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“Our virtues and our failings are inseparable, like force and matter. When they separate,

man is no more.”

Nikola Tesla





Abstract

This Thesis work is based on the study of magnetic and optical properties of transition

metal clusters in which some elements of the transition metal section of the periodic

table are studied, such as Chromium and Iron. The magnetism of these kind of metals

is evaluated on the d-block and these materials will have ferromagnetic or antiferromag-

netic properties. The conclusion can be taken by doing the geometry optimization in

which we find the geometry and magnetic moment of the cluster on the minimal energy

by using DFT, after, it is employed the time-dependent DFT in order to obtain the

optical absorption spectra of the clusters . . .



Resumo

O trabalho desta Tese baseia-se no estudo de propriedades ópticas e magnéticas dos

aglomerados de metais de transição em que alguns dos elementos desta secção da tabela

periódica são estudadas, tais como o Crómio e Ferro. O magnetismo desse tipo de metais

é avaliado no bloco d e estes materiais têm propriedades ferromagnético ou antiferro-

magnético. A conclusão pode ser tomada fazendo a optimização de geometria em que

encontramos a geometria e momento magnético do cluster no mı́nimo de energia usando

DFT, depois, é usada a DFT dependente do tempo de forma a obter os espectros de

absorção óptica dos aglomerados . . .
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Chapter 1

Introduction

Studying optical and magnetic properties of a given material has great advantages on

the industry level, because knowing the total magnetization of a cluster, for instances,

will give the information regarding its magnetic properties, such as if the cluster has

ferromagnetic or anti-ferromagnetic behaviour. So, if we know the informations of the

ground-state of the cluster, then we calculate the absorption spectra of that material

and since we can achieve different total magnetic moments within the same cluster, then

it is expected to have different absorption spectra, i.e. it is spin-dependent, so we face a

whole new level of electronics, adding the spin degree of freedom, also called Spintronics.

Let us imagine that we could read information by simply focus electromagnetic radiation

on a material in order to know its magnetization and, consequently, know if we have

zero or one, in which both of them corresponds to the binary digit.

Other applications of Spintronics are the reading of data in hard disk drives, biosensors,

microelectromechanical systems by using the Giant Magnetoresistive Effect, in which

consists on an effect observed in artificial thin-film materials composed of alternate

ferromagnetic and nonmagnetic layers, where the resistance is lowest when the magnetic

moments in ferromagnetic layers are aligned and highest when they are antialigned. As

the magnetization in the two layers change from parallel to antiparallel alignment, the

resistance rises typically from 5 to 10 % . Giant Magnetoresistive multilayer structures

are also used in magnetoresistive random-acess memory (MRAM) as cells that store one

bit of information.

In this work, Density Functional Theory will be used in order to do ab initio calculations

to extract the ground state properties of the cluster and also optimize the geometry.

After, Time-dependent Density Functional Theory will be used along with the geometry

that was obtained in order to extract information regarding the excited states of the

clusters with an electric perturbation and consequently obtain the Absorption Optical

Spectra.

1





Chapter 2

N electron Many-Body problem

The Many-Body problem is the background of the fundamental theories that study

the electronic structure of atoms, clusters and large scale materials. This chapter will

then introduce fundamental definitions and expressions, including the most basic forms

valid for Many-body systems of interacting electrons, also simplified formulas valid for

non-interacting particles.

2.1 Non Interacting System

In order to understand the Many-Body problem, it is essential to take a look at the

simplest case first, in which we consider the Hamiltonian of non interacting particles

defined by

Ĥ(x1, x2, ..., xN , t) =

N
∑

i=1

p2i
2mi

+ V̂ (x1, x2, xN , t) . (2.1)

As we can observe, the first term on the right-hand side represents the total kinetic

energy of the system and the potential V specifies the interaction of the particles with

any external forces, once again, assuming that the particles do not interact with each

other, each particle moves in a common potential so

V̂ (x1, x2, ..., xN , t) =

N
∑

i=1

v̂(xi, t) . (2.2)

Consequently we have

3



Chapter 2. N electron Many-Body problem 4

Ĥ(x1, x2, ..., xN , t) =
N
∑

i=1

Hi(xi, t) , (2.3)

with Hi =
p2i
2mi

+ v(xi, t). Knowing that pi = i~ d
dxi

, the Hamiltonian of a particle can be

rewritten as

Hi = −~
2∇2

i

2me
+ v̂(xi, t) . (2.4)

So if we consider a system with non-interacting particles, it is safe to say that this system

behaves like a set of N 1-particle independent systems.

2.2 Multiple Electron System

If we consider a system with many electrons, it is unrealistic to assume that an electron

does not interact with another one and/or with the nuclei. So for the simplest Many

Body problem, relativistic effects, magnetic fields and quantum electrodynamics are not

included, so the Hamiltonian can be written as

Ĥ = T̂ + V̂ext + V̂int + T̂core + EII . (2.5)

Adopting Hartree atomic units, ~ = e = me = 4π
ǫ0

= 1, the terms can be written in a

simpler form. For the kinetic energy operator for the electrons T̂ we have

T̂ =
∑

i

−1

2
∇2

i . (2.6)

The potential acting on the electrons due to the nuclei is defined by

V̂ext =
∑

i,I

VI(|ri −RI |) . (2.7)

The electron-electron Coulomb interaction is then given by

V̂int =
1

2

∑

i 6=j

1

|ri − rj |
, (2.8)
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where the factor 1/2 exists in order to avoid double counting.

At last, the kinetic energy operator of the nuclei can be written as

T̂core = −
∑

I

1

2MI
∇2

I . (2.9)

The final term EII is the interaction of nuclei with one another and any other terms

that contribute to the total energy of the system but not pertinent to the problem

of describing the electrons. In this term, it is also included the effect of nuclei on

electrons in a fixed potential external to them, after considering the Born-Oppenheimer

approximation described in the subsection 2.2.1. It is also important to take into account

that this general form also applies if the bare Coulomb interaction is replaced by a

pseudopotential that includes effects of core electrons. So the Hamiltonian of a multiple

electron system is given by

Ĥ = −1

2

∑

i

∇2
i−
∑

i,I

Z1

|ri −RI |
+
1

2

∑

i 6=j

1

|ri − rj |
−
∑

I

1

2MI
∇2

I+
1

2

∑

I 6=J

ZIZJ

|RI −RJ |
, (2.10)

in which, the electrons are denoted as lower case subscripts and nuclei, with charge ZI

and mass MI , are denoted as upper case subscripts.

2.2.1 Born-Oppenheimer approximation

It is hard to come up with an exact solution of the Hamiltonian obtained from equation

(2.10), so an approximation is required in order to simplify the problem. Taking into

account the mass of an electron is much lower than a proton’s, with a ratio of the order

of 1800 times, then it is safe to consider the motion of the electrons for a frozen nuclei.

So the term in the Hamiltonian that corresponds to the equation (2.9) is the smallest

term and will be treated as a perturbation.

Taking into account that r and R are a set of all-electron and all nuclear coordinates

respectively then the full solutions for the coupled system of nuclei and electrons are

given by

Ĥ Ψs(r,R) = Es Ψs(r,R) , (2.11)

being s the states of the coupled system. Since we assume that the nuclei is frozen, then

R is just a parameter in ψk(r,R). The wavefunctions for a given state of the coupled
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electron-nuclear system can be splitted into a function of the nuclear coordinates and

the electronic wavefunction as it can be seen in equation (2.12), also Ek(R) and ψk(r,R)

are the eigenvalues and wavefunctions for the electrons.

Ψs(r,R) =
∑

k

χsk(R) ψk(r,R) . (2.12)

Inserting now the expansion (2.12) into (2.11) knowing that Ĥ is given by the equation

(2.10) we get

ĤΨ(r,R) = α+ β + γ +∆+Ω = Es

∑

k

χsk(R) ψk(r,R) . (2.13)

With α, β, γ, ∆ and Ω defined by

α = −1

2

∑

k

∑

i

∇2
i [ χsk(R) ψk(r,R) ] , (2.14)

β = −1

2

∑

j

∑

I

1

MI
∇2

I [ χsk(R) ψk(r,R) ] , (2.15)

γ = −
∑

k

∑

i

∑

I

ZI

|ri −RI |
ψk(r,R) χsk(R) , (2.16)

∆ =
∑

k

∑

i 6=j

1

|ri − rj |
ψk(r,R) χsk(R) , (2.17)

Ω =
∑

k

∑

I 6=J

ZIZJ

|RI −RJ |
ψk(r,R) χsk(R) . (2.18)

Since the term α has no sum over the nuclei, therefore we can isolate χsk(R) turning

equation (2.14) into

α = −1

2

∑

k

χsk(R)
∑

i

∇2
i ψk(r,R) . (2.19)

Adding now α with γ, ∆ and integrating, we get
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α+ γ +∆ =
∑

k

χsk(R)

∫

dr ψ∗k(r,R) Ek ψk(r,R) . (2.20)

Being

Ek

∣

∣ψk

〉

=



−1

2

∑

i

∇2
i −

∑

i

∑

I

ZI

|ri −RI |
+
∑

i 6=j

1

|ri − rj |





∣

∣ψk

〉

. (2.21)

In order to integrate β, we have to pay special attention, because there is a sum over

the nuclei
∑

I

and consequently the term χsk(R) cannot be isolated. So

β = −1

2

∑

k

∑

I

1

MI

∫

dr ψ∗k(r,R) ρ , (2.22)

with ρ being

ρ = ∇2
I χsk(R) ψk(r,R) + χsk(R)[ ∇2

I ψk(r,R)] +

+ 2[ ∇I χsk(R) ][ ∇I ψk(r,R) ] .
(2.23)

Finally, (2.11) can be rewritten as

[

∑

I

− ∇2
I

2MI
+ Ek(R)− Es

]

χsi(R) = −
∑

k′

[Akk′(R) +Bkk′(R)]χsi′(R) , (2.24)

where the matrix elements Akk′(R) and Bkk′(R) are given by

Akk′(R) = −
∑

I

1

MI

∫

dr
[

ψ∗k(r,R) ~∇I ψk′(r,R)
]

. ~∇I , (2.25)

Bkk′(R) = −1

2

∑

I

1

MI

∫

dr ψ∗k(r,R) ∇2
I ψk′(r,R) . (2.26)

So, the Born-Oppenheimer approximation consists on ignoring the off-diagonal terms of

the matrix elements Akk′(R) and Bkk′(R) as these can be much smaller compared to

the nuclei kinetic energy. This means that as the nuclei move, electrons tend to remain

in a given state knowing, however, that the electron wavefunction and the energy of a



Chapter 2. N electron Many-Body problem 8

given state changes and so, we may conclude that no energy is transferred between the

degrees of freedom described by the equation for the nuclear variables R and excitations

of the electrons, which only occurs if there is a change of state [3] [29].
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2.3 Many-Body Schrödinger equation

2.3.1 Time-dependent Schrödinger equation

It is important to mention and understand the time-dependent Schrödinger equation for

the Many-Body problem because after the introduction to Density Functional Theory,

this is the basis of time-dependent DFT in which molecular excitation spectra and optical

response will be studied.

So, on a non-relativistic quantum system, the time-dependent Schrödinger equation can

be written as

i
dΨ(ri; t)

dt
= Ĥ(ri; t) Ψ(ri; t) , (2.27)

where Ψ(ri; t) represents the Many-Body wavefunction for the electrons, once again, ri

represents a set of coordinates of the electrons r1, r2, ..., rN in which the spin is included

also, since electrons are fermions, then the wavefunction must be antisymmetric in those

coordinates, which means

Ψ(r1, r2, ..., rN ; t) = −Ψ(rN , ..., r2, r1; t) . (2.28)

2.3.2 Density operator

Since the density of particles n(r) plays an important role on DFT, it is worth mentioning

that it is given by the expectation value of the density operator

n̂(r) =
N
∑

i=1

δ(r− ri) , (2.29)

n(r) =

N
∑

i=1

∫

dr1 dr2 ... drN δ(r− ri)|Ψ(r1, r2, ..., rN )|2 , (2.30)

being δ(r− ri) the Kronecker delta. We can also write equation (2.30) in this way

n(r) =

∫

dr2 dr3 ... drN |Ψ(r, r2, r3, ..., rN )|2+

+

∫

dr1 dr3 ... drN |Ψ(r1, r, r3, ..., rN )|2 + ... .

(2.31)



Chapter 2. N electron Many-Body problem 10

In order to simplify (2.31), we can integrate the equation with the Kronecker delta acting

always on the same coordinate r1 and we get as a result

n(r) = N

∫

dr2 dr3 ... drN |Ψ(r, r2, r3, ..., rN )|2 . (2.32)

At last, in order to normalize the density of particles

n(r) = N

∫

dr2 dr3 ... drN
∑

σ1
|Ψ(r, r2, r3, ..., rN )|2

∫

dr1 dr2 dr3 ... drN |Ψ(r1, r2, r3, ..., rN )|2 . (2.33)

Where
∑

σ1
represents a sum over the z-component of spin. For a closer look of this

chapter, see [1], [2], [3] and [31].



Chapter 3

Density Functional Theory

3.1 Importance of DFT

One of the basic problems in theoretical physics and chemistry is the description of the

structure and dynamics of many electron systems. Many approaches are considered in

order to solve these kind of systems however, density functional theory is a completely

different, formally rigorous, way of approaching any interacting problem by mapping it

exactly to a much easier to solve non-interacting problem. Its methodology is applied

in a large variety of fields to many different problems, with the ground state electronic

structure problem simply being the most common. Also the remarkable successes of local

density approximation (LDA) and generalized-gradient approximation (GGA) function-

als [17] within the Kohn-Sham approach have led to a widespread interest in DFT as

the most promising approach for accurate, practical methods in the theory of materials.

3.2 Hohenberg-Kohn Theorems

By solving the Scrödinger equation for the eigenstates of the system, it is evident the

external potential in principle determines all properties of the system, so the main

objective of Hohenberg and Kohn is to formulate density functional theory as an exact

theory of Many-Body systems. So taking a look into the Hamiltonian of the system

Ĥ = T̂ + V̂ext + V̂ee , (3.1)

in which T̂ , V̂ext and V̂ee represents the kinetic energy, the external potential and the

electron-electron interaction respectively:

11
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T̂ = −1

2

∑

i

∇2
i , (3.2)

V̂ext =
∑

i

vext(ri) =

∫

dr vext(r) n̂(r) , (3.3)

V̂ee =
∑

i 6=j

1

|ri − rj |
. (3.4)

It is important to note that the set of all local potentials on the Hamiltonian (3.1) will

lead to a non-degenerate ground state eigenfunction.

The first theorem states that the particle density of the ground state n(r0), determines

uniquely the external potential V̂ext, except for a constant. Now in order to prove this

first theorem, we need to reduce to absurdity. Assuming that |Ψ0 > is simultaneously

the ground state for two different potentials v
(1)
ext and v

(2)
ext 6= v

(1)
ext + constant , then we

may write two Schrödinger equations

[T̂ + V̂
(1)
ext + V̂ee]

∣

∣Ψ0

〉

= E
(1)
0

∣

∣Ψ0

〉

, (3.5)

[T̂ + V̂
(2)
ext + V̂ee]

∣

∣Ψ0

〉

= E
(2)
0

∣

∣Ψ0

〉

. (3.6)

If we subtract both equations we achieve

[V̂
(1)
ext − V̂

(2)
ext ]
∣

∣Ψ0

〉

= [E
(1)
0 − E

(2)
0 ]
∣

∣Ψ0

〉

. (3.7)

Because v
(1)
ext and v

(2)
ext are different by more than a constant and equation (3.7) states

that the difference between both potentials is a mere constant, then we have reached a

contradiction. Therefore, each potential vext that differs from a constant corresponds to

a ground state
∣

∣Ψ0

〉

.

Now, recalling the density of particles n(r) achieved on subsection 2.3.2 and knowing

that the ground state density n0 is defined by

n0(r) =
〈

Ψ0

∣

∣n̂(r)
∣

∣Ψ0

〉

, (3.8)
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then it is clear that in this equation it is not possible for each |Ψ0 > to have more than

one correspondent n0. In other words, the density set is Injective. To show that the set

is indeed injective, we must, once again, reduce to absurdity. Considering two different

wavefunctions Ψ(1) and Ψ(2), assuming that both have the same particle density n0(r)

and since Ψ(2) is not the ground state of Ĥ(1) we have

E
(1)
0 =

〈

Ψ
(1)
0

∣

∣Ĥ(1)
∣

∣Ψ
(1)
0

〉

<
〈

Ψ
(2)
0

∣

∣Ĥ(1)
∣

∣Ψ
(2)
0

〉

. (3.9)

This inequality follows if the ground state is non-degenerate, also

〈

Ψ(2)
∣

∣Ĥ(1)
∣

∣Ψ(2)
〉

=
〈

Ψ(2)
∣

∣Ĥ(2)
∣

∣Ψ(2)
〉

+
〈

Ψ(2)
∣

∣Ĥ(1) − Ĥ(2)
∣

∣Ψ(2)
〉

. (3.10)

Now, from the relation established from equation (3.9), one can rewrite equation (3.10)

as

E
(1)
0 < E

(2)
0 +

〈

Ψ(2)
∣

∣V̂
(1)
ext − V̂

(2)
ext

∣

∣Ψ(2)
〉

. (3.11)

If we use equation (3.3) and also the assumption that both states lead to the same

density n0, we get

E
(1)
0 < E

(2)
0 +

∫

dr n0(r)
[

v
(1)
ext(r)− v

(2)
ext(r)

]

. (3.12)

On the other hand, if we switch E
(2)
0 and E

(1)
0 on equation (3.11), we may find subscripts

(1) and (2) interchanged

E
(2)
0 < E

(1)
0 +

∫

dr n0(r)
[

v
(2)
ext(r)− v

(1)
ext(r)

]

. (3.13)

At last adding both (3.12) and (3.13) we end up with a contradiction as a result, where

E
(1)
0 + E

(2)
0 < E

(2)
0 + E

(1)
0 . (3.14)

So, we may conclude that for each potential we get only one
∣

∣Ψ0

〉

and for each
∣

∣Ψ0

〉

we

get a correspondent n0.

Now, the second theorem states that, according to the last theorem,
∣

∣Ψ0

〉

, the density

of particles and the external potential are related and so, an universal functional for the
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energy E[n] can be defined and the global minimum of this functional represents the

exact ground state energy of the system for one particular V̂ext(r) and the density n(r)

that minimizes the functional is the exact ground state density no(r).

Considering the functional
∣

∣Ψ[n]
〉

in which any ground state observable O[n] is a density

functional

O[n] =
〈

Ψ[n]
∣

∣Ô
∣

∣Ψ[n]
〉

. (3.15)

Amongst these functionals, the most important one is the ground state energy

EHK[n] =
〈

Ψ[n]
∣

∣Ĥ
∣

∣Ψ[n]
〉

= FHK[n] +

∫

dr Vext(r) n(r) + EII , (3.16)

where EII represents the interaction energy of the nuclei, as mentioned on section 2.2

and FHK[n] includes all internal kinetic and potential energies

FHK[n] = T [n] + Eint . (3.17)

Now if we consider a system with the ground state density n(1)(r) that corresponds to

an external potential V
(1)
ext (r), the Hohenberg-Kohn functional is

EHK[n
(1)] = E(1) =

〈

Ψ(1)
∣

∣Ĥ(1)
∣

∣Ψ(1)
〉

. (3.18)

If we consider a different density n(2)(r), the expectation value of the Hamiltonian in

the unique ground state will have a different wavefunction, like Ψ(2), and so

E(1) =
〈

Ψ(1)
∣

∣Ĥ(1)
∣

∣Ψ(1)
〉

<
〈

Ψ(2)
∣

∣Ĥ(1)
∣

∣Ψ(2)
〉

= E(2) . (3.19)

As a result, comparing densities of particles, the Hohenberg-Kohn functional will give

the lowest energy if n(r) = n0(r). Consequently, knowing the functional FHK[n], one

can minimize the total energy of the system by varying n(r), finding at last, the exact

ground state density and energy. In other words, the functional E[n] alone is sufficient

to determine those. It, however, will not give any information regarding excited states.
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3.3 Kohn-Sham equations

3.3.1 The Kohn-Sham approach

Going back to the Hamiltonian (2.5) with a non-degenerate ground state, in which

the HK theorems state that knowing the ground state density is enough to determine

all ground state observables, also the ground state energy functional E[n] allows the

determination of the ground state density itself via the variational equation

δ

δn(r)

{

E[n]− µ

(∫

dr n(r)−N

)}∣

∣

∣

∣

n(r)=n0(r)

= 0 , (3.20)

that gives the Euler-Lagrange equation1 with an external potential v(r)

µ =
δE[n]

δn(r)
= v(r) +

δFHK[n]

δn(r)
, (3.21)

in which the minimum principles will indicate the possibility to determine the ground

state density of a many-particle system.

Then, the Kohn-Sham approach is to replace the interacting many-body system obeying

the Hamiltonian considered with a different auxiliary system. So, the KS ansatz implies

that the ground state density of the original interacting system is equivalent to some

chosen non-interacting system of the type mentioned back at section 2.1 with all the

many-body terms included into an exchange-correlation functional of the density, and

this is called non-interacting-V-representability.

In order to introduce the KS equations, we must consider first a system of non-interacting

electrons with a multiplicative external potential vs

Ĥs = T̂ +

∫

dr n̂(r) vs(r) , (3.22)

where the term
∫

dr n̂(r) vs(r) is the external potential operator V̂s and the non-

degenerate ground state
∣

∣Ψ0

〉

in the N-particle system is the Slater determinant

Ĥs

∣

∣Ψ0

〉

= Es,0

∣

∣Ψ0

〉

, (3.23)

1µ is the chemical potential, it also is the Lagrangian multiplier with the constraint
∫
dr n(r) = N
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〈

r1σ1, ...rNσN
∣

∣Ψ0

〉

= Ψ0(r1σ1, ...rNσN ) =

=
1√
N !

det









ψ1(r1σ1) · · · ψN (r1σ1)
...

. . .
...

ψ1(rNσN ) · · · ψN (rNσN )









,
(3.24)

with ψi being the energetic lowest solutions of the single-particle Schrödinger equation

{

−1

2
∇2 + vs(r)

}

ψi(rσ) = ǫiψi(rσ) . (3.25)

The eigenvalues ǫi are supposed to be ordered from lowest to highest and ǫF is the Fermi

energy that is identified with the eigenvalue ǫN of the highest occupied single-particle

level

ǫ1 ≤ ǫ2 ≤ . . . ≤ ǫN = ǫF ≤ ǫN+1 ≤ . . . , (3.26)

in which the kinetic energy is Ts[n] in a system of N = N↑ +N↓ independent electrons

Ts[n] = −1

2

∑

σ

Nσ
∑

i=1

〈

ψσ
i

∣

∣∇2
∣

∣ψσ
i

〉

= −1

2

∑

σ

Nσ
∑

i=1

∫

dr ψσ∗
i (r) ∇2 ψσ

i (r) . (3.27)

From the HK theory, T is a functional of the total electron density given by the sum of

squares of the orbitals for each spin

n(r) =
∑

σ

n(r, σ) =
∑

σ

Nσ
∑

i=1

ψσ∗
i (r) ψσ

i (r) . (3.28)

Also, we need to define a self-interacting Coulomb energy of the electron density n(r)

EHartree[n] =
1

2

∫

dr1 dr2
n(r1) n(r2)

|r1 − r2|
. (3.29)

Putting together the independent-particle system with the true interacting many-body

system, we get the definition

Exc[n] = FHK[n]− (Ts[n] + EHartree[n]) . (3.30)
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Exc is the exchange and correlation energy functional, being just the difference between

the kinetic and all internal interaction energies, since FHK =
〈

T̂
〉

+
〈

V̂int
〉

is the HK

functional.

Now we rewrite the HK expression for the ground state energy functional (3.16) in the

form

EKS = Ts[n] +

∫

dr Vext(r) n(r) + EHartree[n] + EII + Exc[n] , (3.31)

The result is the KS approach to the full interacting many body problem, where EHartree

was defined in (3.29) as the self-interacting Coulomb energy, Vext is the external potential

due to the nuclei and any other external fields and EII is the interaction between the

nuclei as was defined on equation (2.5) from the section 2.2.

At last, considering the equation (3.20), we get the effective Hamiltonian

Hσ
KS(r) = −1

2
∇2 + V σ

KS(r) , (3.32)

with V σ
KS(r) being

V σ
KS(r) = Vext(r) + VHartree(r) + V σ

xc(r) , (3.33)

where VHartree(r) is the Hartree potential

VHartree(r) =
δEHartree

δn(r, σ)
, (3.34)

and V σ
xc(r) is the Exchange and Correlation potential

V σ
xc(r) =

δExc

δn(r, σ)
. (3.35)

3.3.2 Relativistic Kohn-Sham equations

In order to introduce the RKS equations, it is essential to state the Hohenberg-Kohn

theorem for the relativistic case where, for a Lorentz covariant situation, the ground

state energy is a unique functional of the ground state four-current

E0[j
µ] = F [jµ] +

∫

dx jµ(x) vextµ (x) , (3.36)
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with F being a universal functional of jµ. Also, all ground state observables can be

expressed as unique functionals of the ground state four-current as

O[jµ] =
〈

Ψ0[j
µ]
∣

∣Ô
∣

∣Ψ0[j
µ]
〉

+∆OCT − V EV . (3.37)

Counter terms ∆OCT and the subtraction of vacuum expectation values (VEV) are

included in order to do a renormalization of the observable.

In a situation where the external potential is electrostatic

{vµext(x)} = {v0ext(x), 0} , (3.38)

all ground state variables, including the spatial components of the four-current, are

functionals, known or unknown, of the charge density alone

j([n], x) =
〈

Ψ0[n]
∣

∣̂(x)
∣

∣Ψ0[n]
〉

. (3.39)

Now, the relativistic Kohn-Sham aproach starts the same way as the non-relativistic

one, so we can write the four-current and the non-interacting kinetic energy in terms of

auxiliary spinor orbitals. If we calculate the four-current of a fermionic system, we get

jµ(x) = jµvac(x) + jµD(x) , (3.40)

where jµD(x) is the current due to the occupied orbitals and is defined in this way

jµD(x) =
∑

−m<ǫi≤ǫF

ψ∗i (x)γ
µψi(x) . (3.41)

The vacuum polarization current jµvac(x) is given by the solution of a Dirac equation

jµvac(x) =
1

2





∑

ǫi≤−m

ψ∗i (x)γ
µψi(x)−

∑

−m<ǫi

ψ∗i (x)γ
µψi(x)



 . (3.42)

The non-interacting kinetic energy, with the rest mass term can be written as

Ts[j
µ] = Ts,vac[j

µ] + Ts,D[j
µ] . (3.43)
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Also, the non-relativistic kinetic energy will be replaced by its relativistic equivalent

− ∇2

2m
→ −iγ ·∇ , (3.44)

And, as a consequence, γµ can be replaced by 2

γµ → −iγ ·∇+m . (3.45)

The contributions given by jµ on equation (3.43) will therefore be exchanged by (3.45).

Now, in order to get the full KS scheme, we write the ground state energy as

E0[j
µ] = Ts[j

µ] + Eext[j
µ] + EHartree[j

µ] + Exc[j
µ] , (3.46)

being Exc[j
µ] the exchange and correlation energy defined as the difference between the

universal functional of jµ and the sum of the non-interacting kinetic energy with the

Hartree energy

Exc = F − Ts − EHartree . (3.47)

As was mentioned on non-relativistic KS equations, all the many-body interaction effects

are included in the Exchange and Correlation energy.

Minimization of the ground state energy with respect to the auxiliary spinor orbitals

will lead to a Dirac equation

γ0{−iγ ·∇+m+ /vext(x) + /vHartree(x) + /vxc(x)}ψi(x) = ǫiψi(x) . (3.48)

The effective potential /v = γµv
µ corresponds to the Feynman dagger notation, so

/vHartree(x) = γµv
µ
Hartree(x) , (3.49)

/vxc(x) = γµv
µ
xc(x) = γµ

δExc[j
µ]

δjµ(x)
, (3.50)

2On this subsection units of m = 1 will not be used
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which has to be solved self-consistently.

Now, one common approximation that can be applied is the so called ”no-sea” approx-

imation where one can neglect all radiative corrections

jµvac = Ts,vac = Exc,vac = 0 . (3.51)

Also, the most usual situation in electronic structure calculations is the one where the

external potential is nothing but electrostatic. Consequently, the effective potentials are

also electrostatic, so

{vµHartree(x)} = {vµHartree(x), 0} . (3.52)

Then, the resulting electrostatic no-sea approximation is the standard version applied

in practice, written as

{−iα ·∇+mβ + vext(x) + vHartree(x) + vxc(x)}ψi(x) = ǫiψi(x) , (3.53)

where the density is written as

n(x) =
∑

−m<ǫi≤ǫF

ψ∗i (x) ψi(x) . (3.54)

Also the exact current j[n] is usually replaced by the KS current

j(x) =
∑

−m<ǫi≤ǫF

ψ∗i (x) α ψi(x) . (3.55)

3.4 Exchange and Correlation Functionals

The crucial quantity in the Kohn-Sham approach is the exchange-correlation energy that

is expressed as a functional of the density Exc[n] since the exact functional is not known

and it will be necessary to approximate it. Two approaches will be taken into account in

this work since they are commonly used: The local spin density approximation (LSDA)

and the generalized gradient approximation (GGA).
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3.4.1 Local Spin Density Approximation

The LSD is an approximation that was proposed in order to simply consider the local

effects of exchange and correlation. Since certain solids can be treated as close to the

limit of the homogeneous electron gas, it should be valid when the length scale of the

density variation is large in comparison with length scales set by the local density. Also,

there are regions of space where LSD is expected to be least reliable, such as near a

nucleus or in the evanescent tail of the electron density.

Then, the exchange-correlation energy is an integral over all space with its density at

each point assumed to be the same as in homogeneous electron gas:

ELSDA
xc [n↑, n↓] =

∫

dr n(r) ǫhomxc (n↑(r), n↓(r)) . (3.56)

The exchange-correlation energy per electron of the homogeneous electron gas ǫhomxc can

be written as the sum of exchange energy with correlation energy

ǫhomxc (n↑(r), n↓(r)) = ǫhomx (n↑(r), n↓(r)) + ǫhomc (n↑(r), n↓(r)) . (3.57)

Also, the LSDA can be formulated in terms of either two spin densities n↑(r) and n↓(r)

or the total density n(r) and the fractional spin polarization ξ(r) defined as

ξ(r) =
n↑(r)− n↓(r)

n(r)
. (3.58)

For unpolarized systems, n↑(r) and n↓(r) can be set as n↑(r) = n↓(r) = n(r)
2 .

When the LSD approximation is made, the rest is trivial. Also, the exchange energy of

the homogeneous gas can be solved analytically and the correlation energy can be found

with great accuracy with Monte Carlo methods.

Now, in order to obtain the exchange and correlation potential, we do a functional

derivative of Exc

V σ
xc(r) = ǫxc([n], r) + n(r)

δǫxc([n], r)

δn(r, σ)
. (3.59)

Since in LSDA, δExc is given by
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δExc[n] =
∑

σ

∫

dr

[

ǫhomxc + n
∂ǫhomxc

∂nσ

]

r,σ

δn(r, σ) , (3.60)

the LSDA exchange and correlation potential is

V σ
xc(r) =

[

ǫhomxc + n
∂ǫhomxc

∂nσ

]

r,σ

. (3.61)

3.4.2 Generalized-Gradient Approximation

The success of LSDA stimulated ideas for constructing improved functionals. The first

step towards the improvement was to create a functional of the magnitude of the gra-

dient of the density |∇nσ| as well as the value at each point, it was called ”gradient

expansion approximation” (GEA), in which the low-order expansion of the exchange

and correlation energies is known.

However, the GEA violates the sum rules and other relevant rules. The basic problem

is that gradients in real materials are so large that the expansion breaks down and as a

result, it leads to a worse precision when comparing to the LSDA. Nonetheless, it also

led to the creation of generalized-gradient approximation (GGA).

GGA consists on an expansion of the gradients in a variety of ways proposed for func-

tions that modify the behavior at large gradients in such a way as to preserve desired

properties. The functional defined at (3.56) is redefined into a generalized form

EGGA
xc [n↑, n↓] =

∫

dr n(r) ǫxc(n
↑, n↓, |∇n↑|, |∇n↓|, ...) , (3.62)

where ǫxc is redefined as

ǫxc(n
↑, n↓, |∇n↑|, |∇n↓|, ...) = ǫhomx (n)Fxc(n

↑, n↓, |∇n↑|, |∇n↓|, ...) , (3.63)

with Fxc being dimensionless and ǫhomx (n) being the exchange energy of the unpolarized

gas.

Now in the same way that the exchange and correlation potential was obtained on

the previous subsection, we do a functional derivative as it was shown on (3.59). The

difference is that the GGA δExc is given by

δExc[n] =
∑

σ

∫

dr

[

ǫxc + n
∂ǫxc
∂nσ

+ n
∂ǫxc
∂∇nσ

∇

]

r,σ

δn(r, σ) . (3.64)
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Doing the functional partial integration, one may find

V σ
xc(r) =

[

ǫxc + n
∂ǫxc
∂nσ

−∇

(

n
∂ǫxc
∂∇nσ

)]

r,σ

. (3.65)

3.4.2.1 Explicit PBE form

The PBE form of the GGA functional was developed by Perdew, Burkle and Ezerhof.

Here the factor Fx is chosen in a way that the local approximation is recovered by

defining Fx(0) = 1, and Fx → constant at large s, so

Fx(s) = 1 + k − k

1 + µs2

k

, (3.66)

where k = 0.804, is a constant defined in order to satisfy the Lieb-Oxford bound, which

provides a strict upper bound on the magnitude of the exchange-correlation energy. The

constant of µ = 0.21951 is chosen to cancel the term from the correlation.

The local correlation plus an addictive term both of which depending upon the gradients

and the spin-polarization, will lead to a form for the correlation energy

EGGA−PBE
c [n↑, n↓] =

∫

dr n
[

ǫhomc (rs, ξ) +H(rs, ξ, t)
]

, (3.67)

with ξ defined on (3.58) being the spin polarization, rs is a local value of the density

parameter and t is a dimensionless gradient

t =
|∇n|

2φkTFn
, (3.68)

with φ being

φ =
(1 + ξ)2/3 + (1− ξ)2/3

2
. (3.69)

Also, t is scaled by the screening wavefactor kTF rather than kF, giving

H =
e2

a0
γφ3 log

(

1 +
β

γ
t2

1 +At2

1 +At2 +A2t4

)

, (3.70)

with the function A given by
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A =
β

γ

1

e

−ǫhomc

γφ3 e2
a0 − 1

. (3.71)

3.4.3 Non-collinear Spin Density

In the case in which the system exhibits a polarized collinear spin, we can define the

system by two different densities and potentials [n↑(r), n↓(r)] and [V ↑xc(r), V
↓
xc(r)], for

spin up and down respectively. However, since spin can vary in space, this is not the

most general form. So in the non-collinear spin case, the density is represented by a

local spin density matrix

ραβ(r) =
∑

i

fi ψ
α∗
i (r) ψβ

i (r) . (3.72)

Consequently, the Hamiltonian (3.32) will turn into a 2× 2 matrix

Hαβ
KS(r) = −1

2
∇2 + V αβ

KS (r) , (3.73)

where the non diagonal part in αβ of V αβ
KS is V αβ

xc .

In the local approximation, the functional ǫαβxc is given by finding the local axis of spin

quantization, using the same functional form ǫhomxc (n↑(r), n↓(r)) given in (3.56) . If we

want modifications of GGA expressions, we need to take into account the gradient of

the spin axis. For further information on Density Functional Theory, check [3], [35], [33]

and [32].



Chapter 4

Time-Dependent Density

Functional Theory

4.1 Introduction to TDDFT

The Kohn-Sham ansatz replaces the many-body problem with an independent-particle

problem in which the effective potential depends on the density. Although it envolves

independent particles, the density used is the same density of a system of interacting

particles. Since the eigenvalues of the KS equations are independent-particle ones that

do not correspond to true electron removal or addition energies then, the eigenvalue

difference will not consequently correspond to excitation energies. These will be de-

scribed using response functions that is the response of the system with an external

perturbation.

4.2 The Runge-Gross Theorem

The evolution of the N electrons wavefunction is governed by the time-dependent Schrödinger

equation (2.27). This is a first-order differential equation in time and so, the initial wave-

function Ψ(0) must be specified. Also Ĥ is the Hamiltonian operator that can be written

as the sum of every other operators acting on the system

Ĥ(r, t) = T̂ (r) + V̂ee(r) + V̂ext(r, t) , (4.1)

with coordinates r = (r1, r2, ..., rN ). The first term is the kinetic energy of the electrons

25
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T̂ (r) = −1

2

N
∑

i=1

∇2
i , (4.2)

and V̂ee(r) is the Coulomb electron-electron repulsion

V̂ee(r) =
1

2

N
∑

i 6=j

1

|ri − rj |
. (4.3)

The external potential V̂ext(r, t) is a generic, time-dependent potential that affects elec-

trons. Also, the one-body potential is written as

V̂ext(r, t) =
N
∑

i=1

vext(ri, t) . (4.4)

For a hydrogenic atom with nuclear charge Z in an alternating electric field of strength

ε oriented along the z axis and of frequency ω we have vext(r, t) = −Z/r+ε · z cos (ω, t).
However it is the only operator that differs from problem to problem.

Now, the Runge-Gross theorem is an extension of the HK theorems for time-dependent

problems. Let us start with the ground-state of the system that can be determined

through the minimization of the total energy functional

E[Φ] =
〈

Φ
∣

∣Ĥ
∣

∣Φ
〉

. (4.5)

However, in time-dependent systems, since the basis of the total energy is not a conserved

quantity, then there is no variational principle. A way to avoid this problem is to use

the quantum mechanical action, that is a quantity similar to the energy

A[Φ] =

∫ t1

t0

dt
〈

Φ(t)
∣

∣i
∂

∂t
− Ĥ(t)

∣

∣Φ(t)
〉

, (4.6)

where Φ(t) is a N-body function defined in some convenient space. As we can notice, if

we take the functional derivative to zero in terms of ψ∗(t), we obtain the time-dependent

Schrödinger equation. Therefore we can solve the time-dependent problem by calculating

the stationary point of the functional A[ψ]. The function Ψ(t) that makes the functional

stationary, A[ψ] = 0, will be the many-body time-dependent Schrödinger equation solu-

tion. Now, since it is already known that the RG theorem is a bit more complicated and
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subtle that the KS ones, even though the first is pretty much the time-dependent exten-

sion of the second one, let us demonstrate that having two different potentials v
(1)
ext(r, t)

and v
(2)
ext(r, t), that differs by more that a purely time-dependent function c(t), i.e. their

wavefunctions shift by more than a mere time-dependent phase and, as a consequence,

there will be different time-dependent densities

v
(1)
ext(r, t) 6= v

(2)
ext(r, t) + c(t) ⇒ n(1)(r, t) 6= n(2)(r, t) . (4.7)

This implies that for each potential there is a correspondent time-dependent density.

Now lets assume that the external potentials are Taylor expandable with respect to the

time coordinate around the initial time t0

vext(r, t) =

∞
∑

k=0

ck(r)(t− t0)
k, (4.8)

with ck(r) being the expansion coefficient of index k

ck(r) =
1

k!

∂k

∂tk
vext(r, t)

∣

∣

∣

∣

t=t0

. (4.9)

Also, a function will be defined as

uk(r) =
∂k

∂tk
[v

(1)
ext(r, t)− v

(2)
ext(r, t)]

∣

∣

∣

∣

t=t0

. (4.10)

Since two different potentials are different by more than a td function, then at least one

expansion coefficient will differ by more than a constant. So, the first step is to show

that if v
(1)
ext 6= v

(2)
ext + c(t), then the current densities, j(1) and j(2) given by v

(1)
ext and v

(2)
ext

are also different. The current density can be written as the expectation value of the

current density operator

j(r, t) =
〈

Ψ(t)
∣

∣̂j(r)
∣

∣Ψ(t)
〉

. (4.11)

with the operator ĵ being

ĵ(r) = − 1

2i

{

[

∇ψ̂∗(r)
]

ψ̂(r)− ψ̂∗(r)
[

∇ψ̂(r)
]

}

. (4.12)

If we use now the quantum-mechanical equation of motion valid for any operator Ô then
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i
d

dt

〈

Ψ(t)
∣

∣Ô(t)
∣

∣Ψ(t)
〉

=
〈

Ψ(t)
∣

∣i
∂

∂t
Ô(t) +

[

Ô(t), Ĥ(t)
]

∣

∣Ψ(t)
〉

. (4.13)

Writing now the equation of motion for 2 different current densities produced by v
(1)
ext

and v
(2)
ext, noting that the operator ĵ is not time-dependent and so i ∂∂t ĵ = 0, we get

i
d

dt
j(1)(r, t) =

〈

Ψ(t)
∣

∣

[

ĵ(r), Ĥ(1)(t)
]

∣

∣Ψ(t)
〉

, (4.14)

i
d

dt
j(2)(r, t) =

〈

Ψ(t)
∣

∣

[

ĵ(r), Ĥ(2)(t)
]

∣

∣Ψ(t)
〉

. (4.15)

Starting from a fixed many-body state, at t0, the wavefunctions, densities and current

densities are written as

∣

∣Ψ(1)(t0)
〉

=
∣

∣Ψ(2)(t0)
〉

=
∣

∣Ψ0(t0)
〉

, (4.16)

n(1)(r, t0) = n(2)(r, t0) = n0(r) , (4.17)

j(1)(r, t0) = j(2)(r, t0) = j0(r) . (4.18)

Taking now the differences between the equations of motion (4.14) and (4.15) at t = t0,

we get

i
d

dt

[

j(1)(r, t)− j(2)(r, t)
]

t=t0
=
〈

Ψ0

∣

∣

[

ĵ(r), Ĥ(1)(t0)− Ĥ(2)(t0)
]

∣

∣Ψ0

〉

, (4.19)

〈

Ψ0

∣

∣

[

ĵ(r), Ĥ(1)(t0)− Ĥ(2)(t0)
]

∣

∣Ψ0

〉

=
〈

Ψ0

∣

∣

[

ĵ(r), v
(1)
ext(r, t0)− v

(2)
ext(r, t0)

]

∣

∣Ψ0

〉

, (4.20)

〈

Ψ0

∣

∣

[

ĵ(r), v
(1)
ext(r, t0)− v

(2)
ext(r, t0)

]

∣

∣Ψ0

〉

= i n0(r)∇
[

v
(1)
ext(r, t0)− v

(2)
ext(r, t0)

]

. (4.21)
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Assuming that for k = 0, v
(1)
ext 6= v

(2)
ext at t = t0, implying that the left side of equation

(4.19) differs from zero, then the two currents j(1) and j(2) will drift for t > t0. Now for

k greater than zero, the equation of motion is applied k + 1 times, which yields

dk+1

dtk+1

[

j(1)(r, t)− j(2)(r, t)
]

t=t0
= n0(r)∇uk(r) , (4.22)

with uk defined previously in equation (4.10). Since there are values of k where its

derivative differs from 0, then j(1)(r, t) 6= j(2)(r, t) at t > t0, bringing to a closure the

proof for the first step of the theorem.

Now, the second step consists on proving that j(1) 6= j(2) implies n(1) 6= n(2). In order to

prove that, we may bring into play the continuity equation

∂

∂t
n(r, t) = −∇ · j(r, t) . (4.23)

Taking then the difference between the two systems (1) and (2), we get

∂

∂t

[

n(1)(r, t)− n(2)(r, t)
]

= −∇ ·
[

j(1)(r, t)− j(2)(r, t)
]

. (4.24)

We will apply the (k + 1)th time-derivative at t = t0 on the previous equation in order

to get kth time derivative, i.e. using the same reasoning from equation (4.22)

∂k+2

∂tk+2

[

n(1)(r, t)− n(2)(r, t)
]

t=t0
= −∇ · ∂

k+1

∂tk+1

[

j(1)(r, t)− j(2)(r, t)
]

t=t0
.

= −∇ · [n0(r)∇uk(r)]
(4.25)

From the implication of equation (4.22), it was made clear that

∇ · [n0(r)∇uk(r)] 6= 0 , (4.26)

and, as a result, n(1) 6= n(2), proving then the last step of the Runge-Gross theorem.
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4.3 Time-Dependent Kohn-Sham Equations

It is rather difficult to find functionals, in particular the kinetic energy, as an explicit

functional of the density. However, just as in the ground-state theory, we turn to a non-

interacting system of fermions called the Kohn-Sham system, defined such as in section

(3.3), reproducing the density of the true interacting system, so all properties can be

extracted from the density of the KS system. Also, the KS potential is unique by virtue

of the Runge-Gross theorem applied to the non-interacting system, and is chosen such

as the density of the KS electrons is the same as the density of the original interacting

system. So, these KS electrons obey to the time-dependent Schrödinger equation

i
∂

∂t
ϕi(r, t) =

[

−∇2

2
+ vKS[n,Φ0](r, t)

]

ϕi(r, t) , (4.27)

where Φ0 represent the initial state of the Kohn-Sham system and ϕi(r, t) are orbitals

that satisfy the previous equation. Also, the density of the interacting system can be

obtained from the time-dependent Kohn-Sham orbitals

n(r, t) =
N
∑

i=1

ϕ∗i (r, t)ϕi(r, t) . (4.28)

Analogously to the ground-state case, vKS is decomposed into three terms

vKS [n,Φ0](r, t) = vext[n,Ψ0](r, t) + vHartree[n](r, t) + vxc[n,Ψ0,Φ0](r, t) . (4.29)

The first term vext[n,Ψ0](r, t) represents the external time-dependent field, the second

is the Hartree potential, which describes the interaction of classical electronic charge

distribution

vHartree[n](r, t) =

∫

dr2
n(r2, t)

|r1 − r2|
. (4.30)

At last, the third term represents the exchange and correlation potential, which com-

prises all the non-trivial many-body effects. Normally, it is written as a functional

derivative of the exchange and correlation energy, that follows from a variational deriva-

tion of the Kohn-Sham equations starting from the total energy. However, for the

time-dependent case it was necessary to define a new action functional Ã by the Keld-

ish formalism due to causality problems. The time-dependent xc potential will then be

written as the functional derivative of the xc part of Ã
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vxc(r, t) =
∂Ãxc

∂n(r, τ)

∣

∣

∣

∣

n(r,t)

, (4.31)

where τ stands for the Keldish pseudo-time. Since the exact expression of vxc as a func-

tional of the density is unknown, then an approximation is necessary to do. The simplest

to be done is the ALDA, which stands for Adiabatic local density approximation.

4.3.1 Adiabatic approximation

On the previous chapter, it was mentioned that the exchange and correlation potential

vxc is a functional with a dependence on the density n(r, t) for a given r and t. However,

it has also a dependence on all n(r, t′) for 0 ≤ t′ ≤ t and for arbitrary points r′, so we

may say that the potential has memory since it remembers its past density.

So, the adiabatic approximation consists on ignoring all the past densities and allow only

the instantaneous ones. In other words, the functional can be approximated as being

local in time

vadiaxc [n](r, t) = ṽxc[n](r)|n=n(t) , (4.32)

where ṽxc[n] is assumed to be an approximation to the ground-state exchange and cor-

relation density functional. This approximation will be valid if the time-dependent

potential changes very slowly, i.e. , we have an adiabatic process.

Since the exact exchange and correlation energy functional is not known, even in the

static case, then we shall insert the LDA functional mentioned in 3.4.1 on equation (4.32)

to obtain the Adiabatic Local Density Approximation (ALDA). The same method can

be applied in order to get the AGGA, however further results have shown that there is

no big difference between both of them.

4.4 Linear Response Theory

The main goal of this section is to show that for an arbitrary external field acting on

a sample, there will be a response from that sample that can be measured for some

physical observable P that is dependent on the function F

∆P = ∆PF [F ] . (4.33)
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The function of the observable must produce a response for any created field, i.e. weak

or strong, so the response can be expanded as a power series with respect to field

strength. However, since we are interested on weak electric perturbations, we can ignore

higher order response and focus on first-order ones, also known as linear-response of the

observable given by

δP(1)(r, t) =

∫

dt1

∫

dr2 χ
(1)
P←F (r1, r2, t1 − t2)δF

(1)(r2, t2) , (4.34)

with δP(1)(r, t) being a convolution of the linear response function χ
(1)
P←F (r1, r2, t1 − t2)

and the field expanded to the first order in field strength δF (r2, t2). Although the linear

response function is nonlocal in space and time, the time convolution is simplified into

a product in frequency space

δP(1)(r, ω) =

∫

dr2 χ
(1)
P←F (r1, r2, ω)δF

(1)(r2, ω) . (4.35)

Since time is homogeneous, the linear response function depends only on the frequency

ω. So, the linear density response in the frequency space will be given as

δn(r, ω) =

∫

dr2 χKS(r1, r2, ω)δvKS(r2, ω) . (4.36)

4.4.1 Dynamic polarizability tensor

There are several methods to calculate response functions, the most known ones are the

time-propagation, Sternheimer and Casida. The Sternheimer method consists on per-

turbing the system with respect to λ, which is the perturbation strength. The Casida

method takes the linear Sternheimer equation in the KS orbital basis, including unoccu-

pied states. The approach that will be used in this work is the time-propagation method,

which consists of three main steps. The first one is to get the ground-state occupied

wavefunctions. Then the ground-state is perturbed by multiplying each of the single-

particle KS wavefunction by a phase e−i(r·E), which shifts the momentum of the electrons.

In order to study the linear dipole response, the strength of the applied homogeneous

electric field must be much smaller than the inverse radius of the system. At last, the

system is then propagated until some finite time T. The time-dependent Kohn-Sham

equations are propagated in real time by solving the nonlinear partial equation

i
∂

∂t
ϕk(r, t) = ĤKS[n](r, t)ϕk(r, t) , (4.37)



Chapter 4. Time-Dependent Density Functional Theory 33

starting from t = 0 with the initial conditions ϕ(r, t = 0) = ϕ
(0)
k (r) where ϕ

(0)
k (r) are

the ground-state KS wavefunctions. The time-evolution of the KS wavefunctions, if no

perturbation is applied to the system, is ϕk(t) = ϕ(0)e−iε
(0)
k

t. Applying then a weak

time-dependent external perturbation with a given frequency ω defined in the following

general form

vext(r, t) = λvcosext(r) cosωt+ λvsinext(r) sinωt , (4.38)

or, in the exponential form

vext(r, t) = λv+ω
ext (r)e

+iωt + λv−ωext (r)e
−iωt , (4.39)

with λ being the strength of the perturbation. Applying then a weak delta pulse of a

dipole electric field

vext(r, t) = r · E δ(t) = r · E 1

2π

∫ ∞

−∞

dω eiωt . (4.40)

Now, we can replace the ground-state wavefunctions by

ϕk(r, t = 0+) = e
−i

∫ 0+

0−
dt
[

Ĥ
(0)
KS(t)+r·E δ(t)

]

ϕk(r, t = 0−) ,

= e−i(r·E)ϕk(r, t = 0−)
(4.41)

with e−i(r·E) being the ”kick” that the wavefunction suffers, or the phase shift as was

mentioned earlier. Now we can propagate the free oscillations in time. Also, the time-

dependent dipole moment can be written as

µ(t) =

∫

dr r n(r, t) . (4.42)

Now doing the first-order Taylor expansion of the dipole moment

µi(ω) = µi0 + αij(ω)Eω
j + . . . , (4.43)

which means that the linear dynamic polarizability tensor is given by
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αij(ω) =
1

Eω
j

(µi(ω)− µi0) . (4.44)

If the perturbing field is small enough, the difference between the dipole moments can

be approximated as an infinitesimal dipole moment

αij(ω) =
1

Eω
j

δµ(ω) . (4.45)

Writing the equation (4.42) on the infinitesimal form and on the frequency space, we get

δµ(ω) =

∫

dr r δn(r, ω) , (4.46)

with δn(r, ω) defined on (4.36). The previous equation can be rewritten as

δµ(ω) =

∫

dr1 r1

∫

dr2 χ(r1, r2, ω)δv(r2, ω) , (4.47)

and, from equation (4.45) we obtain the dynamic polarizability tensor

αij(ω) =
1

Eω
j

∫

dr1 r1,i

∫

dr2 χ(r1, r2, ω)δvext(r2, ω) , (4.48)

with δvext being the perturbed potential and χ the density response function. Since

δvext = −r · E = −rjEω
j in a given direction, the polarizability tensor can be written as

αij(ω) = −
∫

dr1

∫

dr2 r1,i χ(r1, r2, ω) r2,j , (4.49)

where the index r1,i represents one particle on a direction i and r2,j represents other

particle on the direction j.

Also, the cross-section for optical absorption can be obtained using the imaginary part

of the polarizability resulting in

σij(ω) =
4πω

c
Im{αij(ω)} . (4.50)

Finally, if we want the cross-section averaged over three spatial directions, one writes
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σ =
1

3
Tr(σij) . (4.51)

This is the quantity that is usually measured in experiments.

4.4.1.1 Spin-dependent polarizability tensor

In the previous subsection it was shown how to reach the spin-independent polarizabil-

ities, but what if, not only the perturbation, but also the observable is spin-dependent?

Let us start with a general perturbation δvσ(r, ω) in which σ represents the spin-up ↑
and spin-down ↓ electrons. It is also important to notice that δv↑(r, ω) and δv↓(r, ω)

may be different. So the response functions is given as

δnσ(r, ω) =
∑

σ2

∫

dr2 χσ1σ2(r1, r2, ω)δvσ2(r2, ω) , (4.52)

which is called spin-density response function since only the perturbation is spin-dependent,

moreover, if the perturbation is spin-independent, it would be called density-density re-

sponse function n = n↑+n↓ , if only the observable is spin-dependent, would be density-

spin response function m = n↑ − n↓, at last, if both are spin-dependent, it would be

called spin-spin response function, in other words, it is implied that ”spin-spin”, ”spin-

density”, ”density-spin” and ”density-density” are reffering to the perturbed function

and to the observable respectively. Now the sum of the spin-up and down densities will

give the total density

n = n↑ + n↓ ⇒ δn(r, ω) = δn↑(r, ω) + δn↓(r, ω) . (4.53)

Also, the magnetization density is given by

m = n↑ − n↓ ⇒ δm(r, ω) = δn↑(r, ω)− δn↓(r, ω) . (4.54)

As a result, one may write the variation of the time-dependent spin-dipole moment as

ν(t) =

∫

dr r m(r, t) . (4.55)

Considering then two different perturbations
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δv[n]σ (r, ω) = −rjEω
j , (4.56)

δv[m]
σ (r, ω) = −rjEω

j σz . (4.57)

If σ =↑, then σz = 1, also if σ =↓ then σz = −1, so from (4.57) we obtain

δv
[m]
↑ (r, ω) = −rjEω

j , (4.58)

δv
[m]
↓ (r, ω) = rjEω

j . (4.59)

Now, both variations δn and δm, that corresponds to density-density and density-spin

response functions respectively, in which we can consequently state that (4.56) is spin-

independent and (4.57) is spin-dependent, are given as

δn[n](r, ω) = −Eω
j

∫

dr2 χ
[nn](r1, r2, ω) r2,j

δm[n](r, ω) = −Eω
j

∫

dr2 χ
[mn](r1, r2, ω) r2,j

δn[n](r, ω) = −Eω
j

∫

dr2 χ
[nm](r1, r2, ω) r2,j

δm[n](r, ω) = −Eω
j

∫

dr2 χ
[mm](r1, r2, ω) r2,j

(4.60)

Where [n] and [m] represents the spin-independent-like and spin-dependent perturba-

tions on δn and δm. Also, the linear response functions will be defined as

χ[nn] = χ↑↑ + χ↑↓ + χ↓↑ + χ↓↓

χ[mn] = χ↑↑ + χ↑↓ − χ↓↑ − χ↓↓

χ[nm] = χ↑↑ − χ↑↓ + χ↓↑ − χ↓↓

χ[mm] = χ↑↑ − χ↑↓ − χ↓↑ + χ↓↓

(4.61)

Having then δn, δm and combining (4.45) with (4.46), we get the following equations

as a result
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α
[nn]
ij (ω) = −

∫

dr1

∫

dr2 r1,i χ
[nn](r1, r2, ω) r2,j

α
[mn]
ij (ω) = −

∫

dr1

∫

dr2 r1,i χ
[mn](r1, r2, ω) r2,j

α
[nm]
ij (ω) = −

∫

dr1

∫

dr2 r1,i χ
[nm](r1, r2, ω) r2,j

α
[mm]
ij (ω) = −

∫

dr1

∫

dr2 r1,i χ
[mm](r1, r2, ω) r2,j

(4.62)

It is important to note that the polarizability that is usually mentioned is α = α
[nn]
ij ,

also, the previous equations can be rewritten as

α = ασ1σ2
ij (ω) = −

∫

dr1

∫

dr2 r1,i χσ1σ2(r1, r2, ω) r2,j . (4.63)

Since α is directly related with χ, then equations (4.62) can also be written as

α
[nn]
ij = α↑↑ij + α↑↓ij + α↓↑ij + α↓↓ij

α
[mn]
ij = α↑↑ij + α↑↓ij − α↓↑ij − α↓↓ij

α
[nm]
ij = α↑↑ij − α↑↓ij + α↓↑ij − α↓↓ij

α
[mm]
ij = α↑↑ij − α↑↓ij − α↓↑ij + α↓↓ij

(4.64)

Where the dipole Strength function and the spin-dipole strength function can be define

with the response functions α
[nn]
ij and α

[mm]
ij respectively

S[nn](ω) =
2ω

π
Im
{

Tr
[

α[nn](ω)
]

}

,

S[mm](ω) =
2ω

π
Im
{

Tr
[

α[mm](ω)
]

}

.

(4.65)

Since the dipole strength function is related to α[nn], then it is indeed also related to the

optical absorption cross section (4.50) so

S(ω) =
1

2

c

π2
σ(ω) . (4.66)

With units of ~ = m = 1. Also, the spin-dipole strength function carries information

about the spin dipole modes of excitation.
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Pseudopotentials

5.1 The Pseudopotential formulation

The base of the DFT is the many-body approach of a quantum system so, a way to

simplify the many-electron Schrödinger equation is to split the electrons of the system

into the valence electrons and the inner core electrons. Since the electrons in the inner

shell are strongly bound they are in an almost static regime, thus they can generally be

ignored, this implies that the atom will have an ionic core interacting with the valence

electrons.

In this section, the core electrons will be denoted as
∣

∣ψc

〉

and the valence ones will be
∣

∣ψv

〉

, so

Ĥ
∣

∣ψn

〉

= En

∣

∣ψn

〉

, (5.1)

where n = c, v . Also, the valence orbitals can be written as the sum of the pseudo

wavefunction, which is a smooth function
∣

∣ϕv

〉

with an oscillating function that results

from the orthogonalization of the valence to the inner core orbitals

∣

∣ψv

〉

=
∣

∣ϕv

〉

+
∑

c

αcv

∣

∣ψc

〉

, (5.2)

with αcv being −
〈

ψc

∣

∣ϕv

〉

. From (5.1) we get Ĥ
∣

∣ψv

〉

= Ev

∣

∣ψv

〉

and from (5.2) we get
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Ĥ

(

∣

∣ϕv

〉

+
∑

c

αcv

∣

∣ψc

〉

)

= Ev

(

∣

∣ϕv

〉

+
∑

c

αcv

∣

∣ψc

〉

)

⇔

Ĥ
∣

∣ϕv

〉

+
∑

c

Ĥ
∣

∣ψc

〉

αcv = Ev

∣

∣ϕv

〉

+ Ev

∑

c

αcv

∣

∣ψc

〉

.

(5.3)

Once again, from (5.1), one can obtain

∑

c

Ĥ
∣

∣ψc

〉

αcv =
∑

c

Ec

∣

∣ψc

〉

αcv . (5.4)

So, the Schrödinger equation for the pseudo wavefunction
∣

∣ϕv

〉

is written as

Ĥ
∣

∣ϕv

〉

= Ev

∣

∣ϕv

〉

+
∑

c

(Ec − Ev)
∣

∣ψc

〉〈

ψc

∣

∣ϕv

〉

. (5.5)

As a consequence, the states
∣

∣ϕv

〉

will satisfy the ”Schrödinger-ish” equation with an

energy-dependent pseudo-Hamiltonian

ĤPK(E) = Ĥ −
∑

c

(Ec − E)
∣

∣ψc

〉〈

ψc

∣

∣ . (5.6)

Resulting into a pseudopotential that was proposed by Phillips and Kleinman

V̂ PK(E) = V̂ −
∑

c

(Ec − E)
∣

∣ψc

〉〈

ψc

∣

∣ . (5.7)

Where V̂ represents the true potential that is an effective potential in which valence

electrons move.

5.2 Norm-conserving pseudopotentials

The NC pseudopotentials are a very simple procedure to extract pseudopotentials from

ab initio atomic calculations, in which the starting point is to define a certain list of

requirements, that are:

1. Real and pseudo valence eigenvalues agree for a chosen ”prototype” atomic con-

figuration.
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2. Real and pseudo atomic wavefunctions agree beyond a chosen ”core radius” rc.

3. The integrals from 0 to r of the real and pseudo charge densities agree for r > rc

for each valence state (norm conservation).

4. The logarithmic derivatives of the real and pseudo wavefunction and their first

energy derivatives agree for r > rc.

Where rc represents the radius cutoff of the core region also, from 1, one may get

εPP
l = εAE

nl . (5.8)

Also, RPP is the radial part of the pseudo wavefunction and RAE is the all-electron one,

in which r is l-dependent (angular momentum) just like ε that is the energy-eigenvalues.

Now, the combination of both 2 and 3 will lead to

RPP
l (r) = RAE

nl (r) , for r > rc

Ql =

∫ rc

0
dr |RPP

l (r)|2r2 =
∫ rc

0
dr |RAE

nl (r)|2r2 , for r < rc
(5.9)

with Ql being the integrated charge dependent on the radial part of the pseudo wavefunc-

tions. Therefore one can solve the radial part of the all-electron Kohn-Sham equations

in a ”prototype” atomic configuration

[

−1

2

d2

dr2
+
l(l + 1)

2r2
+ vAE

KS [n
AE ](r)

]

rRAE
nl (r) = εAE

nl rR
AE
nl (r) , (5.10)

in which the KS potential is non-relativistic, also the Hartree and exchange and corre-

lation potential are spherically approximated

vAE
KS [n

AE ](r) = −Z
r
+ vHartree[n

AE ](r) + vxc[n
AE ](r) . (5.11)

Finally, using the norm-conservation (5.9), the pseudo wavefunctions are determined,

however, their shape in the region r < rc needs to be previously defined. Then, knowing

the pseudo wavefunction, the pseudopotential will result in the inversion of the radial

KS equation (5.10)

V scr
l (r) = εPP

l − l(l + 1)

2r2
+

1

2rRPP
l (r)

d2

dr2
[rRPP

l (r)] . (5.12)
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Nonetheless, the resulting pseudopotential sill has screening effects caused by the valence

electrons that have to be subtracted, resulting in

Vl(r) = V scr
l (r)− vHartree[n

PP ](r)− vxc[n
PP ](r) , (5.13)

where the radius cutoff of the core region is a parameter that represents the region in

which the pseudo and the true wavefunctions intercept. So the nearest that rc is to

the core, the better the pseudopotential is (hard core pseudopotential), however the

efficiency of the calculus time will be lower. In other words, the radius, that defines the

smoothness of the pseudopotential, must be chosen carefully to our needs.

There are several methods to construct the pseudo wavefunctions, one of them was

proposed by Troullier and Martins where the pseudo wavefunctions are defined in a

way that it achieves softer pseudopotentials for the d valence states of the transition

metals

RPP
l (r) =

{

RAE
nl if r > rc

rlep(r) if r < rc
(5.14)

with

p(r) = c0 + c2r
2 + c4r

4 + c6r
6 + c8r

8 + c10r
10 + c12r

12 , (5.15)

in which the coefficients are adjusted by imposing the norm-conservation, the continuity

of the pseudo wavefunction and their first derivatives at r = rc. Also, the screened

pseudopotential has zero curvature at the origin implying that

c22 + c4(2l + 5) = 0 . (5.16)

It is important to take into account that in some cases, when the pseudopotential is too

soft, it no longer is norm-conserved.

5.2.1 Relativistic effects

Bear in mind that relativistic effects are present in a true potential, so they can be

incorporated on pseudopotentials, originating shifts due to scalar relativistic effects and
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spin-orbit interactions. So from the relativistic Kohn-Sham equations we can generate

a pseudopotential for both j = l + 1/2 and j = l − 1/2 defining then

Vl =
l

2l + 1
[(l + 1)vl+1/2 + lVl−1/2] , (5.17)

δV so
l =

2

2l + 1
[vl+1/2 − Vl−1/2] . (5.18)

Thus, the pseudopotential operator can be written on a semi-local form, because the PP

are spherically symmetric and l-dependent, resulting in an operator that is non-local in

the angular variables and local in the radial variable. In which, considering the scalar

relativistic effects one obtain

V̂SL =
∑

lm

∣

∣Ylm
〉

Vl(r)
〈

Ylm
∣

∣ . (5.19)

On the other hand, considering also the spin-orbit effects

V̂SL =
∑

lm

∣

∣Ylm
〉

[Vl(r) + δV so
l (r) L · S]

〈

Ylm
∣

∣ . (5.20)

5.3 The Projector Augmented Wave Method

The PAWmethod divides space into two kind of regions, non-overlapping atomic regions,

called augmentation spheres and an interstitial region, where the Kohn-Sham wavefunc-

tions are expected to be smooth and easily described by an uniform discretization such

as an uniform grid or planewaves. Despite the smooth discretization spans to the atomic

regions, each atomic region has spherical augmentation functions called partial-waves.

So, the total wavefunction ϕk(r) is written as

ϕk(r) = ϕ̃k(r) +

Natoms
∑

a

∑

nlm

cak,nlm

[

ξanlm(ra, θa, φa)− ξ̃anlm(ra, θa, φa)
]

, (5.21)

which represents a combination of a smooth pseudo wavefunction ϕ̃k(r), with the atomic

all-electron wavefunctions ξanlm(ra, θa, φa), subtracted by atomic pseudo wavefunctions

ξ̃anlm(ra, θa, φa).





Chapter 6

Methodology and Results

6.1 Methodology

In this section, the procedure to obtain our results will be discussed, focusing on three

essential programs that were used in order to fulfil those objectives.

The first thing to do is to choose an element on the transition metal set from the

periodic table, Chromium for example, then let us build an initial geometry. Avogadro

is a program that has a feature that does geometry optimization based on a force field,

that refers to the functional form and parameter sets used to calculate the potential

energy of a system of atoms or coarse-grained particles. The geometry obtained will be

a good initial educated guess. So, one picks an element using the periodic table from

the program and connects 2 atoms in order to make the dimer and we optimize the

geometry using the Universal Force Field (UFF).

Figure 6.1: Example of Cr2 dimer geometry built on Avogadro

Now, the first essential program is the Atomic Pseudopotentials Engine (APE) [36] that

is a tool for generating atomic pseudopotentials within a Density-Functional Theory

45
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framework. This program uses a logarithmic grid with two parameters a and b that are

required in the two commonly used ways to construct it. The ith point of the grid is

defined as ri = beai in one case and as ri = bea(i−1) in the other case. The parameters

a and b are determined by specifying the number of grid points and the starting and

ending points. The pseudopotentials generated are Norm-conserving pseudopotentials

with the method to construct the pseudo wavefunctions proposed by Troullier and Mar-

tins. Relativistic effects can be taken into account in which case the scalar-relativistic

or Dirac equations are used. In order to build the pseudopotential we have to be careful

on the cutoff radius that we choose since it must not be too close to the core as the

computation time will not be efficient and cannot be too far away for the core, or soft

as it will not be precise and the norm tests will fail, i.e. the norm will no longer be

conserved.

The second essential program that will be used after the initial geometry and the pseu-

dopotential is achieved is ABINIT, that allows one to find total energy, charge density

and electronic structure of systems made of electrons and nuclei such as the transi-

tion metal clusters, within Density Functional theory, using pseudopotentials and using

a planewave or a wavelet basis. As was said earlier, in some cases, norm-conserving

pseudopotentials will be used when we can’t use the PAW method, which is, when the

overlap of the PAW spheres are too high to be neglected. ABINIT also includes options

to optimize a geometry, according to the DFT forces and stresses. So, using a planewave

basis, the eigenfunction is a periodic function that can be expanded in the complete set

of Fourier components and can be written as

ψi(r) =
∑

k

Ci,k × 1√
Ω
eik·r , (6.1)

where Ci,k are expansion coefficients of the wavefunction in the basis of orthonormal

plane waves. The independent particle Schrödinger equation in a planewave basis is

Ĥeff (r)ψi(r) =

[

−1

2
∇2 + Veff (r)

]

ψi(r) = εiψi , (6.2)

in which it is convenient to require the states to be normalized and obey periodic bound-

ary conditions in a large volume Ω that is allowed to go to infinity. Now, in order to

do the geometry optimization, it is required to do some convergence tests such as the

kinetic energy cutoff, also known as ECUT that controls the number of planewaves at

given k point. Basically, the larger the energy cutoff is, the better converged the cal-

culation is. It is also required to test the cell lattice vector scalling, also known as

ACELL, that gives the length scales by which dimensionless primitive translations are
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to be multiplied. When using PAW, it is also necessary to do some convergence tests on

the PAW energy cutoff. Finally, one obtain a geometry optimized on a given time step

of molecular dynamics where the energy is minimal with all the previous parameters

converged for a given magnetization. We then may repeat the procedure for another

magnetization.

At last, the third program to be used is Octopus that is a scientific program aimed

at the ab initio virtual experimentation. This one also describes electrons quantum-

mechanically within Density Functional Theory such as the other two programs, it is

also possible doing simulations in time (TDDFT). Nuclei are described classicaly as

point particles. Electron-nucleus interaction is described within the pseudopotential ap-

proximation. PAW wont be used here since they are not implemented. So, despite we

can use the PAW method in order to do geometry optimization, we will need a pseu-

dopotential constructed by APE in order to continue the time-dependent calculation.

Since Octopus is a program that has a real-space grid, the first step of any calculation

is the determination of the grid-spacing that is necessary to converge the spectra to

the required precision. A way to do the convergence test is to calculate the spectra of

a cluster and change the spacing values for each spectrum as it can be shown on the

following figure
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Figure 6.2: Chromium spectra convergence with values of spacing of 0.16, 0.14, 0.12,
0.11, 0.10 and 0.09 Å.

As we can see, the spectrum is already converged on the blue line which corresponds

to a spacing of 0.12 Å, the less the spacing is, the more converged the spectrum is,



Chapter 6. Methodology and Results 48

however, if spacing is too low, the calculation time will increase and as a consequence

its efficiency will decrease. The optimum grid-spacing depends on the strength of the

pseudopotential used, the deeper the pseudopotentialm the tighter the mesh has to be.

Also, we need to converge the spectra with the radius parameter, that defines the radius

of the boxshape that is the shape of the simulation box, it can be a sphere, cylinder

or minimum. For minimum, a different radius is used for each species, while for other

shapes, the maximum is used. Since it is used the minimum boxshape, which means

that the simulation box will be constructed by adding spheres created around each atom

or user-defined potential. So the figure 6.3 shows the spectra convergence.
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Figure 6.3: Chromium spectra convergence with values of radius 5, 6, 7 and 8 Å.

For this case, the greater the radius is the better, however we face the same problem, if

we push on the radius too much, the calculation time will not be efficient. As we can

observe, the spectra is converged on the green line that is a radius value of 6Å.

Finally, having the radius and spacing values for the converged spectra, we proceed to

the calculation of the spectra of a given geometry with a given magnetization, we repeat

after for other magnetizations that were found.

6.2 Results

In order to achieve some desired results, such as the ground-state energies, some geome-

tries optimized and absorption spectra of some transition metal clusters, it is necessary
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to proceed with the steps written on the previous section from this chapter, that is the

methodology. Chromium, Manganese, Iron and Cobalt are the transition metal elements

that will be focused.

6.2.1 Dimers

The most important elements that will be studied are present in the transition metal

section on the periodic table, where they are known to exhibit peculiar magnetic proper-

ties, focusing in particular on Chromium, Manganese, Iron and Cobalt. It is important

to mention that, due to the Chromium dimer having an incredibly low bond length,

the PAW method is not precise enough since the PAW spheres will have a considerable

big overlap. As a consequence, this dimer will be the only one in which the ab initio

calculations will be done exclusively with norm-conserving pseudopotentials generated

with the program APE.

6.2.1.1 Chromium

For the Chromium dimer (Cr2), doing ab initio calculations, the geometry was optimized

with the given properties.

Cluster Magnetization mz(µB) Bond Length(Å)

Cr2
0 1.413

Total Energy(Ha) Atomisation Energy (Ha)

-233.479 0.255

Table 6.1: Chromium properties for a null magnetization

After the ground-state calculation on ABINIT, the geometry obtained was used in order

to get the absorption spectra within the TDDFT approach for the Chromium dimer

with zero magnetization resulting in
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Figure 6.4: Absorption Spectrum for Cr2 with mz = 0

As we can see, there are two major peaks about 2.85 and 4.1 eV, also, it seems to

have minor peaks near the major ones, however, even after a calculation with increased

resolution, those peaks are hardly noticeable so these ones have low statistical weight

on the spectrum, which means that the transition probability from the ground-state

to those excited states is low. This spectrum, such as all the other ones obtained,

was achieved by using NCPP with the explicit PBE form of the GGA exchange and

correlation functionals. Also, the intensity of the first peak is greater than the second,

witch means that an electron is more likely to make a transition.

Doing the calculations with the LDA xc functionals, we obtain spectra that can be

compared as the figure 6.5 shows.
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Figure 6.5: Absorption Spectra for Cr2 with mz = 0, using different exchange and
correlation functionals, LDA on the green line and GGA on the red one

If we compare then the figure 6.5, one may notice that the major peaks are located at

about the same energies with about the same intensity ratio between both of them so,

as was mentioned on section 3.4, GGA and LDA will produce similar approximations

on exchange and correlation functionals.

Now, if the cluster has a different magnetization, i.e. other than zero, we can observe

different properties (Tab. 6.2).

Cluster Magnetization mz(µB) Bond Length(Å)

Cr2
2 1.428

Total Energy(Ha) Atomisation Energy (Ha)

-233.496 0.272

Table 6.2: Chromium properties for a given magnetization

Where the total energy lowers from -233.479 to -233.496 Ha, being then ∆E = 0.017 Ha

with the increase of mz from 0 to 2, there is also a slightly increase on the bond length

as we can observe in figure 6.6.
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Figure 6.6: Chromium dimer bond length comparison with different magnetizations
where the blue dimer represents the Cr2 with mz = 2 and the red one represents Cr2

with mz = 0

Since the difference in the bond length is very low, we cannot notice any.

Now, using Octopus with the geometry obtained with a magnetization other than zero,

mz = 2 µB in this case, one can get a different spectrum as the figure 6.7 shows.

 0

 0.5

 1

 1.5

 2

 0  1  2  3  4  5

S
tr

e
n
g
th

 F
u
n
c
ti
o
n
 (

1
/e

V
)

Energy(eV)

"cross_section_tensorCr2magn2"

Figure 6.7: Absorption Spectrum for Cr2 with mz = 2

As we can observe, four peaks are explicitly represented between 1 and 4 eV where

the first one is located around 1.7 eV, the second around 2.85 eV and the third and

fourth around 3.4 and 3.8 eV respectively, we may also notice a peak with a non-usual
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form around 4.6 eV this one may represent two peaks merged together, increasing the

resolution of the calculation by adding more time steps may correct the problem, however

the computation time would greatly increase and the resolution is already pushed to the

limit. We can compare now the spectra of the same dimer with different magnetizations

with the respective bond lengths, analysing figure 6.8.
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Figure 6.8: Comparison between absorption spectra for Cr2 with mz = 0 and mz = 2

The green line represent the dimer with mz = 0 µB and the red one represents mz =

2 µB. As we can observe, if the dimer has a magnetization, more peaks are produced,

however, one of them coincides with a peak from the null magnetization spectrum,

around 2.85 eV, despite the difference in the intensity. So, one may conclude that the

difference in the magnetization of one dimer will not only influence its bond length but

also will influence its absorption spectra by having a larger set of energies where it is

likely to have a transition to a excited state.

6.2.1.2 Manganese

Repeating the ab initio calculations for the manganese dimer with zero magnetization,

one may find the properties shown on table 6.3
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Cluster Magnetization mz(µB) Bond Length(Å)

Mn2
0 2.737

Total Energy(Ha) Atomisation Energy (Ha)

-209.373 0.837

Table 6.3: Manganese properties for a null magnetization

Since the bond length of the manganese dimer is much greater than the chromium,

we wont get any problem with the overlap of the PAW spheres, so in order to save

time, the geometry was optimized using the PAW method. The procedure to obtain the

absorption spectra is the same as for the Chromium, we use the TDDFT approach with

the geometry obtained from ABINIT, producing figure 6.9.
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Figure 6.9: Absorption Spectrum for Mn2 with mz = 0

This spectrum has slightly more peaks than the one produced with the Chromium dimer

with null magnetization, there is four well defined peaks between the energy of 1 and

5 eV, being the first one around 2.55 eV, the second and the third ones aroud 3.1 and

3.75 eV, finally the fourth one on 4.8 eV, where the second and the last one have higher

intensities than the rest of the peaks, which means that there is more likely to have a

transition around these energies.

Another geometry was found for the Manganese dimer, with mz = 2 µB, that have

properties specified on the table 6.4.
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Cluster Magnetization mz(µB) Bond Length(Å)

Mn2
2 2.345

Total Energy(Ha) Atomisation Energy (Ha)

-209.363 0.847

Table 6.4: Manganese properties for a given magnetization

Comparing both the properties of the Chromium dimer with the two different magneti-

zations, with the ones of the Manganese dimer, one may notice that the total energy of

the Manganese dimer, on the contrary that was shown to the Chromium dimer, increases

with the increase of the magnetization, being ∆E = 0.374 Ha. Also, instead of the bond

length is increased such as the Chromium dimer, it decreases, as the figure 6.10 shows.

Figure 6.10: Manganese dimer bond length comparison with different magnetizations
where the blue dimer represents the Mn2 with mz = 2 and the red one represents Mn2

with mz = 0

One can also notice that in this case, the differences between the bond lengths are quite

noticeable.

6.2.1.3 Iron

The properties of the Iron cluster are obtained when the geometry is optimized using

ABINIT and are show in the table 6.5.
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Cluster Magnetization mz(µB) Bond Length(Å)

Fe2
0 2.246

Total Energy(Ha) Atomisation Energy (Ha)

-248.562 0.598

Table 6.5: Iron properties for a null magnetization

The bond length of the Iron dimer is similiar to the manganese one when comparing

with the Chromium cluster, so, for the same reasons that the PAW method was used

for the Manganese, it will be also used for the Iron cluster. The absorption spectrum is

then represented by the figure 6.11.
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Figure 6.11: Absorption Spectrum for Fe2 with mz = 0

The spectrum for the Iron dimer, also has four salient peaks between the energies of 2

and 5 eV, where the first two located around 2.8 and 3.6 eV, and the last two ones have

a higher intensity, located around 4.15 and 4.8 eV, however, their intensities are weaker

when compared with the absorption spectra of the other clusters.

Using once again the ABINIT it was found a geometry for the same cluster with a

magnetization that differs from zero with the properties stated in the table 6.6.
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Cluster Magnetization mz(µB) Bond Length(Å)

Fe2
2 2.036

Total Energy(Ha) Atomisation Energy (Ha)

-248.562 0.598

Table 6.6: Iron properties for a given magnetization

The difference between the total energies of the Iron dimer with null magnetization and

the Iron dimer with mz = 2 µB are in the order of 1 × 10−4 Ha, so with the change of

the magnetization, the total energy remain approximately the same, however the bond

length decreases about 0.2 Å as it is represented in the figure 6.12.

Figure 6.12: Iron dimer bond length comparison with different magnetizations where
the blue dimer represents the Fe2 with mz = 2 and the red one represents Fe2 with

mz = 0

The absorption spectrum obtained for the Iron dimer with mz = 2 is shown in figure

6.13.
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Figure 6.13: Absorption Spectrum for Fe2 with mz = 2

One can notice that this spectrum has several peaks with low statistical weight within

the interval [0 : 3] eV, also there are other two peaks with a significant intensity around

3.5 eV and 4.2 eV.

In order to compare both absorption spectra obtained for Iron dimer, the figure 6.14 is

produced.
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Figure 6.14: Comparison between absorption Spectra for Fe2 with mz = 0 and
mz = 2
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The red line represents the absorption spectrum for the Iron dimer with null magneti-

zation and the green line represents the absorptions spectrum for the same dimer with

mz = 2. Comparing both spectra, one can notice that there are two peaks that coincide

on approximately the same energies, around 3.5 and 4.2 eV but with different intensities.

The dimer with null magnetization has more relevant peaks that the one with mz = 2,

having other one around 2.8 eV.

6.2.1.4 Cobalt

For the Cobalt dimer, a geometry for a null magnetization was obtained, in which its

properties are represented in the table 6.7.

Cluster Magnetization mz(µB) Bond Length(Å)

Co2
0 2.157

Total Energy(Ha) Atomisation Energy (Ha)

-292.505 0.151

Table 6.7: Cobalt properties for a null magnetization

The Cobalt, Manganese and Iron clusters have similar bond lengths when comparing

with the Chromium so, It was also used the PAW method instead of the norm-conserving

pseudopotential in order to do the ab initio calculations. The absorption spectrum of

the dimer is represented in figure 6.15.
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Figure 6.15: Absorption Spectrum for Co2 with mz = 0

As we can observe, this spectrum is the one with the highest number of peaks yet, most

of them have such small intensities that can be neglected, having then two major peaks,

one around 4.2 eV and the other one around 5.1 eV.

Unfortunately, a geometry with a magnetization other than zero for the Cobalt dimer

was not found.
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Conclusion

In this work, the Time-dependent Density Functional Theory approach was used in or-

der to do calculations regarding not only the ground-state of transition metal clusters,

but also its excited states, that are important in order to identify its optical and mag-

netic properties. Analyzing the optical absorption spectra, one may conclude that the

Chromium dimer is the cluster with the lowest number of peaks, it however has one

that has the highest intensity, also, when we change the magnetization, a characteristic

peak appears in the red zone. Manganese has two peaks with relevant intensities, the

other clusters have shown to have some more peaks but with less relevant intensities to

be taken into account. Also, this work have shown that magnetizations other than null

will change the quality of the spectrum, since it may produce more peaks and change

the intensity of some relevant peaks, which means that the transition probability to an

excited state is changed.

Analyzing the Iron dimer, it is important to take into account that Iron clusters are

known to exhibit ferromagnetic configurations, this work concludes that it can also

exhibit antiferromagnetic configurations since a geometry with a null magnetization was

found for the dimer.

At last, in my opinion, Manganese is the cluster with the best absorption spectra since

it has the best ratio of number of peaks and its intensities, also it is expected that the

spectrum changes with the change in the magnetization as was observed in the other

ones. So one may conclude that from all the dimers studied in this work, the best

materials to construct spintronic devices are Manganese and Chromium.

Due to the high computational time required in order to run the programs, some con-

vergence problems and such, unfortunately there was not enough time to study all the
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magnetizations and clusters with higher number of atoms, like trimers and pentamers

that were initially proposed.
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