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Optical and in situ characterization of plasma oxidized Al for magnetic
tunnel junctions

P. LeClair,¥ J. T. Kohlhepp, A. A. Smits, H. J. M. Swagten, B. Koopmans,

and W. J. M. de Jonge

Department of Applied Physics and COBRA, Eindhoven University of Technology, P.O. Box 513,
5600 MB Eindhoven, The Netherlands

An optical polarization modulation technique was adapted to provide a simple, fast, and flexible
method for studying the kinetics and growth characteristics of thin oxide layers, usi®g &$ an
example. The optical technique allows precise determination of the amount of remaining metallic Al
as a function of the initial Al thickness, while scanning a laser spot across the wedge. Optical data
suggest that the oxide growth rate for the ultrathin layers may be dependent on the specific
microstructure.In situ x-ray photoelectron spectroscopy performed on homogenous samples
confirmed the interpretation of the optical results. 2000 American Institute of Physics.
[S0021-897€00)43208-1

For fabricating reliable, high TMRtunnel magnetoresis- ized light at a frequency of 50 kHz using a photo-elastic
tance tunnel junctions;? optimization of the plasma oxida- modulator. After passing through a polarizanalyzey, in-
tion process to ensure minimal unoxidized Al, while prevent-tensities at 50 kHz1f) and at 100 kHZ2f) were monitored
ing oxidation of the underlying electrode, is of critical as a function of position on the wedge. To obtain an absolute
importance. However, few methods eXiStfor characteriz- calibration of the change in thef land & signals as a func-
ing the growth of ultrathin oxidic layers. An optical polar- tion of polarization rotation, the output of the signals were
ization modulation technique was adapted to provide ameasured after rotating the analyzer by a known angle.
simple, fast, and flexible method for studying the growth  To investigate the oxidation process as a function of oxi-
characteristics of thin oxide layers, with the potential ifor dation time, homogeneous ultrahigh vacuum magnetron
situ process monitoring. Due to the large difference betweersputtered samples of 3il1)/Ta 50 A/Co 50 A/Ald, were
the dielectric constant of Ald¢~—50+20i at A\~600 nm  prepared and plasma oxidized for various times from 0—600
and its oxide £~3.3 atA~600 nm),® the AI-AL,O; system s in 0.1 mbar @. In order to judge the amount of “instanta-
provides an almost ideal case for optical analysis. Combinegeous” oxidation, samples were also exposed to 0.1 mbar for
with the use of wedge-shaped Al structures and spatially re10 s without plasma. The oxidation was performed in an
solved optical probing, submonolayer amounts of Al mayincremental manneii.e., a 20 s sample has been twice oxi-
easily be observed. In addition to the optical technigne, dized 10 $ to study the time evolution of the oxidation un-
situ x-ray photoelectron spectroscogXPS and scanning ambiguously. In addition, reference samples of Co, Al,
tunneling microscopy(STM) were performed, confirming CoQ,, and AIQ, were prepared, with the oxides prepared by
the interpretation given by the optical technique, as well as t@00 s plasma oxidation of thick metal layehs.situ STM on
provide further information. Si/Ta/Co/Al samples indicated flat films with small grains

The oxidation experiments were performed both as and a mean roughness o8 A for all layers. XPS intensities
function of oxidation time(for fixed Al thicknesg and as a  of the Al 2s, Al 2p, and Co 2 photoelectron lines were
function of Al thicknesgfor fixed oxidation times XPS was  recorded with MgK , radiation, while the O & photoelec-
utilized for these experiments in light of its extreme sensitiv-tron line was recorded with AK, radiation. Figure (a)
ity (<1 ML") and ability to provide chemical information, as shows the Al 2 and 2 spectra for samples with differing
well as the possibility to perfornin situ studies on clean oxidation times, all for a nominal Al thickness of 22 A. For
samples. However, XPS requires many individual sampleshe unoxidized sample, no peak at the oxidic binding energy
is time consuming, and has little potential for process moniis observed;® while for only 10 s oxidatiorwithout plasma,
toring. To this end, the optical polarization modulation tech-significant Al oxide is clearly visible for both thes2zand 2p
nique was developed, which we describe presently. Usingines. With increasing oxidation time, the metallic Al XPS
wedge shaped oxidized Al sampléd-4 A/mm), a He—Ne intensity monotonically decreases, while the oxidic Al XPS
laser(\=632.8 nm polarized perpendicular to the plane of intensity monotonically increases. For 200 s oxidation, little
incidence(s polarized was focused to a spot of approxi- metallic Al remains, and none is observalftel ML) for
mately 100um and scanned across the wedge to allow prob600 s.
ing as a function of Al thickness. The polarization of the Figure Xb) shows the calculated @xidized Al ratio as
light was modulated between right- and left-circularly polar-a function of oxidation time, as obtained from the primary
zero-loss intensiti€$ of the oxidic Al 2p and O Is peaks,

dAuthor to whom correspondence should be addressed; electronic maiHSing a 600 s oxidized Al sampl@vhere no metallic Al .
pleclair@phys.tue.nl could be detectedbf the same thickness as a reference. It is
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FIG. 1. (a) Al 2s and 20 XPS spectra for various oxidation timeb) O:Al
ratio determined from Al p and O I lines (open and O I intensity
(closed, as a function of oxidation time. Unconnected poi(gquarey are
for 10 s Q exposurewithout plasma. Nominal Al thickness for all samples
was 22 A.

FIG. 2. (a) XPS peak intensities for Al 2 (open and Al 2s (closed as a
function of nominal Al thickness for 200 s oxidized samples. Lines repre-
sent optical measurements on wedge samples for(d@shed and 200 s
(solid) plasma oxidation, and aidotted oxidation. Vertical line indicates
themaximalthickness for which CoO was observéh) Calculated £ (solid
line) and Z (dashed lingsignals as a function of position on the wedgee
Insel.
evident that the 10 s exposure tg @ithout plasma forms a D
significant amount of AlQ, with a further steep decrease of
the O:Al ratio in the first 10-20 s of plasma oxidation. By result is shown in Fig. @). From the simulation it is clear
100 s, the AlQ is nearly stoichiometric, also evidenced by that the 2 signal is approximately linear with the Al thick-
Fig. 1(a), which shows only a small amount of metallic Al ness, while the fl signal is proportional to both the Al and
remaining. The O & XPS intensity is also plotted in Fig. the AlLOj3 thickness.
1(b), which exhibits an initial, rapid increase and becomes Returning to the optical data of Fig(a, no measure-
roughly constant beyond 100 s, in corroboration with theable Al is visible for thicknesses below15 A as with the
spectra and the O:Al ratio. XPS data. For all oxidation times, the amount of leftover
For experiments as a function of Al thickness, homogemeta”ic Al increase$approximatelyIinearly for thicknesses
neous samples of @il1)/Ta 50 A/Co 50 A/Ald, were beyond~15 A also in agreement with the XPS data. The
prepared as previously, while for the optical experimentshominal thickness of leftover Al obtained from the model
0-30 A wedge shaped samples of 3—4 A/mm were grown ofalculations is in rough agreement with the behavior of the
Si(112) or oxidized S{111). Both types of samples were XPS signals, and it can be seen that submonolayer amounts
plasma oxidized in 0.1 mbarQor 100 or 200 s, with sev- of metallic Al may be observed, confirming that this method
eral wedge samples air oxidized for several hours. Figuréay in principle be used to observe the oxidation process in
2(a) shows the measured amount of unoxidizdéftover” ) ultrathin metallic layers. As expected, the 200 s oxidized
Al as a function of the deposited Al layer thickness as measample shows less leftover Al than 100 s or air oxidized
sured by XPScircles with the Al 2s (closed or 2p (open samples. Surprisingly, however, the onset of unoxidized Al
line. The XPS data show no metallic Al for thicknesses be-occurs at approximately theamethickness for all samples.
low 15 A, with a continuously increasing amount of metallic ~ The amount of AJO; was also determined by both meth-
Al observed beyond-15 A° ods. Figure 8 shows the intensity of the Al-O(closed
Figure 2a) also shows the measured amount of unoxi-and 2p (open oxidic binding peaks determined by XPS. The
dized Al obtained from the optical measurements on oxi-@mount of oxide increases with increasing Al thickness,
dized Al wedgeglines). In order to determine the amount of showing a decreasing slope between 15-25 A though it is
remaining metallic Al from the optical measurements, modehot constant in this region. The amount of,8% was also
calculations were used to estimate the magnitude and depefietermined via the optical method, and although it showed
dencies of the fL and X signals. These calculations were some interesting features, they were found to depend sensi-
based on an idealized sample consisting of a linear Al wedgtively on specific assumptions in the mode.g., ea 0.,
of 0 to 30 A, which is homogeneously oxidized from the toptsio, , etc). A detailed discussion of this data is therefore
[see Fig. &v)]. The two layers are placed on a Si substratepostponed to a future publication.
with a 20 A SiQ native oxide layefinset to Fig. 2b)]. The Figure 3b) shows the Co @ XPS spectra for samples of
reflection coefficients of- and p-polarized light at the top 23 A Al and 5 A Al after 200 s oxidation, as well as refer-
interface of the stack are obtained by SO'Ving the MaXWEHence Co and Co@spectra. For 23 A Al, it is clear that 0n|y
equations in each layer and matching handB vectors at metallic Co is present, while for 5 A, the Co oxidic sattelite
each interface. Thefland & signals can then be calculated peaks are visible as well as a shift of the Cp [hes, indi-
using the Jones FormaliSnfor all optical components; the cating oxidation of the underlying electrode. For all thick-
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25 through the Al layer[see inset to Fig. ®)] may be too
(b) CoZpsa| simplistic. Rather, it may be consistent with an initial, rapid
20 oxidation via grain boundarié$, while longer times are
3 Co 2pi needed to fully oxidize grain interiors. The unoxidized grain
= interiors would represent a relatively small volume fraction
g L5 Co ref. compared to the total amount of Al, and therefore, a small
é - XPS or optical signal, but would require much longer times
10 wi"// to fully oxidize. The thickness at which leftover Al is ob-
& =10 served would then only differ in each case by flsenal)
é amount of metallic Al remaining in the grain interiors. Fur-
05 5A Al +200" ox. ther, the amount of metallic Al would also exhibit a smaller
slope as a function of Al thickness for longer oxidation
0.0 CoOref. times, since the grain interiors are then more fully oxidized.

I 1 1 1 0 . .

0 10 20 30 810 800 790 780 770 More detailed .m|cr_ostr.uctur<'.;1l data, as well as measgrements

for Al layers with differing microstructures, could clarify the

mechanisits) involved.

FIG. 3. (a) XPS peak intensities for Al-Of2(open and Al-O 2 (closed In summary, an optical polarization modulation tech-

as a function of nominal Al thickness for 200 s oxidized samples. The linenique was combined withn situ XPS to investigate the

is a guide to the eyeb) Co 2p XPS spectra of 23 AAlah5 AAIWith 200 h1asma oxidation of ultrathin Al layers. The optical tech-

s oxidation, as well as reference Co and Gaectra. . . . .
nique allows precise determination of the amount of unoxi-
dized Al with the use of wedge-shaped Al layers, confirmed

nesses below-15-20 A with 200 s oxidation, CoO was by XPS measurements. The optical technique shows great

observed: the vertical line in Fig(& indicates thenaximal ~ Potential for simple, flexible, and rapid optimization of ox-
thickness for which CoO was observed. This thickness iddic tunnel barriers, and may be easily adaptedricitu use.

nearly the same thickness at which metallic Al began to be P. L. is supported by the Technology Foundation STW

observed, indicating that disapperance of Co oxides and ong,4 A A s is supported by the foundation for Fundamental
set of leftover metallic Al are nearly coincident. The obser-pacaarch on MatteiFOM).
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