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Abstract The measurement uncertainty of illuminance

and, consequently, luminous flux and luminous efficacy of

LED lamps can be reduced with a recently introduced

method based on the predictable quantum efficient detector

(PQED). One of the most critical factors affecting the

measurement uncertainty with the PQED method is the

determination of the aperture area. This paper describes an

upgrade to an optical method for direct determination of

aperture area where superposition of equally spaced

Gaussian laser beams is used to form a uniform irradiance

distribution. In practice, this is accomplished by scanning

the aperture in front of an intensity-stabilized laser beam.

In the upgraded method, the aperture is attached to the

PQED and the whole package is transversely scanned rel-

ative to the laser beam. This has the benefit of having

identical geometry in the laser scanning of the aperture

area and in the actual photometric measurement. Further,

the aperture and detector assembly does not have to be

dismantled for the aperture calibration. However, due to

small acceptance angle of the PQED, differences between

the diffraction effects of an overfilling plane wave and of a

combination of Gaussian laser beams at the circular aper-

ture need to be taken into account. A numerical calculation

method for studying these effects is discussed in this paper.

The calculation utilizes the Rayleigh–Sommerfeld

diffraction integral, which is applied to the geometry of the

PQED and the aperture. Calculation results for various

aperture diameters and two different aperture-to-detector

distances are presented.
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1 Introduction

Energy-efficient LED lamps and luminaires have become

popular in general lighting. It is estimated that in 2020 the

global market share of LED lamps will be almost 70 % in

general lighting and that luminous efficacies will grow

beyond 200 lm / W [1, 2]. To exploit the full energy sav-

ing potential of the solid state lighting (SSL) technology,

lamp types with best luminous efficacies should be selected

for the future use. Unfortunately, various optical and

electrical properties of LED lamps make them more chal-

lenging to measure for luminous efficacy than traditional

incandescent lamps. The lowest measurement uncertainties

of luminous efficacy currently achieved at National

Metrology Institutes (NMIs) are around 1 % (k = 2) [3].

The uncertainties for testing and calibration laboratories

that actually characterize the new products coming to

market are significantly higher; over hundred laboratories

took part in a recent comparison measurement of SSL

products which indicated a spread as high as ±5 % in

luminous efficacy results [4].

Total luminous flux measurement is needed in the

determination of the luminous efficacy of a light source. It

can be performed with either a goniometric [5, 6] or an

absolute integrating sphere method [3, 7, 8]. Both methods

require absolute illuminance measurement as a calibration

procedure. If the spectrum of the light source is limited to
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the visible wavelength range, as is the case with white LED

lamps, a recently introduced method [9, 10] can be used for

accurately realizing the absolute illuminance. The method

makes use of the predictable quantum efficient detector

(PQED) [11–13], an induced-junction photodiode based

primary standard of optical power operated at room tem-

perature [14]. The responsivity of the PQED is very near to

that of an ideal quantum detector, and moreover, it can be

predicted with an uncertainty less than 0.01 % in the vis-

ible wavelength range [11, 15]. The most notable differ-

ence between traditional photometer-based illuminance

measurement and the PQED method is that the latter does

not utilize filters of any kind; only the precision aperture is

placed in front of the PQED, as shown in Fig. 1. The

PQED method has many benefits, such as simplified

traceability chain and lower uncertainty due to the well-

known responsivity [10]. However, determination of the

aperture area still remains as one of the most critical factors

affecting the measurement uncertainty of illuminance [10]

and, consequently, luminous efficacy.

Several methods for determining the area of an aperture

have been developed, which utilize either mechanical

contact [16, 17] or optical techniques [18–25]. In addition,

a spatially uniform irradiance source can be used to com-

pare the area of two apertures [16, 26, 27]. While most

methods measure the diameter of a round aperture, some

measure the area directly and can be used to measure

irregular apertures. Lassila et al. developed such an optical

method for direct determination of aperture area [18–20],

in which a two-dimensional superposition of equally

spaced Gaussian laser beams is used to form a uniform

irradiance distribution. In practice, this is accomplished by

having an intensity-stabilized laser beam and scanning the

aperture in front of the laser beam. The light passing

through the aperture at each position is collected using an

integrating sphere and then detected with a photodetector.

The method has been validated by comparing the measured

area of apertures of different sizes to the area determined

using mechanical contact methods [18–20].

This paper describes an upgrade to the laser scanning

method. In the improved method, the aperture is attached to

the PQED detector and the whole package is transversely

scanned relative to the laser beam, as show in Fig. 2. This

method has the benefit of having identical geometry in the

laser scanning of the aperture area and in the actual pho-

tometric measurement. Furthermore, the aperture and

detector assembly does not have to be dismantled for

aperture calibration. The measurement setup required for

the laser scanning method is relatively simple and, there-

fore, existing laser facilities [14, 28] can be exploited

directly or with minor modifications.

The acceptance angle of the PQED is small compared

to that of an integrating sphere, as seen in Fig. 1.

Therefore, differences between the diffraction effects of

an overfilling plane wave and of a combination of

Gaussian laser beams at the circular aperture have to be

taken into account. A numerical calculation method for

studying these effects is discussed in this paper. The

calculation utilizes the Rayleigh–Sommerfeld (RS)

diffraction integral [29], which is applied to the geometry

of the PQED and the aperture. Simulation results for

different aperture sizes and two different distances

between the aperture and the detector are presented.

Based on these results and uncertainties demonstrated for

the original laser scanning method, an anticipated uncer-

tainty is given for determination of the aperture area using

the upgraded method. In addition, the propagation of the

reduced uncertainty of aperture area to the uncertainty of

PQED-based illuminance measurement and, consequently,

to the luminous flux measurement is discussed. Finally,

the impact of many recent advances in electrical and

optical measurements of LED lamps—including those

presented here—on the luminous efficacy measurements

of white LED lamps is assessed.

2 Theory

2.1 LED photometry

Photometric quantities are obtained from corresponding

radiometric quantities by taking into account the relative

spectral responsivity of the human vision. This is calcu-

lated by spectrally weighting the radiometric quantity with

the luminous efficiency function V(k), which describes the

relative spectral responsivity of the human eye under

daylight conditions [30]. Luminous efficacy gv, given in

lumens per watt, is typically used to assess the energy

efficiency of a light source. It is defined as the ratio

Fig. 1 Schematic structure of the PQED (predictable quantum effi-

cient detector) and the precision aperture. The angle between the

photodiodes arranged in a wedged trap configuration is 15�
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gv ¼ Uv=P; ð1Þ

where Uv is the total luminous flux and P is the electrical

power consumption of the lamp. Determining the luminous

flux over 4p solid angle around the lamp requires the

illuminance measurement over a small solid angle as a

calibration procedure. In the absolute integrating sphere

method, the luminous flux of the lamp to be measured is

compared with an external luminous flux which is pro-

duced using a precision aperture and known illuminance [7,

8]. If an LED lamp is used as the external source, the

PQED method can be used to measure its illuminance.

Goniophotometers, on the other hand, determine the total

luminous flux by measuring the illuminance of the light

source at various solid angles [5, 6]. The illuminance

responsivity of the detector used in the goniophotometer

can be calibrated against the PQED.

For the PQED and aperture assembly, the illuminance

can be calculated using the equation [9]

Ev ¼
KmFi

As k0ð Þ ; ð2Þ

where constant Km = 683.002 lm/W is the maximum

luminous efficacy for photopic vision, i is the measured

photocurrent, and s(k0) is the absolute responsivity of the

detector at the V(k) peak wavelength of k0 = 555 nm in

standard air [30]. The effect of the drastic deviation

between the spectral shapes of the V(k) and the relative

spectral responsivity of the PQED, srel(k) =

s(k)/s(k0) & k/k0, is corrected with the spectral mismatch

correction factor

F ¼
R

Ue;k kð ÞV kð Þdk
R

Ue;k kð Þsrel kð Þdk ; ð3Þ

were Ue,k(k) is the spectral radiant flux of the lamp.

As seen in Eq. (2), the uncertainty in the measurement

of the area A directly affects the uncertainty of the illu-

minance. In addition, the geometric area and the effective

area of the aperture may differ, because the edge of any

aperture is not infinitely thin. The angle of incidence of

light hitting the aperture edge wall depends on the distance

between the LED lamp and the aperture. However, if the

distance between the lamp and the aperture is significantly

larger than the diameter of both the aperture and the

source—which is typically the case—the maximum

glancing angle of the incident light is small. For example,

in [9] the maximum glancing angle of the incident light is

0.06�. In such cases the deviation of geometric and effec-

tive area can be negligible.

2.2 Laser scanning method for the aperture area

determination

The laser scanning method is described in detail in [18–

20]. Therefore, only a brief introduction is given here. If an

aperture is illuminated with spatially uniform known irra-

diance Ee, and the radiant flux Ue that passes through is

measured, the aperture area can be calculated as

A ¼ Ue=Ee; ð4Þ

given that the aperture is placed perpendicular to the

propagation direction of the light. The key point of the

laser scanning method is that the known irradiance is

produced by a superposition of equally spaced identical

Gaussian laser beams. In practice this is accomplished by

having an intensity-stabilized laser beam and moving the

aperture—or in this case the aperture and PQED assem-

bly—in front of the laser beam in horizontal (x) and ver-

tical (y) directions. The radiant flux is obtained by

summing the transmitted fluxes Uj,k measured for each

laser beam position (j,k)

Ue ¼
X

nx

j¼1

X

ny

k¼1

Uj;k; ð5Þ

where nx and ny are the number of steps in x and y direc-

tion, respectively. When assuming stable radiant flux UL

for the laser beam, the total effective power of the laser

beam grid is nxnyUL, and with step lengths of Dx and Dy for

x and y direction, respectively, the total area of the laser

Fig. 2 Measurement setup for the laser scanning method using the PQED
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grid is nxDxnyDy. When the side lengths of the grid, nxDx

and nyDy, are much larger than the width of the laser beam

and Dx and Dy are much smaller than the width of the laser

beam, the irradiance near the center of the laser beam grid

is obtained as

Ee ¼
nxnyUL

nxDxnyDy
¼ UL

DxDy
: ð6Þ

The exact derivation of Eq. (6) is presented in [19] for a

relaxed requirement of the beam grid dimensions and

general beam shape, not limited to a perfect Gaussian. For

an aperture considerably smaller than the laser beam lat-

tice, the aperture area can now be obtained by combining

Eqs. (4, 5, 6):

A ¼ DxDy
X

nx

j¼1

X

ny

k¼1

Uj;k

�

UL: ð7Þ

The power of the laser beam can be measured with a

separate detector, but it is far more convenient to use small

enough beam to pass through the aperture entirely when

positioned at the center of the aperture, and measure the

ratios Uj,k/UL with the PQED. It was estimated in [18] that

relative throughput of 0.9999 requires the ratio of the

aperture diameter Da and the e-2 diameter of the beam Db

to satisfy the condition

Da=Db � 2:2: ð8Þ

It was also approximated that the beam diameter to

beam grid step length ratio

Db=Dx� 2:8 ð9Þ

results in reasonably uniform illumination when the indi-

vidual contributions are summed. Finally, when the above

relations hold, the side length of the laser beam grid should

be at least twice the aperture diameter. This guarantees that

the detector receives no light from the outermost beams.

2.3 Rayleigh–Sommerfeld diffraction integral

The calculations in Sect. 2.2 do not take into account

diffraction effects at the aperture edge. The diffraction

theory discussed here considers only monochromatic scalar

wave fields. A monochromatic scalar wave has the form

V r; tð Þ ¼ U rð Þe�ixt; ð10Þ

where r is the location vector, x is the angular frequency of

the wave, t is time and U(r) is the space-dependent part,

which satisfies the Helmholz equation:

r2 þ k2
� �

U rð Þ ¼ 0; ð11Þ

where k = 2pk-1 is the wavenumber and k is the

wavelength. There are many methods to approximate

the diffraction field. Given the dimensions of the

problem in hand, where the size of the aperture and

the detector are comparable with the distance between

the two, the Rayleigh–Sommerfeld (RS) diffraction

integral was considered to be the most suitable. For

example, the conditions required for the suitability of

the more simple Fresnel approximation do not hold

[31]. If the aperture is located on the xy plane and

centered on the z axis, the RS diffraction integral

becomes [29]:

URS x; y; zð Þ ¼
ZZ

A
U x0; y0; 0ð Þ 1

s
� ik

� �

zeiks

2ps2
dx0dy0; ð12Þ

where s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x� x0ð Þ2þ y� y0ð Þ2þz2
q

and surface A corre-

sponds to the aperture. By defining

U0 x0; y0ð Þ � U x0; y0; 0ð Þ if x0; y0ð Þ 2 A
0 if x0; y0ð Þ 62 A

�

; ð13Þ

and

h x� x0; y� y0ð Þ � 1

s
� ik

� �

zeiks

2ps2
; ð14Þ

the convolution theorem can be used to rewrite Eq. (12) as

URS x; y; zð Þ ¼
Z 1

�1

Z 1

�1
U0 x0; y0ð Þh x� x0; y� y0ð Þdx0dy0

¼ F
�1

F U0 x0; y0ð Þf gF h x0; y0ð Þf gf g
ð15Þ

where F denotes the two-dimensional spatial Fourier

transform and F�1 is the inverse Fourier transform. For RS

diffraction integral, the latter Fourier transform can be

calculated as [29]

F h x0; y0ð Þf g ¼ exp ikz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� k2 f 2x0 þ f 2y0

	 


r
� �

ð16Þ

where fx0 and fy0 are coordinates in the spatial-frequency

domain. Finally, as evanescent waves are not taken into

account, Eq. (16) is replaced in the calculations with

transfer function

H fx0 ; fy0
� �

¼ exp ikz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� k2 f 2x0 þ f 2y0

	 


r
� �

if f 2x0 þ f 2y0

	 


�k�2

0 otherwise

8

<

:

:

ð17Þ

Replacing the latter Fourier transformation of Eq. (15)

with the transfer function is often referred as the angular

spectrum method. However, in computer calculations it is

not mandatory, as the Fourier transform can also be per-

formed numerically. The pros and cons of both approaches

are discussed in Sect. 3.2.

Opt Rev (2016) 23:510–521 513

123



2.4 Gaussian laser beam

The field of a laser beam with an ideal beam quality can be

expressed as a Gaussian beam which is a solution to the

small-angle approximation of Eq. (11) [32]

o
2

ox2
þ o

2

oy2
þ 2ik

o

oz

� �

U rð Þ ¼ 0: ð18Þ

The equation for the Gaussian field with amplitude U0 is

UG x; y; zð Þ ¼

U0

w0

w zð Þ exp � x2 þ y2

w2 zð Þ

� �

exp i kzþ k
x2 þ y2

2R zð Þ � tan�1 z

z0

� �� �� �

;

ð19Þ

where the beam spot size w(z), the beam radius of curva-

ture R(z) and Rayleigh range z0 are given as

w zð Þ ¼ w0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ z

z0

� �2
s

; ð20Þ

R zð Þ ¼ zþ z20
z
; ð21Þ

z0 ¼
pw2

0

k
: ð22Þ

The spot size w(z) corresponds to the distance from the

z axis at z where the intensity has dropped by a factor of

e-2, and w0 is the spot size at the beam waist located at the

z = 0 plane.

The beam profile of some lasers may deviate signifi-

cantly from the ideal profile shape. In such a case, spatial

filtering can be used to improve the quality of the beam

[18, 20, 28, 32]. In addition, the spot size of the beam can

be simultaneously adjusted to meet criteria given in

Eqs. (8) and (9) [28, 32]. For analysis of the scanning

method and numerical simulations, perfectly Gaussian

beam was assumed. However, it should be noted that to

produce the uniform irradiance distribution, the beam

profile does not have to be Gaussian or even symmetric

[19].

3 Computer simulations of diffraction losses

3.1 Calculation procedure

Equation (16) is well suited for numerical evaluation, as

instead of direct numerical integration of the diffraction

integral for each observation point, Fast Fourier transform

(FFT) [31, 32] can be used to compute the whole field at

once. In the numerical calculation, the electric field is then

represented by a matrix U where each element (U)ij has the

value of the field at a corresponding coordinate (xi,yj). The

electric field of a laser beam at the aperture plane is given

by Eq. (19) and the center of the beam is cycled through

the points in the beam scan grid. In the case of a plane

wave illuminating the aperture, the electric field value is

just a constant for the entire aperture plane. The aperture

matrix A and detector matrix D are represented in such a

way that the elements have value 1 within the aperture or

the detector, respectively, 0.5 at the edges and 0 otherwise.

The field going through the aperture is then obtained by

element-by-element multiplication of U and A (denoted

here with the symbol �) and the diffracted field Q is cal-

culated according to Eqs. (15) and (17) with two-dimen-

sional FFT and inverse FFT, denoted by IFFT,

Q ¼ IFFT FFT U � Að Þ �Hð Þ ð23Þ

where H is defined by Eq. (17). Finally, the field at the

detector is obtained as Q � D, from which the relative

irradiance matrix can be calculated as the square of the

absolute value of the elements. For the assessment of total

diffraction loss, the total detected radiant flux is calculated

by performing a two-dimensional trapezoidal numerical

integration over the detector area.

3.2 Sampling

Since numerical calculations use a finite number of grid

points to represent the aperture and observation plane

fields, one must pay attention to proper sampling to avoid

numerical errors in the calculation. When FFT is used, the

number of points N is selected as a power of 2 to optimize

the algorithm. The Nyquist sampling criterion states that if

fmax is the maximum (spatial) frequency with which the

field changes in the sampling space, the aliasing is avoided

when the sampling step d in the sampling window satisfies

the condition 2d� f�1
max. However, since the aperture is

finite in its extent, the Fourier transform of the field at the

aperture has infinite extent in the spatial-frequency domain

[33]. Therefore, the Nyquist criterion for sampling the

U0 x0; y0ð Þ, given in Eq. (13), can never be truly met.

When the size of the sampling window is N 9 N, the

width of the window is L = Nd. The size of the sampling

window is the same for both U0 x0; y0ð Þ and H fx0 ; fy0
� �

, but

the latter is sampled in the spatial-frequency domain,

where sampling step is df ¼ L�1 and the width of the

window Lf ¼ Ndf ¼ d�1. The Nyquist criterion in sam-

pling H fx0 ; fy0
� �

gives an approximate lower limit for d [34]

d�
ffiffiffiffiffi

kz

N

r

: ð24Þ

Then again, increasing the sampling step d increases

aliasing in computing the FFT of U0 x0; y0ð Þ and decreases

the extent of the sampling window in the spatial-frequency

514 Opt Rev (2016) 23:510–521
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domain Lf. Thus, selecting the sampling step is a com-

promise between the two.

The limit given in Eq. (24) could be avoided by calcu-

lating F h x0; y0ð Þf g numerically instead of using the ana-

lytical solution given in Eq. (16). However, an accurate

calculation in the geometry of the PQED and the aperture

would require larger number of sampling points [34] and

one additional FFT, resulting in significantly longer com-

putation times. Therefore, the calculation procedure

described in Sect. 3.1 was used. The width of the sampling

window L and number of sampling points N were selected

to be 12 mm and 4096, respectively. This selection results

in a step size around d & 3 lm, which should be small

enough to properly sample the beam fields which—apart

from the aperture edge—vary rather slowly. Moreover, the

selection also satisfies the transfer function sampling con-

dition given in Eq. (24).

3.3 Simulation geometry and parameters

The geometry of the aperture diffraction problem is shown

in Fig. 3. Default values, given in Table 1, are used in the

simulations unless otherwise noted. The diameter of the

circular aperture Da is selected to be 3 mm to match the

diameter used in the illuminance measurements with the

PQED [9, 10]. The shortest mechanically practical distance

between the detector and the aperture is d = 20 mm. The

detector edge length h = 10 mm corresponds to the cross

section of the transverse dimensions of the PQED photo-

diodes in the wedged trap configuration (see Fig. 1). The

cross section is approximately square in shape. The relia-

bility of the calculation procedure and sampling conditions

applied to the geometry of Fig. 3 is assessed in

‘‘Appendix’’.

The laser used in the setup is assumed to be a HeNe

laser with wavelength in air of 632.8 nm. The selected

beam size and step size in the scanning are selected based

on Eqs. (8, 9). However, the laser spot size at beam waist

w0 and the waist-to-aperture distance dw are not exactly

known in practice. Therefore, the spot size at the beam

waist was defined to be 0.999765 times the spot size at the

aperture. This in turn results in waist-to-aperture distance

dw = 50 mm. These values are assumed to be reasonable

for a rather well collimated laser beam.

The resulting laser scan grid based on values of Table 1

is illustrated in Fig. 4. Together the 289 beams form a

spatially uniform illumination at the aperture, as shown in

Fig. 5. To reduce the computational time, the largest beam

grid step size to meet the condition in Eq. (9) was used. For

the actual measurement of aperture area, a smaller beam

grid step size can be used if better uniformity is required.

3.4 Simulation results

The intensity at the aperture and calculated diffraction

pattern at the detector for a single laser beam hitting the

edge of the aperture, as in Fig. 4, is shown in Fig. 6a, b,

respectively, whereas the combined diffraction pattern of

all the laser beams and the plane wave diffraction pattern

are shown in Fig. 7. The patterns for the laser beams and

Fig. 3 Geometry of the aperture diffraction simulation

Table 1 Default values used in the simulations

Measure Value

Aperture diameter (Da) 3 mm

Detector side length (h) 10 mm

Aperture-to-detector distance (d) 20 mm

Aperture to beam diameter ratio 2.2

Beam diameter to step size ratio 2.8

Beam radius at aperture, w(dw) 0.6818 mm

Beam radius at beam waist, w0 0.6817 mm

Beam grid step size 0.4879 mm

Laser wavelength 632.8 nm

Beam waist-to-aperture distance 50 mm

Beam grid size 17 9 17

Sampling window width, L 12 mm

Sampling grid side, N 9 N 4096 9 4096
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the plane wave have been made comparable by normaliz-

ing them with the total energy integrated at the aperture. It

is remarkable how the two different situations produce

considerably different diffraction patterns, as shown in

Fig. 7a, but the intensities in the shadow area of the

detector, as shown in Fig. 7b, are almost identical, and

virtually all intensity seems to fall on the detector.

The diffraction losses were calculated for different

aperture sizes up to 6 mm at aperture-to-detector distances

of 20 and 33 mm. The latter distance corresponds to the

detector assembly used in the previous illuminance mea-

surements. The laser beam radius, waist distance, and beam

grid step were changed accordingly while other parameters

were kept the same. The results of these calculations are

shown in Fig. 8. For the aperture-to-detector distance of

20 mm, the relative diffraction losses are less than 10-5 for

all modeled aperture diameters. For the distance of 33 mm,

apertures 3 mm or less in diameter have similarly small

losses, but larger apertures have higher diffraction losses

up to 10-4. However, the difference between diffraction

losses of the combined laser beam grid and plane wave

diffraction is less than 10-6.

The aperture area is determined using monochromatic

laser beam, but in the photometric measurements the light

source is broadband. Therefore, also the wavelength

dependence of the diffraction loss was calculated for an

overfilling plane wave. The results are shown Fig. 9. For

the aperture-to-detector distance of 20 mm, the wavelength

dependence is insignificant, less than 10-7 for most of the

visible wavelength range. At the distance of 33 mm, the

diffraction losses increase rapidly for wavelengths longer

than 600 nm; at wavelengths around 800 nm the diffraction

losses are around 10-4.

4 Anticipated uncertainty

Using the original laser scanning method, a standard

uncertainty of 0.013 % has been demonstrated for the area

determination of an aperture 3 mm in diameter [19]. This

uncertainty was dominated by the uncertainty of the length

scale in the linear translator movement, which was checked

with an interferometer measuring the displacement of a

corner-cube reflector fixed to the moving carriage. The

largest deviations between the nominal and true distances

were about 300 nm, measured over 6 mm movement of the

linear translator. Since then improved linear translator

resolutions and smaller uncertainties for length scale have

been demonstrated. For example, in [22] systematic

uncertainty in the readings of the stage position was esti-

mated to be 2.6 9 10-6 times the travel, and the random

uncertainty in stage position was around 20 nm. In addition

to the length scale accuracy, one has to take into account

the non-orthogonality of the axes [20, 25] and the cross-

coupling between the linear stages through roll, pitch and

yaw straightness [25]. It is also important that the plane of

the position measurement is the same as the plane where

the aperture is located. This can be achieved by right

selection of the corner-cube reflector position in the inter-

ferometer measurement. With improved length scale

measurement and precise alignment, a standard uncertainty

below 0.01 % can be anticipated for the area determination

of an aperture 3 mm in diameter using the upgraded laser

scan method.

Fig. 4 Laser beam scan grid. The red dots show the grid, the red

circle shows the beam size and the black circle marks the aperture

Fig. 5 Sum of the laser beam intensities at the aperture. The

amplitude of each individual beam is 1
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For illuminance measurements of white LED lamps, a

standard uncertainty of 0.13 % has been demonstrated [10].

Here the uncertainty was mainly due to uncertainty of

aperture area and uncertainties arising from the determina-

tion of the spectral mismatch correction factor of Eq. (3).

Using the upgraded method, the aperture area would be

scanned in identical geometry as the illuminance measure-

ment. If the distance between the detector and the aperture is

around 20 mm, the diffraction losses are insignificant in

both cases, and for longer distances they can be corrected.

Therefore, one can safely assume that a standard uncertainty

around 0.1 % could be achieved for illuminance measure-

ment using the PQED. For this value, other uncertainty

components are estimated as given in [10].

The increased accuracy of the illuminance measurement

using the PQED translates directly into a reduced uncer-

tainty in luminous efficacy. Further, when an LED lamp is

used as the external source in the calibration procedure of

the integrating sphere, the uncertainties due to spectral

mismatch are also reduced [10]. These improvements in the

measurement of luminous flux and recent improvements in

the measurement of the electrical power [35, 36] are dis-

cussed in [37]. After implementing these improvements

and the reduced uncertainty of illuminance measurement

due to improved aperture area measurement discussed in

this paper, an uncertainty around 0.5 % (k = 2) in the

luminous efficacy measurement of LED lamps could be

achieved.

Fig. 6 Relative irradiance at the aperture (a) and diffraction pattern at the detector (b) for a single laser beam hitting the edge of the aperture

Fig. 7 Sum of laser beam diffraction patterns (red) and plane wave diffraction pattern at the detector (blue) over full detector area (a) and

zoomed to the shadow area (b)
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5 Conclusions

The uncertainty in photometric measurements of LED

lamps can be improved with the PQED-based realization of

photometric unit. However, determining the area of the

aperture used with PQED still remains as one of the most

critical factors affecting the measurement uncertainty. To

address this issue, an upgrade to an existing optical method

for direct determination of aperture area was developed. In

the upgraded method, the aperture and PQED assembly is

transversely scanned relative to an intensity-stabilized

Gaussian laser beam. This effectively forms a two-di-

mensional superposition of laser beams with uniform

irradiance distribution. The aperture area can be calculated

by measuring the light passing through the aperture at each

position with the PQED. The method is very beneficial in

cases where the PQED is used with the aperture, such as

photometric measurements, as measurement of the aperture

area does not require removing the aperture from the

PQED. Such dismantling and separate measurement would

produce a significant risk of either dust contamination of

the PQED or damaging of the sharp aperture edge. Fur-

thermore, the uncertainty due to aperture alignment is

decreased as the geometry is identical in both the laser

scanning of the aperture area and in the actual

measurement.

To estimate the differences between the diffraction

effects of the overfilling plane wave and of the combination

of Gaussian laser beams at the aperture, a numerical cal-

culation method based on the Rayleigh–Sommerfeld

diffraction integral was applied to the geometry of the

PQED and aperture assembly. Simulation results for dif-

ferent aperture sizes and two different distances between

the aperture and the detector are presented. The results

indicate that diffraction effects are insignificant when the

distance between the aperture and the photodiodes of the

PQED is around 20 mm. At the distance of 33 mm, the

diffraction losses for both the plane wave and laser beams

increase at larger aperture diameters, but due to identical

geometry in the aperture area determination and actual

measurement, the difference between the two decreases, as

seen in Fig. 8b.

In practice, the cross section of the aperture edge con-

sists of two rounded corners and a rough wall area between

the corners. The rounded corner facing the incoming light

may produce deviation between the geometrical and

effective area of the aperture. Mechanical contact methods,

for example, measure the geometrically shortest distance

between opposite points on the aperture wall, but due to the

rounded corner and high glancing reflectance, the detector

behind the aperture may collect light from a larger

Fig. 8 Calculated diffraction losses for different aperture diameters at the aperture-to-detector distances of a 20 mm and b 33 mm

Fig. 9 Calculated diffraction losses for a plane wave as a function of

wavelength
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effective area than the area determined by the geometrical

aperture diameter measurement. Surface roughness of the

aperture edge can cause a similar deviation between the

geometrical and effective aperture area, especially for light

propagation directions deviating slightly from the optical

axis. When the aperture is permanently fixed to the detector

and the upgraded method of this paper is used for the

aperture area measurement, the light collection geometry

will automatically take into account the effective aperture

area in the illuminance measurement.

The simulations assume the aperture to be perfectly

circular within the step size of the grid of d & 3 lm. The

deviations from an ideal circle have the same order of

magnitude as the edge roughness of high quality apertures,

which is in the scale of few micrometers [23, 24]. As

described by Eq. (A1) of ‘‘Appendix’’, diffraction features

on the optical axis can be described as interference of

elementary spherical waves originating at the center of the

aperture and close to the edge of the aperture. The phase

difference between the center and the edge remains below

p within a rim of width 4 lm close to the edge in the

conditions of Figs. 7a and 10. It is thus suggested that any

deviation from an ideal circular aperture of that magnitude

would reduce such sharp features close to the optical axis

as shown in Fig. 7a. The effect of scattered light from

imperfect edges on the diffraction losses is thus assumed to

be insignificant, as the total diffraction losses are mostly

less than 10-4 and the diffraction patterns have very little

sharp features in the shadow area.

The incident light was assumed to be a plane wave or

perfectly Gaussian laser beam in the diffraction calcula-

tions. The former assumption is sufficient for a distant

source. The latter can be adequately achieved using beam

shaping optics and characterizing the conditions with a

beam profiler [28]. Future work could include diffraction

calculations for irregularly shaped or jagged-edge apertures

and for sources that are not adequately approximated with

the plane wave. Matching of the angular divergence of the

detected LED light and the Gaussian laser beam would

yield identical conditions for scattering at the edge walls.

These effects can be studied by modifying the aperture

matrix A and by calculating the electric field matrix U for a

more suitable source at a given distance, respectively.

It was estimated that a standard uncertainty below

0.01 % could be achieved for the area determination of an

aperture 3 mm in diameter using the upgraded laser scan

method. This estimate is based on the uncertainty demon-

strated for the original laser scanning method, improve-

ments in linear translator resolution and in the

determination of the length scale demonstrated since, and

the diffraction calculations conducted in this paper. The

improved uncertainty of the aperture area determination

would result in standard uncertainty around 0.1 % for

illuminance measurement of LED lamps using the PQED

method. Finally, it was estimated that an uncertainty

around 0.5 % (k = 2) could be achieved for the luminous

efficacy measurement of LED lamps by utilizing the PQED

illuminance measurement as a calibration procedure in the

determination of luminous flux together with the recent

improvements in the measurement of the electrical power

of the LED lamps.
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Appendix A

The reliability of numerical diffraction calculations can be

assessed by applying the calculations to some special cases

for which the analytical solution is known. Two such cases

for plane wave illumination are considered in this appen-

dix: the diffracted field on the z axis for a circular aperture

and the diffraction pattern for a square aperture. The

Rayleigh–Sommerfeld integral has an analytical solution

for the former and the analytical solution for the latter can

be derived using Fresnel approximation.

Fig. 10 Normalized irradiance on z axis for a plane wave diffracted

by a 3 mm circular aperture calculated using the numerical method

(blue line) and analytical solution of Eq. (A1) (red line)
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When a circular aperture with radius a is illuminated

with a plane wave, the diffracted field on the z axis given

by the Rayleigh–Sommerfeld diffraction integral is [33].

U zð Þ ¼ U0z
eikz

z
� eik

ffiffiffiffiffiffiffiffiffi

z2þa2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

z2 þ a2
p

 !

: ðA1Þ

The diffraction patterns were calculated for a 3-mm-

diameter aperture in the proximity of the position

z = 20 mm using the numerical method and the exact

Eq. (A1). The calculated values, shown in Fig. 10, are

almost identical. The largest deviations are less than 0.1,

when the normalized irradiance has peak-to-peak value of

4.

Diffraction patterns of a plane wave for a square

aperture with side length of W = 3 mm were calculated

for the observation distances of 20 mm and 200 mm

using the numerical method and the analytical approxi-

mation [38]. For the distance of 20 mm, the conditions

for the accuracy of the Fresnel approximation are not

fully met. For the distance of 200 mm, on the other hand,

the Fresnel approximation is valid, and the Rayleigh–

Sommerfeld and Fresnel diffraction integrals should give

similar results. However, as the sampling conditions were

unaltered, the angular spectrum approach used for the

calculation of the Rayleigh–Sommerfeld diffraction may

lose accuracy at such long distances [34]. Despite of

exceeding these conditions, the results, shown in Fig. 11,

agree very well.

The results for both the diffracted field on the z axis for a

circular aperture and the diffraction pattern for a square

aperture indicate that the numerical calculation method is

working correctly.
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Ikonen, E.: Advantages of white LED lamps and new detector

technology in photometry. Light Sci. Appl. 4, e332 (2015)

11. Sildoja, M., Manoocheri, F., Merimaa, M., Ikonen, E., Müller, I.,
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