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Abstract: In this study, n-type MoS2 monolayer flakes are grown through chemical vapor deposition
(CVD), and a p-type Cu2O thin film is grown via electrochemical deposition. The crystal structure
of the grown MoS2 flakes is analyzed through transmission electron microscopy. The monolayer
structure of the MoS2 flakes is verified with Raman spectroscopy, multiphoton excitation microscopy,
atomic force microscopy, and photoluminescence (PL) measurements. After the preliminary process-
ing of the grown MoS2 flakes, the sample is then transferred onto a Cu2O thin film to complete a p-n
heterogeneous structure. Data are confirmed via scanning electron microscopy, SHG, and Raman
mapping measurements. The luminous energy gap between the two materials is examined through
PL measurements. Results reveal that the thickness of the single-layer MoS2 film is 0.7 nm. PL
mapping shows a micro signal generated at the 627 nm wavelength, which belongs to the B2 excitons
of MoS2 and tends to increase gradually when it approaches 670 nm. Finally, the biosensor is used to
detect lung cancer cell types in hydroplegia significantly reducing the current busy procedures and
longer waiting time for detection. The results suggest that the fabricated sensor is highly sensitive to
the change in the photocurrent with the number of each cell, the linear regression of the three cell
types is as high as 99%. By measuring the slope of the photocurrent, we can identify the type of cells
and the number of cells.

Keywords: photoelectrochemical; chemical vapor deposition; molybdenum disulfide (MoS2); cuprous
oxide (Cu2O); positive oxide trap state; DNA; biosensor

1. Introduction

Molybdenum disulfide (MoS2) is one of the two-dimensional (2D) transition metal
chalcogenides that have been studied recently [1–6]. Materials related to nanometer-scale
electronic and optoelectronic components, such as field-effect transistors, prospective
memory components, light-emitting diodes (LED), and sensors, have been manufactured
because of the excellent spin-valley coupling and flexural and optoelectronic properties of
MoS2 [7–19]. However, MoS2 is a layered structure, which has good lubricity, resistance
to pressure, and wear resistance, and is mostly used as solid lubricant [20]. It is used
in equipment operating under high-speed, heavy-load, high-temperature, and chemical
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corrosive conditions. MoS2 is a black hexagonal crystal structure with silver-gray luster,
its Moiré mass is 160.07 g/mol, density is 5.06 g/cm3, and melting point is 1185 ◦C. MoS2
itself is insoluble in water, generally insoluble in other acids, alkalis, and organic solvents.
However, at 400 ◦C, oxidation occurs slowly, and molybdenum trioxide (MoO3) gradually
forms. PN heterostructures have been widely used in the semiconductor industry; as a
typical P-type semiconductor, Cu2O is considered to be the most effective material [21].
With these characteristics, Cu2O can be effectively used as an absorption layer in the visible
wavelength range [22–25]. In a bulk MoS2 semiconductor, an indirect energy gap of 1.2 eV
between the G- and S-point conduction bands, and a single-layer MoS2 semiconductor
has a direct energy gap of 1.84 eV. Studies on light absorption, light reflection, and light
excitation spectroscopy have evolved from bulk materials to single-layer TMDs [26]. In
2014, Yu-Fei Zhao et al. used a simple chemical synthesis method to cover MoS2 suc-
cessfully on p-Cu2O semiconductors for high-efficiency solar hydrogen production [21].
In 2016, Xinne Zhao et al. assembled Cu2O nanoparticles and MoS2 nanosheets with a
2D planar structure into a 3D MoS2/Cu2O porous nanocomposite through hydrothermal
synthesis [27,28]. In 2017, Linxia Fang et al. successfully decorated Cu2O nanoparticles
on flower-like MoS2 and used them for non-enzymatic current detection in glucose. This
structure has Cu2O nanoparticles dispersed in MoS2 [29]. Gang Li et al. reported the
hydrothermal synthesis of MoS2/Cu2O nanocomposites with a tunable heterojunction to
enhance the photochemical activity and stability of visible light [30]. The lack of energy
gap of graphene in two-dimensional materials has shifted the focus on two-dimensional
transition metal dichalcogenides (TMDs) with different energy gaps obtained by changing
the number of layers. In the review of previous studies on MoS2/Cu2O, MoS2/Cu2O has
high-performance photocatalysis, excellent electrocatalysis, strong stability, reproducibility,
and high selectivity for non-MEI sensors. This structure can be used as a hydrogen oxide
biosensor for environmental engineering applications, such as energy storage and water
purification. It can also be used as a non-MEI current detection in glucose oxidation. It
is better for the signal interference of uric acid, dopamine, and ascorbic acid. Apart from
inorganic biosensors, organic materials are also getting attention in the last few years.
Some biosensors using poly(methylene blue) (PMB), poly(alizarin yellow R), poly(azure
A), poly(azure B), poly(azure C), poly(brilliant cresyl blue), and poly(thionine) has been
widely studied and reported [31–37]. Even though these biosensors have good selectivity,
their disadvantages include instability, cost, and a need for a mediator in some cases [38].
On the other hand, in recent years due to the excellent electrochemical properties of Cu2O,
much research has been conducted towards its application as a sensor [39–42]. MoS2 which
has a similar structure to graphene due to its conductivity and good electrical and chemical
properties has been widely reported to be employed in numerous biosensors [43–45].

Hence, in this research, a new MoS2/Cu2O PN heterojunction structure, can reduce the
predominant disadvantage of noise interference to the detection signal through different
growth methods, material special characteristics, and the structure itself. This MoS2/Cu2O
structure is applied to a sensor for cancer cells with different canceration levels. In this
study, CVD is conducted for single-layer MoS2 to obtain large-area and uniform MoS2
films. Several measurement techniques, including Raman mapping, are used to check
the number of layers. Atomic force microscopy (AFM) is employed for thickness analysis
and scanning electron microscopy (SEM) is utilized to observe surface morphology. X-ray
diffraction (XRD; Figure S1 for XRD) is conducted to measure whether a signal appears, and
transmission electron microscopy (TM; Figure S4) is performed to determine the direction
of the crystal lattice. However, studies on the synthesis of semiconductor materials and
nanostructures have also been carried out. During the research, Cu2O nanostructures have
been successfully fabricated through electrochemical deposition. The major application of
this heterostructure is to develop a low-cost and rapid way to detect lung cancer cell types
in hydroplegia by fabricating a PEC biosensor that is highly sensitive to lung cancer cells
significantly reducing the current busy procedures and longer waiting time for detection.
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2. Materials and Methods

The glass substrate used in the experiment was indium tin oxide (ITO) for Cu2O
electroplating. The resistance of the ITO surface was 7 Ω, and the thickness of the coating
was 200 nm. All the chemicals used were all American Chemical Society (ACS) and guar-
anteed reagent (GR) to avoid the failure of results because of insufficient purity or residual
impurities in the grown crystals, especially low-chlorine Sigma-Aldrich (Burlington, MA,
USA) 98+% for sodium hydroxide because the solution of Cu2O deposition was susceptible
to the influence of chloride ions to produce copper chloride precipitation.

2.1. Process and Steps of Electrochemical Cu2O Growth
2.1.1. Substrate and Electrolysis Pretreatment

Cu2O was prepared through electrochemical deposition, and the substrate used
was a 2 cm × 2 cm transparent conductive film made of ITO for Cu2O electroplating
(Supplementary Section S1.1 for the Material characteristics of Cu2O). P-type Cu2O has
a small energy gap of 2.0 eV, which was a suitable conduction band [46,47]. Acetone,
methanol, isopropanol, and deionized water were used to reduce the impurities, such
as dust, oil stains, or residues, on the electrode surface after ITO plating. The adhesion
of impurity contamination also improved the stability of film growth to obtain a higher-
quality Cu2O film (Supplementary Section S3 for the List of substrates, organic solvents,
gases, and chemicals used to grow Cu2O and MoS2). In the cleaning steps, the electrode
surface was first cleaned with acetone in an ultrasonic oscillator for 10 min to dissolve and
remove surface oil stains or other organic impurities. After the specimen was shaken and
washed with acetone, it was rinsed with methanol in an ultrasonic oscillator for 10 min
to dissolve and remove residual copper contamination on the surface. Isopropanol was
used for cleaning in an ultrasonic oscillator for 10 min to dissolve and remove surface oil
stains or other organic impurities. The glass substrate was soaked in deionized water with
a resistivity of 18.2 M W·cm (25 ◦C), and an ultrasonic oscillator was used for 10 min to
remove residual organic solvents. The sample was taken out, and a high-pressure nitrogen
gun was used to remove the moisture on the surface of the ITO glass substrate. The ITO
glass substrate was baked in an oven at 100 ◦C for 30 min to remove the residual moisture
on the substrate and placed in a clean moisture-proof box for later use. The cut graphite
rods with a diameter of 1 cm and a length of 18 cm were subjected to electrochemical Cu2O
deposition. The main purpose of cleaning the electrodes of the graphite rods was to reduce
impurities, such as dust, oil stains, and residual powder, on the electrode surface during
graphite rod production. External impurities contaminated Cu2O electrolytic deposition
and improved film growth stability. For cleaning, the graphite rod was soaked in 1 M
sodium hydroxide solution and washed with ultrasonic vibration for 30 min to remove
grease and organic pollutants adsorbed on the surface. The surface of the graphite rod
was ground with sandpaper and rinsed with deionized water during grinding to remove
the powder remaining in the graphite rod manufacturing. The graphite rod was soaked
in deionized water and shaken for 30 min with ultrasonic cleaning to reduce the residual
impurities on the surface. The graphite rod was baked in an oven at 100 ◦C for 30 min to re-
move the surface moisture and placed in a moisture-proof box to complete the pretreatment
of the graphite electrode.

2.1.2. Preparation of Cu2O Film

A Cu2O thin film was prepared for electrochemical deposition to grow a highly uni-
form thin film on the ITO glass substrate (Supplementary Section S1.2 for Cu2O Synthesis).
The electrolyte was made of 0.4 M copper sulfate powder (CuSO4), 85% lactic acid, and 5 M
sodium hydroxide (NaOH) prepared into a 1000 c.c. aqueous solution. The pH could be
adjusted to 10, 11, and 12 through the amount of sodium hydroxide, which was measured
in real time by a portable Starter300 pH meter (ST300). A DC power supply (MOTECH
LPS505N) was used to power the two-pole electrochemical deposition system equipment
in which the positive electrode was a graphite rod, and the negative electrode was con-



Int. J. Mol. Sci. 2022, 23, 4745 4 of 15

nected to the ITO glass substrate (Supplementary Section S2.1 for the electrochemical
deposition system). The temperature of the growing electrolyte was controlled at 60 ◦C
to ensure that the lactic acid works. The deposition time was fixed at 30 min to achieve
high quality and uniformity. At the end of the film, the sample was washed with deion-
ized water, and the surface moisture was removed with a high-pressure nitrogen gun for
subsequent experiments.

2.1.3. Cu2O Grinding

A plane grinder was widely used for the single-sided grinding and polishing of
various materials, such as LED sapphire substrates, optical glass wafers, quartz wafers,
silicon wafers, germanium wafers, molds, light guide plates, and optical skewer joints. The
Cu2O thin film was processed by grinding to smoothen the Cu2O surface and facilitate
the subsequent transfer of MoS2 while maintaining the integrity of the morphological
characteristics of MoS2 and reducing the transfer failure rate. The rotation speed of the
grinder was controlled at the minimum, and the time was set at 1 h. Considering Cu2O
was a thin film at the micrometer scale, we chose the micro grade at the scale of a diamond
polishing sheet.

2.1.4. Experimental Materials and Drug Specifications of MoS2

The substrate used to grow MoS2 was silicon dioxide (SiO2) for chemical vapor depo-
sition (CVD; Supplementary Section S1.2 for obtaining MoS2 layers). The thickness of the
chosen silicon wafer (100) crystal plane was 300 nm. The purity of sulfur powder (S) and
molybdenum oxide (MoO3) powder was 99.98% and 99.95%, respectively, to avoid impuri-
ties that affect the CVD or the remaining impurities of grown single crystals. The quartz
tubes and ceramic crucibles in the tubular thermal tubes were cleaned with aqua regia. The
concentrations of nitric acid and hydrochloric acid were 37% and 68–69%, respectively, to
avoid the adhesion of impurities from the previous growth during cleaning, which affects
the experimental parameters and reproducibility of the next growth of monolayer MoS2.

2.2. Process and Steps of CVD-Grown MoS2

The majority of 2D material layer identification studies focus on film synthesis using
mechanical stripping [48–50]. Most 2D material layer identification studies have focused
on film synthesis through mechanical stripping [51]. In the present experiment, a 300 nm
SiO2 silicon substrate was prepared and cleaned with ultrasonic vibration in acetone for
10 min to remove impurities and oil stains on the surface; deionized water was then used
to remove the organic solvent acetone (Supplementary Section S5 for CVD-grown MoS2).

After 10 min, the sample was taken out, and the moisture on the surface of the ITO
glass substrate was removed with a high-pressure nitrogen gun. The method used to
grow MoS2 was CVD [52–57]. The substrate was placed under specific pressure and
temperature conditions and one or more precursors were chemically reacted on the surface
of the substrate to produce a high-quality large-area thin film. The application of CVD
in the preparation of single-layer TMDs starts with MoS2 growth. The inert gas used to
grow MoS2 through CVD was argon. Afterward, 500 sccm of argon was used to clean
the internal cavity and keep it in a clean environment. The heating rate was set to 20◦C
per min, the growth temperature was 650 ◦C, and the temperature was held for 30 min.
Once the temperature was dropped to 400 ◦C, the lid was opened. The MoS2 structure
was obtained when the temperature decreases to room temperature. The experimental
process was shown in Figure 1. With molybdenum trioxide (MoO3) and sulfur powder (S)
as precursors, a 2 cm × 2 cm silicon dioxide/silicon (SiO2/Si) substrate was placed on the
crucible and sent into the furnace tube. The vaporization point of MoO3 was 650 ◦C [58–60].
The vaporization point of S was above 200 ◦C. Gas-phase MoO3 undergoes two chemical
reactions in high-temperature environments to produce molybdenum oxide (MoO3-x)
intermediates. The resulting molybdenum oxide intermediates diffuse to the substrate and
vaporize to form a MoS2 film. The distance between the two crucibles was 46 cm. This long
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distance was to ensure that the vapor concentration gradient of sulfur was negligible on
the substrate compared with that of the MoO3 concentration gradient because the distance
between MoO3 and the substrate was small. CVD can effectively prepare single- and
multi-layer MoS2. It can grow high-quality single-crystal materials and prepare uniformly
distributed thin films on a large area, which was conducive to subsequent optoelectronic
component manufacturing.
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Figure 1. Schematic of a growing MoS2 film.

MoS2 Transfer Process

A spin coater was used to coat uniformly the photoresistant PMMA A5 on the substrate
to transfer MoS2 after CVD growth on the Cu2O surface and left for the PMMA to dry. The
substrate was covered with photoresistant liquid into 2 M NaOH as an etching solution for
separating the substrate and PMMA A5. The removed photoresist was placed in DI water
and blown dry with high-pressure nitrogen to prepare for the subsequent transfer. Then,
PMMA A5 was placed on the original SiO2 substrate, which was cut to an appropriate
size with a three-axis leveling table and placed on the surface of the Cu2O substrate. The
temperature was set to 210◦ for about 30 s to make the PMMA adhere to the substrate. The
sample was soaked in acetone for 30 min, and photoresistance was removed, leaving MoS2
to complete the entire transfer process (Figure 2).
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transfer process.
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3. Results
3.1. Growth Results of MoS2/Cu2O

Based on the above growth methods and measurement results, the CVD-grown MoS2
was transferred electrochemically to grown Cu2O (Supplementary Section S4 for the results
of Cu2O electrochemical growth under different parameters). Material and optical charac-
teristics were analyzed: Raman mapping (Supplementary Section S2.2 for micro-Raman
Spectroscopy), SEM (Supplementary Section S2.5 for scanning electron microscope), and
SHG measurements (Supplementary Section S2.8 for multiphoton excitation microscope).

3.1.1. Cu2O Flattening Comparison

This study has used the Cu2O film grown by the electrochemical method as the
template for MoS2 transfer. The SEM image is used to detect the success rate of the transfer,
and the result is consistent with the Cu2O image without transfer in the SEM image, as
shown in Figure 3a,b. The reason for the failure is that the Cu2O surface used for the
electrochemical method is quite rough, and the rough surface causes the MoS2 transfer to
be broken or unable to be transferred because of the uneven surface. Afterward, the Cu2O
film was ground to smoothen the Cu2O surface and facilitate the subsequent transfer of
MoS2 while maintaining the integrity of the morphological characteristics of MoS2 and
reducing the transfer failure rate. Figure 4a shows the AFM data results of Cu2O before
grinding. Under the following parameters, i.e., Z range of 740.16 nm, Rms of 97.496, and
data scale of 0–800 nm (height), Figure 4b shows the results of Cu2O after surface polishing
by grinding. Under the following parameters, i.e., Z range of 94.623 nm, Rms of 3.849
nm, and data scale of 0–50 nm (height), the top and flat views of the Cu2O film in the
SEM image are shown in Figure 3c,d, respectively. The surface after grinding is smooth.
According to the above data, grinding may be used to treat the Cu2O surface.
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Figure 4. (a,b) AFM measurements of the Cu2O film before and after polishing.

3.1.2. MoS2 Transfer Result on Cu2O

After the Cu2O surface is polished by the abovementioned grinding method, the SEM
image result shows that the surface is smoother than the original unpolished surface, and
the surface roughness is reduced by 96% in the AFM measurement result (Supplementary
Section S2.6 for atomic force microscope). Then CVD-grown MoS2 film is transferred to the
Cu2O surface, and SEM is performed (Figure 5). Although few irregularities are observed
on the surface of the Cu2O, SEM analysis shows that MoS2 is transferred successfully, and
the morphological characteristics of MoS2 are completely present on the surface of Cu2O.
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Figure 5. SEM image of MoS2 transferred to the Cu2O surface.

3.1.3. Analysis of MoS2/Cu2O Materials and Optical Properties

After the transfer of the CVD-grown MoS2 film onto the electrochemically grown Cu2O
surface. Its material and optical properties are analyzed by employing OM (Supplementary
Section S2.4 for optical microscope), SHG images, SEM, and Raman and PL mapping. A
multiphoton image is used to identify the signal display during the MoS2 transfer (Figure 6).
The morphological characteristics of MoS2 grown by CVD are obvious. A core point exists
in most triangles, and when this core point corresponds to a multiphoton image, the signal
becomes stronger than the color of the triangles other than the core point. Figure 6b
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shows the multiphoton image of MoS2/Cu2O/ITO after the transfer. Although many blue
irregularities in the image, they are not evenly dispersed to make it clear whether they are
MoS2 triangles.
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However, the comparison of the obvious bright spots in the image in Figure 6a suggests
that a bright spot signal may be the core image after MoS2 transfer and because Cu2O
is not completely flat like the SiO2 surface after being polished. Moreover, this bright
spot at the center of MoS2 is due to the nucleation of MoS2. The growth parameters, such
as carrier gas, growth temperature, precursors, substrates, and promoters can affect the
nucleation and growth modes of MoS2 [61]. However, Ho Kwon Kim et al. has shown
that the pre-exposure of growth substrates to alkali metal halides and the Mo precursor
before the growth stage appears can suppress nucleation of MoS2 [62]. Therefore, the
other blue part may be a multi-photon image of a mixture of MoS2 and Cu2O. As shown
in Figure 5, the grown MoS2 has been successfully transferred to the Cu2O film. These
two data can be combined, proving that MoS2 has been successfully transferred to the
Cu2O film by grinding and transfer. Raman mapping, which is the best method to analyze
the number of layers, has been used to analyze the image of the transferred MoS2/Cu2O
sample [63–65]. In this study, a 532 nm band is used as a laser excitation light source. From
Figure 7b we can observe that the blue-green area is the MoS2 film, and the red area is
part of a Cu2O film. The 532 nm band was used as the laser excitation light source in
this study. As shown in Figure 7a, the Raman shift of MoS2 has a peak at 384.3 before
transfer while the Raman shift had a peak at 402.8 cm−1 after the transfer. The Raman
shift of Cu2O before the transfer has a peak at 221.8 cm−1. After transferring MoS2 onto
the Cu2O film, the Raman shift did reach peaks at 221.8, 384.3, and 402.8 cm−1. It can be
clearly inferred that the Raman peak of Cu2O appearing at 221.8 cm−1 indicates that the
surface of Cu2O was partially oxidized. Similarly, the Raman shifts of MoS2 at 384.3 and
402.8 cm−1 are in accordance with E12g and A1g, respectively, and combined vibrations
of two different phonons (A1g(M)−LA(M)), respectively, which indicates the existence of
MoS2 structures [66–69]. In the Cu2O/MoS2 composite films, the diffraction peaks of Cu2O
and MoS2 are still observed. The result shows that the grown MoS2 has a uniform film in
the image and can replace the morphology. E12g and A1g vibration modes are the main
signals for the judgment of MoS2. The two vibration modes are highly dependent on the
thickness of MoS2. When the ∆k value of the subtraction of E12g and A1g peaks is less than
20 cm−1, the analyzed MoS2 is regarded as a single-layer structure.

Figure 8a shows the OM image of MoS2/Cu2O, Figure 8b illustrates the 625-band
image selected for the PL mapping image. The MoS2 spectrum consists of two peaks corre-
sponding to the A1 and B1 excitons at 667 nm (1.86 eV) and 627 nm (1.97 eV), respectively.
The measured PL for Cu2O grown by the electrochemical method was about 720–900 nm.
In the measurement of the PN heterostructure material combination of MoS2/Cu2O, Raman
measurement was first performed on the OM image. After the signal of MoS2 is found, PL
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measurement is carried out, and the combined structure is examined through the measure-
ment results to show that the band range covers 625–900 nm. We found that a micro signal
is generated at about 627 nm in the orange elliptical dashed circle, and the wavelength
of 627 nm belongs to the B2 excitons of MoS2. The signal gradually increases when it
approaches 670 nm. However, the Cu2O signal is not in this part because its light-emitting
band starts to generate signals from 720 nm. Therefore, the Cu2O film may be too thick, and
the single-layer MoS2 film thickness is only 0.7 nm, so the two heterostructure materials are
combined in the wavelength range of 670–700 nm. The entire signal undergoes a red-shifted
phenomenon because the Cu2O film signal is strong.
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3.2. Photocurrent Response Analysis

This research uses the preparation of biosensors, and the photocurrent measure-
ment system and impedance analysis system set up in the laboratory (see Supplement 1,
Section S6 for Analysis of Structural Characteristics of Photoelectrochemical Biosensors).
The photocurrent measurement of the three lung cancer cells A549, H460 and H520 was
carried out by the carrier transport mechanism of photogenerated charge, and the zigzags-
toothed microelectrode was used to perform aggregation and impedance analysis of the
cancer cells. In this study, we utilized two characteristic substances, glutathione (GSH)
and glutathione disulfide (GSSG), to verify the detection mechanism of the developed
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biosensor. Generally, GSH in cells exists in two forms: 90% of GSH is present in the cy-
toplasm as reduced GSH, and 10% is present in the mitochondria. For healthy cells, the
ratio of GSH to GSSG is greater than 10:1. However, when cells become cancerous, the ratio
of GSH to GSSG decreases [70,71]. Because the majority carriers in N-type PEC are elec-
trons and hence GSSG participating in PEC reaction is more significant. When irradiated,
electron-hole pairs are generated, GSSG recombines with photo-generated electrons, and
photo-generated holes are detected, forming a system of hole currents. As the degree of
canceration becomes more severe, the concentration of GSSG contained in cancer cells in-
creases, and the measured photocurrent also increases [72,73]. On the contrary, the majority
of carriers in the P-type PEC biosensor are holes and hence GSH participates in the PEC
reaction more significantly. After being illuminated, GSH recombines with photo-generated
holes, photo-generated electrons are detected, and a system of electron flow is formed.
The more severe the carcinogenesis of the structure, the smaller the GSH concentration
and also a decrease of the photocurrent [74,75]. As shown in Figure 9 the photocurrent
decreased with the increase of suspended cell density, which indicated that more GSH was
involved in the PEC process. From Figure 10, it can be known that different cells have
different amounts of change, there is a highly linear relationship between the photocurrent
change and the number of cells, and the linear regression of the three cell types is as high as
99%. The slopes corresponding to the three cell lines A549, NCI-H460 and NCI-H520 were
approximately 0.000452, 0.000749 and 0.000174, respectively. By measuring the magnitude
of the photocurrent, we can calculate the regression curve equation, thereby identifying
which cell of the three cells is. In the growth mechanism of Cu2O, as the thickness increases,
the stress or dislocation will increase, resulting in a certain optimal thickness of the material.
Previous studies also shows that the best growth thickness of Cu2O under the environment
and parameters of our growth is 2 µm [76].
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Figure 10. Linear relationship between photocurrent changes and cell number in three lung cancer
cell lines on biosensing chips.

4. Discussion

When the MoS2 film has a single-layer structure, the A1g signal is stronger than that
of a multilayer film. If the MoS2 film has a multilayer structure, the E12g signal is stronger
than that of a single-layer film. The PL signal of MoS2 also decreases as the number of
layers increases. Therefore, we can observe the contrast of the image by selecting the PL
mapping images of 625 and 675 nm, corresponding to the color bar value. Single- and
multi-layer MoS2 film signals are found in the selected 625-band image compared with
much fewer signals in the 675-band image. When we grow the MoS2 film, single- and
multi-layer structures form. In the selection of images for mapping, more multi-layer MoS2
films are covered. The PL measurement results in this study use a 532 nm laser as the
excitation light source to measure the PL of a single-layer MoS2 film. The measurement
results show that a strong signal is generated at the wavelength of 667 nm, and the energy
is 1.84 eV after conversion. It is the energy gap of single-layer MoS2. However, from Gang
Li et al., the energy band alignment of bulk MoS2 and single layer MoS2 was observed at
1.4 eV and 1.78 eV, respectively [29]. From our study, the single layer MoS2 was observed
at 1.84 eV, close to the previous observations. The future scope of this project can be split
into two aspects. First, after the two materials are combined, by using them as electric
double-layer transistors their electrical properties can be tested. After confirming the
positive state of the oxide trap. We can also try to bombard the element with high-energy
particles to explore its characteristic influence and figure out if it affects the transformation
of the mechanism. If the result of the electron beam bombardment affects the element and
causes the characteristics to change, it can be checked again whether the electrical property
changes from the positive oxide trap state to the negative interface trap state. Second,
CVD can be performed to grow MoS2 in the 2H phase. MoS2 has three crystal structures:
2H (semiconductor characteristics), 1T (metallic characteristics), and 3R (semiconductor
characteristics). The intensity difference can be detected in the PL mapping and electrostatic
force microscope (EFM) images of 2H-MoS2 and 1T-MoS2. The future scope of this study
is to collect a large amount of data to build a large-scale database by measuring the cell
impedance and photocurrent in the patient’s pleural effusion. After analyzing the data
through Artificial Intelligence (AI), a human-machine display interface will be designed
which provides the types of cancer cells defined by the system, assisting physicians to
determine the patient’s cancer status and provide appropriate treatment methods.
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5. Conclusions

In this study, an electrochemical method was used to grow a Cu2O film with a uni-
form and superior crystal lattice. The micro-roughened surface structure of Cu2O was
polished by grinding. Then, CVD-grown single crystal MoS2 was transferred to the Cu2O
film. OM, SHG, SEM, Raman, and PL mapping measurements were used to analyze the
combination of the two materials. Electrochemical methods were successfully used to
achieve relatively good electrical properties. TEM showed that Cu2O is a single crystal
structure, and SEM revealed that the surface should be processed by subsequent grinding
methods. After grinding and polishing were performed, AFM and SEM were used to
obtain the experimental results. MoS2 structure was grown through CVD, and E12g and
A1g peaks were obtained via Raman analysis. The main luminescence peak at 667 nm was
determined through PL analysis. The single layer of MoS2 was transferred to the polished
Cu2O surface, which was confirmed by SEM and SHG results. Raman and PL mapping
image analysis on MoS2/Cu2O indicated that the grown MoS2 had a uniform film. The
combined structure was measured through PL measurement to verify that the band range
covered 625–900 nm. A micro signal was found at the 627 nm wavelength. It belonged to
the B2 excitons of MoS2 and tended to increase gradually as it approached 670 nm. The
Cu2O film was too thick, whereas the thickness of the single-layer MoS2 film was only
0.7 nm. As such, the two heterostructure materials combined in the wavelength range of
670–700 nm. The strong signal of the Cu2O film itself led to a red shift in the entire signal.
This study also successfully fabricated a low-cost PEC biosensor that is highly sensitive
to lung cancer cells which is a rapid way to detect lung cancer cell types in hydroplegia.
The photocurrent response is measured using the MoS2/Cu2O biochip material grown by
electrochemical deposition. As the number of cancer cells measured increases, the content
of oxidized GSSG also increases, and the measured photocurrent decreases accordingly. It
is also possible to use dielectrophoresis to gather cancer cells to form a pearl string, measure
unlabeled cancer cells, and use the slope of the admittance value to shape lung cancer cells.
The linear regression curve is compared with the admittance value and the photocurrent
measurement value to distinguish the types of cancer cells in the pleural effusion.
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