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Abstract—We describe experiments on a quasi-two-dimensional
(2-D) optical system consisting of a triangular array of air
cylinders etched through a laser-like Ga(Al)As waveguiding het-
erostructure. Such a configuration is shown to yield results very
well approximated by the infinite 2-D photonic crystal (PC).
We first present a set of measurements of the optical proper-
ties (transmission, reflection, and diffraction) of slabs of these
photonic crystals, including the case of in-plane Fabry–Perot
cavities formed between two such crystals. The measurement
method makes use of the guided photoluminescence of embedded
quantum wells or InAs quantum dots to generate an internal
probe beam. Out-of-plane scattering losses are evaluated by
various means. In a second part, in-plane micrometer-sized pho-
tonic boxes bounded by circular trenches or by two-dimensional
photonic crystal are probed by exciting spontaneous emission
inside them. The high quality factors observed in such photon
boxes demonstrate the excellent photon confinement attainable in
these systems and allow to access the detail of the modal structure.
Last, some perspectives for applications are offered.

Index Terms—Cavity resonators, electromagnetic scattering
by periodic structures, Fabry–Perot resonators, luminescence,
microcavities, photonic crystals, radiation losses, semiconductor
heterojunctions, waveguides.

I. INTRODUCTION

I N THREE-dimensionally periodic dielectric structures, the
existence of photonic transmission bands and forbidden

bands [1], [2] has opened new avenues to tailor the light-
matter interaction, and in particular spontaneous emission, but
also to design new photonic systems with superior proper-
ties for photon confinement. At optical wavelengths, three-
dimensional (3-D) structures have been recently fabricated
such as “woodpiles,” stacks of dielectric spheres or “inverse
opals,” etc. [3]–[9]. They are, however, still difficult to fabri-
cate reproducibly with, e.g., the desired index, thickness, and
precise quantitative measurements are scarce.

Two-dimensional (2-D) structures, although they do
not provide 3-D light propagation or confinement, are
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Ecole Polytechnique F́ed́erale de Lausanne, Lausanne CH-1015 Switzerland.

C. Jouanin and D. Cassagne are with Groupe d’Etude des Semiconducteurs,
Universit́e Montpellier II CC074, Montpellier Cedex 05 34095 France.

Publisher Item Identifier S 0733-8724(99)08822-2.

much more amenable to controlled fabrication owing to
mature nanofabrication technology. Such 2-D structures
could already bring a sizeable part of the advantages
expected from three-dimensional structures. As a consequence,
two-dimensional photonic crystals (2-D PC’s) have been
more thoroughly investigated than their three-dimensional
counterparts [10]–[17]. The aspect ratio of these structures,
however, remains a crucial issue: it should be remembered
that submicrometer fabrication technologies impose severe
limits on the aspect ratio, on the order of ten, with the
notable exception of macroporous silicon [14]. Therefore, 2-D
PC’s should in principle be subject to similar experimental
difficulties as their 3-D counterparts concerning the possibility
of making precise quantitative measurements when dealing
with finite optical beams and PC structures. However, we can
design quasi-2-D structures, analogous to quantum wells for
electrons, by using waveguided light propagation [10]. In such
a case, the optical beam is perfectly defined and collimated,
and its interaction with PC’s etched across the waveguide can
be seen as providing the frame of a well-defined 2-D-physics
experiment [18]–[20]. In addition, the waveguide naturally
freezes the third degree of freedom: typically 30–40% of free-
space modes are trapped into a dielectric waveguide in current
semiconductor systems. Thus, the combination of a PC-based
in-plane cavity and a planar waveguide may provide full 3-D
light confinement [21]–[23] for those modes.

Semiconductor systems also offer the opportunity to include
an efficient internal light source in the waveguide itself, an
essential feature in laser heterostructures grown in the well-
known GaAs- or InP-based systems. This is the approach
pursued here, whereby the spontaneous photoluminescence of
quantum wells or quantum dots embedded in a waveguide is
excited by a focused laser spot to produce an internal quasi-2-
D light beam, which then probes the 2-D PC’s (Fig. 1) [18].

Among the advantages of this technique, two proved crucial
in understanding the possible light paths after interaction of
guided light with 2-D PC’s. The first is the ease and accuracy
with which such a quasi-point source can be located with
respect to the photonic crystals. The second is the very good
source reproducibility obtained on account of the growth
quality and uniformity of the luminescent layers. This con-
trasts with the difficulties encountered when coupling lasers
to waveguides [24], namely, nonreproducible coupling and
parasitic reflection oscillations due to the coherent probe beam.

In the next section, we show how we exploited this ad-
vantageous configuration to quantitatively measure all the
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Fig. 1. Principle of the measurement: a two-dimensional photonic crystal is
probed by a guided wave, and light is collected at a cleaved facet. Light can
be generated by spontaneous emission in the waveguide.

in-plane coefficients describing the interaction of a guided
light beam with a photonic crystal [transmission, reflection,
and diffraction (TRD)] [19]. The pros and cons of quantum
wells versus quantum dot layers as inner sources are also
discussed [20]. Next, the main TRD results are summarized,
and the significance of some striking features such as high
transmission windows and the fine structure of oscillations
around the photonic gaps is outlined. In the following section,
the amount and the nature of light losses specific to the
perforated waveguide are investigated by exploiting the above
results (TRD and fine oscillations around gaps) as well as
by a new means: the use of one-dimensional (1-D) cavity
resonances between two 2-D PC’s to measure reflectivities
close to unity [22]. This allows us to quantify these losses
and to provide a plausible explanation for them. The two last
sections are devoted to three-dimensional cavities bounded
by photonic microstructures, the modes of which are probed
through their internal photoluminescence. In the first case,
a concentric Bragg grating confines a new set of microdisc
modes, the “quasi-radial modes” (QRM’s) [25]. In the other
case, the 2-D PC’s exemplified above are used to define
micrometer-sized hexagonal cavities in the waveguide plane
[23]. To support the experimental results, a 2-D supercell
calculation of the eigenmodes of a selected cavity is shown.
In our conclusion, we evaluate the degree of generality of the
results presented above and give some perspectives.

It should be emphasized at this point that the measurement
scheme developed here, using a waveguided light beam to
study PC properties, is actually in itself a demonstration of the
various uses of 2-D PC’s in the important fields of spontaneous
emission control and integrated optics.

These possibilities include not only the much-quoted ex-
ample of short bends in a waveguide [Fig. 2(a)] [26], [27].
One can think of cavity modes as filters that drop a selected
frequency [Fig. 2(b)] [28], [29]. Diffraction could find its use
in wavelength-routing applications [Fig. 2(c)], allowing the
implementation of compact spectrometers with low losses.

(a) (b)

(c) (d)

Fig. 2. Example of possible applications of two-dimensional photonic crys-
tals: (a) short bends in waveguides, (b) filters based on cavity modes select
only the resonant frequency, (c) diffraction of a photonic crystal disperses
different wavelengths impinging in the same direction, and (d) add/drop filter
can be based on waveguides coupled with one or two resonant structures.

Polarization properties may equally affect the design of some
integrated optics functions. Of course, in the present era,
witnessing the rise of the wavelength domain multiplexing
scheme in optical fiber telecommunications, the add-drop filter
functionality schematized in Fig. 2(d) is among the most
desired [30]. It requires a sophisticated blend of one or two
resonant elements and couplers from the basic guides to these
elements. The issue of device cascading is one of many that
still needs to be addressed carefully and which will be briefly
discussed.

II. QUANTITATIVE MEASUREMENT OFIN-PLANE

INTERACTION OF LIGHT WITH 2-D PC’s

A. Principle

An optical guided wave traveling in a planar dielectric
waveguide is our basic probe beam (Fig. 1). The 2-D PC’s
that act on such a beam are arrays of cylindrical air holes
normal to the guide plane. One initial reason to study such
crystals was that they may display a photonic bandgap in both
polarizations [denoted transverse electric (TE) and transverse
magnetic (TM)] for a triangular lattice and a sufficiently
large air-filling factor . However, it became obvious a few
years ago that large air holes could be very detrimental to
waveguiding and lead to losses out of the guide [10], [24].
This prompted experimentalists to consider only crystals with
moderate air-filling factors, on the order of , in
which air hole diameters are well in the subwavelength regime,
leading to a drastic reduction of out-of-plane scattering. In
these crystals, the dielectric is highly connected, resulting
in a full TE gap with reduced frequency around 0.23
[instead of 0.45 around the “optimal” filling factor
(see Fig. 7)], while directional TM gaps are rather narrow and
do not overlap anymore for such low values.

Next, one should produce and collect optical probe beams.
As mentioned above, luminescent layers such as quantum
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wells or self-organized quantum dots located in the waveguide
itself are a very convenient source. We used GaAs/AlGaAs
heterostructures containing a central monomode GaAs wave-
guide of 0.24 m thickness, with an asymmetric GaAlAs clad
[18]. A red laser diode is used to photoexcite these active
regions, and about 30–40% of the radiative recombination is
channeled into the waveguide mode, the rest escaping through
the substrate or the air. Direct collection in air just amounts to
a standard photoluminescence experiment, although only the
guided part is of interest in the following.

If the laser spot is far enough from the PC’s under test, the
point source approximation is valid and the guided beam has
almost straight wavefronts. It is not quite so when photolu-
minescence is excited close to, or even within, a photonic
structure, a situation met in the two last sections. It leads
to some additional phenomena (directionality [31] or lifetime
[32] changes), which will not be considered in this paper.

For collection, it is convenient to take advantage of a
cleaved edge located at a few tens of micrometers of the PC’s
[18]. As will be shown later, the ability to collect light with a
good degree of spatial resolution is essential when assessing
properties of the PC’s.

An alternative way of collecting guided light could be to use
a grating coupler to the air. It turns out that, to a smaller degree,
scattering to the air by the PC plays a similar role in some of
the crystals or etched mirrors used to define cavities below.
Surface emitted light is more easily detected in this latter case
because the source is within a micrometer or so of the photonic
structures, giving rise to a larger absolute scattered intensity.

B. Setup

Two optical axes coincide at the sample location: one nor-
mal to the sample surface, the other normal to the cleaved edge
[Fig. 3(a)] [18]. The first, denoted the front axis [horizontal in
Fig. 3(a)], is used to excite photoluminescence and view the
sample surface. The PL spot is located at a distanceon the
order of 20–200 m from the cleaved edge. We use dichroic
mirrors and filters to observe this front surface and collect all
the 900–1100-nm infrared beams (PL + visualization) onto an
ordinary charge-coupled device (CCD) camera.

The second axis, denoted the lateral axis [vertical in
Fig. 3(a)], is at right angles with the former. We use a
microscope on this axis, with apertures ranging from 0.25
to 0.4, and again infrared imaging is performed by means
of an ordinary CCD. The sample, mounted on a goniometer
head, is carefully aligned with both axis.

Spectral analysis may be performed with a resolution of
a few micrometers on the front or lateral axes: In front of
each CCD, beam splitters direct the magnified image into
a multimode optical fiber, which guides photons toward an
optical multichannel analyzer, with a cooled Si-CCD detector
(detection limit nm). This spatially resolved analysis
is crucial in selectively collecting guided light rather than other
beams [18]. Fortunately, two factors combine to enhance this
selectivity.

1) Neglecting any absorption, the nonguided beams decay
as 1 , whereas the guided beams decays as 1.

(a)

(b)

Fig. 3. (a) The measurement setup: two optical axes coincide at the sample
location, one normal to the sample surface, the other normal to the cleaved
edge. Both front and side photoluminescence are spatially resolved by
the fibers (100-�m core) before being spectrally analyzed by the optical
multichannel analyzer (OMA). (b) Configuration used for PC transmis-
sion/reflection measurements: excitation is performed at a constant distanced
from the edge; the reference is taken in an unetched area. When light traverses
the photonic crystal, interferences between the crystal and the cleaved edge
arise.

2) The intensities of the former beams rapidly vanish at
grazing incidences. Snell’s law predicts that the air beam
is coupled in this limit to vanishing internal angles;
for the substrate beam, it has to “tunnel” through the
thick Al-rich clad layer before propagating beneath the
guiding structure, a mechanism that also causes an
important attenuation.

Finally, refraction and Snell’s law also naturally provide us
with an internal angular selectivity of a few degrees around
the normal to the cleaved edge: the largest angle collected in
the microscope is , where is the effective
index of the waveguide mode. We used an aperture ,
resulting for in a maximum internal angle of

. Since many of the basic photonic features such
as the Fabry–Perot resonances, investigated below, have a
basic 1 behavior, this angular selectivity translates into
a spectral selectivity better than 0.7% if all the emerging
directions are collected. The spatially resolved detection into
the fiber also selects a still narrower angular range of 1–2.
For , the effects discussed above are smaller than the
spectrograph resolution (0.05%).
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The system is mounted in such a way that the front optical
axis can be moved freely below the microscope with perfectly
constant excitation conditions. The whole experiment (except
the OMA) is very compact. For further studies, cooling of the
sample between the two objectives would be the main tour de
force that would still enhance our capabilities.

C. Measurement of Reflection and Transmission

Fig. 3(b) describes the configuration used for PC transmis-
sion measurements [18], [19]: excitation is performed at a
constant distance from the edge. To get a reference signal

, the guided light intensity is measured in a nonprocessed
area, separately in both TE and TM polarizations. There are
three attenuation mechanisms with respect to a usual plane
wave.

1) The probe beam diverges and decays as 1.
2) There is some reabsorption of the generated guided

light between the spot and the cleaved edge, partic-
ularly strong in the case of quantum wells at photon
energies above the exciton energy, but still in the linear
absorption regime, as checked experimentally by varying

.
3) The facet transmission.

However, when placing a photonic crystal into the light
path, at a distance from the cleaved edge, and measuring
the new intensity , the two first mechanisms do not
change in magnitude. The third mechanism turns out to
provide multiple-beam interferences between the photonic
crystal and the cleaved edge. Accordingly, fringes appear in
the transmitted spectra, the ratio being described
by the classical Fabry–Perot-type transmission formula

where and are, respectively, the cleaved edge and the PC
amplitude reflectivities, and is the guided mode absorption
coefficient. The fringe visibility thus offers a convenient means
to measure the crystal’s amplitude reflectivity, under the
assumption that the wavelength-dependent absorption factor

is known and moderate. The choice of the distance
(depending on the ability to cleave at a predetermined

position) is thus a compromise between absorption (low)
and an optimal pitch of the fringes with respect to the photonic
features such as gap edges, etc., on the one hand and the
spectrometer resolution on the other hand. Other factors that
affect the fringe visibility are the finite extent of the source
and of the collection region, which both introduce variable
angles of the probe waves, and the tiltbetween the crystal
face and the cleaved facet, which causes fringes to be spatially
localized within a length on the order of .

In the case of quantum wells (QW’s), due to reabsorption
of the guided mode by quantum-well excitons, the probed
wavelength range is usually quite narrow (about 20 nm wide
only), so that only a small part of the band structure can be
checked with one slab of crystal. Since the spectral behavior of
a (perfect) photonic crystal scales with the dimensionless nor-
malized energy , instead of varying , we fabricated

(a)

(b)

Fig. 4. (a) Diffraction geometry used to detect backward diffracted beams
and (b) same for forward diffracted beams.

photonic lattices with seven different periods at a constant air-
filling factor [a technological challenge (see [10])], ranging
from nm to nm, in order to probe a large
range of from 0.18 to 0.4. The different crystal
axes were probed by fabricating two types of pattern, with
either the or the principal crystallographic axis of the
Brillouin zone aligned along the probing beam (i.e., normal to
the cleaved edge).

D. In-Plane Diffraction Measurements

Photonic crystals exhibit a gap at those frequencies that
build up constructive interferences that prevent light propaga-
tion. A plane wave at a gap frequency impinging on a crystal,
however, has no reason to be specularly reflected: it can also be
diffracted. It is not a surprise that a periodic object gives rise to
diffraction, all the more so if the impinging beam travels in a
media of higher index than the average photonic crystal index.
These diffraction effects have been assessed theoretically [33].
Experimentally, we use the geometry of Fig. 4(a) to detect
possible diffracted beams in the reflection geometry, and that
of Fig. 4(b) in the transmission geometry [19]. In the case
of quantum wells, a narrow wavelength range is present in
the measurement, the Bragg angle for diffraction is almost
uniquely defined, and two diffracted beams appear on the
CCD in the form of secondary virtual sources beneath the
crystals. The proper way to take into account the geometry of
the measurement to extract a meaningful diffraction efficiency
figure is described in [19] and [34].

E. Quantum Wells Versus Quantum Dot Luminescent Layers

We discussed above the fact that due to the reabsorption by
excitons, quantum-well layers caused a strong reabsorption for
most of the photoluminescence spectrum generated into the
waveguide modes, allowing large propagation lengths (tens
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(a)

(b)

Fig. 5. (a) Lateral photoluminescence for a heterostructure containing three
quantum wells, showing for TE polarization the strong heavy hole absorption
edge at 980 nm that restricts the useful range to about 20 nm. The companion
light-hole absorption edge lies at 940 nm. (b) Lateral photoluminescence for a
heterostructure containing three layers of self-organized InAs quantum dots, at
a few tens of micrometers from the edge. After a larger distance, the relative
intensity of the short wavelength side decays, and the maximum shifts toward
1000 nm for the TE polarization.

of micrometers or more) only in the low-energy tail of the
spectrum. This is visible in Fig. 5(a), in which the sharp edge
stemming from excitons at 980 nm is clearly visible on the
guided TE spectrum, together with the slight recovery of the
signal at smaller wavelengths. The other spectrum represents
a typical TM spectrum with slightly less marked features. Let
us recall that electron-heavy-holes (respectively, light holes)
recombinations are rather TE (respectively, TM) polarized
and occur at different energies, but that in the present case,
due to the 1–2% compressive strain in the quantum well, the
polarization selection rules are still more apparent.

The narrow spectra and short reabsorption length both
can be overcome by the use of luminescent self-organized
InAs quantum dot (QD) layers. When growth is performed
in such a regime that a deliberately broad size distribution
of the dot occurs, it translates into an inhomogeneously
broadened spontaneous emission spectrum, with widths of
several hundreds of nanometers. Absorption is also spectrally
diluted, so that the absorption coefficient is much less than 100
cm in a broadband at wavelengths from about 940 nm to at
least above our detection threshold of 1060 nm [see Fig. 5(b)].
The inconvenience of this broadened spectra is the smaller
intensity available per unit bandwidth (or equivalently per
spectrometer pixel) and the slightly poorer photoluminescence
yield homogeneity due to the random nature of the growth.

Fig. 6. Band structure of a 2-D PC with an air-filling factorf = 0:285 and
dielectric constant" = 11:6, calculated with 217 plane waves. We usea=�
as the normalized frequency. The first Brillouin zone is sketched in the inset.

However, with three InAs layers, a fairly good uniformity was
obtained, typically below 10% at the scale of the patterns
(100 m). For better accuracy, we used the wavelength-
integrated front PL of QD’s to compensate this fluctuation.

An important advantage of QD’s is their better immunity
to nonradiative recombination at etched interfaces, due to the
fact that carrier are trapped in the dots. This trapping is far
from perfect at room temperature, carriers still “evaporate”
from the dots, and some diffusion to the etched interfaces is
still likely to occur, but to a much reduced degree compared to
quantum wells. On the other hand, when considering structures
for device applications, QW’s might retain some advantages:
for light-emitting-diodes, for example, the higher density-of-
states of QW’s can lead to higher injection levels before
reaching saturation, which translates into higher brightnesses
(radiances).

III. OPTICAL PROPERTIES OF2-D PC’s:
REFLECTION, TRANSMISSION, AND DIFFRACTION

A. Basic Predictions for 2-D Photonic Crystals

Fig. 6 gives an example of the band structure of a triangular
2-D photonic crystal made of cylindrical holes with filling
factor in a dielectric matrix , calculated by
the plane wave method [35]. We use again the normalized
frequency . A full gap forms only for the TE
polarization, between and . For a 1- m
probe wavelength in vacuum, the corresponding crystal periods
range from nm to nm. Due to the smaller
at the Brillouin zone edge, the stopband is centered at a
lower frequency than the stopband but has a similar width.
In the TM polarization, a stopband at frequencies just below
those of the TE stopband can be predicted along. Note that
such a diagram does not predict all the transmission gaps: a
stopband can also arise due to the absence of coupling between
an incident plane wave and the-matched propagating Bloch
mode [36]–[38].

Since the air-filling factor may vary owing to the fabri-
cation process, the “gap map” of Fig. 7 depicting the gaps
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Fig. 7. Map of photonic bandgaps in both polarizations for a triangular lattice
of cylindrical holes in a dielectric matrix" = 13:6 in the (f; a=�) plane.

as a function of is an important piece of information
(it is done here for GaAs with : this lowers the
frequencies and slightly broadens the gaps with respect to

). It is seen that the TE gap (favored by connected
dielectric structures) forms around and increases
linearly beyond. The frequency of the lower TE band edge,
the “dielectric band” (because the mode at this band edge
is localized in the dielectric; it is also called the “valence”
band [2]), is roughly independent of in this low- region
as the fields in these modes tend to overlap air holes as little
as possible. The opposite behavior holds for the upper band
edge (“air” or “conduction” band), growing rapidly with,
because the field of these modes is more present in air holes.
The TE gap width is thus a good measure of the air-filling
factor. Note also that filling factors of about 0.6 are needed to
obtain overlapping TE and TM gaps.

Comparing our data to these purely two-dimensional predic-
tions, as done below, is a test assessing whether the waveguide
configuration, a quasi-2-D system, can represent a 2-D physics
experiment on the same footing as an infinitely extended array
of cylinders probed by a normal plane wave.

B. Quantum-Well Layers: Reflection and Transmission

All subsequent data in this section are taken through
15–unit-cells-thick quasi-infinite slabs of photonic crystal,
30 m long. Measured transmission (points) and their
derivatives (arrows) are reported for all seven
samples and the two directions of propagation and
[19]. Lines are guides to the eye. Data are shown first for the
TE case where a gap is expected [Fig. 8(a)]. For comparison,
we show [Fig. 8(b)] the theoretically predicted transmission
(using transfer matrix method) of a triangular array of
infinitely deep air cylinders in a uniform dielectric, below
the experimental data. Parameters used in the calculation were

%, consistent with experimental values, and dielectric
constant , somewhat lower than the effective index
of the waveguide.

The general behavior of intensities as well as derivatives
is very consistent with the calculation. In particular, one can

(a)

(b)

(c)

(d)

Fig. 8. Transmission and reflection from a 15-row crystal. (a) TE exper-
imental points and derivatives for�M (solid lines) and�K (dashed lines)
orientations. The lines are guides to the eye only. (b) Corresponding theoretical
transmission of a purely two-dimensional PC of 15 rows for" = 10:2
and a filling factor 28.5%. (c) Experimental reflection data for�M (bold
lines) and�K (thin lines) orientations. (d) Theoretical reflection of a purely
two-dimensional PC of 15 rows for�M (solid lines) and�K (dashed lines)
orientations.

note the relative positions of and curves and the two
overlapping stopbands around , going down to the
noise level. Clear falling band-edges appear at for
and for . In the pass window between
and , transmission in excess of 50% is observed not
far from the theoretical value. The contrast between pass and
stopbands exceeds three orders of magnitude.

A crucial test showing that in-plane interference effects
dominate the photonic crystal behavior (as opposed to out-
of-plane scattering that would diminish transmission as well)
is that low transmission regions display high reflection as
well. Reflection data obtained from the analysis of fringe
visibility are shown in the bottom frames [Fig. 8(c)]. Unlike
transmission data, only points are displayed since a derivative
cannot be deduced with the small number of fringes spanning
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(a)

(b)

Fig. 9. (a) Same as Fig. 8(a) for TM polarization and�M orientation. (b)
Corresponding theoretical transmission of a purely two-dimensional PC of 15
rows; note the plateau aroundu = 0:28.

the 20-nm spectral window. Again, a very satisfying agreement
with theory is found [Fig. 8(d)]. The highest reflectivity of

80% is obtained for TE polarization propagating along
, coinciding with the low transmission window.

Fig. 9(a) shows transmission data for TM polarization along
the direction. It is especially striking because of the
very high transmission obtained around , a region
where theory predicts a particularly flat pass-window, very
close to unity [Fig. 9(b)]. This is an interesting situation as
light traverses 30 dioptric interfaces and still retains most of
its intensity. This can be viewed as a nice demonstration of
the existence of propagative Bloch modes even in a strongly
variable dielectric landscape, in some respects at least as
impressive as the existence of strong stopbands.

C. In-Plane Diffraction

Although in-plane diffraction of a wave impinging on a
2-D photonic crystal at a gap frequency has been predicted
[33], its experimental demonstration partly came as a surprise,
as it was often thought that a full photonic bandgap would
provide a perfect mirror, implicitly meaning a mirror with
100% specular reflection.

In-plane diffraction effects are basically determined by the
full 2-D periodicity of the PC. One limit case is kinematic
“volume” diffraction as is usual for X-rays, and for which
the reciprocal lattice has to coincide exactly with the Ewald
sphere. But due to large dynamical effects (e.g., attenuation of
the incident wave on the successive rows), the details of which
are beyond the scope of this paper, conditions for diffraction
are much relaxed from exact coincidence. It can then be shown
that the diffraction cutoff rules for guided waves impinging
onto a PC slab are similar to those of diffraction by a plane
grating [19] having the periodicity of the slab boundary. For
the crystals under test here, for slabs and

for slabs. As a result, diffraction at normal incidence
is allowed for normalized frequencies for

slabs and for slabs, including
the TE gap frequency only in this latter case. Only below these
cutoffs should one observe . Above, four plane

(a)

(b)

(c)

Fig. 10. (a) Experimental measurement at normal emergence of the diffrac-
tion efficiency into the two first-order backward beams (taken together) for
�M (solid lines) and�K (dashed lines) directions normal to the crystal. (b)
Theoretical efficiency. Note the cutoff aroundu = 0:30, which is too large in
the theory because this latter assumes a too-low effective index (3.2 instead of
3.4). (c) 2-D Ewald construction: reciprocal lattice (points and dashed lines)
of the crystal for�K orientation, Ewald circle, normally incident wave (bold
arrow), diffracted waves (thin arrows), and specular reflected wave (dashed
arrow).

waves are likely to be diffracted in first-Bragg orders at angle
, two with efficiencies and two with efficiencies (see

Fig. 4). Lossless interaction of a guided wave with the crystal
now reads , where is the
diffracted power for unit incident power. As for the absolute
magnitude of and , the relaxed Ewald conditions still
tell us that these magnitudes depend on the proximity of the
associated reciprocal lattice vector with the Ewald sphere, as
illustrated below.

The measured diffraction efficiencies are shown in
Fig. 10(a) for TE polarization in the backward diffraction
geometry. They are compared to calculated curves for 2,
using the same fitting parameters as above [Fig. 10(b)]
[34]. No diffraction was detected below the predicted cutoff
value along while along , diffraction was observed
throughout the investigated normalized frequency range,
including the bandgap between and . In
particular, close to the “dielectric” (valence) band edge at
which diffraction efficiency approaches unity in the theory, it
is measured at 90% for . A simple reason for this
impressive efficiency is suggested by the Ewald construction
in 2-D, for a frequency of the order of the gap and an incident
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wave along [bold arrow on Fig. 10(c)]: at the gap
frequencies, two nodes of the PC’s reciprocal lattice closely
approach the Ewald circle, as is logical to build a Bragg
reflection. But these nodes correspond to backward diffraction
(thin arrows), whereas the node corresponding to specular
reflection (dashed arrow) is still far from the circle and thus
of lower efficiency. This naive picture neglects the various
effects that relax -space selection rules (finite crystal, finite
wave penetration) but provides the simplest explanation of the
strong backward diffraction occurring at the gap frequency.

Diffraction efficiencies in the forward geometry were also
measured, but they are not displayed here, as efficiencies
(predicted and measured) are all below 30%. This pertains
to the strong multiple diffraction events undergone by guided
light throughout the 15 rows, which cannot, unless specifically
designed, lead to a single beam. In reflection, and especially in
the gap, only the penetration length of a few rows is sampled
by the impinging beam, and a single diffraction event may
more easily dominate.

In summary, diffraction phenomena are an integral part
of photonic bandgap concepts if the outside medium is just
the unetched dielectric matrix, a quite canonical case indeed:
the periodic nature of photonic crystals results in the fact
that light whose propagation is forbidden is not necessarily
specularly reflected by the crystal. Backward diffraction is the
other possible channel, which can be dominant in the bandgap
region. As a consequence, photonic crystals arenot, in general,
perfect specular mirrors in the bandgap.

D. Experiments with Quantum Dot Layers: Transmission

In spite of its completeness, the above set of results is still
sparse from the spectral viewpoint. In particular, we miss al-
most completely the “fine structure” of secondary oscillations
either in transmission or reflection that are usually present
in the passbands [Fig. 8(b) and (d)]. We thus investigated
similar crystals, but using luminescent layers based on self-
organized InAs quantum dots [39], [40]. Again, to have a
full picture of the PC transmission over a broad range of
the ratio , seven different periods were selected:

, and nm. For each
period and orientation, PC’s with a number of rows varying
from to were defined and etched with air-filling
factors around 25–30% [20].

A set taken from the “glued” data from the seven samples
is presented in Fig. 11(a) for the TE- case and .
It was treated to suppress the FP fringes by linear Fourier
filtering [20]. The sharp “valence band edge” of the photonic
gap is clearly defined at . Apart from the leftmost data
from the –nm sample, the gap is clearly apparent,
and around it, the oscillations of the fine structure are most
obvious on the valence band side but are also clear in the
region . The holes of the –nm sample
are less than 100 nm in diameter and limit the etch depth,
causing in turn strong scattering into the substrate and weak
transmission [28], [41]. The stitching mismatch between the
200- and 220-nm samples is due to the material dispersion:
common spectral features (such as the valence band edge) are
probed at different wavelengths for different crystal periods,

(a) (b)

Fig. 11. (a) A set of the “glued” transmission of seven 15-row crystals of
the indicated periods for TE polarization,�K orientation, taken on a quantum
dot-based heterostructure, as a function of the normalized frequencyu = a=�.
(b) The fine structure oscillations are used to reconstruct the coupled photonic
band, usingk-quantization between the boundaries of the PC to assign the
k’s of oscillation extrema.

which actually correspond to crystals with different indexes
of refraction. The small features into the gap correspond to
the long wavelength side of the PL spectrum, with a larger
noise [20].

The overall shape is in good agreement with theory
[Fig. 8(b)]. The fact that the fine structure is now well
seen means that Bloch waves do sample the 15 rows with
a sufficiently small attenuation per round-trip to preserve
these oscillations, which can be viewed as the Fabry–Perot
oscillations of Bloch waves making round-trips upon reflection
at the slab boundaries. The Bloch wavevectorat which these
oscillations occur is thus dictated by conditions similar to the
classical -quantization condition in a cavity of thickness

( is a multiple of ). Accordingly, by plotting the
frequencies of extrema at adequate’s, we could reconstruct
the band structure of the crystal in the TE polarization [20], as
shown in Fig. 11(b) for the coupled bands in the direction
(one of the “air” bands is symmetry forbidden) [36]–[38].

In spite of an overall agreement, there are still some
interesting differences with the perfect crystal. It is worth
noting, in particular, that the two bandgap edges are quite
dissimilar, the “valence” band edge being much sharper than
the “conduction” band edge. The reason for this difference
could be intrinsic scattering losses, discussed in the next
section.

IV. L IGHT LOSSES ANDTHEIR ORIGINS

A. Experimental Losses: The Missing Light

As mentioned in the section on diffraction, lossless in-
teraction of a guided wave with the structure now reads
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Fig. 12. Losses as a function of the sample period from the data of
Figs. 8–10. Note the minimal losses in the TE gap due to high reflection or
high backward diffraction efficiency and the different behavior ofTM=�M
due to a high transmission.

, where is
the power going into diffracted waves. The out-of-plane losses
are the complementary quantity . The value of is
specific to each sample, so we chose to present the results as
a function of the lattice period rather than the variable. We
calculated this sum for all our quantum-well samples from

to nm. The samples with nm were
not included because they exhibit second-order diffraction,
which would overly complicate the analysis. The results are
summarized for all samples in Fig. 12 for the TE polarization
and also for the interesting case of the direction for the
TM polarization. The indicated TE gap is given for the 995-nm
central wavelength of this polarization.

The high losses shown by the 180-nm sample and probably,
but to a smaller extent, by the 200-nm sample are likely to be
caused by scattering arising from the insufficient etch depth
due to the small hole diameters (100 and 120 nm). On the other
hand, the steady rise of TE losses on the “conduction band”
side, contrasted by the very weak TM losses around 300 nm
(where the crystal transmission is expected to be very close to
unity even in the perfect model, as though the crystal were a
stack of pseudotransparent “2” layers), points toward losses
of more intrinsic origin, i.e., intrinsic to the electromagnetic
properties of the crystal + waveguide configuration, which
should persist for infinite cylinder depth.

The fact that losses are minimal in the gap is good news,
but it does not necessarily mean that the elementary intrinsic
scattering mechanism acting in the “conduction” band is much
diminished in the gap; rather, the scatterers manage to expel
the electromagnetic field from the PC over a few rows by
constructive interference of backward wavelets. Since the field
then samples only a few rows, it experiences smaller overall
losses compared to the situation where the full 15-row slab
is sampled.

B. The Significance of the Asymmetry of Band Edges for Losses

The oscillations appearing in the transmission spectra of
Fig. 11(a) gathered using quantum-dot emission are not as
sharp as in the two-dimensional theory, and very much damped
on the “air” band side. To give a heuristic explanation of

Fig. 13. Normal incidence transmission of a one-dimensional alternate peri-
odic stack (DBR) made of lossless semiconductor (" = 11:5) and a fictitious
material with an indexn = 1 + in00, which plays the role of the photonic
crystal rows of air holes, as depicted in the inset, for the two indicated values
of n00.

the interplay of crystal modes with the loss mechanism, we
present in Fig. 13 the normal incidence transmission of a
one-dimensional alternate periodic stack [distributed Bragg
reflector (DBR)] made of lossless semiconductor ( )
and a fictitious material with an index in which plays
the role of the rows of air holes. Since the dissipation due to
this imaginary index arises only in air, it mimics the effect
of the radiative loss mechanism, which “dissipates” in the air
holes the guided waves into out-of-plane radiating modes. The
filling factor of the dissipating material in this 1-D model is
chosen by approximately fitting the relative gap extent of our
2-D photonic crystal.

The resulting transmissions of Fig. 13 clearly show that the
lower frequency band edge is much less affected than the
upper edge by the losses. It remains sharp, and secondary
oscillations have about the initial amplitude for values of
such as for which the other edge is quite smooth and
display only a series of shoulders onto a smooth rising edge,
with a relative amplitude growing toward higher frequency.
This behavior can be simply understood from the distinct
spatial localization of the two band-edge modes in a perfect
stack, which are standing waves: the upper edge mode has its
antinodes coinciding with the lossy material whereas, at the
same location, the lower edge mode has nodes. Given the fact
that the optical thickness is well below a quarter-wavelength,
this latter mode becomes particularly insensitive to the losses.

The qualitative agreement between this simple picture and
measurements strongly supports the conclusion that the main
loss mechanism observed in our photonic crystals is indeed due
to the radiation loss occurring because of the intrinsic absence
of waveguiding in the air holes: the Bloch wave damping is
enhanced when light is more localized in the holes, i.e., in
the “air” (conduction) band. Whether the quantitative value
of the observed losses corresponds to this sole physical limit
(i.e., that of holes with infinite etch depth) is still an open
question [42].

Another mechanism sometimes invoked is the possible poor
coupling between the ordinary waveguide mode and the Bloch
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guided wave in the periodic crystal, which can have a different
vertical profile. Such a mismatch might lead to out-of-plane
scattering. However, as this mechanism bears little relation
with the Bragg condition in the crystal, it should have no strong
frequency dependence. Thus, an upper bound to its strength in
terms of out-of-plane scattering is given by the point of lower
losses, i.e., in the TE gap, in which it was found to be less
than 10%. We therefore believe that it is not our dominant
loss mechanism.

C. One-Dimensional Cavities as Probes
of 2-D PC-Based Mirrors

In the photonic gap, not only is low transmission desired,
but even more desirable is high reflectivity (specular or not).
While it is always difficult to calibrate reflectivities close to
unity, it is obvious from the large body of work achieved
in high finesse planar microcavities that measuring reflection
and transmission peaks of Fabry–Perot cavities yields the most
precise information regarding the mirror reflectivities [43]. An
analogous horizontal cavity to the planar Fabry–Perot cavities
can be created by the introduction of a spacer between two
PC’s, or in other words, by the introduction of a line defect
in the form of a larger separation between two of the rows of
a PC. The cavity is then formed by the guide section between
the two mirrors [21].

This has been done for spacers in the 60–360-nm range
[22], selecting the orientation in order to get rid of
diffraction effects with symmetric mirrors of four rows in each
PC slab (note that the converse could have been done using

normal to the cavity and that it is possible to realize
a single-mode cavity in a regime dominated by diffracted
beams). The transmission characteristics of these cavities have
been measured by the same method as those of PC’s (the
“point source” method), with some care regarding the strong
angular dependence of the Fabry–Perot resonance. Sharp peaks
as narrow as 8 nm have been measured ( ) even
for the narrowest cavities (70-nm spacer, i.e., a quarter-
wavelength in the guide). A typical example is shown in
Fig. 14, corresponding to a “second-order” spacer (34) [22]
and four rows of a 200-nm period PC. This example with a
transmission at the peak of 0.2 is not the most advantageous,
as peak transmission of 0.35 was also measured.

To complete the set of data, we could also measure the
reflectivity of this cavity by a direct method, i.e., by locating
the “point source” (the laser spot) between the PC and the
cleaved edge and selecting only the reflected light, with a
normalization procedure adapted to this geometry, with a 10%
uncertainty. The dip in the reflectivity curve has the same
narrow width as the transmission peak but goes to as low as

. Still, we think that this value is overestimated
and due to the divergent nature of the probe beam, among
other factors that can broaden the peak.

The mirror reflectivity is relatively easy to deduce using
the quality factor and the effective cavity order, which was
obtained by a simple method in [22]. Finesses ranging from
25 to 63 have been deduced, translating into reflectivities in the
88–95% range for four rows. The losses can then be deduced

(a)

(b)

Fig. 14. (a) Schematics and micrograph of an in-plane Fabry–Perot cavity
with PC mirrors (the microcavity on the micrograph has a 70-nm spacer). (b)
Transmission (black) and reflection (gray) of a Fabry–Perot cavity formed
between a pair of identical 2-D PC’s and probed along the normal�M

direction. Each PC has a 200-nm period and consists of four rows. The spacer
is about 200 nm thick.

in each mirror by calculating 1-R-T, since the single mirror
transmission is known to be about 4%. From the above data,
one can deduce losses between 2 and 8%. At the present stage,
our view is that the factor of this kind of cavity gives an
integrated measure of the losses but does not easily allow us
to ascribe these losses to a particular location or a precise
mechanism. Simple models also predict that in symmetric
cavities, lossy mirrors lower the on-resonance transmission
peak value much more than they affect the resonant reflection
minimum, as observed in our case. Further work to understand
which information can be best drawn from the combined
transmission and reflection data is in progress.

V. PHOTONIC BOXES BASED ON A

WAVEGUIDE: CONFINEMENT BY CONCENTRIC

BRAGG GRATINGS IN MICRODISCS

The ability to laterally confine light into a waveguide can be
used to form fully confined photonic boxes whereby the two
horizontal dimensions in the guide are subject to confinement
by means of periodic etched structures while the guide freezes
the third photon degree of freedom.

Such a kind of confinement was demonstrated in mushroom-
shaped microdiscs [44], [45] in which total internal reflection
is used to confine whispering-gallery modes (WGM). Eigen-
modes of a perfect disc can be indexed by an azimuthal number

[the angular momentum as the field contains an
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(a)

(b)

(c)

(d)

Fig. 15. (a) WGM of a perfect disc, (b) QRM’s of the same disc, (c)
micrograph of the disc cavity with a concentric Bragg reflector that confines
QRM’s, and (d) spectra of the “stray” luminescence originating from the
grating area for a disc of inner diameter2R = 3:1 �m, trench spacing of
� = 620 nm, and the indicated values of the numberN of concentric trenches.
A tentative numbering of the peaks of a typical cluster with the two discrete
(n; m) numbers is made for the caseN = 8.

factor] and a radial number. WGM’s, confined close to the
disc boundary, feature and have very small modal
volumes [Fig. 15(a)]. This means that, for emitters distributed
across the disc, most of the emission goes into leaky modes
of the disc with higher ’s, not in WGM’s.

We thus attempted to use a circular Bragg reflector to
confine modes that do sample the entire disc, such as QRM’s
depicted in Fig. 15(b), with the property that [25].
Their outer radiation pattern is more easily shaped into a useful
beam [46] given their small number of lobes. A micrograph
of the corresponding disc cavity is shown in Fig. 15(c). The
trench spacing , around 600 nm, ensures Bragg reflection
around nm, while the trench width was chosen small
enough (70 nm), again to reduce radiation losses. As explained
in [25], the guided light diffracted toward air at each trench
is nevertheless a useful probe of guided light intensity and
thus of cavity modes. The inner diameter 2, around 3 m,
is chosen to conveniently excite into the disc the InAs dots
embedded in the waveguide.

When selectively collecting the “stray” luminescence orig-
inating from the grating area, we observe the spectra of
Fig. 15(d) for discs with to trenches. As increases,
these spectra display sharp clustered peaks (up to
in some samples) onto a smooth background. These peaks
could be unambiguously attributed to QRM resonances [25],
each cluster corresponding to a given value of 2 ,
as this peculiar combination determines the QRM resonance
position at first order. Details about the cluster’s fine structure,
governed by , can be found in [25] and lead to the tentative
numbering shown in the figure for the case .

Note also that the peaks do sharpen until , but
not much beyond. This value can be viewed as the
point at which radiation losses prevent the grating reflectivity
from further approaching unity: instead, the grating reflectivity
saturates, as can be easily inferred again from a simple one-
dimensional model analogous to that of Fig. 13 above.

VI. M ICROMETER-SIZED HEXAGONAL

CAVITIES BOUNDED BY 2-D PC’s

A. Design and Experiments

Defining horizontal cavities with circular boundaries al-
lowed us to confine QRM’s instead of WGM’s. A still more
desirable configuration is to confine all the modes of a given
area by means of two-dimensionally periodic PC’s that achieve
an omnidirectional total reflection. Let us underline that this
reflection can manifest itself in a general form including
diffraction, but as long as the impinging energy flux is redi-
rected inside the cavity, eigenmodes will form that automat-
ically cast this diffraction phenomenon in their field pattern.
For small microcavities, say, a few wavelengths, ray tracing
becomes meaningless due to the diffraction limit, but one may
envision larger cavities of typical size above ten wavelengths,
in which a set of rays that achieve round-trips mostly based
on diffraction at -type interfaces of the PC’s described in
Section II may be envisioned.

For simplicity with respect to simulations, and capitalizing
on the microdisc ideas, we designed in-plane cavities in the
form of hexagons carved into an otherwise regular triangular
PC with -type boundaries, which are conveniently de-
scribed by the size of their side in units of (inset of
Fig. 16; similar cavities are presented in [47] and [48] and
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Fig. 16. Spectra for hexagonal cavities carved into triangular PC’s. (a)–(d)
Spectra collected in the PC area adjacent to the cavity for cavities H4–H7.
The inset depicts the H4 cavity of side 4a. (e) Same cavity H5 as (b) but for
collection inside the cavity, hence the larger background.

also in the contribution of Pottieret al. [49]). In our case,
cavities with (denoted H4, , H7) were
etched in triangular photonic crystals of period 240 nm similar
to those described in Section II. The area of the bare cavity is

. This area is useful to estimate a lower bound
to the modal volume of the modes of such a cavity as well
as an upper bound to the mean mode spacing since, in two
dimensions, the density of modes per unit relative bandwidth

m
around m, a formula that includes possible degenerate
modes that would appear experimentally as a single peak.

The basic heterostructure including an InAs QD layer (for its
immunity to nonradiative recombination) and the measurement
technique are the same as in Section V. The spatial resolution
of light collection is now of the same order as the cavity size;
also, given the broad spectrum (10% in relative terms), chro-
matic aberrations blur the spatial definition. As a consequence,
collection in the middle of a cavity already yields a signal
that consists of a background with superimposed sharp modes.
However, displacing the collection area to the PC boundary
just adjacent to the bare cavity yielded a smaller background
and generally larger sharp peaks. Examples of spectra col-
lected for cavities H4–H7 are given in Fig. 16(a)–(d), while
Fig. 16(e) is for H5 and a collection in the middle of the
cavity, showing the large background due to the direct central
area emission [23].

The interpretation of these spectra is much more diffi-
cult than for microdiscs, as there exist, to the best of our
knowledge, no simple formula for the Dirichlet or Neumann
eigenmodes of a hexagon, but only for those of a triangle.

Fig. 17. Spectra for hexagonal cavities carved into modified triangular PC’s.
Same as Fig. 16(a)–(d) but, as depicted in the inset, sets of two or three holes
parallel to the�M sides are removed from the surrounding PC.

Moreover, the PC boundaries might play a role different from
that of the smooth boundaries of the microdiscs by allowing
different penetration lengths in different crystal directions.
However, a first indication is that the number of detected peaks
per unit relative bandwidth (here a 10% relative bandwidth) is
typically 1/4 of the expected value in the best cavities. With
the likely degeneracy effects, this discrepancy can be brought
back to about one-third. A possible reason why so many of the
modes are missing is probably not that they are not confined
but rather that they do no scatter enough light in air to be
detected, rather good news in some respects. This will appear
more obviously from the mode shape given by the simulation
below, with simple assumptions on the scattering mechanism.

To gain further insight on the confinement of our hexagonal
cavities, we also designed similar cavities but bounded by a
slightly lacunary PC, as shown in Fig. 17(a): along the
direction (from the center), a few short rows were removed.
This can have various effects: degrade the quality factor, create
localized or coupled resonances, and affect the air radiation
mechanism in all the region “shadowed” by these missing
holes. The results [Fig. 17(a)–(d)] are quite similar to the
previous ones, a closer look showing that resonances now have
rather lower quality factors around 500, but at quite the same
location as previously, and with very similar intensity distribu-
tion. Also, no sign of coupled or new resonances could be seen.
This suggests that the light in the microhexagons is very tightly
confined by the PC boundary, with a field decaying almost en-
tirely (say one or two decades) for only three rows. Hence, the
radiation mechanism responsible for the resonance detection
relies essentially on the field in the two first rows. In these
rows, i.e., within one wavelength, the field should be viewed
as the “near field” of the cavity (rather than the “far field”)
following still closely the mode pattern inside the hexagon.
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(a)

(b)

Fig. 18. Simulation of hexagonal cavity H5 (see Fig. 16). (a) Plot of the
eigenvalues!j as a function of their numberj in which the slope is the
inverse of the density-of-states, and is thus steeper when states are confined
into the cavity rather than delocalized in the five times larger supercell. (b)
Eigenfrequencies and their degeneracies one or two.

B. Supercell Eigenmode Calculations

These results prompted us to simulate the eigenmodes of our
cavities, at least in two dimensions. We chose a plane-wave
expansion on a supercell, similar to [50]. In general, one can
introduce a wavevector that allow modes propagating from
one supercell to the adjacent to be described. Here, we are
interested only by modes localized inside a given supercell.
The simplest supercell that may contain a hexagonal cavity is
the lozenge of dimension tiled with unit cells of
the triangular PC lattice. We could use sizes up to
to the expense of the accuracy since the number of reciprocal
wavevectors that enter the final matrices scales like ,

being the largest reciprocal wavevector, beyond which
truncation occurs. In this supercell, we remove those rods that
correspond to the cavity and write the structure factor for a
reciprocal wavevector as a sum

on the remaining rods centered at location. Numerically,
the eigenvalue problem was solved more efficiently for a cavity
centered on the supercell origin because, in this case, the
sixfold symmetry results in real coefficients of . One
can think of working in each subspace associated with the
eigenvalues of the sixfold rotation operator.

We first show the spectrum of the obtained cavity eigen-
values (given in terms of the normalized frequency )
on Fig. 18. The inset depicts the whole eigenvalues of the
matrix used in the calculation, including frequencies outside
the TE gap. They are just sorted and plotted as a function of
their sort number. The gap frequencies correspond to a steeper
slope because, in this frequency region, all the modes are quite
localized in the cavity, which is only a fraction (about 19%) of
the supercell. Hence the 2-D density-of-states of the modeled
system drops from one corresponding to a large area (the
supercell of area unit cells) to one corresponding to
a smaller area (the cavity of area 61 unit cells). The difference

Fig. 19. Modeling of hexagonal cavities bounded by 2-D triangular PC’s.
(a)–(f) Typical patterns of the scalarH field absolute amplitude of cavity TE
modes for cavity H5 with frequencies indicated on top (into the TE photonic
gap for the simulation parameters); successive nondegenerate modes were
selected. The array of black circles correspond to the crystal holes. They were
omitted on the bottom where only the hexagon perimeter is underlined. Note
the different radiations patterns in the boundary, simple in (a), lying at corners
rather than sides (b), complicated (c)–(e), or again localized on sides but with
a different symmetry.

in average dielectric constant, about the 28.5% filling factor
chosen in the simulation, as well as wave penetration into the
PC tend to increase the density-of-states in the gap region over
the naive surface-counting argument.

Typical TE mode patterns of cavity modes for cavity H5
with frequencies that fall into the proper TE photonic gap
are shown in Fig. 19 through the amplitude of their scalar

field. We selected nondegenerate modes for simplicity (see
[23] for the pattern of a degenerate mode). A set of six such
modes is illustrated in the order of increasing eigenfrequency,
as indicated on top in terms of . One
can see that mode (a) has a single lobe along each side,
mode (b) has two lobes, centered around corner, while the
next modes have still more spotty patterns. A mode (f)
with a rather simpler radiation pattern corresponding to a
plane wave impinging at 60incidence on the side occurs
again after these “spotty” modes. This selected sample gives
a reasonable justification that the scattered radiation might
have a very variable magnitude depending on the interference
effects arising between the radiation from different part of the
PC’s with opposite signs on distance of the order of the crystal
period. In particular, the fraction of well-detected modes might
grossly coincide with the fact that only modes such as (a) and
(b) give important contributions to the scattered far field in
our collection geometry.

VII. CONCLUSION

The set of measurements presented here quantitatively
demonstrates in an unprecedented manner all the basic
properties of two-dimensional photonic crystals in the optical
range: transmission, reflection, and diffraction. It also shows
that the out-of-plane losses are reasonably limited in the
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photonic gap. Another sign of this satisfactory behavior is
the existence, on transmission data using a broad internal
source, of the fine structure due to Bloch waves oscillating
across a rather thick photonic crystal. Confinement of light by
these photonic crystals was also successfully demonstrated.
In-plane microcavities offer interesting performances in terms
of quality factor and attractive solutions in terms of radiations
patterns.

From all these features, two perspectives are opened: on the
microscopic side, the choice of the heterostructure and the PC
parameters can still be refined, e.g., to minimize out-of-plane
scattering losses, and to tune the cutoff conditions for in-plane
diffraction. The most demanding configuration for losses is
probably set by the guide configuration between two PC’s,
which has not yet been the subject of many experiments in
the near infrared.

Another challenge is to define what functions are now best
fulfilled by PC’s rather than by present solutions, and to what
degree it should be attempted to combine into a single mono-
lithic approach “space-consuming” integrated optics functions
( branches, multiplexers, modulators, etc.) and their more
compact PC version.

Given the progress that one can expect along these two
lines, our results are very encouraging steps pointing toward
the future possible uses of PC’s for 2-D optoelectronic devices
and circuits.
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