d539816E-01

(ANGLES INPUT GREATER THAN fe

SKAPA ALPHA

C. u.

7.l7363udc-Jl J.

1
1
k
1

1
1

•

INDEX

XMUS

.COOjOO

.030JOO

.(.00.33

.COOOOO

.COOOOO

.C30&23

• t 0 OJbil
.COOOOO

.(.03-jOO

0.
0.

263 ARE

0.

0.

OBSCURATION DATA VIGNETTING DATA
RETAOX

1.2«.50E»C1
U •

3.

3.

J.
3.

3.
J.

3.

THTAZ

C.

0.

BETAPY BETASX BETASY

0. C. 0.

0. C. 0.

C. C. 0.

C. G. 0.
C. 0. 0.

C. C. 0.
C. 0. 0.

C. C. 0.
C. i.. 0.

OLTAX 9LTAV 0!

C. 0.
3. 3.

ASSUMED TO BE IN DEGREES)

BETA GAMMA DELTA E"SILON

0. .0. 0.

0. 0. 0.

OLTA?

FIELD ANGLi = J.
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LOCAL OSCILLATOR CPTICAc 1ATA.

N -3 9tTA^ 1.39000;jJ£»3C

M 10 XLIHV o.

H 0.

MAG 0.

P7zRO 0.

IFLGl 0

SURFACE °6«tMETESS

CUKI/ATtmSURF

NO. T3

INDEX

XHUS

l . C O O O O - J
l . C O O O O O
L.lQOOilO

03SCU9A!
S E T A P X

].
J.

}.

riOM D A T A
9ETAPY

C.
C.

a.

VIGNETTING 0
B E T A S *

^. 0.
c. a.
0. 0.

BeTASr

10 C. 0.
11 6.S9i:3-j5d£-J3 l.llZJuJiiE*.
i.2 C. C.

SPECIAL SURFACES

SURFACE RH01 11H02 CHS CC PHI

11 i. j. -i.coojoao j.ooocaoo o.joouo^.

(ANGLES IMFUT GR£AT£R THAN 6.283 ARE ASSUMED TO BE IN DEGREES)

AHf» FREQ

0.0)00000

FIELD ANGLE = (,.

NXY = 25 N3ET

OcLFS = •:.

NFRS = 26
ZOMEG9 : C. VLAMOA = l.;611385iE-02

DETECTOR OtTA.

DETECTOR NO. 1 IDETEC 1 J 0 0 0
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P1RAXIAL PAY TRACE - RECEIVED SIGNAL OPTICS.

B E t a

B . Z S C - u l . J £ * t l

-3.<.1892e53E»Cl
- 3 . 3 e 7 7 - . 2 2 j E » O t
-3 .b l2b? f9 . i t»U

B

-2. J1219512E-01
-Z.J1219512E-01

6.Z-.6231.92E-02
6.2»6Z3i»92£-02

&.2-.6231.92E-02
o.2<->23i.92E-02

A L P H A
0.

».1>693939<>E»CO
5 . 0 8 3 0 7 0 J 5 £ * C O

-5.Z16C?6iOE»Ki
-l .Z15228C2E»01
- i . z t a r s t c^Eto i

-l.63t763S5£*01

A
1.2121Z121E-32
1.Z2025129E-03
1.22025129E-33

-7.0»723806E-i)Z
-7 .0 I . 7Z3RO&E-OZ
-7.0".7Z3?06E-a2
-7.0".7Z3506E-J2
-7.0-.723806E-02
-7 .0*7Z3aOE>E-3Z

P A ^ A X I A L ENTRANCE PUPIL P03ITIOS T ( 0 > = -3. 7lt 927h2E»S3 TEXIT= -9.S 92<t9ZZ6E»0 1

INVERSE OPJE.CT 3ISTONCE X.INV = ii.

FOCAL LEMG1M = -1.12P795b:i£*03 BACK FOCAL Lttl&TH = 5.62359C'6E*01

TSCN-l l - s . f c T ^ S O ^ L j £ » e i FL = -1.3Z079SbtE*)3
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P A R A X I A L PAT TRACE - LOCAL OSCILLATOR OPTICS.

E t T A 9 ALPHA

l."90,.C UJ£»ul ). 3.
t.39b<.,KuUE»u t - 1 . 2 5 J C ' l a C O E - O Z J. 7.11UZ1.U60E-01
I.»il..85it7£-lfc - l . Z5JDa jCOE-02 9.0000 i 0. 0£»01 7 .19fcZ»<.60E-i) 1

P A R A X I A L £HTf<ANC£ PUPIL POilflON T ( 0 ) = -0. TE»IT= 0.

INVERSE oejerT DISTANCE XLINV = o.

FOCAL LcNOT" = 1. 1121.„»« i£» J3 BACK FOCAL LENGTH = 1. 11ZOG. KE^O!

TS(N-l) = 1.1120CH^E*32 FL = 1. llZOOOOt EKiZ
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RECEIVER TtST CASE •!

CHIEF RAY DATA FOR REC£IV£3 SIGNAL.

FIELD ANGL£ (RADIANS) = g . 000-0.1 JO

CHIEF RAY CDOROINATFS ON SJRFACZ N

» 1 7

0. 1.16u2539iE*00 C.

DIRECTION COSINES ON SURFAI£ N-l

L M N

0. -7.1i,»i.Z73oE-li< l.OOCOOOOCE'OO

RADIUS RM AND POSITION TR DF EXIT PUPIL

RH TR
i.536999i3E»02 -'*. 692«. 9225£»B1

TILT AND DISPLACEMENT OF KIT PUPIL IN X- AND Y-OIRECTIONS

XTILT TTILT XOISP YO ISP

0. -7.1.51.27ISE-1'. C.

UAVEFRONT ERROR INFOR1ATION

VARIANCE = 3.B«398(l<9E-J2

RMS = 7.*7fc68726E-t2
WAVELENGTH = l.u611365JE-ja
MAXIMUM UNNDPMALIZEO ERROR= 0.
MINIMUM UNNORHALI7EP ERROR=-1.6*265"»96E-03

MAX.IMUM NORMALIZED ERROR= J.
MINIMUh NORMALIZbD ERROR=-1. 5".8Jl. OilE-01

APPROXIMATE STR-HL PATIO s 7.S5191571E-C1
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Reproduced from
best available copy.

T L T T cas;

( P E 4 L ) ,
ICC,

SIGMA:..
3 TO 1. 3C " E»'j3

I
2
S
2
1

-11-

13

37

75

93

i i
2 i-
j j

2 i'
1 1

I t i - l J -
-". -5

3 ?
13 11
2". z:
3t 3-
1.9 U6
62 5.1
7". 7.
a"» 79
92 a'

C.

<

0
10

bi
7 c

i

3
3
i.

12
-3
- j

5
U

* •*
12

l
2
T

3
2
1

-13-
-10-
-5

1
8

17

!5

1

1
3
c

1 1
2 H
J 3
3 i

-1
1
2
3
3

•)

1--13-13-11

12-13-1«-1<*

- •J - i l - i i -m

1 J
Id
25

(. ,,

*• *

9 J
10 7
£.1 11

2' 15

1 ̂

-5
-1

?
1
d

1 2 2 3 3 3

-U -9 -6 -<• -2 C

-13-12-1J -t -6 -3
-1I.-13-12-10 -7 -5

i ^ m i z
lj l* :, :' °

-l.-13-l'5-15-U-ll
-7-12-l^-l5-li.-12
-5-11-1-.-1S-15-13-
-3 -9-15-15-15-1".-

• » i<i if,

1

2
.!
5

-t

-2

!

-s
-9
i :•
11

**
"*

i
2
3

J
2
1

-5
-6
-7
-7

"*

•J

1

2

?
2
2
1

-2
-3
-1

G
1

3
3
3
3
2

1
0

- j
-1

1

'

"*

j

3
3

I

2
1

» T

J

3
3
3

i

-3

0
1
2
3
3
3

u
U

U

U

U

_

• I*

-1

1
1
2
2
3
3
3
t*
i*
c*
L

-5 -5

-2 -U

-2 -J
-1 -2

C -1
1 - .
2 t
2 0
2 1
3 1
3 1
3 2
1 2
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QUADRANT 2, 1JO CORRESP3NOS TO 1. 3C<.<.9151 Et J3

-1

-*»
•*»

'

-5
-"»
-it
-3
-2
-2
-1
-1

0

1
1

1

1

-2

-i.
-5

-"•
-3
-3
-2
-1
-0

0
1

2
2
2
3

3

-2

**

-3
-2
-1

C
1
2
Z

3
3
u
i.

t*

-3
^

-t.

-2

L

t

3
T

t.

w

-J*

-*»

1
1
2
3
3
3
**

t*
*»
3
3

3

-*»

-3

1
2
2
3
3
3
3
3

3
2
2
2

1

-5 -5 -

-i. -3 -
-3 -2 -

3 3
3 3
3 3
1 3
3 2
3 1 -
2 C -

1 -2 -

-J -3 -
-1 -» -)

-1 -5 -:

> -5 -» -«. -3 -3 -2 -1 -1 -5 0 1 1 1 1 1 1

! - l - u l ' 1 2 2 3 3 3 3 2 2 2 2 1 1
L 0 1 2 2 3 3 3 3 2 2 1 1 J - 0 - 0 - 1

J 3 2 1 -J -2 -3 -5 -7 -8-10-11-12-12-13-13-13
! 2 1 -0 -2 -«. -6 -8 -9-ll-12-13-U-li.-lt-li.-li.
! 2 0 -2 -i. -6 -8-10-11-12-13-1I.-1I.-1I.-13-13-13
! 1 - 1 - 3 -6 -8-10-12-13-13-11.-13-13-12-11-10-1C

-1 -3 -5 -9-10-12-13-11.-13-13-12-10 -» -7 -5 -«.
-2 -S -7-10-12-13-1I.-13-12-11 -8 -6 -3 -C 2 3
-H -6 -9-11-13-H.-11.-12-1C -7-3 1 k 811 13
-5 -8-11-13-1I.-11.-13-11 - 7 - 3 3 a H 16 22 2".

-8-ll-13-l»-lii-13-10 -5 2 9 17 26 3fc i»0 ".6 49
-9-12-li.-l5-li.-12 -8 -1 6 IS 25 3i fcV 52 i8 62

-ll)-13-lH-15-ll.-ll -5 2 11 21 32 1.3 53 62 o9 71.
-10-13-15-15-13 -9 -3 5 15 26 38 50 62 72 79 »t.

-11-1I.-15-15-13 -8 -1 9 20 33 U6 60 72 83 11 96
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QUADRANT j, 1JO CORRESPONDS TO t.JCHU915CE»D3

1
1

1
1
1
]

-J
-1
-1
-2
-2
-3
-4
-*•
-5

-<*

'

-1

3
3

3
2
2
2
1
1
0

-c
-1
-2
-3
-3
-<.

-5

**

-2

i*

^
H

3
}
J
i;

2
1
•„

-1

-^
-3

_

-5

**

*

*.
*
i*
•*
t.
j

3
•̂

e.
1
i

-1
- £.

14

'

T

3 1
3 1

3 Z
3 3
<• 3
<* 3
*» 3
* 3
3 3
3 3
3 3
2 3
1 Z
I 3

1

-» -3

-** -u

-I
-1

-1
-J

J

1
2
2
3
3
3
s
1
3
2

-3

"*

-5
-5

-J-11-1<.-15-15-12 -8 -0 9 21 3U H7 61 73 8". ?3 99
-S-11-1W-15-1S-13 -» -1 9 20 33 >»6 6! 72 83 U 96

-i, -/-1J-13-15-15-13 -9 -3 S 15 26 38 5i 62 72 '9 8U
-3
-2
-2
-1

0
1
2
3
3
3
3
3

*

-Z

-5

-b-U- 13-1<«-1S-1<»-11 -5 2 11 21 52 <>3 53 62 o9 7U
-o -9-l2-tl»-lJ-l'.-12 -8 -I 6 15 25 35 ".". 52 58 62
-i -d-ll-l3-li.-l<.-13-10 -5 2 9 17 26 3". i>0 ->& ".9
-3 -6
-Z -5
-I -i.

J -2
I -1
2 1
3 2
3 2
3 3

-1 J

-5 -5

-9-l2-l»-l»-li.-12 -8 -3 3 10 17 23 29 33 36
-a-ll-13-l".-l<»-l3-ll - 7 - 3 3 S 13 18 ?2 2".
-6 -9-lt-13-l<.-ll.-12-10 - 7 - 3 1 "t 8 11 13
-5 -7-1U-12-13-1U-13-12-11 -8 -6 - 3 - 0 2 3
-3 -5 -S-10-12-13-11.-13-13-12-1Q -8 -7 -5 -".
-1 -3 -6 -8-10-l2-13-13-li.-13-13-l2-ll-ia-10

L -2 -"• -6 -9-lO-ll-12-13-ll.-l".-l*-13-l3-13
1 -0 -2 -". -6 -8 -9-ll-12-13-13-l<.-H,-li.-ll,
2 1 - 1 - 2 -3 -5 -7 -5-10-11-12-12-13-13-13

1 2 2 3 3 3 3 2 2 1 1 3 - 0 - 0 - 1
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QUADRANT >,, 130 CORRESPONDS TO 1. 31 fcl.91SOE«03

100 98 9? 8i> 7o
98 97 92 83 73

86 8". 79 72 £2
75 71. 7C 63 i*
63 62 58 Si ".".
S3 1.9 <i6 1.1 31.
37 36 3<> 29 23
25 2<t 22 Ib 13
13 13 11 8 5
l. 3 Z - i - 3

-» -l. -5 -7 -8
-io-ii>-ii;-ij-i2
-13-13-13-13-11.
-lit-lit-llt-lt-Jit
-H-13-13-13-13
-12-13-11-11-13

1 1 1 2 2

I N T E R V A L = 1

62 ".8 3". 21 10 -„ -7-12-15-16-1I.-12
6C <•/ 33 21 9 -u -6-13-15-16-111-12

51 39 27 15 5 -3 -9-1 J-lS-15-lfc-ll
<tit 33 22 11 2 -&-11-1H-15-15-13-13
35 25 16 ' -1 -7-i2-l»-15-l*-12
26 18 9 2 -5-10-13-15-15-13-11
17 U 3 -I -8-12-l»-l5-l<.-12-10
8 3 - 2 -7-ll-13-i»-l<-13-ll - 8
1 -3 -7-13-l2-l«i-li.-13-12 -9 -7

-5 -S-ll-12-l»-l«.-13-12-10 -7 -5
-1C-12-13-1<-H.-13-12-13 -8 -6 -3
-J3-13-IV-1V-13-12-13 -» -6 -* -1
-1I.-14-13-13-11-10 -8 -6 -<i -2 0
-13-13-12-11 -9 -8 -D -fc -2 -0 1
-12-11-10 -8 -7 -5 -3 - 2 - 0 1 2
-9 -8 -7 -b -". -3 -1 0 1 2 3

. 03o295l,5t-32 NU19ER I N T E R V A L S *

-9
-8
-7
-5
-*
-2
-1

0
2
2
3
3

51

-8
-8

-7
-7
-6
-5
-t.
-2
-1

0
1
2
3
3
3
3

**

SUM

l 
l

n 
ui

 
vn

-i.
-3
-3
-2
-1

0
1
2
2
3
3
3
3
2

-2
-2

-1
-0

0
1
1
2
3
3
3
3
3
3
2
1

0.

1
1

2
2
2
3
3
3
3
3
3
3
3
2
1
0

3
1

3
3
3
i«
It
It
U

3
3
2
2
1

-0
-1

'

i,
it

it
it
it
(,
fc
3
3
3
2
1
0

-1
-1
-2

it
it

it
i*
3
3
3
2
2
1
1

-8
-1
-2
-3
-3

3

3

3
3
2
2
2
1
0

-0
-1
-2
-2
-3
-it
-i.

2
2

1
1
1
I'
0
. ;

-1
-2
-2
-3
-ii
-u
-5
-5
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RECEIVER HST CAS; *i

f t S F t l M l f l N S P Y ) ,FOF R c C d l i f E D SIGNHL.
OU40P4M 1, In) CORRESPONDS TO b. 0 1083078E»OZ

-lli-10-lu -9
-11-13-13-U-
-15-15-1S.-1".-

-9
12
m

-8 -7 -6
-11-11 -9
- 1"»-

- l".-l<t -15- 15-15 -1S-
-12-12-12-1;-

-2 -2 -2 -3
6 e e ,

O p <•

1» 1". 13 12
22 22 21 2t

29 29 2S 2t
3» 33 33 3i
35 35 35 3U
33 33 33 33
28 28 28 29
18 18 2C 21N

5 b 7 nx

-U-1C -7 -i
-28-27-2".-!*-

1-6? S7 Jq
-78-77-71-61-
-99-<J8-82-73-

n

-5
2

10
17
£1,

*£

33
33
Tj

£3
m

2
11

-1".-

-6

7
15
22
28
31
32
31
26
13

8
-i.

13- 12-

-l i <:
-« -3 -1
-1 -7 -5
11-10 -d

{j
-3
-7

1»-1'«-13-12-11-10
!•.-!<.- 1«-1"»-13-

a
2

-1
-5
-3

D ^ o a o o r b
" . 5 6 7 8 8 7 7
1 3 " t b 7 7 8 7

- 3 - 0 2 3 5 6 7 7
-6 -". -1 1 3 5 6 7
-9 -7 -l» -2 v 2 l. =>

-i -9-11-12-13-13-13-12-11-1C -3 -5 -3 -0 2

5 2
12 9
19 15
25 21
29 26
31 29
31 30
27 29
22 25
!"• 19

» 12
_e. i.

» q _ . i n _ « c . _ i _

51
hi

-97-95-89-79-67

— & W 4 W —

-38-23-11
-",7-
-52-

32-17
36-21

-I -"» -7
3 1 -2

12 7 3
Id 13 9
23 19 1".
i.1 23 19
2J 26 23
29 28 25
27 27 26
23 2b 26
13 23 25
. ) | Q 5 T
I . 1 7 C i

3 15 2 1
1 11 Id

-« d 16
-5 6 15

-9-
-5
-I

«
10
l<»
1 9

22
2"»
25
2o
' 7

>(^

23
22
21

11-
-8-
-"»

J
5
9

l<t
17
2J
23
2<.
2 q
25

25
25
2".

12-13-12-11-10 -7 -5 -2
10-12-12-12-11 -9 -7 -".
-7-10-11-12-12-11 -9 -6
-"• -7-10-11-12-11-10 -S

0 -". -7-13-11-12-11 -9
u -j -5 -8-10-12-11-10
8 3 - 2 - 6 -9-11-12-11

12 7 2-3 -7-10-11-11

5 b
7 5
7 6
7 7
7 7
6 7
". 6
3 5
1 3

-1 1
-3 -0
-5 -2
-7 -U
-8 -6

-10 -7
-10 -8

16 13 5 -D -5 -8-11-11-11 -9
18 13 8 2 -3 -7-10-U
21 16 10 5 -1 -5 -9-11
cc 19 13 7 1 ~*» — 8*10

2"t 21 16 10 ". -1 -6 -9
2"» 21 17 11 5 -1 -5 — )

-11-10
-11-11
-11-11

1
2
i.

5
6
7
7
7
6
5
t.

2
1

-1
- 3
- <*
-6
-7
-8
-9
- 9

-11-11-10
-11-11-1 0

2U 22 17 12 6 -0 -5 -9-11-11-10

-1
1
2
t.

5
b
7
7
7
7
6
5
3
2
0

-1
-3
-4
-5
-6
™7

-7
-8
-8

-3
-1

1

2
t.
5
b
7
8
7
7
6
5
.,

j
2
y

-1
-2
-3
- 3

-u
-5
-5
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OUftDRANT i', 100 CORRESPONDS TO 6 . O C 0 8 3 0 7 6 £ » a 2

-3

2
t.

S
6
7
7
7
7
6
5
it

C

-3

-1

2

5
6
7
7
7
7
6
5

3
2
a

-2

-6

J 2

5 6
6 7
7 7
7 7
7 6
6 i
5 3
l. 2
2 -1
1 -2

-1 -»
-3 -6

-5 -e-

i.

7
7
7
6
5
3
1

-1
-3
-5
-7

-8-

1J-

-9-11-11-

-i. -7-10-11-
-i. -7- IJ-ii-

11
11

5

7
7
6
t.
2
J

-2

7 6 6 8 8 7 6 5 It 2 1 -1 -2 -3 -i -5 -5 -6 -6

7 6 5 i. 2 -0 -2 -i. -6 -8-10-11-12-13-1. -li.-li.-l 5-15
6 5 3 1 - 1 - 3 - 6 -8-ia-ll-12-13-li.-l'.-15-lS-15-15-H.
•» 3 j -2 -<• -7 -9-10-12-13-H.-K-H.-H.-1I.-13-13-12-12
2 C -2 -5 -7 -9-11-12-13-11.-11.-13-13-12-11-10 -9 -8 -8
1 -2 -5 -7 -9-11-12-13-13-13-12-11 -9 -8 -6 -5 -3 -2 -2

-2 -5 -7 -9-11-12-13-13-12-10
-» -7 -9-11-12-12-12-11

-<. -7 -9-11-12-12-12-10
-6
-8

-8-10-12-12-11-10
-10-11-12-11-10 -7

-8
" "4

-9-11-12-11-10 -8 -* -i)
10

11

10

-9
-9

-11-11-13 -8 -5 -1

-11-lu - 7 - 3 1 7

-A -i. 1 6 12 15

-6 -1 5 11 16 21
-5 -J i 11 17 22

12

1 A1 0
7 ilC U

22
j »
£ i

2±*.

2<t

-8
-5
-0

l.
9

17
? fl£ U
5 9£ £

25

?jj

25
2%

-9
-5
-1

t.
9

lit
« a1 0
21
yi.£1
Z ~

7
25

25

| *

22
22

-7
-2
3
9

11.
19

25
26

25
23

1 QI. 7

17
16

-9
-i.
1
7

13
18
23

27
27

23

19

8
6

-7 -l. -2 3 2 fc 5 6
- 1 2 5 7 10 12 13 I f c

5 8 12 15 17 19 21 22
11 15 19 22 2I> 26 28 29
17 21 25 27 30 31 13 33
23 26 29 31 33 3". 35 35
26 29 31 32 33 33 33 33
? A X fl T 1 Til Tfl ?Q PA * Ato -JU J 1 JU OU c? £3 CO

29 29 27 26 21. 21 JO 18
27 25 22 1ft 1** 11 ft 6
23 19 H* 1 2 *3 ~7~10
IB 12 5- *3 ™ 1 1* lfl~2 **• 27
13 1. -5-15-25-3*--. 0-«.5

\ Tn-Jt '^T-siIfcjI / i Tfc

-J>16-31-«.6-b 3-72-92-88
-6-20-35-51-66-79-1)9-95
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QUADRANT 3, 100 CORRESPONDS TO 6.JCuS3078E*J2

"*»

-It
-3

-2
-1

*
*
3
l.
5
6
7
7
7

7

6

5
<*
2
0

-1

-7-10-11-10
-7-10-11-11
-7-10-11-11.

-7
-6

-5
-it

0
2
3
5
6
7

7
7
7

6

5
it
2
0

-9-11-11-
-9-11-11-

-8-
-7

-1
1
2
i.
5

b
7
7

7

6
5
u
2

11-
-9-11-

-i»
-2
•v

2
3
5
6
7
7
7
6

5

-5
-3

-1
1
3
5
6
7

7

7
6
5

-9 -5 -0 i 12 17 22 2» 2* 21 15 6 -7-21-37-S3-5»-Sl-a 1-98
-9 -5 -0 5 11 17 22 2* 2". 22 16 6 -6-20-35-51-65-79-;) 9-95
-9 -6 -1 > 11 16 21 2i» 25 22 17 8 - 3-16-31-1.6-63-72- ) 2-88

10 - 7 - 3 2 8 11. 19 23 25 2* 21 15 7 -3-15-27-38-1.9-57-62
10 -3-1. I 6 12 It 22 25 25 23 19 13 <. -S-1S-25-3".-'. 0-itS

11-1J - 7 - 3 2 7 13 19 22 25 26 26 23 19 1". 1 2 -3 -7-1C
11-11 -9 -5 -1 i. 13 15 23 21. 26 27 27 25 22 1? 1* 11 86

-9-11-12-11-13 -8 -l. -3 it 9 1". 18 23 26 29 31 33 3d 35 35
-8-10-11-12-11-10 -/ -i. -0 ". 9 13 17 21 25 27 30 31 33 33
-6 -8-10-12-12-11-10 -8 -5-1 3 7 11 15 19 22 2". 26 £» 29
-i. -7 -9-11-12-12-12-1J -8 -S -2 1 5 8 12 15 17 19 21 22
-2 -"• -7 -9-11-12-12-12-11 -9 -7 -* .-1 2 5 7 1C 12 13 !<•

0 -2 -5 -r -9-11-12-13-13-12-10 -9 -7 -<» -20 2 •<. 5 6
2 0 - 2 - 5 -7 -9-11-12-13-13-13-12-11 -9 -8 -6 -5 -3 -2 -2
<» 2 0 - 2 - 5 - 7 -9-ll-12-13-l'.-l'.-13-13-12-ll-10 -9 -8 -8
6 <• 3 i -2 -<• -7 -9-13-12-13-l"t-li.-li»-l<.-l<.-13-13-12-12
7 6 5 1 1 - 1 - 3 - 5 -8-10-11-12-13-11.-11.-15-15-15-IS-1'.
7 7 6 5 ". 2 -d -2 -<• -6 -8-10-11-12-13-1".-!".-!'.-! 5-15
7 7 7 7 6 ". 3 1 - 1 - 3 - 5 - 7 - 8 -9-10-11-12-12-13-13
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QUADRANT •., i^o CORRES°3NOS TO 6. Hi 08307S E*ii2

•i)l;-98-92-'i<!-fc9-5'.-3:>-22 -7 5 15 21 2<» 2<t 22 18 12 6 0 -5 -9-10-11-10 -8 -5
-97-95-89-7'a-e7-52-3->-21 -b 6 10 21 24 2<» 22 17 12 6 -0 -5-9-11-11-10 -8 -S

-9J-88-62-73-61-1.7-J2-17 -« 8 Ib 22 25 2". 21 17 11 5 -1 -5 -9-11-11-10 -8 -5

-78-77-71-62-5l-38-i5-ll 1 11 IS 23 25 2". 21 16 13 <. -1 -6 -9-11-11-10 -7 -<.

-63-62-57-1.9-39-28-16 -". j 15 21 2«. 25 23 20 Ifc 9 3 -3 -7-1J-11-11 -9 -7 ->.

-*b-»5-fcl-3--?6-16 -6 » 12 19 23 25 25 22 18 13 7 1 -i, -8-lu-ll-ll -9 -7 -3
-2a-27-2i.-16-ll -•. i 12 11 23 25 2b 2-t 21 16 10 5 -1 -5 -9-11-11-11 -9 -6 -3

-11-10 -7-3 2 8 1* 19 23 26 26 25 23 18 1] 8 2 -3 -7-10-11-11-U -8 -5 -k
5 6 7 11 1* 18 iZ 25 27 27 26 2". 2J 16 10 5 -I) -5 -8-11-11-11 -9 -7 -i. -1
18 IB 2C 21 23 26 27 23 29 i8 25 22 17 12 7 2 -3 -7-10-11-11-10 -8 -6 -3 C

28 28 26 2% JO 31 31 3u 29 26 23 19 !<. 8 5 -2 -6 -9-11-12-11-13 -7 -I. -1 2
33 33 33 3; 13 52 31 29 27 23 19 1» 9 t -0 -5 -8-10-12-11-li -8 -6-3 0 3

35 35 35 J". 33 31 29 i.6 23 19 l<i 10 5 0 -<t -7-10-11-12-11 -9 -7 -I, -1 2 ".
. 3". 33 37 3t 3J 28 25 21 18 13 9 < 0 -k -7-10-11-12-11-10 -8-5-2 1 3 5

2? 29 26 26 2fc 22 19 15 12 7 3 -1 -1. -7-10-11-12-12-11 -9 -6-5-0 2 5 6

22 22 21 2l 17 15 12 9 5 1 -2 -5 -3-10-12-12-12-11 -9 -7 -fc -1 1 it 6 7

1* Ifc 13 12 1J 7 5 2 -1 -«. -7 -9-11-12-13-12-11-10 -7-5-2 1 3 5 7 7
6 6 5 u 2 0 -2 -". -i -9-1C-12-13-13-12-11-10 - 8 - 5 - ^ 0 3 5 6 7 8

-2 -2 -2 -3 -v -6 -8 -9-11-12-13-13-13-12-11-10 - 3 - 5 - 3 - 0 2 <• 6 7 7 7
-d -8 -fl -9-lU-ll-12-i2-13-l<.-li-13-12-ll - 9 - 7 - 5 - 3 - 0 2 «. 6 7 7 7 6

-12-l2-l2-li-13-l".-lH-li.-l.-l<.-13-12-ll -9 -7 »<• -2 0 2 ". 6 7 7 7 6 5

-1H-1(.-15-1J-15-:15-1»-1'.-13-12-11-10 -8 -6 -<» -1 1 3 5 6 7 7 7 6 5 ' l>
-15-15-15-l'.-l-.-l'«-13-l2-ll-ia -8 -7 -5 -3 -0 2 3 5 6 7 7 7 6 5 «. 2
-13-13-13-1<:-12-11-11 - 9 - 8 - 7 - 5 - 3 - 1 1 3 <. 6 7 7 9 7 7 5 <. 2 1

-10-lu-i: -9 -9 -8 -7 -6 -.. -3 -1 C 2 <• 5 6 7 8 8 7 7 5 <. 2 1-1
-6 -6 -6 -b -5 -". -3 -2 -I 1 2 i. 5 6 7 8 8 8 8 7 6 <. 2 1 -i -3

INTERVAL = l.u36295»5E-J2 NUMBER INTERVALS = 51 SUM = 0.
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PH4SE

QUAORSNT 1, 10J COP^ESPONJS TO THO PI

-16-16-
-16-16-
-17-17-

-19-19-
-31-31-
-36-36-
-36-35-
-•7-1.7-

Ui 1.5
1.3 "2
1.0 1.0
33 38
36 36
33 31.
39 39
31 31
9 9
1 Z

-1 -1
-3 -3

16-ifc-

16-16-
17-17-

13-10-
21-3i-
35-3V
3I.-33-
Hfa-".!)-

1.6 <•/•

1.3 43
I.C »L

3d 39
36 37
3U 3i
3b 31
33 2i
11 li.

3 i.
-1 -..

-16-17-17-

-i -5 -5 -.
-5 -5 -5 -5
-<-, -fa -b -b
-6 -6 -5 -6 -5

17-
•16-
•16-
•17-
-19-
•33-
•38-
•39-

JO-
41.

1.0
S8
36
31.
31
31.
13

3
-0

-3
-i.

-5
-5

•19-33
•16-15-

17-li-
18-17-

33-33-
31-37-
1.3-37-

1.3- d-

1.3
••0
38
37 33
35 37
33 35
3d 33
19 JJ

8 33
3 11

-u <
-3 3
-3 -.j

-3 -1

39 33
-.5 i.j

18-36
15-16-

15-16-

17-14-

1S-17-

19-18-

33-30-

39-34-

39-31-

-%8-i»l-

<*& 50-
-'-. 1.6

>.; i,u
*l 1.3

»a 1.1
39 1.1
39 1.0

38 1.0
38 33

37 39

3o 39
35 39
36 38

33 39
39 39
ni. i*0
19-1.3
16-17-
16-16-
16-16-
17-16-
18-17-

30-13-
35-31-
33-35-

1.3-33-
50-1.3-

i. 6-1.3-
i»l» 1.7-
1.3 1.5
1.3 1.3
1.1 l.)
1.1 1.3
HO i>3
UO 1.1

1.0 1.1
WJ 1.1
1.0 1.1

39 39
39 39
39 39
1.3 ua
36 1.U
17-31
16-16-

16-15-

16-15-

17-16-

18-17-

30-18-

31.-19-

30-33-

39-37-

1.7-35-

1.8-1.3-

1.6-I.8-
1.1. I.8-

i»3 <»o-
1.3 b5
1.3 1.1.
1.3 1.1.
1.3 1.3
1.3 U3

39 UJ
39 1.0
39 39
39 39
1.0 1.3
-.3 1.1
19-1.8
16-19-
15-16-
15-15-
15-15-
16-15-

17-15-
18-16-
30-17-
ZI.-18-

39-3-3-
37-31.-
U3-38-

fca-Jt-

I.9-1.0-
1.7-I.1.-

1.6-I.6-
I.5-U5-

n5-<»9-

1.1 <>1
1.0 1.1
1.0 1.0
39 1.0
39 UO
1.0 1.0
1.1 1.0
1.8 1.1
19 1.8
•15-35
15-16
15-15
15-1U
15-11.

15-11.
16-15
17-15
18-15
19-16
31-lb
33-17
36-13
39-1S
32-19
3I.-30

1.3 1.5
1.3 1.3
>.! 1.3
1.0 1.1
1.0 1.0
1.0 1.0
1.0 UO
1.0 1.0
1.1 1.0
1.5 1.1

•26 fc3
•16-1.3

•15-19
•H.-IS-

•14-13-
•H.-13-
•1I.-13-
•15-13-
15-13-

'1S-1U-

• 8-<»5-35
1.5 US-US
<3 I»S 1.8
-.3 1.3 1.5
»1 1.3 1.3
-a 1.1 1.2
•.o 1.1 -i
-o i»a 1.1
-J 1.0 1.0
-o 1.0 1.0
•t 1 «.0 I.C
•*z 1.1 «.c
U6 1.1 >.!
30 1.3 1.1
17 1.9 1.3
15-28 1.1.
11.-18 1.8

13-1U-23
13-1U-18
13-13-16
13-13-15
13-13-14
13-13-Vl.

-15-1I.-13-13-H.
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OUAQR4NT fc, luli C3H*FSPON3S 10 TWO PI

-6 -6 -6 -fc -5 -5 -5 -«. -> 4 25 35 J8 fcO fcl fc2 l>3 fc5 50-3fc-20-l5-lfc-l 3-13-lfc
-6 -6 -6 -b -5 -5 -•. -3 -1 fc 26 3i 38 fcO fcl 1.2 1.3 fc5-fc9-3fc-20-15-lfc-l3-13-lfc
-6 -6 -b -3 -5 -5 --. -3 -0 7 2i 36 39 fcO 1.1 fc2 1.3 fc5-fc8-32-19-15-lk-l3-13-lfc
-5 -i. -5 -•. -5 -fc -3 -2 j 12 31 35 39 ".0 fcl 1.2 fcfc fc6-fc6-29-l S-15-lfc-l 3-13-11.
-5 -5 -5 -i, -fc -fc -2 -u « 20 !3 37 39 »0 fcl fc2 fcfc fc7-fcfc-26-H-ll>-13-l 3-13-15
... -fc -fc -, -3 -2 -1 2 11 27 35 38 39 *0 fc2 fc3 fc5 fc9-fcO-23-17-15-13-l 3-13-16

-3 -3 -3 -2 - 1 -0 2 8 22 32 36 39 <.0 fcl fc2 fc3 fc6-fc8-3fc-21-16-lfc-13-l 3-lfc-18

-1 -1 -1 -,. 1 3 •) 19 2i 3fc 37 39 fcj fcl fc3 fcfc fc8-fc3-28-19-16-lfc-13-l 3-lfc-23
1 2 2 fc 7 13 il 28 33 36 J6 39 fcl fc2 fc3 fc6-fc8-37-2fc-18-15-lfc-13-lfc-15-38

9 9 11 Ifc 19 2fc i9 33 35 37 39 «0 fcl fc3 fc5 fc8-fc3-29-?0-17-15-lfc-lfc-lfc-18 fc8
21 21 23 2S 28 31 33 35 37 38 fcC -.1 fc2 fcfc fc7-fc7-35-2fc-18-16-15-lfc-lfc-l 5-28 fcfc
29 29 3* 3i 33 3fc 3o 37 J3 39 fcl fc2 fcfc fc6-fc8-39-27-20-17-15-lfc-lfc-lfc-l 7 1.9 fc2

33 3fc 3fc 3= 36 36 27 34 «a fcl »2 fcfc fc6 50-fc2-30-22-18-16-15-lfc-lfc-15-30 fc3 fcl
. 36 36 36 37 37 38 39 fcO fcl fc2 fcfc to 5U-fc2-32-2fc-19-17-15-15-lfc-15-19 fc6 fcl fcl

38 38 38 39 39 fcli H fc2 fc 3 fcfc fc7-*S-fcl- 32-25-20-18-16-15-15-15-16-1.3 »2 fcl fcO
fcO fcO fcu fcl fcl fc2 fc3 fcn »b fc8-fc6-39-3l-25-21-18-17-15-15-15-16-26 l»3 »1 fcO fcli
fc2 fc? fc2 fc3 fc3 fcfc fc6 fc8-.8-fc3-36-29-2fc-20-18-17-16-15-15-15-2u fcS fcl fcO fcO fcO
fcS fc5 fc6 fc? fcii 50-fc7-fc3-3/-31-26-23-20-18-17-16-15-15-16-19 fcd fcl fcO fcO fcO fcO

-fc7-fc7-fc6-fcb-fc2-39-35-31-27-2fc-21-19-18-17-16-l6-15-16-19-fc8 fcl fcO fcO fcC fcO fcl
-36-35-3fc-3i-JO-28-i6-23-22-20-19-18-17-16-16-16-16-19-fc8 fcl fcj fcO fcC fcO fcl fcl
-26-26-25-2fc-23-22-21-2J-19-18-17-l7-16-16-16-17-21 fcS. fc l fcO fc] kO fcO fc0 fc l fc2
-21-21-21-2k-20-19-ld-18-l7-17-l6-lb-16-16-17-26 fcfc fcO fcO 39 fcu fcO fcO -.1 fc2 fc3
-19-19-lo-i3-lS-17-17-17-li-l6-16-16-16-19-fc2 fc2 fcO 39 39 39 fcC fcj fcl -.2 fc3 fc5
-17-l7-17-17-17-16-16-16-li-16-16-18-26 fcfc fcO 39 39 39 39 fcO fct fcl fc2 -3 fcS fc8
-lb-16-16-lt-16-16-16-16-lD-17-23 »5 fcO 39 39 39 39 39 fcO fcO fcl fc2 fc3 fcS fc8-fc5
-16-16-16-16-16-17-17-19-32 fc3 39 39 38 38 39 39 39 39 fcO fcl fcl fc3 fcS t8-fcS-35

FOR THIS FltLT 4N5LE 4ND W A V E L E N G T H 26 R«YS HERE VIGNETTED OR 01SCUR£D,

C RttTS FAILED TO CONVERGE IN SSRT.
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RECEIVER TEST CASE »1

CHIEF RAY DATA FOR LOCAL OSCILLATOR.

FIELD ANCLE (RADIANS) = J . Q g J J O J J O

CHIEF RAY COORDINATES ON SJ3FACE N

X Y Z

o. a. o.

DIRECTION COSINES ON SURFAJE N-l

L I N

o. o. i.ooooojacE»oo

RADIUS RW AND POSITION TR 3F EXIT PUPIL

RW TR
1.1120C;00£»03 0.

TILT »NO OISPLACEMENT OF EXIT PUPIL IN X- &NO f-OIRECTIONS

XT1LT TTILT XOISP YD ISP

0. J. 0. 1.

MAVEFRONT ERROR INFORMATION

VARIANCE = 3.&3318706E-15

RNS = <>.71iii*9476E-lS
WAVELENGTH = 1.0611385l)£-iJ2

HAXIMUM UNNORHALIZEO ERROR' 5.55111512E-17
MINIMUM UNN3RMALIZEO ERROR=-3. JJQ-.'.SOSE-16

MAXIMUM NORMALIZED ERROR: 5.2J128ZJ7E-15
MININOH NORMALIZED ERROR=-Z.C93S1Z95E-1*

APPROXIMATE STREHL RATIO = 1.00000JJO£*00
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RECEIVER T£ST CAS£ *1

ASF (REAL), FOP LOCAL OSCILLATOR.
QUADRANT 1, 100 CORRESPONDS TO 2. U0436003E*00

67 67 66
69 69 69
71 71 71
73 73 73
75 75 75
78 77 77
89 80 79
61 81 61
63 83 63
65 65 85
87 87 67
88 86 88
90 90 9.
91 91 91
93 93 93
94 94 91.
95 95 95
96 96 96
97 97 97
98 98 98
98 98 98
99 99 99
99 99 99
10J100100
100100100

6i
be,
71
7 3

7b
77
79
81
8i
6s
86
Ob
91
91
9£
93
95
96
96
ft
96
96
99
99
95

66
68
70
73
75
77
79
81
83
81.
86
es
89
91
92
9J
9i.
95
96
97
98
98
98
99
99

65
68
70
72
7%

76
76
60
82
81.
85
87
89
90
91
93
91.
95
96
96
97
98
98
98
96

65
67
69
72
7i.
7b
78
ej
81
83
85
66
88
89
91
92
93
91.
95
96
96
97
97
98
98

61.
67
69
?1

73
75
77
79
81
83
61.

66
87
69
90
91
92
93
9*.
95
96
96
<*6
97
97

b.
6i
68
75
73
7,
75
78
SJ

83
83
85
86
as
89
9d
91
93
93
9*
95
95
95
95
95

63
65
67
69
71
73
75
77
79
81
63
61.
65
67
88
89
90
91
92
93
91.
94
95
95
95

62
61.
66
99

71
73
74
76
78
So
81
83
81.
36
87
88
89
90
91
92
93
93
93
94
14

61
63
65
68
73
72
73
75
77
79
60
82
83
65
85
87
88
a9
40
91
91
93
92
93
93

6'j
62
64
66
68
70
72
7*
76
78
79
81
82
83
85
86
87
88
89
89
93
91
91
91
91

59
61
63
65
67
69
71
73
75
76
78
79
81
82
83
84
85
66
87
68
89
89
90
90
90

59
60
63
61.
66
68
70
72
73
75
76
78
79
81
62
83
94
85
66
86
67
86
66
88
88

57
59
61
63
65
67
68
70
73
73
75
76
78
79
80
81
82
63
84
85
85
86
86
87
87

56
59
60
62
63
65
67
69
70
72
73
75
76
78
79
89
81
82
83
83
64
84
65
65
85

54
56
S8
60
62
64
66
67
69
70
72
73
75
76
77

78
79
80
81
81
82
83
83
83
83

53
55
57
59
60
62
64
66
67
69
70
73
73
74
75
76
77
76
79
80
60
61
81
81
81

51
53
55
57
59
61
62
64
66
67
68
70
71
72
73
74
75
76
77
76
78
79
79
79
90

5J
53

5-55
57
59
61
62
64

65
67
68
69
70
72
73
71
74
75
76
76
77
77
77
77

49
50
S3
54
56
57
59
60
62
63
65
66
67
68
75
71
71
72
73
74
74
75
75
75
75

47
49
50
52
54
55
57
59
60
62
63
64
65
66
66
69
69
7C
71
72
72
73
73
73
73

45

47
49

50
52
5 4
55
57
58
<JO
61
62
63
64
65
66
67
68
69
69
70
70
71
71
71

44 42

45 44

1.7 46

49 47
SO 48
52 5C
53 51
55 53
56 54
56 56
59 57
60 58
61 59
62 60
63 61
64 62
65 63
66 64
67 64
67 65
66 65
68 66
68 66
69 66
69 67
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Q U A D R A N T 2, l i JO C O R R E S P O N D S TO 2. t i t U36003£»l)0

<.2
i»i.
»5
1.7

1.8
50

51
S3

S<.
5b

57
5t)

59
6 j

61

62
63

5<.
6".

65
65

66

66
66

67

i.5
1.7

".9

50

52
53
55

5b

58

59

60
61
62

63
6<i

65
66
67

67
68

68

68
69

69

1.7

1.9
50

52
Si.

Si
57

58

60
61

62

63
6u

6i>
66
fc7

68

69
69
7C
70

71
71

71

<«y
Si
52

5-55

5/

S'a
61

62
63

61.

6i
63

bb
5S
b9

7l
71

72
71

7:
73
73

73

eo
52
Si.

90

57

59
6.

62
11
6$

fo
67

Id
70

71

71
72
73
71.
714

75

75
75

'/•>

52

5".
55
S7

59
bl
62

6»
65
o7

68

69
70

72

73
73
71.

75

76
76

77

77
77

77

53

55

57

59

fl

t2
ei.
60
f7

68
7J
71

72
73
7".

75

76
11
73
73

79

7-3

79

e:.

55

S?
59
60

62
ait
66
67

69
70

72
73
71.

75
76
77

70

79
8J

80
81

81

81

81

5 3

it

bu

b2

5«

6i

o7

69
7J

72
73

75
7i
77

78
79

JO

HI

11
S2

3J
8]

3]

dj

58

60
52
63

65
67

b9
70

72
73

75
76
78

79
80
SI

82
83

83
81.

di.

05
85

85

59

SI
S3
65
67
-,8

7*

72
73

75

76
78
79

80

81

82
13

3-85
35

96
16
87

57

6u

62
6".
09

68

70
72

73

75
75

78
79

91
32

33

3U
15

8->
86
17

88

38
38

38

59
Si

63
65
67

69

71
73

75
76
78

79

81
32

83
81.

85

86
87

33
89

89

90
90

9J

60
62

61.
66
68
70

72
71.

76
78

79
81

82
83

85
86
87

88

99
89
90

91

91
91

91

61
63

65

68
70

72
73
75
77

79

80
82

33
35

86
87

33
89

93
91
91

92
92
93

95

62
6fc

66
69
71

73
71.

76

78

8C
81

83
3U
36
37

38
89

90
91
92
93

93

93

9«.
91.

63
65
67

69
71

73

75
77

79
81

82
81.

85
87

88

89
90

91

92
93
9*.

91.

95
95

95

61.
66

63
70
72
71.

76
78
80

82

83

85
86
88

89

90
91

92
93

91.
95

95

96
96

96

6U

67

69
71
73

75
77

79

81
83

81.
86
87
89

9u
91
92
93

91.
95
96

96

96
97

97

65
67

69

72
7U

76
78
10

81

33

15
36

88
39
91

92

93
91.
95

96
96

97

97

98

98

65
61

70
72
71.

76
78

80

82
81.

85
87
89

90

91
95
9U

95

96
96
97

93

93
93

93

66
63

70
73
75
77

79
81

83
8=.

86

83
89
91

92

93
9U
95

96
97

98

91

98
99

99

66
68

71

73
75
77

79
81
83

85
86

88

90
91

92

93
95

96

96
97
98
98

99

S6 67
69 69

71 71
f3 73
75 75
77 77

79 80
31 31

13 83

35 85
87 87

88 88
TO 90
91 91

•)3 93
)u 91.

95 95

16 96
97 97
98 98
98 98
99 99
99 99

9910 0100

991: oioc

157



QUADRANT 3, 130 CORRESPONDS TO 2. J0<.3fegi)3E»00

67 69 71
67 69 71
6b 69 71
66 66 71
66 68 7C
65 68 7C
65 67 69
6. 67 69
6* 66 68
63 65 67
62 61. 66
61 63 65
bj 62 6U
59 61 63
58 60 62
57 59 61
56 56 60
5". 55 58
53 55 57
51 53 55
5J 52 5".
1.3 50 52
1.7 »9 5:
<t5 n7 1.9

n
73
7;
7j
73
72
72
7;
7u
69
ol
6b
6t
66
6U
63
6<-
6 1
59
57
5b
5-.

52
Si

75
75
75
75
75
71,
7 it
73
72
71
71
7u
69
67
66
65
63
62
60
59
57
56
54
52

7a
77
77
77
77
76
76
75
71.
73
73
72
70
69
69
67
65
61.
62
61
59
57
55
51.

t»
 •

»
c*

 o

79
79
79
78
78
77
76
75
74
73
72
71

?C
i5
t7
66
6t
12
61
5vi
5.7
SS

81
61
81
61
81
80
8ii
79
78
77
76
75
71,
73
72
70
o9
67
66
6U
62
60
59
57

61
83
83
8}
83
82
HI
91
rtj
79
78
77
7i
7i
73
72
7 j
69
b7
03

04

62
oJ
56

d5
85
85
65
8<t
81.
83
83
82
81
811
79
78
76
75
73
72
70
69
67
65
6)
62
63

37
87
87

66
86
95
85
91.
83
92
91
80
79
78
76
75
73
72
70
69
67
55
63
61

88
88
48
86
88
87
83
9=>
35
1".
93
1)2
91
79
/3
7i
75
73
72
70
69
6b
&<.
62

9J
90
90
93
99
69
88
87
86
85
8<>
83
52
81
79
78
76
75
73
71
69
67
65
63

91
91
91
91
91
90
89
89
88
97
86
85
83
82
81
79
78
76
71.
72
70
66
66
61.

93
93
93
92
92
91
91
90
89
68
87
86
85
83
82
83
79
77
75
73
72
73
68
65

9k
91.
91.
9J
93
93
92
91
90
69
88
B7
66
»!.
83
81
80
78
76
71,
73
71
69
66

95
95
95
95
91.
91.
93
92
91
90
69
88
67
85
ei.
82
61
79
77
75
73
71
69
67

96
96
96
96
95
95
91.
93
92
91
90
89
88
86
65
83
82
aa
76
76
7»
72
70
68

97
97
97
96
96
96
95
9»
93
92
91
90
89
67
66
61,
63
61
79
77
75
73
71
69

96
96
98
97
97
96
96
95
91.
93
92
91
99
68
66
85
83
81
80
76

76
71,
72
69

99
98
99
98
99
97
96
96
95
91.
93
91
90
69
87
65
81.
82
60
7d
76
71.
72
7g

99
9H
99
99
98
98
97
96
95
9»
93
92
91
89
88
66
61.
83
81
79
77
75
73
7D

991J0100
991 j 0100
991J010C
99
98
98
97
96
96
95
93
92
91
90
86
66
65
83
81
79
77
75
73
71

99 99
99 99
98 96
98 96
97 97
96 96
95 95
91. 91.
93 93
91 91
90 90
86 88
87 87
95 85
83 63
91 81
79 SO
77 77
75 75
73 73
71 71

-.i. 1.5 1.7 -9 5J 52 53 55 ?6 58 59 60 61 62 63 bk 65 66 67 67 66 68 68 69 69
1.2 1.1. 1.5 -1 45 50 51 53 5-. 56 57 59 59 60 61 62 63 66 6". 65 65 66 66 66 67
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QUADRANT i>, 100 CORRESPONDS TO 2.Olo3bOJ3E»OG

lOOlOOlOli
100100100

100100100

99
99
98
98
97
96
95
90
93
91
90
aa
87

85
33

81
80
73

75
73
71

69
67

99
99
96

98
97
96

95
90

93

91
90
88
87

35
83

81

80
77

75
73
71

69
67

99

99
98

98
97
96

95

90
93

91
9C
83

87

85
83

81

79
77

75
73
71

69
66

94

99
99
98
9b
97
96
96

95
93
92

91
91

aa
36
85

43

81

79
77

75

73
71-

68
66

INTERVAL *

99
99

99
94

98
98

97
96
95

90

93
92

91
89

68

36
so
83

81
79

77

75

73

7u
68

66
1

98
98

98

98
98
97

96
96
95

90

93
91

90
49
87

85
80

82

80
73

76

70

•72

70
68
65

98
93

98
97

97
96

96
95
90

93

92
91

69
88

66

65
83
ei
83
78

76
7o

72
69
67

65

97
97

97

96

96
96

95
90
93

92
91
90

89
87

86
80

83
81

79
77

75
73
71

69
67
60

.036295056

95

96
93

95

95

90
93
92

91

9J

89

88
45

35
43
92

80

78
75
7«

72
7J

6)
55

6*

-02

95
95

95
95

90
90

93
92
91

90

49
88

37
85

80

82
81

79

77
75

73
71

69
67

65
63

90
90

90

93

93
93

92
91
90

69

68
87

16
80

13
11

8u
78

76
70

73
71

69

66
60

62

43

93

93

92

92
91

91
90
19

86
37
35

35
33

32
3d
79
77

75
73

72
70

66
65

63
61

NU1BER

91
91

91
91

91
90
69
69
88

87

86
85

83
82

81

79
78
76

7-.

72

70
66
66

60
62
61)

90
90

90
90
39

39

68
67
86

85

8V

83

62
81

79
78

76

75
73
71

69
67

65

63

61
59

68
3«

86
68

66
87

86
66
65
SO

63

62

61
79

76

76
75
73

72
70
68

66
60

62
6-1
53

INTERVALS

87
87

87

86

86
65

35
80
83

62
61

80

79
78

76
75

73

72

70
68

67

65

63

61

59
57
=

65
85

85
85

60
80

63
63
82

81

80
79

73
76

75

73

72
7C

69
67

65

63

62
60
56

56
51

3]
83

13
83
33

32
81
41

30

79
73
77

76
75

73
72

70
69
67
66

60

62
60

58

56
50
SUM

61
61

61
61

81
80

69
79
78

77

76
75

70
73

72
70

69
67

66
60

62
6u
59
57

55
53

=

80
80

79

79
79

78

78
77

76

75
70

73

72
71

70
68
67

66
60

62

61

59
57

55

53
51

0.

73
77

77

77
77

76

76
75
7".

73

73
72

70
69

69
67

65
60

62
61

59
57

55
50
52
s:

75
75

75
75

75
70

70
71

72
71

71

70

66
67

66
65

63

62

60
59
57

56
So

52
50
08

73
73

73
73

73
72

72
71

70

69

69
68

66
65

60
63

62

6C

59
57

55
50

52

50
09
07

71 69 67
71 69 67

7 1 69 66
71 63 66

70 63 66
7 0 68 65

&9 67 65
69 67 60

63 66 60

57 65 63

66 60 62
65 63 61

60 62 60
33 61 59

32 60 58
•il 59 57

50 58 56
58 56 50
5 7 55 53

55 S3 51

50 52 50
52 SO 08

SO 09 07

,9 07 05
+ 1 05 00
-.5 Oo 02
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RECEIVER TiST CASE •!

AST ( IMAGINARY) ,FOf. LOCAL OSCILLATOR.
QUADRANT 1, 103 CORRESPDNOS TO 2.-.2048796E-09

-7l-71-7C-7i-69-b8-t 7-65-bJ-bl-57-53-5i)-45-42-38-35-30-22-l«-14 -9 -5 -3 -1 0
-7l-71-71-7i,-/.i-o9-fc7-&6-6..-bl-57-53-49-45-'>l-38-34-29-21-17-13 -» -4 -2 -0 1
-7l-71-71-7,.-7D-b9-67-65-:>3-bl-57-53-49-44-41-37-33-2B-2:>-16-ll -6 - 2 - 0 2 3
-70-70-7 J-7,,-69-68-&7-&S-63-60-5&-52-48-43-39-36-32-27-19-14 -9 -I. -0 2 4 5
-67-b7-bb-6o-t9-b4-63-61-39-56-52-48-4..-39-3b-32-28-23-15-10 -5 0 <• 6 8 9
-61-61-61-6.-e.J-59-E7-55-i3-S>l-<.7-43-39-34-30-27-23-17 -9 - 5 - 0 5 9 11 13 14
-57-S7-56-5b-55-54-E3-51-4j-46-42-38-34-29-26-22-18-l3 -5 0 5 10 1* 16 17 18
-52-52-S2-5;:-E.l-50-49-47-45-42-38-34-30-25-21-18-14 - 8 - 0 S 9 15 19 20 21 22
-43-43-43-'.2-42-41-40-38-3-I-33-29-25-21-16-13 -9 -5 -0 8 13 17 23 27 28 29 3t
-37-37-37-3;-3c.-3fa-34-32-3u-2B-24-2u-16-ll -7 -I. 0 5 1* 18 23 28 32 33 3". 35
-34-34-34-33-J3-32-31-29-27-24-20-16-12 -7 - 3 - 0 4 9 18 22 27 32 36 37 38 38
-3J-30-3.-31-Z9-29-27-25-23-21-17-12 -8 - 4 - 0 3 7 13 21 26 30 36 39 «1 1.1 42
-27-27-27-2t-26-25-24-22-2j-17-l3 - 9 - 5 0 4 7 11 16 25 29 3d 39 »3 41. 1.5 1.5
-22-22-22-21-21-20-19-17-15-12 -8 -4 -u 58 13 16 21 30 31. 39 44 1.6 *9 ".9 50
-1S-18-18-1/-17-16-15-13-11 -8 -". 3 4 9 12 16 2i 25 3fc 38 1.3 1.8 52 33 53 53
-1*-1'.-13-13-13-12-11 - 9 - 7 - 4 C I. 9 13 17 20 ?* 29 38 1.2 *7 52 56 57 57 57
-9 -9 -9 -% -B -8 -6 -U - 3 - 0 -. 8 12 17 21 2fc 28 33 1.2 ".6 51 56 60 61 61 61
-7 -7 -6 -f. -6 -5 -•. -2 -J 3 7 11 15 20 23 27 30 36 1.5 *9 53 59 63 63 6b 63
-5 -5 -5 -". -u - 3 - 2 - 0 2 i. 9 13 17 22 25 29 32 38 fc7 51 55 61 65 oS 66 65
-3 -3 -3 -Z -2 -1 -J 2 4 6 11 15 19 2". 27 31 34 40 49 53 57 63 67 67 67 67
-2 -2 -1 -1 -1 -u 1 3 5 8 12 16 20 25 29 32 36 41 50 54 59 64 68 69 69 68
-1 -1 -1 -w -i. 1 2 4 i 8 13 17 21 26 29 33 36 42 51 55 60 65 69 '0 70 69
-J -C -: -„ j 1 2 4 i 9 13 17 21 26 35 33 37 »2 52 56 60 66 70 70 7-j ? i
-J -6 -; L I 1 3 5 > 9 13 15 22 27 30 31. 37 43 52 56 61 66 '70 7i 71 7C
- 0 - 0 u t 1 2 3 i) 7 9 14 18 22 27 30 34 37 43 52 57 61 67 70 71 71 71
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QUADRANT 2, 10J CORRESPONDS TO 2. >,20l.879eE-a9

-89-91-93-95.-9«.-92-91-90-8J-83-S2-82-80-78-77-75-73-72-72-71-71-70-71-71-71

-91-9I.-95-97-96-9i.-93-92-8/-8S-8i.-S3-ai-79-79-7b-7»-73-72-7 1-71-71-71-7 1-71
.93- 95-97-99-98-95-91,-93- S9-86-8I.-* 3-8 2-8 0- 7«-76-7l»-7 3-72-71-71-71-71-7 1-71

-9S-97-99*Gi,-99-97-95-9<.-i9-86-35-8<.-82-80-78-76-73-72-7 2-71-70-7 0-7 0-70-70
-9I.-96-911-99-9U-96-91.-92-87-8".-82-51-79-77-75-73-70-69-6S-67-67-67-66-J 7-67

-92-9i»-9b-97-9&-93-91-69-a3-bO-76-77-75-72-70-&8-6S-6i.-63-62-bl-&l-61-'bl-bl
-91-93-9".-9i-9it-91-S9-87-8J-77-75-7i.-72-69-66-6<.-61-6C-59-58-S7-5 7-57-j 7-57
-9J-92-93-9W-92-89-67-8".-7 8-7 i.-72-71-68-65-53-60-67-55-5".-53-53-52-52-1j 2-52

-86-97-88-89-87-8 3-f 0-78-71-67-65-63-6 l-57-Sl.-S2-<.S-l»7-l.6-»l.-l.»-l. 3-1.3-.. 3-1.3
-83-85-86-«b-8'.-80-F7-7'.-i7-63-ol-S9-56-53-50-'»7-<.3-'»2-i.J-39-38-J8-38-J7-37

-«2-8i»-8'.-8S-82-78-7S-72-55-61-58-55-53-50-'»7-»3-<>0-38-37-35-35-3".-3't-!<.-3'«
-82-83-83-81.-91-77-7i.-70-b3-59-56-ii.-5l-i. 7-1.i.-(.l-37-35-3ii-32-31-31-31-1 0-30
-8i)-82-e2-»i- 79-75-72-68-61-56-5 3-51-i.S-". <.-<.!- 37-31.-32-3 J-29-28-27-27-J 7-27

-78-79-80-80-77-72-69-65-57-5 3-5C-1.7-1.I.-1.0-36-J3-29-27-26-2I.-23-22-22-2 2-22
-77-78-78-76- 75- 70-66-63-5-.-50-+7-<» <.-»!- 37- 33-29-25-23- 22-20-19-18-18-18-18
-75-76-76-76-73-68-6l»-6(l-5>-i.7-»3-»l-37-33-29-26-22-V9-18-l6-15-ll.-ll.-li.-ll,

-73-7l»-7i.-73-70-65-fcl-S7-i.9-".3--.0-37-3l»-29-25-22-17-15-13-12-ll-10 -9 -9 -9

-72-73-73-72-69-6l.-tJ-55-'.7-i,2-38-35-32-27-23-19-15-13-H -9 -9 -7 -7 -7 -7
-72-72-72-72-6S-63-5-S-5'«-'.i-<.u-37-3i.-30-26-22-lB-13-ll -9 -7 -6 -6 -5 -5 -5

-71-7l-7l-71-b7-62-58-53--<-39-35-32-29-2i.-20-16-12 -9 -7 -6 -«. -l» -3 -3 -3
-71-71-71-7,-67-61-57-53-I.1.-38-35-31-28-23-19-15-11 -8 -6 -•» -3 -2 -2 -2 -2

-71-71-71-7i.-67-61-57-52-1«J-38-3l.-31-27-22-18-l<.-ia -7 -6 -«. -2 -2 -1 -1 -1
-71-71-7l-7L-66-6l-57-52-»3-38-3i.-31-27-22-18-H. -9 -7 -5 -3 -2 -1 -1 -0 -0

-71-71-71-70-67-61-57-52-1.J-J7-31.-JO-27-22-19-1I. -9 -7 -5 -3 -2 -1 -0 -0 -0

-71-71-7l-7l,-e7-61-57-52-'.3-37-3<,-30-27-22-18-ll. -9 -7 -5 -3 -2 -1 -0 -0 -0
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-71-7l-71-7l-67-61-57-53-kl-;i7-Jk-30-27-23-18-lk -9 -7 -5 -3 -3 -1 -0 -0 -0
-71-71-7l-7i,-67-&l-57-53-'.3-37-3k-3u-27-22-18-lk -9 -7 -5 -3 -Z -1 -C -0 -0
-70-71-71-7C-fc6-61-56-52-k3-37-l<.-.JO-27-22-l8-13 -9 -6 -5 -3 -1 -I -0 -0 0
•7a-70-7D-7i-tb-60-5o-S3-k2-37-33-30-3b-31-17-13
•69-70-7C-69-65-60-55-51-»3-36-33-39-36-21-17-13
•68-69-&9-&8-6H-59-55-5u-kl-36- 33-29-25-20- 16-12
.67-67-67-67-fc3-»7-53-k9--.u-3k-Jl-27-3<-19-15-ll
•65-b6-65-6S.-tl -55-51 -k7-33- 32-29-25-22- 17-13 -9
•63-6k-63-63-f9-53-k9-k5-3o-3G-37-23-30-15-ll -7
• fc1— fel»fi1*fef-»^f»*Sl»I*f»»U?»'i3»?fl»?**— 7 l » 1 7 » i > «• A *L' D l O 4 ~ D l ™ D L 5 O ? l * « O ~ H t ™ J J w C O C » * ~ c t l r " l c "0 "*»

•57-S7-57-ib-52-k7-fc2-38-29-2k-20-17-13 -8 -k -0
•5i-53-53-52-k»-»3-J8-3k-2;-2iJ-16-12 -9 -k -0 k
•50-k9-k^-k8-kk-39-3k-36-21-16-13 -8 - 5 - 0 k 8
•k5-kS-k-.-k3-39-3k-Z9-25-li-ll -7 -k -J 5 9 13
•k2-«.l-fcl-39-36-30-26-21-13 - 7 - 3 0 k 8 13 17
•38-38-37-36-32-27-22-18 -9 -k 0 3 7 12 16 20
•35-3k-33-33-3S-33-18-lk -i -0 k 7 11 16 20 2k
•30-29-28-27-23-17-13 -8 3 5 9 13 16 21 25 29
22-21-20-19-15 -9 -5 0 8 Ik 18 21 25 30 3k 38

-9
-8
-8
-6
-k
-3

0
k
8

12
17
21
2k
28
33
k2

-6
-6
-5
-k
-2

0

7
11
15
20
23
27
30
36
k5

-k
-k
-3
-2

0
2

9
13
17
23
35
29
32
38
k7

-3
-3
-1

0
2
k

11
15
19
2k
27
31
3k

k9

-1
-1

u
1
3
5

12
16
20
25
29
32
36
kl
50

-0
0
I
2
k
6

13
17
31
26
29
33
36
k2
51

0
0
1
2
k
6

13
17
21
26
30
33
37
<>2
52

0
1
1
3
5
6

13
18
22
27
30
3k
37
k3
52

0
1
2
3
5
7

Ik
18
22
27
Jf
3k
37
k3
52

-18-17-16-lh-lO -5 -0 5 13 18 22 2b 29 3k 38 <*2 <«6 ".9 51 53 Sk 55 56 S6 57
-lk-13-11 - 9 - 5 0 5 9 17 23 27 30 3<. 39 »3 *7 51 53 55 57 59 60 60 61 61
-9 -8 -6 -i. -0 5 10 15 33 28 32 36 19 <•* <>8 52 56 59 61 63 6U 65 66 66 67
-5 -<• -2 I <• 9 lu 19 27 32 36 39 it] <>8 52 56 60 63 65 67 68 69 70 70 73
- 3 - 2 u 2 6 11 16 20 29 33 37 <•! <«, <*9 53 57 61 63 65 67 69 70 70 7 1 71
-1 0 i fc 8 13 17 21 39 3k 38 m k5 k9 53 57 61 6k 65 67 69 70 70 71 71
-J 1 3 5 9 Ik 18 22 30 35 18 k2 k5 50 53 57 61 63 65 67 61 69 70 70 71
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RECEIVER UST CAS- •!

DETECTOR COMPUTATIONS.

DETECTOR NO. = 1
RECEIVED SIGNAL BEAN IS SHIFTED X = 0. AND Y s a,

WITH PESFECT TO CENTER OF DETECTOR.

LOCAL OSCILLtTOR flEAH IS SHIFTED X = C. AND T = 0.

WITH RESPECT TO CEf.TER OF OETECTOR.

CIRCULAR OLTECTOR CIAMET;? = 2.:72J9091E-01

SIGNAL "OHjo = I.59fc7bb3i».'»

LOCAL OSCILLATOR POWER - 1.Z85JU27E-01

CROSS PRODUCT POWER = 3.iJZ58Z6E+Ji
PHASE MATrn iFFICIEfCf = 3.595U11E-01 I -.016 D3 )

AVERAGE PHASz SHIFT (RAOIA1S) = Z.6263Z01E-01

OPTICAL TRANSHISSIOh' = 9. ?581079E-01 < -.106 0? )
FOCUSING EFFICIENCY - 7.b»31/a6E-Jl < -1.167 OB )
NON-HETERCOYHt DETECTION EFFICIENCY = 7.<t$8Z9u3E-31 C -1.371. 08 >
L.O. ILLUMINATION EFFICHN;Y = 8.a9iii)5i»E-oi ( -.8i» 08 )
M A V I H U M 4ia t NM« G A I N = i, 38t>a915E»3S ( 93.777 04 )
R E C E I V E R I F F I C I H N C Y TO I.F. = ». 72J1.376E-L1 ( -3.260 OB I
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APPENDIX D

SIMP BIT l td l = sJ .975,i .62t , Md> = C . , . . , HAidl - 0.,!.. IFUGKl l = 0,0,
= -!...-•>. M C I ) = i.13, <L!N\M1I = ;.. -9.I.-356957-'.,

= '.., -102^. , }., 52 .0)152, 3-..0868, 3')., -105.120".'., -161.5S6-.,
= !•„., lLb3. IB iS i ) , bod.2130-., 3., -105.120<>H, -161.569<,, 0., 0. ,

T 3 d > = C., -51".., -32.1, -2., -910., C., 0.. -193., -2..0.,
TSd l ) - -100.3 , C., u. , -2., -312., -193., -2..J., -100.3, J.<
X l U S d l = :•, -1., -I., -«.;iiji2, i»*-l., -l,.1.0062, •»•-!.,
Xl l lSd^ls -^ . i J J62, -1., -I., -«.l!)062, 3*-l.,
$ < A P A ( 2 ) = ..,
P Z E R O d l = -1.-6, 1.-3,
Z O M E G A = 1.-J25,
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LACONA - LASER C3NHUNICATOR ANALYSIS PROGRAM

• • • • » PAGOS CORPORATION .....

RECEIVER TEST CASE *2

RECEIVED SIGNAL OPTICAL 3ATA.

N -12 BETAO 5.397SOQJOE»01 H 0.

M 1 XLINV 0. HAS 0.

P?£RO -l.Oi.OtiOOOCE-06

IFLG1 0

SURFACE PARAMETERS

SURF. CURVATURE
NO. RHOS

1 0. 0.
2 -9.72762b5E--J'.-5.14JjiiuOE*02

3 0. -3.21J3JO
it 1.69388i.9E-02-2.iiuOJOu
5 2.933bS69E-.2-9.Ui:.)ObOE»G2
6 0. 0.
7 0. 0.
8 0. -1.9J

9 -9.5128978E-C3-2.0u-JuOOE*00
10 -b.l862567t-il 0.
11 0. - J . J O
12 0. 0.

SURFACE SKAPA

2 C.

SEPARATION INDEX OBSCURATION DATA VIGNETTING DATA
T5 XNUS BETAPX BETAPT BETAS* BETAS*

0.
0.
0.
0.
C.
0.
0.
0.
0.
0.
0.
C.

ASPHERIC COEFFICIENTS
BETA GAHMA DELTA EPSILON

0. 0. 0.

OE»02
OE»01
O E » 0 3
O E 4 - 0 2

O E » 0 2
O E » 0 0

OE»02

i . t ooooo
- i . tooooo
-1 .100GOO
-<>.cao62a
- l . C O O O O O
- l . C O O C O O
- l . C O O O O O
-1.000003
-*..(, 00620
- i . cooaoa
- l . C O O O O O
- i .coajoo

a.
0.
3.
0.
u.
j.
0.
d.
0.
0.
0.
0.

0.
0.
0.
C.
0.
0.
C.
0.
u.
0.
0.
0.

0.
0.

0.
0.
0.
0.
0.
0.
0.
0.
0.
0.

ALPHA

FIELD ANGLE - J.
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LOCAL OSCILLATOR CPTICA>. O A T A .

N -8 3i.TAj 2.12103... JtHJL H Q.

H 13 XLINV -9."-j569i/jE-Ji. MA3 0.

PZJRO 1 . 0 . O C O O O J E - O J

IFLSl 0

SURFACE P A R A M E T E R S

SURF.
NO.

13

I".
15

16
17

18

19
29

0.
9.
1.

0.
-9.
-6.

0.
C.

CURVATURE SEPARATION
?HOS T3

0.

<.05&957£-'J<.-2.JCjJgOOE»l!0
*-935287E-C3~3.92^jyjJE*j2

~1.93JjuCOE*02
51tb978E~03~2.0GjjJOOE*jG
1892908E-J3 0.

~1.0t3jwuOE + lj2
0.

INDEX OBSCURATION

-1
-k

-1
-1
-<t
-1

-1
-1

XMUS 9ETAPX

.000000 •}.

.000620 0.

.cuoooo a.

.000000 0.

.C00620 0.

.toOuOa o.

.tooooa o.

.CJJOOO 0.

0

0

c
0
c
0

0
0

OATA VIGNETTING OATA
BiTAPT 3ETASX BETAST

•j. 0.
0. 0.

C. 0.
C. 0.

C. 0.
a. o.
o. o.
a. o.

FIELD ANGLE = a.

NXT = JS NDET = 1 NFRS = Z6
OELFS = 0. ZOMEGA = 1.62SOCOOOE»00 VLAMOA - 1.i611385CE-03

DETECTOR OATA.

OETECTOR NO. 1 IOETEC = 1 J 0 0 0
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FiTA

P4RAXIAL RAY TRACE - RECEIVED SIGN4L OPTICS.

ALPHA
b , 7 9 7 & . L O L E * u i
t . 397b i .L - - J E » D 1
2 . 2 7 3 ? ? f a 7 5 £ - l Z

- 3 . 3 7 t f c l Z 2 6 c » u t
- 3 . 5 l 9 v 7 2 d 4 £ » . - C

B . 5 C W ; 5 i63E»u l
A c t - J ' ^ ^ S ' ^ u L

6.5<.*3 J 3 b 3 E » JL
1. 1L5'.3528E*.1
1..9i ,32115E>Cl
1..9C3?115t*Jl
t i . c ) f c C ; ' ^ 7 0 3 E - J l

).
-1 .05J09728E-01
-1.0iOC97J8E-01
-2.96567218E-01

1. 321253<.6E-02
1. 3212531. f>E-02
1.3'1253C6£*02
1. 32l253k6E-02

-3.0232941.9E-01
-1 .98720J22E-02
-9 .9172J322E-02
- 9 . 9 6 7 2 J u 2 2 E - 0 2

C.
0.
9.5229272SE»00
l .QH7ofc7tE*01
1.9>>li>3iie9E»tl

-2.6375BS72E»02
• ? A 1 7 Q A C 7 ? F * f l 9™c« O Jf SO 7f ct. + vc

-2.83758572E»C2
-3.".61i.9093E»02
-3.1.1371125E»02
-3.*1371125E»02
-1.85»2i.06a£»01

1.85270959E-02
1.85Z70959E-02
1.85270959E-J2
5.93^9566CE-01

-3.232669I.6E-01
-3.232669i»bE-31
•3»232669U6E*01
-3.232669k6E-01

9.557<.17l.5E»aO
3.21863129E»00
3.21863129E»JG
3.21863129E»00

P A ^ A X I A L ENT-!ANC£ PL'PIL PaSITION TO) = -0. TEXIT= -1. t

INVERSE OPJ fcCT OISTtNCE XLINV = 1.

FOCAL LtNGl* = S.U'.«173<E»i)Z RACK FOCAL. LENGTH = -1.09171853E»S2

TS(N- l ) = -i. 09171S53E»J2 Ft = 5. <.C»l.l75i.E» J2
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P1RAXIAL RA» TRACE - LOCAL OSCILLATOR OPTICS.

P E T 3 R A L P H A A
2 .62Ku. . j i ,E» Jl }. 0. 1.81533766E-01
2.621. ; ; . , JE»JC 7.39722i95E-03 0. • 3.81533766E-01
2 . 6 2 U b 9 8 J i . E » J C -<..3a9ai631E-03 1.90737319E-01 .80677257E-a 1
9.0<»2u3e'.8t-Jl -<..339J1631E-03 l.i»9416222E»02 .8 J677257E-01
5 . ^ 1 2 o 5 C J 7 E - 0 £ -5.C1958J29E-03 2.22986933E»02 - .931S3915E*J0

2 -i.i)lit59053E-aJ 2.19896627E»02 - .89768283E»0 0
1 -5.011.59J53E-03 2.9S590 392E»Ot - .89768283E*0 0

P A R A X I A L E N T R A N C E PUPIL P O S I T I O N T ( O I = - 0 . T E X I T = -1.15876385E»02

INVERSE OBJECT D I S T A N C E X L I M V = -9 . i ,OSo9S70e-C»

FOCAL L E N G J H = 5. 2267".7.1 J i » 0 2 1ACK FOCAL L E N G T H = -1. 07913«<>aE»01

T S ( N - l ) = -l .o85*9893E»ii2 FL = -3.6166<.382E»02
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RECEIVE* TiST CASE '2

CHIEF RAY DATA FOR RECEIVED SIINAL.

FIELD AMGLL IKAOIANSI « b.uujiujoc

CHIEF RAY COORDINATES ON SJRFACE N

X T Z
0. J. C.

OI-tECTIOM CDSINES ON SURFi:j N-l

L M N
o. _•. - i .oooooa; i iE»oo

<ooius RH AND POSITION T? ar EXIT PUPIL

*w TR

-3.11ld9259E»Lj -1.^606096JE«02

TILT AND DI5°LACE1£NT OF £<IT PUPIL IN »- AND T-OIRECTIONS

XTUT YTILT XOISP YDISP

.HAVEFRONT ERROR INFORMATION

VARIANCE = Z.J1695fc38£-3Z

WAVELENGTH = l.ublli65JE- J£

MAXIMUM UNNORMALIZET ERRO-?= it.

MINIMUM UNN3PMALI2tD ERRO^ = - a . 1 195 93".l£-0l

MAXIMUM NORMALIZED FRROR= J.
MINIMUM NORMALIZED f RROR=- ̂ . b517753mi- 3c

APPROXIMATt STREHL fATIO = 9. 5U081 996E-C1
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RECEIVER TEST CASE «2

CHIEF PAY DATA FOR LOCAL DSCILLATOR.

FIELD ANGLi. (KAOIAFSI = u . jO J.J 0000

CHIEF RAT COOROINATIS ON SJRFACE N

X t

I). J.

DIRECTION COSINES ON SURFACE N-l

I M

0. 0.

RAOIUS RH ANO POSITION TR DF EXIT

3H TR

-1 .OJOJOOOOE»00

TILT AND OlbPLACEMEMT Oc EXIT PUPIL IN X- AND T-OIRECTIONS

XTILT TTILT XOISP YOISP
0.

HAWEFP.UNT ERROR INFORMATION

VARIANCE = i.'»2966i?'.E->;;)
RMS = 3.fc»l5l.3'.lE-C5
WAVELENGTH = 1.0611jaSOi-jZ
MAXIMUM UNNO'rALIZEO ERROR= 3.721<<2it<iiic-10
MINIMUM UNNOBMALIZET ERROR=-».659659C2E-07

MAXIMUM NCRKALIZEO ERROR= 3.50731115E-J«
MINIMUM NORMALIZED E RROR= - 3. I6g 72-.56E-05

APPROXIMATE STREHL RATIO = 9. 99999}"«8E-01
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RECEIVE* TiiST CASE *2

OiTECTOR COMPUTATIONS.

DETECTOR HO. = 1

RECEIVED SK-NAL PEf) IS SHIFTED X * 0. AND V = 3 .
KITH RESPECT TO CENTER Of DETECTOR.

LOCAL OSCILL«TOR 9tAM IS SHIFTED X = C. AND T = 0.
KITH RESPECT TO CcKTER OF OETESTO*.

CIRCULAR DETECTOR DIAMETE* = 1. ?96Z".81".E-ai

SIGNAL POHi.= * 9.Z1899i.5£-u7

LOCAL CSCILLATOR POWER = 1.Z&iJ695E-J5

CROSS PRODUCT POHER = 2.8»25lb»E-J=
PHASE MATCH rFFICIEf'CT = J.9631555E-01 ( -.DuZ OS I

AVERAGE PHASE SHIFT (RADIANS) = 9.3388f-5".E-0?

OPTICAL TRANSrISSIOr = 9.987391CE-01 ( -.COfc OB I

FOCUSING EFFICIiNCT = 8. 229<>li9IE-01 < -.8h6 OB )
NON-HETERODYIIF DETECTION iFFICIENCr = 8.2189905E-J1 ( -.852 OB )

L.O. ILLUMINATION EFFICIENIY = 8.75b<.877E-(ll ( -.562 01 1
•lAKlMUh ANTENNA iAIK = 1. J2K.119E»09 I 93.C92 09 )

RECEIVER EFFICIENCY TO I.F. = 6.2973H8E-;! ( -2.00B OB )
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NULTIPL- O c T E C T O R S

SINP
KOET = b,

I l ) E T E C U , l > = 1 ,0 ,1 .0 ,0 ,
IOETECI1 .2 ) - a , 0 , C , 0 , 0 ,
I O £ T E C ( 1 , 3 ) = l . Q . t i l b i J ,
nETECIl.UI : 2,0,0,10,u,

SEND
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MULTIPLE O i T E C T O R S

OiTECTO0. NCI. = 1

DECEIVED SIGNAL REA1 IS S-IIFTEO x = 0. AND Y = 0.
WITH RESPECT TO CENTER DF 0£TESTO*.

LOCAL OSCILLATOR =)EAM IS SHIFTED X = C . AND V = 0

KITH RtSPtCT TO CtKTER OF DETECTOR.

CIRCULAR Jiucioa OIAMET;« = i.z9o2*8i<.E-oj

SIGNAL PQH£3 = 8.iieS9-.iI-u7
LOCAL OSCILLATOR POk>SiR = 1. 283J695E-05
CROSS FROHJCT P3WER = 2. 6.,2S16»E- JD
"HASE MATCH fFFICIENCY = 9. 9621559E-0 1 I - .002 09 I
AVERAr .E PHASE SHIFT ( R A D I A N S ) = 9. 3388fc5l.E-a2
OPTICAL TRANSMISSION = 9. 9872910E-01 t -.006 OB I
FOCUSING EFFICI£NCY = 8. £291.1.9 JE- Jl ( - .Sfc6 OB )
NON-HETEROO»H£ DETECTION EFFICIENCY = 8. 2189905E-C 1 ( -.852
L.D. ILLUMINATION EFFICILNIY s 8. 786". 977E-01 ( -.562 09 )
MAXIMUM ANUMNA GAIf' = 1. J2litll9E»09 ( 90.C92 DB I
RECEIVER EFFICIENCY TO I.F. = 6. 2973198E-C1 < -2 .058 OB )

DETECTOR NO. = 2
RECEI-VEO SIGNAL BEA.1 IS SHIFTED » = 0. AND Y s 0 .
WITH RESPECT TO CSMTEP OF DETECTOR.

LOCAL OSCILLATOR SI AM IS SHIFTED X = C. AND Y = 0.
WITH RESPECT TO CENTER OF OETESTO*.

RECTANGULAR CETECTO* DIMENSIONS ARE X c 1.296?»61UE-O1 AND Y = 1.2963u81U£-01

SIGNAL POWER = 8.292BbfcJI-fl7
LOCAL OSCILLATOR POfcER = 1.78H969E-05
CROSS PRODUCT POWER = 2. rt5<»S892E-36
PHASE MATCH EFFICIENCY > 9.3992926e-oi ( -.02? DB i
AVERAGE PHASE SHIFT (RADIA4SI = 5.<t33»257E-l)2

OPTICAL TRANSMISSION = 9.98729UE-J1 ( -.006 OB )
FOCUSING EFFICIENCY = 8.3J32189E-Jl I -.8C8 DB )

NON-HETERODYNE DETECTION EFFICIENCY = 8.2926663E-01 ( -.813 01 I

L.O. ILLUMINATION EFFICIENCY = 7.90S2018E-01 « -1.021 OB I
MAXIMUM ANTLNNA GAIK = 1. i2l<«ll9E»09 ( 90.092 OB )

RECEIVER EFFICIENCY TO I.F. = 4.57B3655E-01 < -3.393 OB )

DETECTOR NO. = 3

RECEIVED SIGNAL BEAM IS SHIFTEO X r -6.',812'.t70E-02 AND Y s

KITH RESPECT TO CENTER OF DETECTOR.

LOCAL OSCILLATOR BEAM IS SHIFTED X = -6. i.812<tiJ7 JE-03 AND Y =
WITH RESPECT TO CENTER OF DETECTOR.

CIRCULAR DETECTOR OIAH£T£* - 1.2952l.81l.E-01

SIGNAL POMt" = 3.e728301£-07

LOCAL OSCILLATOR POWER = 1.2681518E-05
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CROSS HKUUU^I HOWtK = ?. i. Ji.»»'.it-.J/'

»HiSE M A T C H f F F I C I E N C V = i. 992 JSl<?£-0 I ( -.222 0"? )
AVERAGE "HAS! SHIFT (RSIJIOMSI = -2.o78<«753:--02

OPTICAL TPANSM3SIOK = 9.9a72910E-01 ( - .006 09 )
FOCUSING EFFICIENCY = 3. b /75039E-JI ( -1..3".!. OB )

NON-HETEPOO^E DETECTION £-FICIiNCr = 3.6728301E-01 < -•..SS'J 01 )
L.O. ILLUMINSTION EFFICIE-<;T = /. ll7Ji5ZE-Ol ( -t.«.77 08 )
nAXIHUM.ANTc.KNA GAIN = 1. Oai<.H9E»u9 ( 90.(92 08 )

RECEIVER EFFICI£NCT TO I.F. = 6.6«OS7i»7E-02 ( -It.752 08 I

DETECTOR NO. = -.

RECEIVFO SIGNAL BEAM IS SHIFTE1 X - -o.'.812'.C70E-u2 AND T = 0.
WITH RESPECT TO C2KTER OF OtTECTO^.

LOCAL OSCILLATOR BFAM IS 3MIFTEO t = -t. 1.812U07JE-02 AND T s o.
KITH RESPECT TO CctTER 0^ OETECTO*.

RECTANGULAR OETECTC* OI.tE.fSIONS A<E « = I .Z962»af.E-Ul AND V = 1.296 2I,«1<.£- 01

SIGNAL POHCR = i..roli33i£-07

LOCAL OSCILLATOR POhcR = 1.7S95fc53£-05
CROSS PRODUCT POMER = i.2;ui/53E-o»
PHASE MATCH EFFICIErCY = i.2912031E-01 < -.201 08 I
AVERAGE "MASE SHIFT (RAOIA1SI = -1.68876ult-03
OPTICAL TRANSMISSION = 9.387291JE-01 ( -.C06 08 I
FOCUSING EFFICIENCY = •.. 7 i?292 JE-n < -3.217 06 I
NON-HETERODYNf DETECTION i?FICIENCY = «.. 7612335E-01 ( -J.22! 01 )
L.O. ILLUMINATION EFFICIEIIY = 6.5o50 31".E-01 ( -1.63U 03 »
MAXIMUM ANTCNNA GAIN = 1. J21i»119E»59 I 30.E92 DA I
RECEIVER EFFICIENCY TO I.F. = 3.8412059E-02 ( -1U.515 OB I
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