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Summary

Optical long baseline stellar interferometry is an observational technique in astronomy
that already exists for over a century, but is truly blooming during the last decades. The
undoubted value of stellar interferometry as a technique to measure stellar parameters
beyond the classical resolution limit is more and more spreading to the regime of syn-
thesis imaging. With optical aperture synthesis imaging, the measurement of parameters
is extended to the reconstruction of high resolution stellar images. A number of optical
telescope arrays for synthesis imaging are operational on Earth, while space-based tele-
scope arrays are being designed. For all imaging arrays, the combination of the light
collected by the telescopes in the array can be performed in a number of ways. In this
thesis, methods are introduced to model these methods of beam combination and com-
pare their effectiveness in the generation of data to be used to reconstruct the image of
a stellar object.

One of these methods of beam combination is to be applied in a future space tele-
scope. The European Space Agency is developing a mission that can valuably be ex-
tended with an imaging beam combiner. This mission is labeled Darwin, as its main
goal is to provide information on the origin of life. The primary objective is the detec-
tion of planets around nearby stars—called exoplanets—and more precisely, Earth-like
exoplanets. This detection is based on a signal, rather than an image. With an imaging
mode, designed as described in this thesis, Darwin can make images of, for example, the
planetary system to which the detected exoplanet belongs or, as another example, of the
dust disk around a star out of which planets form. Such images will greatly contribute to
the understanding of the formation of our own planetary system and of how and when
life became possible on Earth.

The comparison of beam combination methods for interferometric imaging occu-
pies most of the pages of this thesis. Additional chapters will treat related subjects, be-
ing experimental work on beam combination optics, a description of a novel formal-
ism for aberration retrieval and experimental work on nulling interferometry. The Chap-
ters on interferometric imaging are organized in such a way that not only the physical
principles behind a stellar interferometer are clear, but these chapters also form a basis
for the method of analysis applied to the interferometers—or rather beam combination
methods—under consideration. The imaging process in a stellar interferometer will be
treated as the inversion of a linear system of equations.

The definition of interferometric imaging in this thesis can be stated to be the recon-
struction of a luminosity distribution function on the sky, that is, in angular measure,
larger than the angular diffraction limited spot size—or Point-Spread Function (PSF)—of
a single telescope in the array and that contains, again in angular measure, spatial struc-
ture that is much smaller than the PSF of a single telescope. This reconstruction has to
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be based on knowledge of the dimensions of the telescope array and the detector. The
detector collects intensity data that is formed by observation of the polychromatic lumi-
nosity distribution on the sky and is deteriorated by the quantum-nature of light and an
imperfect electronic detection process. Therefore, the imaging study presented in this
thesis can be regarded to be a study on the signal characteristics of various interferome-
ters while imaging a polychromatic wide-field stellar source.

The collection of beam combination methods under consideration consists of four
types. Among these are two well-known types, having either co-axially combined beams
as in the Michelson–Morley experiment to demonstrate the existence of ether, or beams
that follow optical paths as if an aperture mask were placed in front of a telescope, mak-
ing the beams combine in the focus of that telescope, as suggested by Fizeau. For sepa-
rated apertures rather than an aperture mask, these optical paths are stated to be homo-
thetic. In short, these two types will be addressed as the Michelson or the Homothetic
type. The other two types are addressed as Densified and Staircase. The first one is short
for densified pupil imaging, an imaging technique very similar to the Homothetic type,
be it that the natural course of light after the aperture mask is altered. However, the com-
bination of the beams of light is again in focus. The Staircase method is an alternative to
the co-axial Michelson method and lends its name from the fact that a staircase-shaped
mirror is placed in an intermediate focal plane after each telescope in the array, before
combining the beams of light co-axially. This addition allows stellar imaging as with the
Michelson type, with the advantage of covering a large field-of-view. The details of these
methods will intensively be discussed in this thesis, but the introduction of them at this
point allows a short list of results, found by comparing them for equal imaging tasks.

◮◮ Homothetic imagers are best suited for covering a wide field-of-view, consider-
ing the information content of the interferometric signals these arrays produce. The large
number of detectors does not seem to limit the imaging performance in the presence of
noise, due to the high ratio of coherent versus incoherent information in the detector sig-
nal. The imaging efficiency of a Michelson type array is also high, although—considering
only polychromatic wide-field imaging tasks—the ratio of coherent versus incoherent in-
formation in the detected signals is very low. This results in very large observation times
needed to produce images comparable to those obtained with a Homothetic array. A
detailed presentation of the characteristics of the detected signals in a co-axial Michel-
son array reveal that such signals, obtained by polychromatic observation of extended
sources, have fringe envelope functions that do not allow Fourier-spectroscopy to obtain
high-resolution spectroscopic information about such a source.

◮◮ For the Densified case, it is found that this method can indeed provide an inter-
ferometric PSF that is more favorable than a homothetic PSF, but only for narrow-angle
observations. For polychromatic wide-field observations, the Densified-PSF is field-de-
pendent, for which the image reconstruction process can account. Wide-field imaging
using the favorable properties of the Densified-PSF can be performed, by using special
settings of the delay or optical path length difference between interferometer arms and
including observations with several settings of delay in the observation data. The Stair-

case method is the second best method for the imaging task under consideration. The
discontinuous nature of the staircase-shaped mirrors does not give rise to a discontin-
uous reconstructed luminosity distribution or non-uniformly covered spatial frequen-
cies. The intrinsic efficiency of the interferometric signal in this type of interferometer
is worse than that of the other co-axial method, although the ratio of coherent versus
incoherent signal in the data—the length of the fringe packet in one intensity trace—is



v
nearly ultimate. The inefficiency is overwhelmingly compensated for by the very short
observation time needed.

Besides numerical studies of interferometer arrays, one interferometric imager was
also studied experimentally. A homothetic imager was built, comprising three telescopes
with fully separated beam relay optics. The pointing direction, the location and the op-
tical path length of two of the three beams are electronically controllable. The beams
can be focused together to interfere, via a beam combiner consisting of curved surfaces.
This set-up allows to measure the required accuracies at which certain optical elements
have to be positioned. Moreover, this set-up demonstrates that without knowledge of the
initial pointing directions, locations and optical path lengths of the beams, the situation
of homothesis can be attained, solely based on information from the focal plane of the
set-up. Further experiments show that the approximation of exact homothesis is limited
by the optical quality of the beam combiner optics.

Parallel to the experiments on homothesis, a study was performed to evaluate the
use of the Extended Nijboer–Zernike (ENZ) formalism for analysis of multiple aperture
optical systems. It is envisaged that an aberration retrieval algorithm, provided with the
common focus of a homothetic array, can be used to detect misalignment of or even
aberrations in the sub-apertures of the sparse synthetic aperture. The ENZ formalism
is a powerful tool to describe the focal intensity profile in an optical imaging system,
imaging a monochromatic point source through a pupil that is allowed to have a cer-
tain transmission profile and phase aberration function over the pupil. Moreover, the
formalism allows calculation of intensity profiles outside the best-focus plane. With the
intensity information of several through-focus planes, enough information is available to
reconstruct the pupil function from it. The formalism is described, including the recon-
struction algorithm. Although very good results are obtained for general pupil functions,
the results for synthetic pupil functions are not very promising. The detailed descrip-
tion of the ENZ-aberration retrieval reveals the origin of the breakdown of the retrieval
process.

Finally, a description of experiments on nulling interferometry is given, starting with
the presentation of an experimental set-up for three-beam nulling. A novel strategy for
polychromatic nulling is treated here, with the goal of relieving the tight phase constraint
on the spectra in the individual beams. This theoretically allows broad band-nulling with
a high rejection ratio without using achromatic phase shifters. The disappointing results
led to an investigation of the spectra of the individual beams. The origin of the unsatis-
factory level of the rejection ratio is found in the spectral unbalance of the beams. Before
branching off, the beams have an equal spectrum. Then, the encounter of different op-
tical elements with individually applied coatings, the control of beam-power per beam
and finally the beam coupling into a single-mode fiber, apparently alter the spectra in
such a way that the theoretically achievable level of the rejection ratio cannot be reached.

The research described in this thesis provides onsets for research in several areas of
interest related to aperture synthesis and guidelines concerning the design of synthetic
telescopes for imaging. As such, this research contributes to the improvement of instru-
mentation for observational astronomy, in particular for stellar interferometry. While
nulling interferometry is the detection technique that allows a space telescope array such
as ESA’s Darwin to identify exoplanets, optical aperture synthesis imaging is the tech-
nique that can make images of the planetary systems to which these exoplanets belong.
Moreover, many objects can be observed that represent earlier versions of our planetary
system, our Sun and even our galaxy, the Milky Way. Observing these objects might an-
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swer questions about the origins of the Earth itself and the life on it.

Casper van der Avoort, spring 2006



Samenvatting

Optische apertuur synthese is geen nieuw onderwerp binnen de sterrenkunde. Al meer
dan een eeuw geleden werd de techniek toegepast om de diameter van sterren te meten.
Zelfs professionele telescopen konden de sterren niet beter afbeelden dan een vlekje
waarvan de grootte niet gerelateerd was aan de werkelijke grootte van een ster. Een stel
samenwerkende telescopen bleek wél een nauwkeurige meting aan deze ster te kunnen
verrichten. De waarneem-nauwkeurigheid hing niet langer af van de afmetingen van
een enkele telescoop, maar van de afstand tussen de onderlinge telescopen. Dit is het
hart van het waarnemingsprincipe waarover dit proefschrift gaat. Wanneer een telescoop
simpelweg gezien wordt als een opening waardoor het licht naar binnen komt, een zo-
genaamde apertuur, is het begrijpelijk dat meerdere samenwerkende telescopen gezien
kunnen worden als een samengestelde of synthetische apertuur. De beschreven metin-
gen aan diameters van sterren werden gedaan met zichtbaar licht; de astronoom deed
zijn waarnemingen ‘op het oog’. De toevoeging ‘optisch’ aan de titel van dit proefschrift
vind zijn oorsprong dan ook niet in de beschreven vroege astrometrie, maar juist in de
astronomie van de laatste jaren, aangezien apertuur synthese als waarnemingstechniek
pas echt een vlucht nam in de tweede helft van de vorige eeuw, waarbij juist straling van
radio-golflengten werd gemeten. Met reeksen van radiotelescopen werden zeer gede-
tailleerde afbeeldingen geproduceerd. De mogelijkheid zulke afbeeldingen te maken met
zichtbaar of bijna zichtbaar licht verklaart de aanduiding optische apertuur synthese.

Apertuur synthese als afbeeldingstechniek kenmerkt zich ten eerste in het feit, dat
geen plaatjes worden opgenomen, maar metingen, waaruit een afbeelding gereconstru-
eerd dient te worden. Ten tweede staat de techniek weliswaar bekend als een techniek
waarmee afbeeldingen van een zeer hoge resolutie geconstrueerd kunnen worden, maar
tegelijkertijd ook als een techniek die slechts een zeer klein deel van het blikveld van een
telescoop zo nauwkeurig kan afbeelden. Het grootste deel van het onderzoek dat be-
schreven wordt in dit proefschrift heeft tot doel de mogelijkheden in kaart te brengen,
waarmee dit hoge-resolutie blikveld vergroot kan worden. Deze mogelijkheden zijn vari-
anten van de architectuur van de optiek die de lichtbundels van de telescopen samen
moet brengen. Voor deze zogenaamde ‘beam combiners’ worden vier varianten aange-
dragen, waaronder twee klassieke methoden, lijkend op de instrumenten van een eeuw
terug danwel op de radio-telescoop varianten, en twee afgeleide methoden. De namen
van de methoden, die in de tekst uitgebreid behandeld worden, zijn: Michelson (ver-
noemd naar de Nobelprijs winnaar Albert A. Michelson), Homothesis (naar de griekse
benaming voor een exact gelijke plaatsing), Densified (omdat er een vernauwde syn-
thetische apertuur gecreëerd wordt) en tenslotte Staircase, een in Delft ontwikkelde meth-
ode die vernoemd is naar het optische element dat een cruciale rol speelt: een trap-
vormige spiegel.
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Alle technieken zullen in staat blijken een groot blikveld te kunnen reconstrueren met

hoge resolutie. Wanneer echter zeer lichtzwakke hemellichamen worden bestudeerd,
zijn de benodigde observatietijd en het aantal benodigde pixels in de camera achter de
samengestelde telescoop factoren van belang. De vier methoden worden vergeleken op
de gemaakte fout bij het reconstrueren van een uitgebreide bron aan de hemel, als func-
tie van de hoeveelheid licht die ze daarvan opvangen. Hieruit blijkt dat de methoden
Homothesis en Staircase veruit het best presteren. Deze methodes zijn echter in technis-
che realisatie vele male complexer dan de andere twee methoden.

Twee andere onderwerpen van onderzoek, beschreven in dit proefschrift, zijn ‘nulling
interferometry’ en het meten van afbeeldingsfouten in een afbeeldend optisch systeem.
Dit laatste onderwerp werd aanvankelijk gezien als een manier om fouten in de samen-
voeging van lichtbundels van uit elkaar geplaatste telescopen te meten. Helaas bleek dit
doel onhaalbaar met de gekozen techniek. Deze techniek biedt echter wel zeer uitge-
breide mogelijkheden om delen van een synthetische telescoop—hetzij in de afzonderli-
jke telescopen, hetzij in de samenvoegende optiek—te analyseren op uitlijnfouten.

Nulling interferometry is een techniek waarbij ook het licht van meerdere telescopen
gecombineerd wordt, maar waar niet het verkrijgen van een afbeelding het doel is, maar
juist het uitdoven (nulling) van sterrenlicht. Dit is zinvol, aangezien een kleine planeet
niet meetbaar is rondom een stralende ster, maar wel rondom een gedoofde ster. Op
deze manier kunnen metingen verricht worden aan planeten rondom nabijgelegen ster-
ren—de zogenaamde exo-planeten—aangaande de chemische samenstelling van hun at-
mosfeer en zelfs de leefbaarheid. Een cruciale rol is weggelegd voor de architectuur van
de optiek die voor de uitdoving zorgdraagt. In dit proefschrift wordt een mogelijkheid
voor deze architectuur beschreven en worden tevens enkele tegenvallende resultaten
gepresenteerd. Het vinden van de oorzaak van deze tegenvallende resultaten is de be-
langrijkste bijdrage van dit deel van het onderzoek. Het blijkt, dat kleine verschillen in
de benodigde halfdoorlatende spiegels en de inkoppeling van de afzonderlijke lichtbun-
dels een goede werking van deze techniek verhinderen. Hoewel dit geldt voor alle exper-
imenten in nulling interferometry, blijkt de gekozen uitdovings-strategie meer gevoelig
dan andere voor deze afwijkingen.

Hoewel de onderwerpen in dit proefschrift ver uit elkaar lijken te liggen, behoren ze
allemaal tot het arsenaal van de astronomen van deze eeuw. De beschreven waarne-
mingstechnieken hebben reeds gezorgd voor belangwekkende ontdekkingen in de as-
tronomie en de astrofysica, waaronder de ontdekkingen van exo-planeten de meest bek-
ende zijn. Afbeeldingsfout-vrije synthetische aperturen, gebaseerd in de ruimte, uit-
gerust voor zowel ster-uitdovende als beeldvormende taken, worden reeds voorbereid en
zullen in de komende jaren waarnemingen van ongeëvenaarde resolutie naar de Aarde
gaan sturen.

Casper van der Avoort, voorjaar 2006



Wat is wetenschap? Wetenschap is de titanische poging van het menselijk intellect zich
uit zijn kosmische isolement te verlossen door te begrijpen.

W.F. Hermans
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Chapter 1

Introduction

1.1 Background

As far back as any possible source of human information goes, celestial events occurring
on the nightly skies have been recorded. This means they have been observed, marveled
at and found interesting, inexplicable or even terrifying enough to report about. These
reports have been stories, drawings or tedious and detailed writings. In an attempt to
understand them, uncommon events where devoted to the willing of Gods, but also the
common presence of those innumerable peaceful shiny dots tempted early scientists to
give answers to the Why of their presence and to the What of their nature.

Astronomy is not only an old, but also a very pure science. The experiments are set-
up and running far away in the universe, and they can not be disturbed by measuring
them. An astronomer merely needs to find the ongoing experiment matching his inter-
est, rather than to set one up. To ensure a proper understanding of the events, a trust-
worthy observation of it is a necessity. The astronomer needs instruments that convert
the emitted information from the event to interpretable information on earth. Visible
light, but also infra-red and ultra-violet light, are forms of radiation that can carry great
amounts of information from a celestial body to the Earth. One way to transfer the re-
ceived radiation into intelligible information, is to use optics.

The general term for the optics in use when dealing with radiation sources very far
away, is a telescope. In general, a telescope is an instrument that provides information—
currents, numbers or even images—that we can interpret. The information answers
questions, and human nature drives us to formulate new questions out of these answers.
The telescopes need to provide more information, in shorter time. Or, weaker sources
need to be analyzed. And when it comes to images, more detail is needed.

The need for images with great information content has driven this research. An in-
vented technique to obtain a high resolution needed to be combined with a large im-
age extent. The proposed solutions are combinations of piecewise solutions that were
already known, combined with new ways of processing the recorded radiation into in-
formation. As is often the case, several solutions to the same problem exist. They are
compared here and their specific advantages and drawbacks are listed.
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1.2 Telescopes and interferometry

Observational astronomy is limited by a number of factors. Without good lenses or mir-
rors, only blurred images are obtained. For perfectly shaped optical surfaces, the blur-
ring is minimal and decreases as the diameter of the telescope increases. However, the
practical production issues to arrive at such near perfectly-shaped elements increase in
complexity for increasing diameters. But even if the production would be perfect, still
blurring occurs. The Earth’s atmosphere is not placid nor homogeneous. The constant
twinkling of stars is a demonstration of this effect. A larger collecting surface on a tele-
scope means that a larger ‘column’ of turbulent atmosphere is affecting the light from
a stellar source. In the past century, two separate technologies were invented and de-
veloped to facilitate observational astronomy at high resolution. Adaptive Optics aims
at correcting the atmospheric disturbances after the light is collected with a larger tele-
scope. Stellar Interferometry relies on the fact that small collectors are less affected by
the atmosphere, and that the light they collect can be processed in such a way that the set
of collectors act as being part of a large synthetic telescope. The oldest of the two tech-
niques is Stellar Interferometry, but this technique was not initially intended for imag-
ing. Large telescopes with the aid of Adaptive Optics do have this aim. The two subjects
hence are complementary for studying stellar sources with a high level of detail.

1.2.1 Early stellar interferometry

A very good description of the history of stellar interferometry can be found in Selected
Papers on Long Baseline Stellar Interferometry (Lawson, 1997). Stellar interferometry
started just after 1867 when Fizeau proposed to the Académie des Sciences that interfer-
ence could be used to measure stellar diameters (Fizeau, 1868). He realized that there
was a relationship between the dimensions of the interference fringes and the size of the
light source, in this case being a star and he wrote that extremely fine fringes can only be

brought into existence when the source of the light has but angular dimensions that are

almost undetectable. He hoped that this principle would allow to obtain new data on the
angular diameters of stars. Five years later, Stéphan conducted the first experiments ac-
cording to this proposal (Stéphan, 1874). At the Observatoire de Marseille, he masked the
large Foucault telescope to define two apertures spaced 50 centimeters apart. Stéphan
reported to observe interference fringes on all stars but Sirius. The measurements on
Sirius were uncertain, but he expressed his hope that Sirius’ diameter could eventually
be measured. Later he reported again the results of observations with a 65 cm aperture
separation. All the stars he observed produced fringes, including Sirius, making him re-
tract his prior comments. He concluded that the stars must have angular diameters less
than 0.158 arcsec—the angular diameter for which fringes would disappear using a 65 cm
baseline—and possibly only a fraction of it1.

Around 1890 the American Michelson also got interested in using interferometry for
the observation of stars (Michelson, 1890). He succeeded in performing measurements
with much larger aperture separations, no longer limited by the principal size of the
telescope. In December 1920 he performed the first measurement of a stellar diame-
ter, which resulted in headlines in the newspapers. The measured star was the red su-
pergiant Betelgeuse. Later, it became evident that only the largest stars could be mea-
sured by this method using Michelson’s instrument, a 20 ft interferometer (Fig. 1.1). The

1The angular diameter of Sirius is 0.007 arcsec, or about 30 nrad.
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Figure 1.1: Reproduction of photographs accompanying Pease’s article on Interferometer Methods
in Astronomy (Michelson and Pease, 1921). Both images show an observer at the 20 ft interfero-
meter, a periscope mounted on a 100 inch telescope.

larger 50 ft version operated by Pease (†1938) was only marginally successful and mainly
demonstrated the very high degree of optical and mechanical stability needed for these
measurements.

Radio astronomy was born in 1933 when it was discovered that the Milky Way emitted
radiation at radio wavelengths. After World War II, radar technology was embedded and
the field of radio interferometry was started. Optical interferometry revived again in the
50s and 60s, partially due to the success of its radio equivalent. The intensity interfero-
meter developed by Hanbury Brown and Twiss brought renewed interest in high reso-
lution optical interferometry. Modern long-baseline interferometry started in the early
1970s. Theoretical understanding of turbulence had progressed, sensitive photoelec-
tric detectors had been developed and controllable servo systems could be employed.
Pease’s mechanical and optical problems now seemed surmountable. After performing
interferometry with two apertures, fringes were eventually obtained from two separated
telescopes by Labeyrie (Labeyrie, 1976) in 1974 at the Observatoire de Nice. Still, stel-
lar interferometry consisted in measuring properties of stars or binary stars. Not until
1995, the first images were produced by COAST, the Cambridge Optical Aperture Syn-
thesis Telescope, using 3 or more separated telescopes and reconstructing from closure
phases (Baldwin et al., 1996).

The resolving power and image quality of single dish telescopes also evolved during
the past decades. Currently, several optical stellar interferometers exist (see Fig. 1.2),
comprising multiple very large telescopes equipped with systems like adaptive optics to
defeat the resolution limits posed by the atmosphere. Telescope arrays are even being
designed for space operation, with typical high resolution missions such as to directly
observe planets around nearby stars.

1.2.2 Adaptive optics and large telescopes

A field of research related to long-baseline interferometry, but originating from a very
different point of interest is the study of Multiple Aperture Optical Telescopes. These are
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Figure 1.2: Telescopes around the world. From left to right: Telescopes and lab of GI2T in France,
four 8m telescopes of VLTI in Chile, the faceted 10m primary of one Keck telescope in Hawaii, the
LBT at a construction site in Italy.

also referred to as Multiple Mirror Telescopes or faceted telescopes. A traditional tele-
scope is limited to sizes of 10 meters, due to production accuracies for these sizes of
optical surfaces. Atmospheric blurring also increases for larger areas of collecting sur-
face, but that is not even considered here. For space applications, sizes of telescopes are
typically limited to the size of the compartment in which they have to be transported
to space. The famous Hubble Space Telescope had to fit in the Space Shuttle. Since
resolution is related to the size of the primary mirror, the idea arose to build telescope
primaries consisting of several separately produced parts. With production facilities of
high accuracy and with the aid of computer controlled alignment while operating, Ex-
tremely Large Telescopes should be possible to build. Currently, several multi-telescope
Earth observers are being designed for space operation and the feasibility of the Over-
Whelmingly Large telescope (OWL) is being studied for operation on the atmospherically
favorable continent Antarctica.

The synthetic apertures can now either be (hexagonal) parts of a big curved surface
or be finished (small) telescope primaries placed close together. This type of telescopes
is dedicated to imaging, although plans also exist for huge coronographs based on such
a synthetic primary. Unlike the example given for long-baseline interferometry, these
imaging arrays or faceted primaries are typically compact and filled. The spatial frequen-
cies that are covered have a cut-off related to the size of the synthetic aperture. Nearly all
frequencies within are covered. This means that a single snapshot of a scenery contains
information for nearly all spatial frequencies, in nearly all directions. For some arrays,
the collecting area is compact, but not filled. The Golay configurations (Golay, 1971) for
N telescopes provide a full frequency coverage, if snapshots are taken for a number of
rotations of the whole array. Only the collective set of snapshots of the same scenery
will produce a high resolution image. A single observation by LBT (Bertero and Boccacci,
2000) would produce an image with detail resolution in one direction as if the scenery
were observed with an 8 m telescope, while in the direction of the dual dish placement
(the primary baseline) the resolution relates to that of a 22 m telescope.

The arrays for long-baseline optical interferometry are all non-compact and hence
far from filled. These diluted or sparse arrays hence seem less apt for acquiring snapshot
images of a scenery. Placed at large separations, the array would collect very high spa-
tial frequency information for only a few directions, without all lower frequency compo-
nents. Moreover, the field-of-view (FOV) considerations for long-baseline arrays on one
side and multiple-telescope imagers on the other side are very different, reflecting in the
methods of beam transportation and detection, as will be detailed in Chapter 3. Gener-
ally speaking, both fields—stellar interferometry and multi-aperture imaging—allow to
make images with an array of telescopes, delivering fine structure much smaller than the
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resolution limit of a single telescope in the array.

1.3 Spectroscopy and high-resolution imaging from space

Arrays of telescopes can also be used in a different way to detect information from dis-
tant stars. Nulling interferometry is a field that is mainly focusing on detecting faint sig-
nals from planets around other stars than the Sun by attenuating or nulling the stellar
light. The high intensity contrast ratio between a star and a planet (106 – 109, depending
on the wavelength) would otherwise prohibit detection and analysis of a planetary sig-
nal, since it would be outshined by the star. The European Space Agency (ESA) started a
concept study for an infrared space interferometer in 1995 and labeled it Darwin, to be
operated in the year 2015.

As formulated in the Darwin Imaging study (De Vries et al., 2005), the Darwin null-
ing array would make a great number of very interesting imaging observations possible.
Some objects will be presented, together with the requirements they pose on the tele-
scope array. The requirements will be discussed. The drivers for Darwin observations
are both spatial and spectral resolution. The present study on optical aperture synthesis
largely deals with the spatial resolution. Spectral issues shall be addressed only shortly
in this thesis.

1.3.1 Science topics

Darwin will operate in an infrared wavelength range largely inaccessible for ground-
based astronomy because of the Earth’s temperature. In this wavelength range, the spec-
tra of interstellar and circumstellar dust show many features, as listed in Table 1.1. These
spectral features allow characterization of the physical and chemical properties of a stel-
lar object. Such a characterization (Röttgering, 2003) is the main science driver for the
imaging mode. An example of an observation for which both high spatial and spec-
tral resolution was required, is the study of the building blocks of planets within proto-
planetary disks (Van Boekel et al., 2004). Figure 1.3 was taken from this publication. Al-
though full feature imaging did not take place in this study, it provided information that
could prove and alter parts of the models on proto-planetary disks. Visible and infrared
interferometry have proved their value for astronomy (Quirrenbach, 2001; Baldwin and
Haniff, 2002; Saha, 2002). To provide images rather than single interferometric measure-
ments is the next desire of the interferometry-community (Paresce et al., 2005).

Resolving spectral features is a subject rather left out of this research. However, high
spatial resolution over an interferometrically large field-of-view is another necessity. The
combination of modest spectral resolution and very high spatial resolution by using an
interferometric array, would allow dust characterization as a function of location and
would therefore give crucial information about formation and destruction of dust around

old and young stellar objects (De Vries et al., 2005). Big questions in the scientific do-
mains of star formation, planet formation and galaxy formation, could be answered. So
far, only models and indirect observations provide information on these subjects. For the
same reasons, central regions of active galaxies are also interesting objects for observa-
tion with the Darwin array. Table 1.1 provides a list of spectral features to be expected in
the Darwin wavelength range. To be able to perform spectrometry in these bands, high
spectral resolution is needed. However, not all objects of interest pose this requirement,
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Figure 1.3: Infrared spectra of the inner (1–2 AU) and outer (2–20 AU) disk regions of three Herbig
Ae-class stars (named HD number). The inner disk spectrum is obtained from an interferometric
observation, the outer disk spectrum is the result of subtracting the inner disk spectrum from a
low spatial resolution spectrum of the total disk. The spectra are fit to a model, describing the
amount of crystallinity, the fraction of large grains and the crystalline olivine to pyroxene ratio.
The latter two materials are dust components, of which spectra could be measured in laboratories.
The differences in shape between the inner- and outer-disk spectra indicate a difference in dust
mineralogy. The star HD 142527 is the youngest one and the observations indicate that, as was
the case in the early Solar System, the silicate dust in the inner regions of proto-planetary disks is
highly crystalline before planet formation occurs (Van Boekel et al., 2004).

as will be detailed. The spatial issues such as structure and dimensions are detailed in
(De Vries et al., 2005) and result in a list of top-level imaging requirements.

Example objects for observation

Figures 1.4 and 1.5 show models of a few objects for observation. Star formation and the
development of a planetary system have been modeled (Meyer et al., 1998), but direct
observations of such systems have never been performed to verify the theory behind the
models. Indirect observations of exo-planets are reported frequently nowadays (Mayor
& Queloz, 1995) but for direct observations, resolution is needed that is unattainable
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(b) Planet formation

50 AU
at 100 pc After 50M years

(a) Star formation, Protostar

envelope

bipolar
flow

disk

500 AU
at 500 pc

10.000 to
100.000 yearsFigure 1.4: Science topics star formation and planet formation. (a) Star formation takes place in

dark dust clouds, but the bright core and the violent outflow can be studied. To study the dust
itself however, high spectral and spatial resolution are needed, at low light levels in the infrared.
(b) A central star forms and heats the gas-rich dust globule to make it contract and form a disk.
Planets form in this debris dust disk. Investigation of the disk itself will reveal details about planet
formation. The indicated times are years since star formation.

(c) Galaxy formation

Big Bang

Era of star formation
(100 Myears)

Protogalaxies merge
(500 Myears)

Universe today
(14 Gyears)

Stars form around
black holes Galaxies take

shape (1 Gyears)

Protogalaxies 
draw in matter

Figure 1.5: Galaxies form from smaller clumps of primordial galaxies. Spatial resolution is needed
to detect these building blocks. Interacting galaxies produce stars, leading to significant infrared
output.



8 CHAPTER 1. INTRODUCTIONTable 1.1: List of most important spectral features in the Darwin wavelength band. Taken from
(De Vries et al., 2005).

Category λ (µm) Species Diagnostic

PAHsa 6.2 Carbonaceous material
7.7
8.6

11.3
12.7
14.2
16.2

Silicates 9.7 Bulk of dust
(amorphous) 18.0

Silicates 10.0 Mg2SiO4 Mineralogy
(crystalline) 11.3

16.3
19.5
23.5
27.5
18.5 (Mg,Fe)SiO3
21.5
24.5
10.7 SiC

Oxides 11.6 Al2O3
23 FeO

Ice 6.0 H2O
H2 28.2

aPAHs: Polycyclic Aromatic Hydrocarbons

with present telescopes. While the key science goal of the Darwin mission is detection
and characterization of Earth-like planets, the questions of planet formation can be an-
swered by studying relatively young planetary systems with an unobscured central star
(Fig. 1.4b), where nearly all gas has been removed and a so-called ‘debris’ dust disk with
just formed planets is present around the star. The interesting area is within the ‘Kuiper’
belt, about 20 AU2. The distances to these objects range from 10 pc3 for older evolved
disks to over 100 pc for young disks in star forming regions.

In star formation (Fig. 1.4a), the interest of observation also lies in dust. More specif-
ically, the transportation and formation or destruction of dust around a protostar reveals
information about the star formation process. Inside a dark cloud, a protostar is still a
bright infrared point source. The thick dust cloud causes a strong temperature gradient
and hence a changing optical spectrum across the cloud. The nearest star forming re-
gions are at a distance of about 100 pc. The clouds are thought of to have sizes of about
500 AU.

2Astronomical Unit (AU), the distance Earth–Sun.
3Parsec (pc), distance at which an object’s parallax would be one arcsecond. 1 pc = 3.26 light years.
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(a) (b)Figure 1.6: Example images of the objects of interest. (a) A dust disk partly blocks the light from
the bright central core, a protostar (IRAS 04302+2247). This object is very much like the early Solar
system (b) Of the Herbig–Haro object no. 47, not the disk nor core, but the powerful jets are visi-
ble. The images are taken from the collections of NASA’s Spitzer Space Telescope and ESO’s New
Technology Telescope (NTT) at La Silla.

Galaxy formation (Fig. 1.5) in the universe takes place at redshifts4 z =3–5. Smaller
clumps of primordial galaxies merge. Very high resolution will be needed to discrim-
inate these clumps in a distant young galaxy. Interacting galaxies are subject to mas-
sive star formation, leading to significant infrared output. This emission is around 1–
2 µm, but at redshifts z=3–5, this emission is shifted to the Darwin regime of 4–28 µm.
Observation of the most distant and young galaxies is most interesting. These will be
faint, hence small spectral resolution (a few channels) is favorable. Photometry will then
enable characterization of distance and stellar population. Examples of the objects of
interest—observed with other instruments—are depicted in Fig. 1.6.

1.3.2 Instrumental requirements

Table 1.2 presents a list of requirements necessary to collect information that can be
processed to images of the astronomical objects of interest, as a result of the Darwin
study (De Vries et al., 2005). The imaging issues ‘Spatial Resolution’ and the Field-of-
View (FOV) are the driving elements for this research. The FOV is depending on various
parameters of the interferometer and hence the list contains no requirement on the FOV;
issues related to the FOV are discussed in more detail in Sec. 3.3. The listed accuracies
for path length control and the required point source sensitivity are not incorporated into
the modeling and simulation of imaging interferometers in this thesis. Mechanical actu-
ation and optical throughput are left out of the model. Concerning the detector or cam-

4Redshift (z) is the amount of Doppler-shift of the frequency of light from a stellar source, z = ( femit −
fobs)/ fobs. Due to the expansion of the Universe, objects further away from Earth move with a larger rela-
tive speed and are hence more reddish than objects nearby. The amount of redshift is a measure for distance.
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Lens with undefined
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Figure 1.7: Sketch of the general imaging process. The spacing and size of the spatial resolution
elements (on the sky) is governed by the spatial resolution of the synthetic aperture. Ultimately, the
desired spectral resolution is to be obtained in each spatial resolution element on the sky. How-
ever, interferometric detection allows at best one spectrum estimate per spatial detection element,
where it should be noted that light from several spatial resolution elements can end up in the same
spatial detector element.

era, only a very limited simulation of imperfect detection is incorporated. The Dynamic
Range of the obtained images will be evaluated. The requirements on an off-axis refer-
ence star and the specification of channels for the fringe tracking on the reference star
are details that do not principally differ for either of the types of interferometer under
consideration. Details can be found in the PRIMA reference (Quirrenbach et al., 1998).

In the end, an image is to be synthesized that is a discrete and sampled rendition of
a luminosity distribution on the sky, as seen in Fig. 1.7. The relative intensity of every
resolution element has to be estimated from observations. The observations are col-
lected with a number of detector elements which can be arrays of photosensitive sen-
sors or lenslet-fiber couplers that transport the incoming light elsewhere for detection.
The observation itself, as depicted here for a conventional non-interferometric imaging
process, is in terms of snapshot resolution limited to the size of the diffraction limited
point-spread-function (PSF), which is governed by the diameter of the lens (one tele-
scope) and can on the detector array be as large as one or several detector elements,
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Objective Requirement Target Comment

Spectral Range 6 – 18 µm 5 – 30 µm See list of key spectral
features

Spatial Resolution 0.005” 0.001” At 10 µm wavelength

Maximum Baseline 400 m 2000 m For the given spatial
resolution

Spectral Resolution R = 300 R = 1000 For dust characterization

Path length Control 100 nm 10 nm Depends on brightness

Sensitivity 40 nJy For 48 hours integration at
SNR=5

Dynamic Range 100 1000

Off-axis Referencea 1 arcmin To have a mv < 18th

reference starb

Ref. Fringe Track 0.4 – 2.5 µm Separated range from
science channels

1 Jy (Jansky) = 10−26W m−2 Hz−1

aTo maintain a cophased array of telescopes, the principle of Phase Referencing is applied, as proposed for
the PRIMA-instrument (Phase Referenced Imaging and Microarcsecond Astrometry) on ESO’s VLTI (Quirren-
bach et al., 1998). A guide star has to be picked that is bright enough and placed near the object of interest.
The requirement of 1 arcmin ensures a mv < 18 star available for 95% of the sky (Zombeck, 1990).

bVisual Magnitude mv is a measure for the brightness of a star on a logarithmic scale, where the Sun has
mv ≡1 and higher numbers indicate weaker objects.

depending on the observation method. These methods will be detailed further. A num-
ber of low-resolution observations—the detector grid might also be consisting of a single
sensor—is then numerically gathered to produce a single high-resolution synthetic im-
age. The Field-of-View (FOV) that is pursued here, is generally a few PSFs, although the
desirable FOV would be as many single-dish PSFs wide as possible. It may seem that ‘a
few’ is still a small FOV and therefore a minor issue. However, the very high spatial res-
olution attainable with aperture synthesis classically manifests itself only within a single
PSF, in that case also within a single detector element. This technique then is limited to
a very narrow FOV that is in large contrast with the FOV of a single telescope. Extension
of the interferometric FOV is not trivial, as will be discussed in the next chapter.

The discussed spectral resolution would be a desirable observable for every resolu-
tion element. Given a detector array with a high number of sensors, even obtaining the
spectral resolution element per pixel would already be interesting. However, spectral is-
sues have not been pursued here. A discussion of retrieval of spatially variant spectra will
follow after the full presentation of methods for detection and imaging.

The observation time is in interferometric imaging closely related to the desired spa-
tial resolution. Since the resolution rises with a growing telescope diameter, increasing
the resolution can be pictured as demanding a telescope to encircle the already exist-
ing synthetic aperture. The path it has to fly will get very long and hence the observa-
tion time will increase, since snapshots or measurements will have to be made along the
flown path. As a result, desired resolution can be balanced against desired observation
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time.

1.3.3 Means to reach these goals

The discussed observational targets cannot be observed and characterized with currently
available instruments. The ‘classical’ aperture synthesis known from radio astronomy
can only be applied to a very narrow field. Fine spatial structure is produced, but only
within one single Airy-spot. The multi-aperture optical telescopes (MAOTs) do have the
capability to observe extended scenes, but these MAOTs have a fixed and compact con-
figuration. For the very high resolution, very long extendable baselines are a necessity.
A combination of the imaging strategies—measuring fringe parameters as in long base-
line interferometry in combination with snapshot imaging as with a compact and fixed
array—will arise. In the following research, multiple telescope arrays will be considered,
where two or more telescopes will be placed at variable distances from each other. The
optical surfaces will be assumed to be perfectly produced and no atmospheric distur-
bances are considered, since the goal application is situated in space. By combining and
detecting the light collected by these telescopes in a certain way, it will be investigated
whether the set targets on both spatial and spectral resolution can be achieved.

1.4 Research objective

The goal of this research can be summarized as a comparison of the performance of dif-
ferent types of stellar interferometers for the specific task of imaging an extended source
and retrieving spectral information from that source within a limited observation time.

1.5 Outline of this thesis

The next two chapters, Chapter 2 and Chapter 3, will describe in detail how four different
types of stellar interferometers work and how they produce an image. The production of
an image relies on the inversion of collected interferometric data, which is an ill-posed
inverse problem. In Chapter 4, solution strategies for this type of problem are discussed.
With algorithms to describe the detection and to reconstruct an image out of detected
signals, the complete imaging process can be simulated. Chapter 5 contains a detailed
comparison of simulated results, obtained for the various possible interferometer set-
ups. A description of experimental work on one type of stellar interferometer is given in
Chapter 6. After these chapters related to interferometric imaging, Chapter 7 describes a
method for general aberration retrieval, based on the Nijboer–Zernike diffraction theory
of aberrations. The final topic in this thesis is nulling interferometry, on which experi-
mental work was done. These experiments are described in Chapter 8. Finally, Chapter 9
concludes all the presented research and found results.



Chapter 2

Principles of optics and

interferometry

Interferometers for imaging are able to produce high-resolution images. These images
contain more spatial information than an image that would be produced by a single tele-
scope, instead of an array of telescopes. The higher resolution is a result of the fact that
the light of the telescopes is made to interfere. There are several ways to make beams of
light interfere. To understand the boundary conditions on beam combination, the imag-
ing principle of a single telescope is presented in Sec. 2.1. The distinctions in imaging
interferometers, as well as the common name for such an interferometer deserves at-
tention, which is given in Sec. 2.2. Then, using the same image formation theory as for
the single telescope, the response of an interferometer to an elementary light source is
derived in Sec. 2.3. This response is generalized, so that interferometers with different
types of beam combination can be described with it. For one type of beam combina-
tion, the derived response is compared to another way of predicting the response, based
on complex visibilities. This will show that the derived, generalized response is not only
valid, but also a necessity to describe the information output of an interferometer for
the task of imaging a wide-field source with very high angular resolution in the case of a
polychromatic observation.

2.1 Light and radiation

In this section, the physical background of imaging is described. Starting with a point
source emitting electromagnetic radiation and ending with a description of what this
point source will look like for the observer, the total process of imaging a star with a
conventional telescope can be described. For imaging with co-operating telescopes, the
actual image retrieval is completely different, but the imaging process by a single tele-
scope remains important, as will be shown. Therefore, the imaging by a single telescope
is treated first.

2.1.1 Electromagnetic waves

The usual denomination for electromagnetic radiation of a certain wavelength, not too
far from the visible domain, is light. Instead of mentioning wavelength, also photon en-
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Figure 2.1: A spherical wave eventually results in a planar wave.

ergy could have been mentioned as the discriminating parameter. These two entities are
in fact interchangeable, but refer to the two complementary natures of light. Instead of
considering radiation as particles with a certain energy, the radiation is in this section
treated as waves of a certain wavelength. Moreover, in this section only continuous har-
monic waves will be considered.

In this framework, a one-dimensional wave can be approximated mathematically by
the scalar wave function

ψ(x, t) = Aei(kx−ωt+ǫ) = Aeiφ. (2.1)

In this expression, A is the amplitude of the wave, t and x represent time and location,
respectively, k is the wavenumber and ǫ is some phase off-set. The circular wavenumber
k is inversely proportional to the wavelength and could be described as ’the number of
waves that fits in one meter’. The phasor expression Aeiφ gives the amplitude and phase
of the radiation of a certain wavelength at some point in time and space, given by the full
expression for ψ(x, t). In the case of multiple waves crossing the same point in time and
space—while all waves have the same wavelength—summation of all the corresponding
phasors for this point is allowed. Here, the vector character of the electro-magnetic field
is neglected and the scalar model is adhered to.

Extending the wave equation from one dimension to more is most easily done for the
case of a plane wave. This is the case when for a certain moment in time t , the phasors
at different locations x have the same phase and this set of locations forms a plane. This
plane is then perpendicular to the propagation direction

−→
k , so that the wavenumber now

is a vector with a certain length and direction in space. The location in space can now
generally be expressed by the position vector −→r so that the wave equation becomes

ψ(−→r , t) = Ae
i

[(−→
k ·−→r

)

−ωt

]

, (2.2)

where the minus sign originates from the convention about the time-dependence of the
harmonic wave exp[−iωt ]. Plane waves, however, can not directly be associated with
point sources of radiation. It is well known that an acoustic source in air or a stone
thrown in a pond will produce spherical waves. The harmonical spherical wave is de-
scribed as

ψ(r, t) =
(

A

r

)

eik(r−vt ) , (2.3)

where now the speed v is used to describe the wave emanating from the origin at r =
0 and the source strength is denoted by A . Plotting a few contours (Fig. 2.1) of this
function shows how the radiation from a point source can be eventually considered as a
plane wave, propagating in space.

For further description of the imaging process, it is useful to take notice of Huy-
gens’ Principle: every point on a propagating wavefront serves as the source of secondary

wavelets, such that the wavefront at some later time is the envelope of these wavelets.
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Figure 2.2: Co-ordinate system used for the example in the text, a coherent line source.

These secondary wavelets have the same period and travel at the same speed as the orig-
inal propagating wavefront. This Principle is a useful tool, but the idea (dated 1678) has
some shortcomings that are made up for in the concept of the diffraction integral.

2.1.2 Diffraction integral

As stated, Huygens’ Principle is a useful tool to describe the evolution of waves through
time and space in the case of obstructions. However, it does not take wavelength and
relative phases into account. The fact that sound bends around a tree, whereas sunlight
produces a shadow behind it, can not be clarified by it. By adding interference, Fresnel
proposed the Huygens–Fresnel theory. The modification is that the secondary wavelets

make that the amplitude of the optical field at any point beyond it is the superposition

of all these wavelets, considering their amplitudes and relative phases. This results in re-
gions of constructive and destructive interference. It also accounts for the wavelength,
since after a propagation over distance d , the relative phase fluctuations φ(λ) = 2πd/λ
are taken into account.

This theory can describe both the near- and far-field. However, in the far-field, the
relative phase fluctuations vary not that rapidly and the pattern that will be observed is
more easily described by the Fraunhofer diffraction pattern. This description is roughly
valid when

R >
a2

2λ
, (2.4)

where a is the size of an obstacle or aperture, λ is the wavelength and R is the dis-
tance between the obstacle and the observational plane. Considering infinitesimally
small point sources distributed along a slit-like aperture (see Fig. 2.2), the summation of
point sources can be expressed as an integral over the slit and this results in the Fraun-
hofer diffraction integral, as described in Optics (Hecht, 1995).

Consider a monochromatically lit line opening of length D, illustrated in Figure 2.2.
Numerous point sources can be imagined to be located at the line opening. Each point
emits a spherical wavelet so that the electric field E is given as

E =
(

E0

r

)

exp[i (kr −ωt)], (2.5)

where E0 is the source strength. The number of sources is N and for a very large number,
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the source strength becomes

EL ≡
1

D
lim

N→∞
(ǫ0N ) (2.6)

which is the source strength per unit length. The electric field is then the integral over
the slit

E = EL

∫D/2

−D/2

exp[i (kr (y)−ωt)]

r (y)
dy. (2.7)

When the Fraunhofer condition is met—so that in Fig. 2.2 the distance R from the slit to
the point P is much larger than the slit length D—the distance r is linear with respect
to y , or the phases of all contributing secondary wavefronts can be expressed linearly, so
that in a direction θ

E =
EL

R

∫D/2

−D/2
exp

[

k(R − y sinθ)−ωt
]

dy, (2.8)

and finally

E =
ELD

R

sin[(kD/2)sinθ]

(kD/2)sinθ
sin(kR −ωt). (2.9)

For ease of notation, let
β≡ (kD/2)sinθ. (2.10)

The quantity that will be measured is the irradiance1, which is, apart of the factor ǫ0c

(the permittivity of vacuuum times the speed of light in vacuum), the time average of the
squared electric field, I = 〈E 2〉T or

I (θ) =
1

2

(

ELD

R

)2 (

sinβ

β

)2

. (2.11)

In its most general form, the irradiance resulting from an idealized coherent line source
in the Fraunhofer approximation is then

I (θ) = I (0)

(

sinβ

β

)2

(2.12)

where β= (πD/λ)sinθ and D ≫λ.
To describe what the image of a point source in the sky looks like, the tools are now

in place. A point source will produce spherical wavefronts, but for large distances, these
can be considered to be flat. Waves encountering an object or aperture will diffract. The
plane wave will coherently illuminate that aperture. The intensity pattern in the far-field
can be described with the Fraunhofer diffraction integral in a general two-dimensional
version of Eq. (2.8).

For a circular aperture, an extension is needed to two dimensions and because of
circular symmetry, polar coordinates are introduced. The expression for the electric field
then becomes

E =
EAei(kR−ωt )

R

∫a

ρ=0

∫2π

φ=0
ei(kρq/R)cos(φ−Φ)ρdρdφ, (2.13)

the surface integral over the circular aperture with area A and with EA , the field strength
per unit area. To simplify this expression, the Bessel functions (of the first kind) are intro-
duced. They are defined as

Jm (u) =
i−m

2π

∫2π

0
ei(mν+u cosν)dν, (2.14)

1The generally used word intensity means the flow of energy per unit area per unit time. In optics, this word
is by convention replaced by the word irradiance.
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Figure 2.3: A cross section of the Airy pattern. For an aberration free system, the intensity of the
first bright ring is roughly 2% of the peak intensity.

where m denotes the order of the function and (u,ν) form a transform pair. Using the
Bessel function J1 and following the steps as in the line-source case, the irradiance at a
point P after the circular aperture can be derived to be

I =
2E

2
A

A2

R2

[

J1(kaq/R)

kaq/R

]2

. (2.15)

When normalized, this expression poses the description of the circular spot that can be
observed when a point source is imaged. It is known as the Airy pattern—see Figs. 2.3
and 2.4—after the physicist Sir George Biddell Airy. The central bright region is sur-
rounded by a dark ring, occurring at a radius corresponding to the first zero of the func-
tion J1(u). This corresponds to kaq/R = 3.83. The radius for the first dark ring q1 is often
called the Airy-radius and is given by

q1 = 1.22
Rλ

2a
. (2.16)

The size of the central ‘disk’ is thus linearly proportional to the wavelength and inversely
proportional to the diameter of the aperture.

2.1.3 Resolution of an imaging system

An extended stellar source can be considered to be self-luminous, meaning that it is
made up of independently radiating point sources. For incoherent sources, the image
that a lens system will form of them, will be a distribution of partially overlapping Airy
patterns. It should be stated here that this is true only for aberration-free lens systems.
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Figure 2.4: Airy rings with a saturated central peak.
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(a) (b)Figure 2.5: An example of imaging two point sources at the Rayleigh limit of separation (a) and
two point sources that are unresolved (b). The radius of the first dark ring in the Airy pattern is at
q1=1.915.

In the presence of aberrations, the pattern of a point source will be Airy-like, but has less
amplitude in the central area and most likely a broader waist. But also for the aberration-
free case, the fact that the Airy pattern has a certain extent, limits the resolution of the
formed image.

For two independent point sources, a criterion for resolvability or resolution can be
produced. The center-to-center distance of two Airy patterns could be one criterion. But
more precise definitions also exist, like the Rayleigh criterion (Fig. 2.5) which states that
two equally luminous point sources are resolvable if their separation is at least half the
diameter of the first dark ring of the diffraction pattern. Clearly, the resolving power of
an optical system for some fixed wavelength is inversely related to the diameter D of
the primary diffracting aperture. This is why—stated in a very simplified way—a larger
telescope will see more detail. This large diameter however, has practical limits.
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2.1.4 Need for interferometry

A very large primary mirror (or dish) would have to be supported by an enormous amount
of concrete and steel, in order to keep the surface aberration-free in the presence of
wind or seismic actuation. Moreover, a larger dish at the Earths surface would collect
light rays that have clearly traveled through different parts of the atmosphere. Since
the atmosphere is not placid and of constant density, this will result in varying optical
path lengths and hence phases among the rays from one source reaching the telescope
at different positions in the primary mirror. Adaptive Optics (Hardy, 1998) are able to
compensate these effects partially, but before this technique had evolved, other solu-
tions were found to surpass the limitations in resolution. Stellar Interferometry, the joint
observation of a star via two separated apertures, could be performed with smaller aper-
tures that basically did not suffer from atmospheric aberrations. The wavefronts of the
beams from these smaller apertures show relatively smaller aberrations, but do need to
be de-tilted and cophased by ‘pistoning’ them. As described in the section about his-
tory (Sec.1.2.1), this is still a difficult task, but it requires less complicated hardware than
the implementation of full Adaptive Optics does. The next section will further specify
the working principles of Stellar Interferometry and address the resolution limit in more
detail, after a treatment of the subject of coherence.

2.1.5 Coherent and incoherent radiation

In the following chapters, as well as in the preceding sections, the terms coherent and
incoherent occur frequently. The discussion on the diffraction integral and the proper-
ties of light as a wave phenomenon, assumed mostly monochromatic radiation. In most
cases, one deals then with coherent radiation: the complex representation or phasor of
any wave in time and space can be added to another one. However, as was also already
pointed out, it might be possible that a source is in fact a collection of point sources
emitting at the same wavelength, but that they are still incoherent. This can be under-
stood by assuming that the phase of each point source changes randomly to different
phases at very short timescales. Branched-off rays from one such point source will at
recombination still interfere and are hence coherent, since their phase difference at the
point of detection remains the same. Interference with other point sources of exactly the
same color however, is not possible anymore—consider the combination of light emitted
by two identical lasers—and the sources are considered to be incoherent, although they
are monochromatic. The same effect can be observed in laser interferometers where the
path length difference is that large, that all phase correlation at recombination is lost
and the beams do not interfere, although they originated from the same monochromatic
source. The coherence under consideration here, is often called temporal coherence and
relates to the quantum nature of light. For the treatment of stellar interferometry, com-
plete understanding of this definition of coherence is not necessary.

If the point sources are now considered to be polychromatic, another definition of
coherence arises. Rays coming from this source are not allowed to have a too large path
length difference for interference phenomena to occur. For a certain spectral bandwidth
of radiation at the source, there exists a coherence length to which path lengths or travel-
ing times can be compared. Rays with a path length difference larger than this coherence
length are considered to be incoherent, although stemming from the same single point
source. This definition of coherence is totally explicable by regarding light as a wave phe-
nomenon. If two rays of monochromatic light are combined and observed, the intensity
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as a function of path length difference can mathematically be described with a cosine
function. Many colors—or polychromatic light—cause many cosines with the same ori-
gin. Mathematically, summing these cosines results in a function that still shows oscilla-
tions near the origin, but has a constant value far away from the origin. The distance at
which the oscillations disappear is a function of the spectrum of the source.

A third definition of coherence occurs when interferometry is considered. As will be
detailed in further chapters, a single polychromatic point source on the sky will produce
a fringe packet as a function of an applied path length difference. This fringe packet
has an extent referred to as the coherence length, as declared before. But in the case of
interferometry, two separated polychromatic self-luminous point sources are often con-
sidered to be spatially coherent if the fringe packets that they produce on a detector fall
in the same scanning region of the applied path length difference. This coherence is in
the literature referred to as partial coherence, which applies to non-point-like sources.
The resulting observed fringe packet will then generally have a non-optimal modulation,
as will be detailed further; the observation principle in stellar interferometry is based on
the measurement of this modulation.

Where applicable, different terms for the coherence will have to be used to avoid con-
fusion. Where present in an example or experiment, coherence will be mentioned as ei-
ther applying to monochromatically coherent electric fields, polychromatically coherent

path length differences or interferometrically coherent separated point sources on the
sky.

2.2 Interferometer labeling

Special attention should be drawn to the confusing labeling of interferometers in the
literature. Very often, arrays are simply and confusingly classified as being ‘Michelson-
type’ or ‘Fizeau-type’ (G. Rousset et al., 2001; Loreggia et al., 2004). The description of
several interferometers will show that there are more flavors than just two. To be able
to address and discuss all features of each interferometer correctly, a list of distinctions
is made. Some confusion arises from the work by Michelson. In the ‘Michelson Stellar
Interferometer’, a periscope system was mounted on a telescope, so that two beams of
diameter D were combined side-by-side with a separation B0, for which D < B0 < B ,
and B is the separation of the mirrors on the outer end of the periscope. In contrast, a
general ‘Michelson Interferometer’ has the optical lay-out of the interferometer used in
the Michelson–Morley experiment, to prove the existence of ether and its motion relative
to the Earth. Here, two beams are combined via a half-silvered glass plate and hence the
side-by-side separation at combination is B0 = 0.

The following list not only pinpoints the features to label an interferometer either
‘Fizeau’ or ‘Michelson’, but also aims to add other distinctions. These (hardware-) dis-
tinctions naturally play a role in the design of a beam combiner. It should be noted
that the list of classifications relates to all optical synthetic aperture arrays, both for as-
tronomy (diluted arrays, very long baselines) as well as for earth observation (compact,
non-redundant arrays with fixed baselines).

◮ Method of collection. In many European papers, the distinction between Fizeau
and Michelson-types relates to the method of wavefront collection. Fizeau and Sté-
phan (Sec. 1.2.1) used an aperture mask in front of the primary collector. Hence,
from the beginning of the ‘transport’ of the partial wavefronts to the point of com-
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bination, the wavefronts are curved. An interferometer with separated collection
elements should therefore have telescopes with curved primaries, having the ra-
dius of curvature corresponding to the synthetic aperture in which they are posi-
tioned, to be called an array of Fizeau-type. Plans to build such an interferometer
exist (Loreggia et al., 2004) but none have been built. The experiments by Michel-
son and Pease (see historic overview, Sec. 1.2.1) took place by collecting parts of
the same wavefront and transporting them while still collimated to the beam com-
biner, being a regular telescope. For a mirror (or siderostat) the beam compres-
sion or magnification is M = 1, while a telescope as collector can be configured
to produce any beam compression ratio. Collecting and transporting flat partial
wavefronts is a feature of both the Michelson-type and the Michelson Stellar-type.
Nearly all optical long-baseline interferometers are of this type.

◮ Method of combination. In other papers, the possibility of either pupil-plane com-
bination or image-plane combination is often addressed as Michelson or Fizeau-
mode. Pupil-plane fringe detection (rather than pupil-plane beam combination) is
not considered, since in all cases the energy in the beams will be focused onto one
or more detectors. In this thesis, the combination of the beams will be referred to as

being co-axial or not. When combined co-axially, a beam splitter is used to com-
bine two beams pairwise, of which one or both beams was already the combina-
tion of two others. The co-axially combined beam will then be focused onto one or
more detectors for intensity readout. The COAST array (Baldwin et al., 1996) is an
example. Combining non-co-axially means that the beams are placed side-by-side
(Michelson Stellar, densification) or have a general magnification, position and ori-
entation (general non-homothesis) or are homothetic with the entrance pupil con-
figuration so that before focusing, the partial wavefronts are arranged as an exactly
scaled copy of the partial wavefronts before the collectors (for example in the Large
Binocular Telescope and in Multiple Aperture Optical Telescopes). The focusing
optics are larger in diameter than a single beam cross-section, unlike for co-axial
beam combination.

◮ Method of fringe encoding. These options are temporal or spatial encoding or a
combination of both and are coupled to the method of collection or the method of
combination. Operating a masked aperture (Fizeau collection) will result in spatial
fringes in focus. Co-axial combination will need temporal (varying path length of
a beam pair) encoding to produce fringes. For general non-homothetic, non-co-
axial combination (exit baseline 0 < B0 < B), fringes for a part of the field-of-view
will be spatially encoded. The full field-of-view can be covered by adding tempo-
ral encoding. Generally, interferometric imaging provides high resolution images
for regions of the field-of-view in which fringes (encoded in some way) can be ob-
served.

◮ Method of detection. The signal from which an image is to be reconstructed is a
summation of electrical fields (partial wavefronts) superimposed in focus. Of this
optical signal, only the intensity can be measured. The method of fringe encoding
makes that this intensity in focus varies with position (spatial encoding) or with
time (the path length difference between a pair of beams is made a function of
time). To obtain all encoded information, the detection should be able to mea-
sure this time- and position-dependent intensity. The detector should consist of a
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sufficient number of small enough elements to sample the spatially varying inten-
sity. The spatial frequency is principally determined by the combination method
and can possibly vary with array dimensions and the detector should be able to
collect multiple intensity sets when temporal encoding is applicable. Additional
restrictions for the dimension of each detection element lie in the size of a single
collector and as mentioned in the separation distance of collectors. The overall
dimension of the detector should (angularly) cover the desired field-of-view. The
elements can be either photosensitive devices or optical fibers, feeding the local
electric field to an intensity detector elsewhere. The detector can consist of one, a
few, or a very large number of detection elements and will produce one or a few
readouts per array configuration.

When designing an optical interferometer for certain stellar observations, the subject
or class of objects to be observed determines the desirable basic lay-out of the inter-
ferometer array. The methods of collecting and combining the partial wavefronts pose
constraints on the hardware of the array. The software needed is determined by the
method of fringe encoding and the detector. It should be clear that both domains of
hardware and software impose restrictions on each other. This may limit compatibil-
ity of available software with desirable hardware for example, but it should also be clear
that hybrid combination and detection schemes are possible. For this reason, simulation
based on response functions was chosen. All interferometers provide differently struc-
tured polychromatic fringes for the extended source. For a fair comparison, all detected
information is post-processed with the same software for reconstruction of the image.
No method-specific software is used.

2.3 Theory of interferometric imaging

As stated, several solutions exist to image a stellar objects with more than one telescope,
in such a way that the resulting image contains more details than the best possible image
from each single telescope could provide. Using the Fraunhofer diffraction calculation
that was used for a single-dish telescope, the point-source response can be calculated for
the image plane or combined focus of an array of co-phased telescopes. With this para-
metric response function, the transfer of the information on the sky into measureable
signals can be given for four types of interferometric beam combination. For one spe-
cific combination type—co-axial combination, the most popular type—this prediction of
the measureable signal is compared to the prediction based on the Zernike–Van Cittert
theorem, which will be detailed. This comparison will then show how the derived nature
of the response signal is not only valid for all beam combiners under consideration, but
also allows extension to wide-field observations and polychromatic observations.

2.3.1 General interferometer model

In the following paragraphs, the point-source response function is derived for every pos-
sible beam combination type for imaging interferometers. The calculation is based on
the fact that a wavefront originating from a stellar source at an angle θ0 with the zenith
direction, arrives as a flat wave front, exciting secondary wavelets in the collecting pupil
plane, as illustrated in Figs. 2.6 and 2.7. These wavelets have equal amplitudes, but dif-
fer in phase given the slope with angle θ0. The partial wave fronts are relayed with unit
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|A|2Figure 2.6: The principle of Fourier Optics to calculate a far-field or Fraunhofer diffraction pattern.
A flat wavefront excites secondary wavelets across an aperture, with relative phases depending on
the angle of incidence of the wavefront (here, θ0 = 0). The amplitude of the field propagating in a
certain direction θ is proportional to the sum of the complex amplitudes of all secondary wavelets
when these originate on a plane at an angle θ with the aperture.

magnification to the exit pupil plane (see Fig. 2.8 for general examples), where the partial
wavefronts will be combined again and focused on a detector plane. This example con-
siders only two apertures and is one-dimensional for ease of illustration and calculation.

The wavelets in the exit pupil plane generate a wave front expanding identically in all
directions, as described for a regular elementary telescope in Section 2.1 and illustrated
in Fig. 2.6. For a planar wavefront with an angle θ with respect to the exit pupil plane, the
complex electrical field amplitude A in focus can be described as the sum of all wavelet
contributions by

A(θ) =
∫

pupil
ei(2πxθ/λ)dx, (2.17)

where the elementary wavelets all have amplitude 1 and equal phase, for the case θ0 = 0.
The distance from exit plane to the plane at an angle θ is linearized, because sin(θ) ≃
θ. For a point source at direction θ0 on the sky, there will be a phase slope across the
elementary wavelets, so that the phases in the plane at an angle θ have an extra slope,
resulting in

A(θ) =
∫

pupil
ei(2πxθ/λ)ei(2π[−xθ0 ]/λ)dx. (2.18)

Figure 2.7 illustrates the phases of secondary wavelets in an exit pupil plane x; the partial
wavefronts were initially collected in another plane x′. Because of the length difference
|B−B0|, the phase in the exit pupil is not necessarily part of a continuous function. In the
case of co-axial combination, there is even a co-existence of two partial wavefronts at the
same location. An expression for the in-focus amplitude is again derived, but now sepa-
rately for both exit pupils. As known, every interferometer is equipped with a delay line.
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Figure 2.7: This illustration indicates the coordinates used in the derivation of the point-source
response functions for all possible types of beam combination, based on the combination base-
line B0. B0 is greater than or equal to zero. The not indicated beam paths from plane x′ to plane
x are the relay of pupils, symmetrically around the optical axis (dashed line). The beams, without
magnification, fall on a lens to be focused (not indicated). The phase difference at the collecting
apertures (black arrows) is maintained on propagating from pupil plane x′ to x. For symmetry in
the diffraction integral, these physical phases are compared to the phase slope at x for the same
angle of incidence θ0 at the aperture positions corresponding to the chosen value of B0 (gray ar-
rows).

B B B

B  = B0 B  < B0 B  = 00

Fizeau Michelson
Stellar Interferometer

Michelson
Interferometer

Homothetic Densified Co-AxialFigure 2.8: This illustration indicates the possibilities for exit pupil placement, for a general exit-
baseline B0.
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In this model, one beam experiences an extra path length of d meters. The amplitude in
focus is

A(θ,d) =
∫−B0/2+D/2

−B0/2−D/2
ei(2πxθ/λ)ei(2π[−xθ0+ 1

2 (B−B0)θ0]/λ)dx +

ei(2πd/λ)
∫B0/2+D/2

B0/2−D/2
ei(2πxθ/λ)ei(2π[−xθ0− 1

2 (B−B0)θ0]/λ)dx. (2.19)

The integral expression in Eq. (2.19) describes the output for interferometers having
any combination baseline 0 ≤ B0 ≤ B . The first exponentional factor ei(2πxθ/λ) generates
a field envelope, which is the Airy function for a circular aperture and a sinc-function
for the (theoretical) one-dimensional aperture in the example. The first term (−xθ0) of
the second exponential factor indicates the phase front being tilted, and this essentially
only shifts the origin of the envelope from θ to θ−θ0. The last term containing (B −B0)
covers the θ0-dependent optical path length difference due to the choice of combination
baseline length B0, canceling for the case B = B0. This is the case of homothesis. Using
trigonometry and the definition of the sinc-function,

sinc(x) =
{

1 for x = 0
sin(x)

x otherwise
, (2.20)

the integral in Eq. (2.19) can be expressed as

A(θ,d)general = 2Dsinc[Dπ(θ−θ0)/λ]cos[π(d +B0θ−Bθ0)/λ]eidπ/λ. (2.21)

Two well-known responses, for a homothetic and a co-axial interferometer, can be
derived from this general expression. Since d = 0 for homothetic arrays and B = B0, it is
clear that the point source response is only a function of (θ−θ0), given B0 and D:

A(θ)homothetic =
sin [π(θ−θ0)D/λ]

π(θ−θ0)D/λ
cos[π(θ−θ0)B0/λ] 2D. (2.22)

The envelope-with-fringes, constituted by the D-dominated sinc and the B0-dominated
cos functions, is field-invariant since both the modulation function and the envelope are
functions of θ and have the same origin θ0.

For co-axial combination, the exit baseline B0 is zero and the path length of the sec-
ond interferometer arm d is variable. To arrive at an envelope only, without extra phase
additions, it is clear that when d = Bθ0 there are no other terms than the shifted (θ−θ0)
envelope. However, for a collection of point sources—since no physical source is a true
point-source—at different values of θ0, there can be only one d , so all point source
responses from different θ0 have phase shifts of Bθ0 − d which results in a baseline-
dependent modulation contrast. Indeed, inserting only B0 = 0 into Eq. (2.21) results in

A′(θ,d)co−axial =
sin[π(θ−θ0)D/λ]

π(θ−θ0)D/λ
cos[π(d −Bθ0)/λ]2D, (2.23)

where A′ indicates that the phase factor exp[i dπ/λ] in Eq. (2.21) is neglected. This factor
‘rotates’ the phase of the complete response and would only be of interest if this field
was to be combined with another. The co-axial result is again familiar, being constituted
by an envelope in direction θ with origin θ0, that is totally modulated by a function of
delay d with field-dependent origin Bθ0 .
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Figure 2.9: From left to right: the sketches display a telescope objective and an eyepiece, to illus-
trate the effects of a-focal beam compression. The first sketch clearly shows a compression ratio of
M = 2, the ratio of the focal lengths of the two lenses. The second sketch shows that the primary
direction in and out (and hence the tilts of the incoming and outgoing phase fronts) are scaled as
θout = Mθin. The third sketch shows the beam paths for the case of a masked primary aperture.

Including magnification

In general, a telescope can be regarded as an afocal beam compressor. The incoming
and outgoing beams are collimated. Compressing the beam results in an angular mag-
nification and higher electrical field amplitudes in the outgoing beam. As indicated in
the sketches in Fig. 2.9, the beam compression factor is governed by the ratio of the focal
lengths of the collecting lens (primary) and the eyepiece. For a compression factor M ,
this results in θout = Mθin, Aout = M Ain and the relations that are related to interfero-
metry Dout = Din/M and Bout = Bin/M , where D and B are the diameter of each beam
and the separation of them, respectively, in the collimated regions.

A telescope array where all collected beams are first compressed and then relayed to
a beam combiner, is now depicted in Fig. 2.10. This is a more general version of Fig. 2.7.
Having studied the method of beam compression for a masked aperture (Fig. 2.9), it is
clear that the calculation of the fringe pattern after focusing the light out of a beam com-
biner with general exit baseline B0 (again co-axial B0 = 0, homothetic B0 = B/M or any
other B0) obeys the laws D0 = D/M and θ1 = Mθ0 that the masked aperture example in
Fig. 2.9 shows. Stating that both beams individually are compressed by the same factor
M , the scaling for θ0, A and D are fixed. Furthermore, each collector can be equipped
with a field de-rotator, so that the exit beams need not be placed mirrored with respect
to the optical axis. With these assumptions, an expression can now be derived, describ-
ing the focal field of a two-element interferometer with arbitrary magnification M and
arbitrary exit baseline length B0. For ease of construction of the diffraction integral, the
differential phases in the partial wave fronts around B0 have to be compared to those
around the natural compressed baseline length BM , instead of to the original B , as in
the previous calculation. To calculate the fringed output, the magnification is introduced
and the integration boundaries are changed, according to

A(θ,d) =
∫−B0/2+ D

M /2

−B0/2− D
M /2

ei(2πxθ/λ) Mei(2π[−xMθ0+ 1
2 ( B

M −B0)Mθ0]/λ)dx +

ei(2πd/λ)
∫B0/2+ D

M /2

B0/2− D
M /2

ei(2πxθ/λ) Mei(2π[−xMθ0− 1
2 ( B

M −B0)Mθ0]/λ)dx. (2.24)
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Figure 2.10: This illustration indicates the coordinates used in the derivation of the point-source
response functions for all possible types of beam combination (any B0 ≥ 0), when a general beam
compression by a factor M is applied in each arm. Again, the diffraction integral is symmetric and
the phases of the wavefronts placed at B0 separation in the plane x, proportional to −xMθ0 , are
compared (gray arrows, proportional to 1

2 B0Mθ0) to the ‘physical’ phase differences (black arrows,

proportional to 1
2 Bθ0) when the natural (see Fig. 2.9) path of a masked aperture was followed.

Using these coordinates, the diffraction integral of Eq. 2.24 can be constructed, in which the phases
proportional to [−xMθ0 ± 1

2 ( B
M −B0)Mθ0] are used.

The first exponential factor in the integrals again constitutes the pupil-to-image rela-
tionship known from Fourier optics, see Fig. 2.6. The second exponential comprises the
phases in the exit apertures; the amplitudes of the secondary sources are scaled by a fac-
tor of M . For symmetry and ease of calculation, the term is primarily a function of θ0x

(the dashed wave front in Fig. 2.10), to which a phase offset is added (the length of the
gray arrow in Fig. 2.10). Carrying out the integrations in Eq. 2.24 results in

A(θ,d) = 2Mλ
sin [Dπ(θ−Mθ0)/Mλ]

π(θ−Mθ0)
cos[π(d +B0θ−Bθ0)/λ]eidπ/λ. (2.25)

The exponential factor for the delay d , outside of the cos-term, would only be of impor-
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tance when this calculated field is combined with another one since all other factors are
real. To calculate the intensity I (θ) = |A(θ)|2, this exponential factor can be left out and
the sinc-function can be used again, leading to

I (θ,d) = 4D2sinc2 [Dπ(θ−Mθ0)/Mλ] cos2 [π(d +B0θ−Bθ0)/λ] . (2.26)

If there is no internal delay (d = 0), the expression can be written as

I (θ) = 4D2sinc2
[

Dπ

Mλ
(θ−Mθ0)

]

cos2
[

πB0

λ
(θ−

B

B0
θ0)

]

. (2.27)

A number of features shows up nicely. The width of the envelope function is governed
by the factor Dπ

Mλ , which includes the primary diameter, the wavelength and the angu-

lar magnification, or beam compression M . The angular period of the fringes is λ
2B0

,
implying that the exit baseline B0 governs the fringe spacing for the observer, and is in-
dependent of the magnification M .

Equation (2.27) also shows whether the envelope-with-fringes function is field-variant
or not. Both the sinc and cos-functions depend on θ. Their offset differs and is Mθ0

for the sinc function and B
B0

θ0 for the cos function. Immediately, it is clear that when
B0 = B/M , these offsets are equal and hence the center of the envelope will coincide
with the central fringe peak, for all values of the sky direction θ0. Including the delay d

again results in

I (θ,d) = 4D2sinc2
[

Dπ

Mλ
(θ−Mθ0)

]

cos2
[

πB0

λ

(

θ−
[

B

B0
θ0

]

+
d

B0

)]

, (2.28)

where for the modulation the angular period remains the same [λ/(2B0)] and only the
offset changes. This general response function is the same expression as Eq. (2.26) and
therefore the result for co-axial combination (B0 = 0) is

I (θ,d) = 4D2sinc2 [Dπ(θ−Mθ0)/Mλ] cos2 [π(d −Bθ0)/λ] , (2.29)

so that the cos-term is only a function of d (given a point-source direction θ0) and that
the period of the cos-modulation is not related to the magnification M .

With the general expression for I (θ,d) in Eq. (2.28), the intensity output of any two-
element interferometer is obtained, for a single point source at θ0 producing a uniform
unity amplitude at entrance pupils of diameter D. With the assumption that both beams
have an equal beam compression M , the correctly scaled envelope intensity pattern with
fringes depending on either θ or d or both can be calculated.

Polychromatic response and imaging

For a polychromatic response, the expression for the intensity should be integrated over
the spectral range, with a weighting factor according to the intensity spectrum of the
source, for which in this case a function L(θ0,λ) is taken. The detected signal then equals

I (θ,d) =
∫

θ0

∫

λ
L(θ0,λ)I (θ,d ,θ0 ,λ)dλdθ0. (2.30)

The superposition of the wavelength-dependent cosines will result in a fringe function
with finite extent. However, the origins of the cosine functions are wavelength-inde-
pendent. The envelope will not exactly be a sinc-function when summed over all wave-
lengths. All in all, the features of Eq. (2.28) that remain are the fact that the general poly-
chromatic response is the product of an envelope and a fringe function with the shifted
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origins Mθ0 and Bθ0/B0, respectively. The envelope width can be approximated by

r0 ∼
D

Mλc
, (2.31)

with λc the central wavelength. The angular period of the fringe function in the θ-
direction remains

pθ(B0) =
λc

2B0
. (2.32)

With these scaling factors, realistic field- and delay-dependent intensity response func-
tions can be calculated for an interferometer with any magnification M and exit baseline
length given by 0 ≤ B0 ≤ B/M or even B/M < B0 <∞.

‘Imaging’ is recording in any way the weighted sum of point source responses of an
object on the sky. Considering again the monochromatic expression of Eq. (2.26) for a
very small source L(θ0) of which all θ0 ≪ r0, then all the cosines in the weighted sum
have an equal period pθ, but different phases and amplitudes. Therefore, the varying
part of the resulting intensity sum can be described with a cosine function of the same
period, but with a different phase offset φB ,L and modulation amplitude CB ,L :

I (θ,d)B ,L =
∫

θ0

L(θ0)I (θ,d ,θ0)λdθ0

≃ sinc2
[

Dπ

Mλc
(θ−Mθ0)

]

(

1+CB ,L cos
[

φB ,L
])

. (2.33)

Conventional interferometric imaging is reduced to measuring sets of CB ,L and φB ,L for
various baseline lengths B , in order to obtain information about the source L. This will
be addressed in the next Section.

For wide-field observations (θ0 > r0), the response cannot be treated as an envelope
with cosine-like modulation on it, but the response over the full (θ,d)-area has to be
measured to obtain information of the function L(θ0). Observing the argument of the
cosine in Eq. (2.28), it is clear that the baseline dependent response or rather the fringe

encoding can be spatial (only a function of θ), ‘temporal’ (only a function of d) or a mix-
ture of both. Interferometric imaging makes use of the fact that this collective response
is a function of the entrance baseline B . Careful choice of B0 and/or setting several d

(or scanning continuously over d) ensure that the differences related to changing B are
measurable and can be related to the luminosity distribution L(θ0) on the sky.

In terms of ‘sampling spatial frequencies’, the monochromatic spatial frequency cov-
erage of a source L(θ0) arises from the full expression of the detected signal:

I (θ,d)L =
∫

θ0

4D2L(θ0)sinc2
[

Dπ(θ−θ0)

Mλ

]

cos2 [π/λ(d +B0θ−Bθ0)]dθ0. (2.34)

The sinc2 can better be written as a sin-function again. Then, both the sin2 and the cos2

terms can be written as cos-functions:

I (θ,d)L =
∫

θ0

D2L(θ0)
M2λ2

D2π2(θ−θ0)2
·

{

1−cos

[

2πD

Mλ
(θ−θ0)

]}{

1+cos

[

2π

λ
(d +B0θ−Bθ0)

]}

dθ0. (2.35)
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Further factorization yields

I (θ,d)L =
∫

θ0

L(θ0)
M2λ2

π2(θ−θ0)2
{

1−cos

[

2πD

Mλ
(θ−θ0)

]

+cos

[

2π

λ
(d +B0θ−Bθ0)

]

−

cos

[

2πD

Mλ
(θ−θ0)

]

cos

[

2π

λ
(d +B0θ−Bθ0)

]}

dθ0. (2.36)

This resembles a Fourier frequency analysis. The observed intensity pattern I (θ,d)L re-
sulting from a source L(θ0) will provide information for certain spatial frequencies gov-
erned by D and B0 in the direction of θ, provided by the first two cosine factors.

Should the exit baseline not exist (B0 = 0), and the collecting apertures be pinholes
(D = 0), the integral reduces to

I (θ,d)L = I (d)L =
∫

θ0

L(θ0)

{

1

2
+

1

2
cos[2π/λ(d −Bθ0)]

}

dθ0. (2.37)

The resulting signal, depending on baseline length B and source L, is a function of only d

and will have a period pd =λ, and represents the spatial frequency content of the source
according to the harmonics of the cos-expression, since the trigonometric relation

cos(a −b) = cos(a)cos(b)+ sin(a)sin(b), (2.38)

turns the integral

I (d)L =
∫

θ0

1

2
L(θ0) {1+cos [2π/λ(d −Bθ0)]}dθ0 (2.39)

into the signal

I (d)L =
∫

θ0

1

2
L(θ0) ·

{

1+cos

(

2πd

λ

)

cos

(

2πB

λ
θ0

)

+ sin

(

2πd

λ

)

sin

(

2πB

λ
θ0

)}

dθ0. (2.40)

This expression resembles the Zernike–Van Cittert theorem that relates the unresolved
source to the observable baseline-dependent fringe contrast, since in the measurement
domain d , on top of a carrier frequency d/λ (see first cos factor and first sin factor), the
value of the inner product of the source L(θ0) with a harmonic function in θ0 of angular
spatial frequency B/λ can be measured, what comes down to measuring a single Fourier
component of the spatial frequency spectrum of the source. The classical derivation of
the Zernike–Van Cittert theorem is given in Section 2.3.2. With the general interferometer
response of Eq. (2.36) however, in which D 6= 0, the more general relationship between
source and detection is given for the case of finite telescopes (D > 0) and a wide-field or
partially resolved source L(θ0), imaged with an arbitrary exit baseline B0. For this general
case, a derivation of an expression for the sampled spatial frequencies governed by λ, D,
B0 and B , would be required, but this is not relevant at this point. The derivation of
an expression for the sampled spatial frequencies (Eq. 2.40) for the co-axial case served
one purpose. It shows the equivalence of the approach of deriving first a point-source
intensity function and using that, an extended source intensity response, to the approach
of partial coherence theory and the Zernike–Van Cittert theorem, to be explained in the
next Section.
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2.3.2 Relation to complex visibilities

In this section, the classical derivation of the response of an interferometer will be pre-
sented. Starting with the theory of partial coherence and the Zernike–Van Cittert the-
orem, the measurable signal relating to the image of the sky will be derived. Special
attention is given to the desired field extension, the size of the apertures and the finite
coherence length. All these factors define a huge difference between optical aperture
synthesis and synthesis at radio wavelengths. Treatment of the classical theorem will
show the need for a different approach. With the approach given in the previous Sec-
tion, the response can even be predicted when non-standard optical elements—such as
a discontinuous staircase mirror—are inserted in the optical train.

The quasi-monochromatic theory of partial coherence is used to describe the phe-
nomenon that in stellar interferometry, the measurable interference fringes have a base-
line dependent contrast. However, for wide-field interferometry it shows two shortcom-
ings that will be detailed here. Basically, the theory assumes point-like collectors (result-
ing in an infinitely extended focus) and (quasi-) monochromatic radiation (resulting in
an infinite coherence length). Both these assumptions are in order for radio interfero-
metry (where a PSF is much larger than a detector and where correlation of the signals
can be done at very narrow passbands) and even for very narrow angle optical interfero-
metry (where the stellar object is highly unresolved by a single telescope). For broad-
band, wide-field interferometric imaging, this will result in a non-accurate prediction of
the observables.

The assumption of quasi-monochromaticity results in a simplification of expressions
that is not allowed for sources spanning more than a single-dish-PSF on the sky. The the-
ory assumes that the source is sufficiently not point-like, but indeed highly unresolved,
meaning that it is extended, but smaller than the diffraction limited spot size of a single
telescope. It will be shown how the response of a very extended source (of a size equal
to multiple single-dish-PSFs) will deviate from the quasi-monochromatic response, dis-
qualifying the quasi-monochromatic theory to predict the interferometer response for a
very extended object.

The quasi-monochromatic theory of partial coherence essentially treats the collectors
or telescopes as pinholes, apertures with a diameter in the order of a few wavelengths.
A true telescope has a certain extent (millions of wavelengths) which will result in a very
localized presence of radiation in focus. It is clear that when the directions on the sky
where the radiation comes from have a larger angular range than the angular size of the
PSF in focus, one cannot treat the stellar object as a whole to predict the fringe contrast
in one single detection point. The extension to wide-field objects is again not compatible
with the theory. If the single detector (for which the fringe contrast should be predicted)
is sized such that several PSFs next to each other can be integrated into one intensity sig-
nal, the measured fringe contrast does not relate to the whole source, since the radiation
was mainly added incoherently.

Theory of partial coherence

Partial coherence relates to the correlation of electrical field vibrations at two arbitrary
points in the wave field produced by a source with either a finite spectral range, a finite
size, or both (Born and Wolf, 1980). Although initially developed to be able to account
for light source-induced effects in microscopy, the theory also describes observable phe-
nomena in stellar interferometers. The text in this section is based on (Beran and Par-
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Figure 2.11: Scheme of Young’s interferometer. An opaque screen with two small pinholes P1 and
P2 separated by a distance S is placed in front of a radiating source σ. The secondary wavefronts
generated at the pinholes interfere. The resulting intensity pattern can be observed at a plane,
situated at an axial distance z from the pinholes.

rent, 1974) and (Montilla, 2004) with some additions.
A suitable measure for this correlation is suggested by a two-beam interference ex-

periment, analogue to Young’s interferometer (Fig. 2.11). An extended polychromatic
source σ, produces an electro-magnetic wave field represented by the analytic signal
Ψ(P, t) which is a function of position P and time t and which neglects polarization so
that it is a scalar quantity. The observable intensity or power I (P ) is proportional to the
mean value of Ψ(P, t)Ψ∗(P, t), where ()∗ denotes the complex conjugate. Two points in
the wave field are considered, P1 and P2. In order to study the interference effects arising
from the superposition of the electrical fields from these points, a screen with pinholes
at positions P1 and P2 is placed across the field. The complex disturbance produced at a
point Q on a second screen, with an axial distance z is

Ψ(Q , t)= K1Ψ(P1, t − t1)+K2Ψ(P2, t − t2), (2.41)

where t1 and t2 respectively are the times needed for the light to travel from P1 and P2 to
Q and K1 and K2 are complex constants,2 inversely proportional to the distance z. The
observed power at the second screen is now

I (Q , t) = 〈Ψ(Q , t)Ψ∗(Q , t)〉. (2.42)

Assuming that the radiation from the source is stationary,3 the superposition can be writ-
ten as

I (Q) = ‖K1‖2I1 +‖K2‖2I2 +2Re
{

K1K∗
2 〈Ψ(P1, t− t1)Ψ∗(P2, t− t2)〉

}

, (2.43)

where I1 and I2 are the powers associated to the radiation generated at the secondary
sources P1 and P2, respectively. The averaged term is

〈Ψ(P1, t − t1)Ψ∗(P2, t − t2)〉 = lim
T→∞

1

T

∫T /2

−T /2
Ψ(P1, t − t1)Ψ∗(P2, t − t2)dt . (2.44)

2In a more elaborate version of the theory, these constants K1 and K2 develop into integral expressions
when the finite size of the collectors and their optical transmission factor are taken into account (Born and
Wolf, 1980).

3The stationarity assumption implies that in an ensemble of functions, the averages are independent of the
origin of time.
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By changing variables according to t ′ = t − t2 and introducing the time delay τ = t2 − t1,
Eq. (2.44) can be written as

〈Ψ(P1, t − t1)Ψ∗(P2, t − t2)〉 = lim
T→∞

1

T

∫T /2+t2

−T /2+t2

Ψ(P1, t ′+τ)Ψ∗(P2, t ′)dt ′. (2.45)

Equation (2.45) is called the mutual coherence function and represents a temporal
complex cross-correlation between the functions Ψ(P1, t − t1) and Ψ(P2, t − t2) during
the time interval T . The mutual coherence depends on the time delay τ and on the
separation S of P1 and P2. Therefore, it is defined as

Γ12(τ) = Γ(S,τ)= 〈Ψ(P1, t − t1)Ψ∗(P2, t − t2)〉. (2.46)

Equation (2.43) can be rewritten in terms of Γ12(τ) so that

I (Q) = ‖K1‖2I1 +‖K2‖2I2 +2Re
{

K1K∗
2Γ12(τ)

}

. (2.47)

To drop the complex factors K1 and K2, the expression can be normalized by observ-
ing the result of placing the two pinholes at either P1 or P2. When P2 = P1 and hence
t2 = t1, there results

〈Ψ(P1, t − t1)Ψ∗(P1, t − t1)〉 = Γ(S = 0,τ= 0) = Γ11(0), (2.48)

which is the detected optical power associated with secondary source P1. Likewise, Γ22(0)
is associated to source P2. Using these definitions, there arise

I (1)(Q) = ‖K1|2I1 = ‖K1|2Γ11(0) and

I (2)(Q) = ‖K2|2I2 = ‖K2|2Γ22(0). (2.49)

After introduction of

γ12(τ) =
Γ12(τ)

p
Γ11(0)Γ22(0)

, (2.50)

Eq. (2.47) can now be normalized to

I (Q) = I (1)(Q)+ I (2)(Q)+2
√

I (1)(Q)I (2)(Q)Re[γ12(τ)]. (2.51)

The function γ12(τ) is denominated the first-order complex degree of coherence and is
characterized by the following properties:

◮ The function has a maximum value at the origin for τ= 0

◮ As a consequence of the Cauchy–Schwartz inequality4 , the value of the function
γ12(τ) is 0 ≤ ‖γ12(τ)‖≤ 1

◮ The function is a complex analytic signal

◮ The modulus of the complex degree of coherence is proportional to the fringe con-
trast of the interference fringes.

4The modulus of the inner product of two vectors is smaller than or equal to the product of the norms of
these vectors.
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The last item makes that measuring the fringe contrast while knowing the position

of and the power at the pinholes, one can obtain information about the quality of the
illumination source of the interference system (for the case of microscopy) or about the
spatial structure of the ‘illumination source’, being a stellar object in the case of stellar
interferometry.

In the context of partial coherence, three regimes are defined for operation of the
interference system as a function of ‖γ12(τ)‖. If ‖γ12(τ)‖ = 1, the system is operating in
the coherent limit and the electric field vibrations at P1 and P2 are said to be coherent.
This means that the source is sufficiently point-like and the light nearly monochromatic.
If ‖γ12(τ)‖ = 0, the system operates at the incoherent limit and the superposition of the
beams does not give rise to any interference effect. If 0 ≤ ‖γ12(τ)‖ ≤ 0, the vibrations
are partially coherent and the source is observed with partial degree of coherence. In
general, this last condition applies to a natural source, since exact point-sources and
natural monochromatic sources do not exist.

The observable fringe contrast for a wide-field source, measured with a certain band-
width, will be lower than predicted by the quasi-monochromatic theory of partial coher-
ence5. This is important when for example the flight paths of telescopes of a space based
array are optimized for a certain target. Since for extended sources, in general, the fringe
contrast drops with the baseline length, the maximum baseline length at which fringes
can be measured at all may be shorter than expected. This effect limits the maximum
resolution.

To extend the theory for the case of large telescopes and possibly a staircase mirror
in the optical train, the complex functions K1 and K2 should be extended to incorporate
the location-dependent field strength according to the Airy function. Moreover, instead
of pinholes, large apertures and focusing behavior should be included, so that resolving
the source partially (since it sizes a few PSFs) is accounted for in the detection of I (Q).
Compensation of external OPD by a staircase mirror should then be found back in a
sawtooth-like behavior of the parameter τ, relating to the position Q .

Instead of extending the general theory of partial coherence to polychromatic wide-
field stellar interferometry, another point of view was chosen to predict the response of
an optical interferometer, as described in Sec. 2.3.1. The following section however, con-
tinues the quasi-monochromatic theory, and relates the measureable fringe visibility to
the morphology of the stellar source. This will lead to a measurement–source relation-
ship that is similar to the one derived by the approach of Sec. 2.3.1, which is easily ex-
tended to polychromatic wide-field observations, as opposed to the relationship based
on partial coherence, that would require elaborate extensions to the theory presented in
the current section.

Source and visibility

When the light emitted by a source σ is quasi-monochromatic with a mean frequency
ν0, it has a spectral range δν≪ ν0. The complex coherence is now

γ12(τ) = ‖γ12(τ)‖exp[i (α12(τ)−2πν0τ)] , (2.52)

where
α12(τ) = 2πν0τ+arg

[

γ12(τ)
]

, (2.53)

5The mutual intensity theory for a temporally incoherent source exists, see (Born and Wolf, 1980), pp. 606–
610.
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tFigure 2.12: Power distribution of the interference pattern of two quasi-monochromatic beams
of power I (1) and I (2) in partially coherent superposition.

and Eq. (2.51) becomes

I (Q) = I (1)(Q)+ I (2)(Q)+2
√

I (1)(Q)I (2)(Q)‖γ12(τ)‖cos(α12(τ)−2πν0τ) . (2.54)

The quasi-monochromatic condition states that ‖γ12(τ)‖ is nearly constant (amplitude
of fringe envelope) and α12(τ) varies slowly with τ compared to cos 2πν0τ. If the open-
ings at P1 and P2 are sufficiently small, the intensity distribution at the vicinity of Q will
consist of an almost uniform background (no intensity envelope due to diffraction by
a finite aperture) I (1)(Q)+ I (2)(Q) with a superimposed sinusoidal intensity distribution,
as shown in Fig. 2.12. From this fringe pattern, the primary observable for this type of
interferometer can be deduced. The fringe contrast is defined as

V (Q)=
Imax − Imin

Imax + Imin
, (2.55)

where Imax and Imin are the intensity maximum and minimum near Q . Using expression
2.54, the fringe contrast V (Q) can be related to the degree of coherence of the interfering
light beams by

V (Q)=
2
√

I (1)(Q)I (2)(Q)

I (1)(Q)+ I (2)(Q)
‖γ12(τ)‖. (2.56)

For the special case that both openings transmit an equal power and I (1)(Q) = I (2)(Q),
the contrast V (Q) = ‖γ12(τ)‖ is equal to the degree of coherence of the source, with sec-
ondary sources at P1 and P2. Although this expression provides a contrast as a func-
tion of the location Q , it should be noted that this contrast is not a function of the size
and shape of the collectors. If the path length differences between the light paths (for
vacuum) c‖τ‖ are small compared to the coherence length lcoh = c/δν of the light, so
that the fringe pattern shows no envelope, the function ‖γ12(τ)‖ is hardly different from
‖γ12(0)‖. The complex coherence factor µ12 is now defined as µ12 = γ12(0) and the inter-
ference expression (2.54) can be written as

I (Q) = 2I (1,2)(Q)+2I (1,2)(Q)‖µ12‖cos
[

arg(µ12)
]

. (2.57)

Equation (2.57) represents the basic formula of the quasi-monochromatic theory of
partial coherence. The complex coherence factor µ12 is usually called the complex visibil-

ity. Although complex, it can be measured from recorded intensities by varying τ. Given
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Figure 2.13: Illustration accompanying the derivation of the Zernike–Van Cittert theorem.

the positions of the secondary point sources, the complex visibility holds information
about the light source. But this is only valid when the assumptions of quasi-chromaticity
and point-like collectors or pinholes are satisfied.

The Zernike–Van Cittert theorem relates the complex visibility function to the source.
To determine the complex coherence factor for two points P1 and P2 on a screen illu-
minated by an extended but unresolved quasi-monochromatic source σ (see Fig. 2.13),
the source is divided into small elements dσi centered at Ci . These elementary sources
are mutually incoherent and of small dimensions compared to the mean wavelength λ0.
The complex electrical field due to element dσi at a point Pm in the screen is

Ψmi (t) = Ai

(

t −
rmi

c

) exp
[

−2π jν0(t − rmi

c
)
]

rmi
, (2.58)

where the strength and phase of the radiation coming from element dσi are respectively
characterized by ‖Ai‖ and arg(Ai ), and rmi is the distance from the element dσi to the
point Pm .

No extended astronomical source is known that is spatially coherent (Anantharama-
iah et al., 1994) and the case of scintillation is not considered, so the elements are mutu-
ally incoherent. The distance ri2 − ri1 is small compared to lcoh. The mutual coherence
function of P1 and P2 is then

Γ12(τ= 0) =
∑

i

〈A∗
i (t)Ai (t)〉

exp
[

2π jν0(r1i − r2i )/c
]

r1i r2i
. (2.59)

Considering a source with a total number of elements so large that it can be regarded to
be continuous, the sum can be replaced by the integral

Γ12(τ= 0) =
∫

σ
I (C )

exp
[

jκ0(r1 − r2)
]

r1r2
dC , (2.60)

where κ0 = 2πν0/c and dC is a surface element on the planar source. The complex co-
herence factor is therefore

µ12 =
1

p
I (P1)I (P2)

∫

σ
I (C )

exp
[

jκ0(r1 − r2)
]

r1r2
dC , (2.61)
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where the power I (Pm ) again is the total transmitted power by the pinhole as secondary
source and is defined as

I (Pm ) = Γmm(0) =
∫

σ

I (C )

r 2
m

dC . (2.62)

This result is known as the Zernike–Van Cittert theorem (Van Cittert, 1934; Zernike, 1938).
Assuming that the linear dimensions of the source and the distance between P1 and

P2 are small compared to the distance of the pinholes to the source, the relative distance
r1 − r2 can be approximated as

r1 − r2 ≃
(X 2

1 +Y 2
1 )− (X 2

2 +Y 2
2 )

2r
−

(X1 −X2)ξ+ (Y1 −Y2)η

r
. (2.63)

With the definitions

X1 −X2

r
= p,

Y1 −Y2

r
= q and (2.64)

φ=
κ0

[

(X 2
1 +Y 2

1 )− (X 2
2 +Y 2

2 )
]

2r
, (2.65)

expression (2.61) can be rewritten as

µ12 =
exp( jφ)

∫∫

σ I (ξ,η)exp
[

− jκ0(pξ+qη)
]

dξdη
∫∫

σ I (ξ,η)dξdη
. (2.66)

This equation shows that the degree of coherence is equal to the normalized Fourier
transform of the intensity function of the source. This form of the Zernike-Van Cittert
theorem is widely used in stellar interferometry, since the stellar sources are supposed
to be at very large distances compared to the telescopes and the size of the source itself.
Moreover, the source is supposed to be two dimensional. The limit of applicability of
the two dimensional Fourier transform is studied in (Perley, 1994), to arrive at a Field-of-
View within which the Fourier relationship holds.

Equivalence of approaches

The Fourier relationship is equivalent to the relationship described in Eq. (2.36), derived
by regarding the intensity response of point sources and considering a stellar object to
be a collection of such point sources at slightly varying angles. As described in the lit-
erature (Young and Hale, 1995), the approach of summing intensity responses provides
physical insight into imaging in the partially coherent regime. With the provided ana-
lytical expression for the focal field, the evaluation of the imaging process—to construct
the response of the extended stellar source—can be performed quickly. Moreover, it does
not need adaptation to be applicable to wide-field imaging. In addition, an optical in-
terferometric transfer matrix can be constructed, of which certain properties are readily
comparable among different interferometric beam combination schemes. The construc-
tion of this transfer matrix is detailed in the next section, that also relates this matrix to
other well-known imaging and reconstruction processes.

2.3.3 Inverse problems in imaging science

Image deblurring and image reconstruction (or tomography) are both well-studied in-
verse problems. The inverse problem of deblurring has been treated in the domain of



38 CHAPTER 2. PRINCIPLES OF OPTICS AND INTERFEROMETRY
optical astronomy, even with space-variant convolution kernels, as in the case where
images from the Hubble Space Telescope were improved (Nagy and O’Leary, 1998) or
for image reconstruction with a homothetic array by joint deconvolution of multiple
snapshots (Bertero and Boccacci, 2000). The tomography approach (image construc-
tion from other data rather than a degraded version of that image) is most resembled
by radio imaging techniques (Cornwell, 1994) where fringe visibilities are related to the
source brightness function. When only treating complex visibilities, the limited extent of
the convolution kernel (both in finite coherence length as well as limited spatial extent
of the PSF) is not taken into account in the way that wide-field optical interferometry
requires. Therefore, a space-variant, multi-dimensional convolution kernel should be
implemented in the convolution model for interferometric imaging.

A paper on algorithms for image reconstruction with the Large Binocular Telescope
(LBT) (Bertero and Boccacci, 2000) compares some linear and iterative algorithms to
each other. Maximum Entropy and CLEAN are two very popular, but intentionally omit-
ted algorithms in that paper. It is stated that both algorithms perform better in the case
of point-like objects or scenes that are mainly black except for a few pixels. For the ex-
amples given in that paper and in this thesis of recovering a wide-field extended source
with unknown distribution or discontinuities, the most simple linear inverse method was
chosen. It is known that iterative or non-linear approaches will perform better in retriev-
ing sharp edges of the object (Geman and Yong, 1995) but the non-linear approaches
are not as easily implemented as linear methods. The goal in this thesis is to simply
demonstrate the inversion of the wide-field fringe data, for various interferometric beam
combination schemes.

In the following sections, the described fringe responses at all pixels for various base-
line lengths are taken as ‘measured’ data to be put into a linear system of equations that
is inverted by applying Tikhonov regularization, a very popular method for inverting lin-
ear systems of equations. Chapter 4 will clarify this regularization process. The follow-
ing sections describe the construction of the linear system of equations. For illustration,
only two interferometric beam combination configurations are described in detail. These
are co-axial Michelson interferometry (B0 = 0) and Homothesis (B0 = B). The first de-
scription illustrates the reduction of the interferometric imaging process based on point-
source intensity responses to a matrix-vector multiplication. The latter description then
shows how this approach resembles in notation the well-known image blurring problem.

Response and inverse problem—Michelson

The luminosity distribution on the sky (the stellar object) L(θ0) is a positive one-dimen-
sional function of the angular coordinate θ0. On the one-dimensional detector in-focus,
with coordinate θ, this will produce a recordable intensity I (θ,d) that will change with
the applied path length difference d . In discretized form,

I (θ,d) =
∑

i

Li (θ0)Ri (θ,d)θ0 , (2.67)

where Ri (θ,d)θ0 is a baseline dependent point source response function, measured in
intensity and scaled by the source L. The index i is a running integer corresponding to all
possible point source locations, in this case one per evenly spaced synthetic resolution
element. Essentially, R is the product of an envelope function or diffraction pattern (PSF)
in direction θ, with a normalized fringe intensity pattern in direction d . This allows to
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(a) Two schematic R(θ,d ; Bk ) (b) weighted sum I (θ,d ; Bk ) (c) pixelized I j k (d)Figure 2.14: The co-axial detection space, illustrated for two point sources (a) and an extended
source (b,c). (a) Diagram of the co-axial (θ,d) detection space, for two point sources. Intensity
patterns from the two point sources on the sky are summed. Per response function, the cross-
section in direction θ is a sinc-function. In the other direction d , the cross-section is the polychro-
matic fringe pattern. The diagonal indicates the centroid locations of the response functions at
(θ,d) = (theta0 ,d0) where d0 = Bkθ0. The total—baseline dependent—response will be a sum of
these response functions, as depicted for an extended object in (b). The steepness of the diagonal
is a function of baseline length and therefore the fringe contrast (as in narrow field interferometry)
of the sum I (θ,d ;Bk ) is baseline dependent. In (c) the pixelized example I j k (d) of the same ex-
tended scene is shown.

write a polychromatic R(θ,d)θ0 according to

R(θ,d ;Bk ;θ0) = L(θ0)
∫λmax

λmin

w(λ)4D2sinc2 [Dπ(θ−θ0)/λ]cos2 [π(d −d0)/λ]dλ, (2.68)

where d0 = Bk sin(θ0) ≈ Bk · θ0 for small angles and λ indicates the wavelength. The
various baseline lengths are indicated by Bk . Of the polychromatic function, the cross-
section is a sinc-like function and the integrated interference term (wavelength depen-
dent weighting with w(λ)6) can be implemented as a lookup-function in a polychromatic
fringe packet, instead of the mentioned cos-function. The summation of point sources
or integration over the sky (Eq. 2.67) is depicted for two point sources in Fig. 2.14a and
for a continuous source in 2.14b,c.

The response on the detector is not measured continuously, but integrated on a few
pixels with index j = 1, 2, . . . J . Moreover, the summation in Eq. (2.67) is performed for
every baseline setting with index k = 1, 2, . . . K . As a result, the recorded intensities can
be denoted as

I j k (d) =
∫θ j + 1

2 β

θ j − 1
2β

I (θ,d ;Bk )dθ, (2.69)

where β is the angular width on the sky of one pixel. The number of pixels J on the
detector and the angular dimension β are chosen such that the detector is as large as the

6The relative weights w(λ) can be chosen to be a Gaussian bandpass shape spanning the specified operation
wavelengths.



40 CHAPTER 2. PRINCIPLES OF OPTICS AND INTERFEROMETRY
Field-of-View and that a pixel is half the size of the angular PSF, related to dish diameter
D. The choice of the baseline lengths Bk relates to the desirable angular resolution and
will be specified at the imaging simulations.

The forward process described here can be seen as a multi-dimensional convolution
(Eq. 2.68) and an integration (Eq. 2.69). Convolution and integration are two processes
that cause the inversion process—finding the luminosity function L(θ0) from recorded
I j k (d)—to be ill-posed. The solution of this inverse problem can only be estimated. If
the forward problem is denoted with operator g as

I j k (d) = g
[

L(θ0); Bk , θ j

]

, (2.70)

then the inverse problem is found by g−1 in

L(θ0) = g−1 [

I j k (d)
]

, (2.71)

so that the sky distribution L(θ0) can be calculated from the measured I j k (d) given the
parameters Bk and θ j , the lengths of the baselines at which the data were taken and the
central locations of the pixels.

In discrete form, this inverse problem is ill-conditioned since the response functions
R(θ,d ;Bk ;θ(i)

0 ) and R(θ,d ;Bk ;θ(i±1)
0 ) of neighboring point sources within the object L(θ0)

on the sky differ only slightly in both directions θ and d . To estimate possible solu-
tions L̂(θ0), routines by Hansen (Hansen, 1992) for Tikhonov regularization (Tikhonov
and Goncharsky, 1977) are applied, based on Singular Value Decomposition (SVD). To
do so, the problem has to be written in the form

A ·x = b

x = A−1
reg ·b, (2.72)

obtained by discretizing the ‘source grid’ and ‘detection grid’ as

θ0 = (θ(1)
0 , θ(2)

0 , . . . , θ(n)
0 ),

d = (d1, d2, . . . , dp ) and θ = (θ1, θ2, . . . , θ j ), (2.73)

for every baseline length Bk . Then, column vector x ≃ L(θ0) of length n is the sought
function. The data are stored in column vector b ≃

[

. . . ; I j k (d) ; . . .
]

of length m = p ·
j · k, so that all data (for all pixels as well as for all baselines) are represented by one
measurement-vector. This means that operator A performs the addition of response func-
tions (the convolution), weighted by L(θ0) and the integration over the pixels. The for-
ward problem of obtaining a multi-baseline intensity measurement in (θ,d)-space is re-
duced to a matrix-vector multiplication.

Response and inverse problem—Homothesis

For the case of Homothesis, where B0 = B if M = 1, the imaging process is mathematically
a straightforward convolution. For every baseline length, there is one space-invariant
convolution kernel that is only a function of θ, not of d . With the delay d = 0, all point
sources on the sky will produce a fringed intensity pattern on the detector. Complicated
optics make this possible. The response functions (compare with Eq. 2.68) can now be
expressed as
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B. Co-axial combination
     with staircase

Staircase mirror
in intermediate
focus

C. Densified pupil imaging

D. Homothesis

Relay optics

Figure 2.15: The four possible beam combination schemes, co-axial Michelson (B0 = 0), Homoth-
esis (B0 = B), Densified (0 ≤ B0 ≤ B) and Staircase, a modified co-axial scheme (to be explained).
For clarity, there is no beam compression, so M = 1. The diagrams A,B,C and D indicate the in-
trinsic width of the Field-of-View for these schemes. For the co-axial schemes, the diagram is a
plot of (d−d0) versus θ0, limited to a delay scan range dmin to dmax over which fringe information
is collected. For the other two schemes (image plane combination methods), the diagram indi-
cates (θ− B

B0
θ0) versus θ0, indicating the ‘drift’ of a polychromatic fringe packet off the diffraction

envelope for off-axis angles.

R(θ;Bk ;θ0) = L(θ0)
∫λmax

λmin

w(λ)4D2sinc2 [Dπ(θ−θ0)/λ]cos2 [πBk (θ−θ0)/λ]dλ. (2.74)

This function is only dependent on θ0, the point-source location. Again, the response on
the detector is not measured continuously, but integrated on a large number of pixels.
Since this number is large, the continuous coordinate θ remains in use but is denoted as
θ̂:

Ik (θ̂) =
∫θ j + 1

2β

θ j − 1
2β

Ik (θ)dθ, (2.75)

where β is the angular width on the sky of one pixel and k is the index indicating the
observation at baseline length Bk .

Four imaging methods

The remainder of this thesis shall deal with the intensity response of four types of inter-
ferometric imagers (see Fig. 2.15), of which the detector responses to a polychromatic
wide-field source are calculated as a summation of elementary point-source response
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functions. The calculation of the detector signals I j k (d) and Ik (θ̂) for respectively the
Michelson and the Homothetis case is a straightforward summation of all response func-
tions, weighted by the sky luminosity function L(θ0) (Eq. 2.67). The same can be stated
for the cases Densified (where B0 < B if M = 1) and Staircase. However, these two have
small complications, compared to the given two problem formulations for co-axial and
homothetic imaging. In the Densified case, the measured intensities are neither a func-
tion of only d , as in the Michelson signals I j k (d) per pixel, nor of only (the discretized)

θ̂, as in the Homothesis signals Ik (θ̂). This image plane method has fringe encoding in
both d and θ directions, and hence the measured signals per baseline configuration will
be denoted as Ik (θ̂,d). In the end, this only results in a different ordering of vectors in
the measurement vector b. Also the Staircase situation will finally result in the imaging
operation A ·x = b. However, in this case the measurement signals are discontinuous. A
description of the complete Staircase imaging approach in Chapter 3 will clarify this.



Chapter 3

Interferometer arrays for imaging

In this chapter, examples of four possible interferometers or rather their beam combiners
are discussed. In the class ‘image plane combination’ there are Homothesis and Densi-
fied Pupil Imaging. The class of co-axial interferometers consists of the Michelson in-
terferometer and the Staircase imaging method. The latter is the same co-axial inter-
ferometer as the first one, but with a staircase-shaped mirror in the intermediate focal
planes. For each interferometer, the specific hardware issues will be discussed and the
methods to derive images from observations are presented. At the end of the chapter, an
analysis is presented, to be able to quantitatively compare the reconstructed images by
all interferometers, in order to provide the reconstruction quality as a function of obser-
vation time in a photon ‘starved’ regime.

The following sections discuss the implications of the beam combination methods,
as well as the detector arrays, for their wide field-of-view operation. An excellent treat-
ment of the methods Michelson, Homothesis and Densified is given in the work of Tallon
and Tallon–Bosc (Tallon & Tallon-Bosc, 1994). There, these methods are compared to the
correlator type of interferometric imaging, as encountered in radio astronomy. However,
the FOV limitations discussed in that paper remain based on sampling Fourier compo-
nents of the object L(θ0), by analysis of (the complex visibility of) the central fringe. The
following discussion will treat the wide FOV performance of all methods, considering
them as imagers, with a (θ,d) detection space. In addition, the Staircase method will be
discussed.

3.1 Image plane combination

A masked telescope combines the beams from the individual apertures in focus (see Fig-
ure 3.1). At this point, interferometer arrays are considered that, although consisting of
separated apertures, imitate a masked telescope and hence should have the FOV of the
full telescope. In order to imitate a mask correctly, beams from the collecting telescopes
should be combined of course in a common focus. And moreover, when the beams are
transported in between collection and focusing (as will be the case for a baseline longer
than the diameter of the combining telescope) all beams will need a proper (and equal)
beam compression, pointing and positioning (Beckers, 1990). The collecting telescopes
of an array are considered as entrance pupils in a certain configuration. The beams just
before being focused together on a detector are running through imaginary exit pupils,



44 CHAPTER 3. INTERFEROMETER ARRAYS FOR IMAGING
D'

~  l /D'

B

~  l /B
~  l /D

mask D
B

~  l /B
~  l /D

D

DLDL
ST

BC

Monolithic aperture Masked aperture Independent apertures

(stellar interferometer)

IP
BCPP

Figure 3.1: Imaging with a monolithic aperture and a masked aperture (left and central). On
the right: conceptual equivalence of a synthetic aperture telescope with the masked aperture case.
The indications BCI P and BCP P denote an Image-Plane Beam Combiner and a Pupil-Plane Beam
Combiner. Legend: DL Delay Line, ST Steering mirrors, D and D′ diameter, B baseline. With cour-
tesy from L.A. d’Arcio, “Selected aspects of wide-field stellar interferometry,” Thesis, Delft, 1999.

that, because of separate beam transport per beam, are adjustable. To place them in the

same way (but scaled) as the entrance pupils, means there is homothesis. This would
ensure a proper imaging system, where the diameters and separations of the individual
beams have a constant ratio, as they would have in a large masked telescope. This proper
imaging systems is then obeying the Golden rules of imaging (Traub, 1986).

3.1.1 Homothetic arrays

Considering an imaging system with beam compression M , masking the entrance pupil
with a mask with separation of holes B , would place the exit beams at a hole separation
B/M . The exit baseline is thus taken B0 = B/M . As derived in Chapter 2, focusing the
beams out of such a homothetic optical system with telescope diameter D, telescope
separation B and magnification M , would produce the focal intensity

I (θ) = 4D2sinc2
[

Dπ

Mλ
(θ−Mθ0)

]

cos2
[

Bπ

Mλ
(θ−Mθ0)

]

. (3.1)

for a point source at direction θ0, emitting light of wavelength λ. The sinc and the cos
functions have the same origin, which is wavelength independent. Therefore, a fringed
envelope will result, one for every point source on the sky, as depicted in Fig. 3.2. The
derivation of this function consisted in applying a Fourier analysis to a masked aperture.
In fact, for a homothetic array, the Fourier Transform (FT) is a quick and easy tool to
predict the Point Spread Function (PSF) of the common focus of the array. Assuming the
array is homothetic, implies assuming that, in the case of perfect individual collectors,
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Beam combination

and imaging

Wavelength
l

qFigure 3.2: A sketch of the imaging process in a Fizeau interferometer. The sketch illustrates a
masked aperture, but the incoming parallel wavefronts can also be considered to be separated and
brought to this point according to the rules of homothesis. An aberration-free masked aperture will
produce a fringed Airy profile in focus. The diameter of the envelope is governed by the aperture
diameter D, whereas the fringe width is a function of the separation of apertures B .

the PSF is constant with respect to the field. For a field-invariant PSF it is known that the
imaging process of an optical system is in fact a convolution of the intensity distribution
on the sky with the intensity distribution of the optical system, which is the PSF. For one
dimension θ, this can be expressed as

I (θ)rec = I (θ)PSF ⊗ I (θ)sky . (3.2)

The convolution theorem states that a convolution of functions can be expressed as a
multiplication in Fourier-space

I (ω)rec =I (ω)PSF ·I (ω)sky, (3.3)

where ω denotes a spatial frequency and I is the FT of the intensity distribution. As
stated, the PSF is the FT of the pupil configuration. The inverse FT of the PSF is, apart
from constants, again representing the pupil function. A pupil function of a masked
aperture would be zero everywhere, except for locations inside a sub-aperture. Hence,
the function I (ω)PSF will have the same property that it is zero nearly everywhere, ex-
cept for regions related to the configuration of the telescopes. The multiplication with
all these zeros in Eq. (3.3) results in the loss of these spatial frequencies in I (ω)rec and
hence in the recorded image I (θ)rec. To collect all image information from I (ω)sky, sev-
eral array configurations are needed to cover all spatial frequencies.

Therefore, a homothetic array can only deliver full-feature images if the telescope
configuration (or baseline length B and its orientation) is variable by repositioning or
array rotation.
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8.4m
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Figure 3.3: Illustrations showing the possible pupil geometries of the Very Large Telescope Inter-
ferometer VLTI (left) and the Large Binocular Telescope LBT (right). VLTI: The area enclosed by
the dashed line is the cut-off part of Mount Paranal in Chile, on which four 8.2m Unit Telescopes
have a fixed location and four 1.8m Auxilary Telescopes can be stationed at the indicated positions.
The complete array is rotated by Earth rotation. The circle in the VLTI sketch is 200m in diameter,
the LBT dimensions are indicated within this circle. LBT: The LBT comprises two 8.4m telescopes
on a common mount, spanning 22m edge-to-edge. The dashed circle indicates that the spatial fre-
quencies covered by each telescope separately partially overlap with those covered by the synthetic
aperture.

Building a homothetic array

Two homothetic arrays for observational astronomy have been conceived, whereas one
array is up until today not capable of operating in the wide-field imaging mode for which
is was once designed. The Large Binocular Telescope (LBT, first light 2006) and the Very
Large Telescope Interferometer (VLTI, first light 2001) share the capability of performing
wide-field interferometry, but there are many differences between them (see Fig. 3.3).
The LBT comprises two 8.4m-telescopes mounted on a common structure. The geome-
try is not changeable but chosen such that a continuous range of spatial frequencies is
covered; the rotation of the Earth allows coverage of more spatial frequencies than a sin-
gle snapshot by the array provides. The array is equipped with adaptive optics systems
on each telescope and flexure compensation to ensure a co-phased and aberration-free
common focus. At the site of VLTI, reconfigurability of the array is allowed. Four 8m Unit
Telescopes have fixed locations, but the four 1.8m Auxiliary Telescopes can be placed at
a number of different locations, indicated in Fig. 3.3. In this way, and with the aid of
Earth rotation, a well sampled spatial frequency coverage of the sky can be obtained.
However, only homothetic beam combination can then ensure a large field-of-view. So
far, only less complicated co-axial beam combination facilities are installed at the VLTI,
which disqualifies the array to be homothetic.
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As described in literature (Beckers, 1990; d’Arcio, 1999), obtaining homothesis for a

reconfigurable array requires stringent control of all beam properties, such as orienta-
tion, placement and magnification. These mechanical parameters influence the inter-
ferometric field-of-view and the complex fringe contrast. The stringent control of pa-
rameters, however, is based on the desire to be able to perform interferometry over a
field-of-view as large as that of a single telescope. As discussed in Chapter 1, this is not a
necessity for the observational targets specified. The demands on stringent control can
be ‘relaxed’ to stringent knowledge of them, and simpler and more robust hardware can
then be installed to reach ‘weakly-homothetic’ beam combination. There is another rea-
son why such beam combination is favorable, arising from the analysis of information
processing.

Information processing

As depicted in Fig. 3.2 and clarified by the Fourier relationship, the signal in focus will
be a convolution with an envelope whose diameter is inversely scaled by dish diameter
D/M in which fringes appear with width related to B0 = B/M . The information in this
intensity distribution can only be stored for joint processing if it is adequately sampled,
i.e. if the detector pixel spacing is smaller than half (Nyquist sampling limit) or rather
a quarter of the fringe period. For long baselines, the angular fringe period gets short,
which would imply a very long focal length and very small detectors to be able to exploit
that long baseline for resolution in the observation. In other words, a homothetic array
requires a focal length and detector that match the intended resolution of the synthetic

aperture. Although the snapshots taken with this detector can be of lower resolution than
the final image, the resolution of the detector limits the resolution of the final image. A
non-homothetic array decouples the detector resolution and the ultimate reconstruction
resolution completely. The detector dimensions also pose a limit to the field-of-view, but
this statement is true for any—even monolithic—imager.

3.1.2 Pupil Densification

Since the snapshots have to be processed to obtain an image anyway and since there
are gaps in the spatial frequency coverage of these snapshots, the idea arose to densify

(Labeyrie, 1996) the exit pupil configuration, so that the fringes in focus are wider and
hence a detector grid of less resolution is required to obtain all information out of a
snapshot. The snapshot however, is no longer a convolution of the sky with one point
spread function. Figure 3.4 shows an example of a densified pupil imager (Pedretti et

al., 2000). In this demonstrator, the two lenslet arrays affect the exit-pupil baseline and
individual beam diameter. The output baseline B0 is maintained after densification, so
the fringe period is still the same. However, D0, the beam diameter after modification,
is relatively larger, which makes the envelope around the fringe function narrower. With
more difficulty, the demonstrator could have maintained D0 and shortened B0, which
would meet the discussed detector requirements more illustratively.

Obviously, this technique narrows the interferometric field-of-view. The polychro-
matic fringe function shall in practice consist of only a few fringes, unlike the monochro-
matic cosine factor in

I (θ,d) = 4D2sinc2 [Dπ(θ−Mθ0)/Mλ] cos2 [π(d +B0θ−Bθ0)/λ] . (3.4)
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Homothetic
arrangement

Densified
arrangementFigure 3.4: Illustration explaining the laboratory set-up for demonstration of pupil densification.

Taken from (Pedretti et al., 2000). The homothetic part simulates the collection with separated tele-
scopes and outputting a compressed version. Then two micro-lens arrays apply a beam expansion
to each beam, so that homothesis is lost.

Still, this expression points out that the origins of the sinc and the cos functions have
origins that are differently scaled to the point source direction θ0. This means that for
the off-axis parts of the sky, the polychromatic point spread function is different. The
imaging process can no longer be expressed as a straightforward convolution. For small
targets, much smaller than the angular dimension of the envelope function, the assump-
tion of a constant PSF might be made (Labeyrie, 1996). For a wide-field observation of
several PSFs in diameter however, one should not only process the snapshots with field-
variant kernel deconvolution (Nagy and O’Leary, 1998) but even ensure that the PSF at
the edges still contains fringes. The fringes carry the information on the high spatial
frequencies, hence loss of fringes directly means loss of resolution. It is assumed that
for angles close to the optical axis, the optical path length in the interferometer arms
is equalized. However, applying an intentional extra path length d might be useful to
‘drag’ lost fringes at one edge of the field-of-view back into the snapshot again, at the
cost of loss of detail at the opposite edge. Sequential snapshots with the same telescope
separation, but with different d can be stored and all processed jointly to arrive at the
high resolution image. A straightforward numerical algorithm to incorporate the use of
a space-variant PSF and the use of multiple d per array configuration is implemented in
the numerical simulations in Chapter 5. Note that in Fig. 3.4, the use of lenslet arrays (or
other diffractive elements such as pinholes) poses a limit on the field of view, since they
act as aperture stops for each individual beam. This effect is not further considered in
the simulations, where over-sized beam compressors are considered, so that unvignetted
beams of arbitrary D0 and B0 are feasible.
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Figure 3.5: Schematic of the imaging process in a co-axial Michelson interferometer. Two re-
sponse functions in (θ,d)-space are indicated, characterized by a shift of the diffraction envelope
and a different origin of the modulation function.

3.2 Co-axial combination

The idea of imaging as convolution with field-variant kernels can be generalized further.
In conventional convolution, the image, the object and the kernel have the same co-
ordinate system, as in Eq. (3.2). A blurred two-dimensional image, for example, is the
result of blurring a two-dimensional scene with a two-dimensional point spread func-
tion. If the image, the object and the kernel do not share the same co-ordinates, the
imaging process can be denoted as a general mapping operation

I (θ,d)rec;B =
∫

θ0

I (θ,d ,θ0 )PSF;B L(θ0)skydθ0. (3.5)

Again, a ‘deconvolution’ allows estimation of L(θ0) from several I (θ,d)rec;B , with knowl-
edge of the variant kernels I (θ,d ,θ0 )PSF;B . Although the domains of the recorded infor-
mation are different from the domain of the sky, this operation will be referred to as
deconvolution.

The famous stellar interferometer constructed by Michelson consisted of a 20 feet
cantilever beam with a periscope system of mirrors on top of it, mounted on a 100 inch
reflecting telescope. Hence, this interferometer combines the sky images of the individ-
ual apertures in the focal plane of the telescope. This type is the ‘Michelson Stellar In-
terferometer’ and is actually a ‘Densified Pupil’ imager. In Fig. 3.5, a co-axial Michelson
interferometer is sketched, where the beams are combined via a beam splitter. In this
type of interferometer, the beams are combined when collimated, before focusing on a
detector. Therefore, this method is referred to as pupil plane combination. Sky images
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Figure 3.6: The bandwidth in the simulated experiments, 6 µm ≤ λ ≤ 10 µm, results in a com-
pact fringe pattern without side lobes, since a Gaussian amplitude envelope was applied to the
spectrum.

are overlapped (when observed in focus) and stars appear without fringes across them,
but rather they ‘blink on and off’ when the optical path length difference between in-
terferometer arms is adjusted. Interesting work on wide-field performance of a co-axial
interferometer is done on the Wide-Field Imaging Interferometry Testbed (WIIT) at the
Goddard Space Flight Center (Leisawitz et al., 2003).

3.2.1 Michelson interferometer

Co-axial beam combination is illustrated in Fig. 3.5. Since the exit baseline B0 =0, the
interference part in the response is a function of the applied delay d and the external
delay Bθ0 :

I (θ,d) = 4D2sinc2
[

Dπ

Mλ
(θ−Mθ0)

]

cos2
[π

λ
(d −Bθ0)

]

. (3.6)

As discussed in Sect. 2.3.2, the large range of θ0 (the Field-of-View) and the limited extent
of the sinc-function pose the need to record the information with several detectors or
pixels in a row.

As described in Section 2.3.3, Fig. 2.14, observing with a longer baseline results in a
‘quicker movement’ of the fringe packet in direction d , for a point source off-axis. This is
the heart of interferometric imaging. Because of the different slopes of the lines through
the origins of the sinc–cos response functions in (θ,d)-space and the fringe period λ

remaining the same, the ensemble of point sources on the sky will produce a different
sum of footprints, leading to different modulations or visibilities in the observed fringes.
Cosines with equal period but different phases summed up, yield a cosine with still the
same period, but with less modulation and another phase. This is the classical complex
visibility V that is measured by the classical interferometer. The Zernike–Van Cittert the-
orem then states that this V is one value in the Fourier plane of the object to be recon-
structed on the sky. However, in the treatment with P pixels, this would yield more than
one complex visibility, Vp=1...P , but still only one Fourier-coordinate B/λ to assign them
to. With the imaging description as given in Eq. (3.5), the detected information is treated
in (θ,d)-space and can be visualized by a two-dimensional figure. To illustrate a wide-
field, polychromatic observation, a spectral bandpass of Gaussian shape is chosen such
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(a) (b)Figure 3.7: Measured intensities (color coded) in detection space, in θ-direction on the linear
detector and at d-setting of the delay line. The outermost points of large sources (a) provide non-
overlapping Airy patterns in θ-direction and no common delay-range at which all fringe packets
produce fringes. For smaller sources (b), the information from all sources is superimposed by over-
lapping Airy profiles as well as communicating fringe packets. This results in baseline-dependent
fringe contrast. The dashed boxes in the centers of both pictures indicate the valid regions for
the application of the Zernike–Van Cittert theorem to predict the fringe contrast. In the wide-field
case, a Fourier transform of the source function will not predict the fringe contrast correctly.

that a side-lobe-free fringe pattern arises as depicted in Fig. 3.6. Figure 3.7 shows the na-
ture of the polychromatic detector response. Integration over the stellar source L(θ0,λ)
is, in the case of a collection of point sources the same as summing over the individual
response functions (three in the example of Fig. 3.7). The indicated areas around the ori-
gins of the two plots have the approximate dimensions of half a diffraction pattern (in
θ-direction) and a coherence length (in d-direction) and therefore span up one area to
which the fringe prediction of the classical, quasi-monochromatic double slit theory ap-
plies. For a narrow-field, narrow-bandpass observation (conventional interferometry) all
information about the source can be gathered by sampling this area, for several baselines
Bk .

Since the observations are in general polychromatic, the coherence length or extent
of the fringe packet is limited. Since fringes carry the information on high spatial fre-
quencies in L(θ0) and the fringe packets move (especially for the very long baselines) far
away from d = 0, a long scan over d (many times the central wavelength) is necessary
to collect all information. Alternatively, restricting the scan range to −λc ≤ d ≤ λc im-
plies that not all information on (the high spatial frequencies of) L(θ0) is collected. A
possible solution to reduce the scanning time while still measuring fringes over the full
FOV is presented in the form of a Staircase-shaped mirror, as described in the literature
(Montilla et al., 2005).

3.2.2 Michelson with Staircase mirror

The detection space (for the linear array example) is stretched in two directions. The de-
sired FOV governs the angular extent. The chosen width of the PSF then determines how



52 CHAPTER 3. INTERFEROMETER ARRAYS FOR IMAGING

Figure 3.8: The Staircase testbed in the laboratories of Delft University of Technology. Illustration
and photographs by courtesy of Iciar Montilla.

many pixels are needed to cover this FOV, roughly two pixels per diffraction-envelope-
width. But in the delay direction, the needed scan length is depending not only on the
FOV, but also on the baseline length. The longer the baseline (and for the required spa-
tial resolution very long baselines are necessary), the further away will the central fringe
be located, for the pixel at the corresponding edge of the FOV. And to sample all details
via the fringes, requires then a very long scan with the delay line, in steps ∆d <λc /2.

This problem can be overcome by installing a so called Staircase mirror (Montilla,
2004). This multi-faceted mirror is placed in an intermediate focus of one of the in-
terferometer arms. This mirror compensates the field-dependent OPD Bθ0. When step
height and width are properly adjusted for central wavelength, PSF diameter and base-
line length, the OPD is compensated in such a way that only one OPD scan in d through
the fringe packet is needed. In other words, all point sources on the sky carry fringe in-
formation on the detector. None of them will be out of the coherence length. For every
baseline length B , a different mirror is needed. When the step height is not adjusted,
there will still be a partial compensation, so still the needed OPD scanning time will be
shorter. Note that it is not true that all point sources on the sky have their zero OPD at the
same setting. Still, the central fringe position for a star is a function (sawtooth-shaped)
of its direction θ0. The cosine-factor of the co-axial point source response

I (θ,d) = 4D2sinc2
[

Dπ

Mλ
(θ−Mθ0)

]

cos2
[π

λ
(d −Bθ0)

]

, (3.7)
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Figure 3.9: The staircase function h(θ0), as described in the text.

is altered to

cos
[π

λ
(d −Bθ0 +h(θ0))

]

, (3.8)

with h(θ0) the staircase function, see Fig. 3.9. For a certain step height h0 and step width
θs , the staircase function is given by

h(θ0) =
+∞
∑

n=−∞
nh0 rect

[

θ0 −nθs

θs

]

=
+∞
∑

n=−∞
nh0

[

H

{

θ0 − (n− 1
2 )θs

θs

}

−H

{

θ0 − (n+ 1
2 )θs

θs

}]

, (3.9)

with n ∈Z. Here, the Heaviside step function H(x) is used, given as

H(x) =







0 x < 0
1/2 x = 0
1 x > 0.

(3.10)

The step width θs and step height h have to correspond and need to be altered for chang-
ing baseline length B according to h0 = Bθs or alternatively θs = h0/B , to equalize the
external OPD over the complete FOV. The example shows a staircase of five steps with
constant width and variable height.

For long baselines in the order of 100m, the step height necessary to compensate the
external OPD to a length comparable to the coherence length, might reach millimeters.
For such step heights, the diffraction pattern in the intermediate focus experiences a dra-
matic discontinuity. A Fourier analysis of the electromagnetic field in the focus around
such a discontinuity is treated in App. B. For step heights in the order of one or several
wavelengths, a simple calculation shows that the diffraction pattern of a point source
imaged via an intermediate focus on the edge of a step still resembles the Airy function
(or sinc-function in the one dimensional case).

In Figs. 3.8 and B.1, a working prototype of the discussed type of interferometer is
illustrated. The measurements showed that for these baselines, information from all over
the FOV could be measured with a relatively short delay line stroke. The experimental
set-up was not designed to perform imaging; only a very limited set of baseline lengths
was sampled.
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Figure 3.10: Diagrams for different imaging situations. Two point-like stars are imaged, producing
two intensity footprints in (θ,d) or detector space. The dashed lines indicate the angular positions
of the two stars. The diagonal line indicates the origin locations for fringe packets linked to a sky
direction, where θ0 is the origin for the envelope and Bθ0 the origin for the fringe packet. The
steepness hence relates to baseline length. The shaded areas indicate the slab in (θ,d)-space that
is sampled as the linear detector is read-out at various settings of the delay d . Further details are
given in the text.

3.3 Field, resolution and observation time

To be able to obtain information on the spatial spectral content of the observed stellar
source, fringes will have to be measured at a desired baseline length B and with a central
wavelength λc . The diagrams in Figure 3.10 clarify in what ways these necessary fringes
may or may not appear, depending on other parameters concerning the interferometer
array, such as field-of-view, telescope diameter D and scanning range. Each sketch shows
the detection of two point sources with a separation equal to the field-of-view (FOV).
Although the responses are drawn for a co-axial interferometer, the accompanying text
is also applicable to image-plane interferometers. The sketches illustrate the following
situations:

a In the reference situation, the sources in the Field-of-View (FOV) interact in the
detection space. Their separation and the Airy-width causes the patterns to coin-
cide in θ-direction. All point sources in between do so likewise. The baseline gives
the reference steepness of the diagonal line.

b If now the baseline is extended with respect to situation (a), all patterns get a dif-
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ferent relative offset Bθ0 and another complex visibility can be observed. However,
for very long baselines and a short packet length (large bandpass), the interaction
will diminish and eventually be lost, as indicated by the minor overlap of the pat-
terns. Point source responses from the edges of the large object do not overlap any-
more with each other in the detection space. Hence, the coherence length lcoh lim-
its the interferometric resolution (the maximum useful baseline Bmax) if the scan
over d is limited to the traditional − 1

2λc < d < 1
2λc .

c The size of the interferometrically coherent region on the sky is closely related to
the dish diameter D of the telescopes. Increasing these will narrow the Airy profile.
Compared to case (a), doubling the diameters imposes halving either the FOV or
the maximum baseline, should the portion of overlap or the modulation of the final
fringe signal remain the same. Therefore, an increase of the dish diameter D also
limits the maximum resolution.

d The loss of overlap can also be the result of extending the FOV. The baseline is the
same again as in case (a), but the FOV is three times larger. Overlap is lost in both
θ- and d-direction. Multiple detectors and a long scan range are necessary.

e Reducing the bandpass reduces the necessary delay scan length required to obtain
interacting fringed intensity signals and hence information for spatial resolution.
A narrow bandpass implies a long coherence length, but limits the photon flux.

f A staircase-shaped mirror in an intermediate focus exhibits apparent discontinu-
ities in the detection domain. The location of the fringe packet center as a function
of point source location (dashed line) will be a sawtooth function. As a conse-
quence, the fringes and hence the information for the spatial frequency related to
this B-value, remain centered around ‘zero OPD’. With only a short delay scan, all
information can be gathered.

As can be seen, the diameter D, coherence length lcoh, the FOV and the resolution via
Bmax all interact. The scan length over d and the detector pixel size in direction θ have
to be chosen such that all fringe information is covered, with sufficient modulation.

3.4 Quantitative comparison

In Chapter 1, the observational targets for the Darwin imaging array have been men-
tioned and detailed specifications of the requirements to enable their imaging with suf-
ficient spatial and spectral resolution have been derived. A short list of these specifica-
tions is given again in Table 3.1. In the previous sections, four types of imaging arrays
have been presented. In the next chapter, numerical simulations will show the detector
responses for all these interferometers and the reconstruction of the luminosity distri-
bution on the sky that can be estimated out of these signals. To be able to check if the
resolution requirements are met, a figure of merit shall be applied to the results and a
number of features shall be checked by inspection.
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Objective Target Requirement

Spectral Range 5 – 30 µm
Spatial Resolution 0.001”
Maximum Baseline 2000 m
Spectral Resolution R = 1000
Path length Control 10 nm
Sensitivity 40 nJy
Dynamic Range 1000

1 Jy (Jansky) = 10−26W m−2Hz−1

The reconstructed intensity distribution on the sky can be compared with the known
distribution, since in this case of numerical simulation, first a forward calculation is per-
formed to derive the detection signals. These are then altered (quantization by photon
count statistics) before the inversion process is started. The estimate of the sky should
exhibit:

1. Maximum spatial frequency. The theory described how spatial frequencies relate
to the baseline or separation of collecting telescopes. Since the simulations are
polychromatic and the detection is quantized in both θ and d direction, it should
be checked if these discrete signals still provide the spatial content to the inversion.
Inspection of a Fourier analysis of both the chosen source function, L(θ0), and the
reconstructed one, L̂(θ0), will show which range of spatial frequencies is covered.

2. Constant FOV. It is known that for an increasing baseline length, the FOV narrows
down for a fixed scanning length over d . As a result, a certain spatial frequency
might indeed be present in the reconstruction, but details of that spatial frequency
will only show up in the central region of the FOV. Moreover, the FOV is covered
by a number of pixels in focus. It should be checked that in all regions of the
reconstructed luminosity distribution (spanning several Airy-diameters) the cov-
erage of spatial frequencies is according to the chosen range of B-values and the
spectral bandpass. For the cases of Densified Pupil and the Staircase method, this
check is of particular interest, since, respectively, fringes are encoded in both θ-
and d-direction, or physical discontinuities are present in the system. The correct
coverage is easily observed in the reconstructions L̂(θ0).

3. Observation time. The photon flux from the stellar object is ‘binned’ into a certain
number of pixels using one or more snapshots. The collection of pixels and delay
positions is referred to as the ‘bins’ over which the photons are distributed. Given
the magnitude of the object, the needed observation time is not only a function of
this amount of bins, but also of the numerical quantization and regularization of
the inversion process.

In the simulations, the two-element array shall be ‘fed’ with a number of photons
P . For a specific source, this amount of photons can be related to the observation time.
Therefore, repeating the simulations with a decreasing number of photons means either
a shorter observation, or the observation of a weaker source.
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After the simulation process (details in the next Chapter) the estimate of the luminos-

ity distribution can be compared with the known luminosity distribution. For N resolu-
tion elements on the sky, the normalized error in the estimate or the difference norm ǫ

is calculated:

ǫ=
1

N

√

∑

i

|si − ŝi |2. (3.11)

Where si is the intensity level of one resolution element in the source and ŝi is the cor-
responding element in the estimate. For the simulations, a non-existing stellar source
is taken. The source luminosity function L(θ0) is of unit scale; a variable and realistic
photon flux is realized by adjusting the discretization of the measurement signals, rather
than adjusting the source function. Therefore, the source function can be normalized so
that it has a mean value of 1 and the estimate will also have an approximate mean value
of 1. If then the comparison of an estimate to the original according to Eq. (3.11) yields
an ǫ= 0.01, this means that the dynamic range in the reconstruction is 1:100.

Dynamic range

The prime point of comparison of the estimation results, will be the dynamic range. It
should be noted however, that a somewhat alternative definition of dynamic range is
used. A formal definition would be the peak value Smax of a signal S, divided by the
background level Smin of the signal:

D =
Smax

Smin
. (3.12)

However, the notion of background level, is not adequate for interferometric imaging.
In the reconstruction process, the amount of background can already be estimated with
single-dish imaging, and therefore the background will not provide information as to
how narrow the features are, that are reconstructed by the interferometer. Nor would it
directly provide information on whether steep edges in the image are reconstructed. In
other words, the ‘background’ is the incoherent image of the sky, comprising a direction-
dependent magnitude, disqualifying the use of a single value Smin in the judgment of
the dynamic range of an interferometric reconstruction. Considering the proposed error
figure ǫ, the re-definition of dynamic range to

D ′ =
1

ǫ
, (3.13)

is valid. For a too poorly estimated peak value Smax or too high background level Smin—
for example, when only the envelope of the single-dish resolution is in the estimate—the
error ǫ will be large and the dynamic range D ′ as well as D low. Note that ǫ can only be
used since the original image is known.

Another reason to support the use of 1/ǫ as measure for dynamic range is the follow-
ing. The dynamic range is the ratio of the intensity resolution in the image, compared
to the maximum value. Since the power in the original luminosity function L(θ0) is nor-
malized to 1, the amplitude in the Fourier spectrum F [L(θ0)](k) for k = 0 is 1. And since
L(θ0) is positive, all other values in F [L(θ0)](k) are smaller. And indeed, a low resolution
version of L(θ0) will show a rough envelope function resembling L(θ0), with a periodic
cosine-like oscillation around that envelope. The amplitude of that periodic function is
related to the largest Fourier amplitude that was left out. Leaving out higher spatial fre-
quencies either because a limited Bmax is taken or because too much filtering is needed
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in case of a photon-starved observation, results in a higher value of ǫ. And indeed, fol-
lowing the second definition of dynamic range, short baseline observations or observa-
tions with a lot of (photon-)noise in it, will result in a low dynamic range 1/ǫ.

Frequency content

Since the imaging process involves the regularized inversion of a convolution process to-
gether with an integration over pixels, it is clear that the resulting estimate of the sky is
a filtered result. When the measurements are noisy, the regularization process will limit
the participation of solution mode functions in the reconstruction to those of lower spa-
tial frequency (Hansen, 1998) as described in Chapter 4. The maximum spatial frequency
(expressed in cycles over the full FOV) present in the estimate of the intensity distribu-
tion on the sky L̂(θ0) is therefore not necessarily that frequency corresponding to the
maximum baseline length and minimum wavelength as in u ≈ Bmax/λmin. The Fourier
spectrum of the estimate, in which a clear cut-off frequency can be observed, will be
shown in several cases. The spatial frequencies will be expressed as baseline length B

equivalent, at observational wavelength λc .

Imaging and spectrometry

With the number of photons P , the dynamic range (1/ǫ) and inspection of the spatial
frequency coverage, the analysis can be made as to whether the proposed imaging ar-
rays are able to meet the imaging requirements regarding spatial resolution. The spectral
resolution is not yet considered. In the simulations, no dispersive element was incorpo-
rated, to spread the spectral content over more than one channel. This results in mea-
sured interferograms that incorporate the signals integrated over all wavelengths. The-
oretically, a Fourier analysis of these interferograms could provide spectral information.
However, a straightforward example will show the difficulties in this process, related to
the integral over λ which produces an extra entanglement of information in the detected
signals. Should the beam combination always be pairwise, even in the case of a three or
more element array, dispersion in the direction orthogonal to that of the spatial detail,
is a more robust way to measure the correlated spectra from a source. Then, the spatial
reconstruction of a source can be done per wavelength channel. Inspecting

I (θ,d)L =
∫

θ0

4D2L(θ0)sinc2
[

Dπ(θ−θ0)

Mλ

]

cos2 [π/λ(d +B0θ−Bθ0)]dθ0, (3.14)

it shows that the spatial deconvolution problem is fully decoupled from the spectral re-
construction if the wavelength λ is taken as a variable rather than as a constant. In
Sec. 5.4, examples of this decoupling are given. However, since the collectors have fi-
nite sizes, the spatial dimensions of the diffraction pattern play a role in the spectral
resolution. After dispersion, the collected signal in this direction should be deconvolved
by a wavelength dependent kernel being the diffraction pattern. The full treatment of
diffraction effects in spectrometry are outside the scope of this thesis.



Chapter 4

Ill-posed discrete inverse

problems

The following sections will describe in detail the formulation of an interferometric imag-
ing equation, relating observations to an observed source function. Starting with exam-
ples from the literature of sophisticated deconvolution algorithms—advanced deblurring
of Hubble images with field-variant PSFs and image reconstruction from multiple obser-
vations, as performed at the Large Binocular Telescope—a simple general formulation of
these problems is given. The formulation is far from being numerically efficient, but does
allow regularized inversion, so that meaningful reconstructions can be made. Moreover,
this formulation allows an extension of the concept of convolution, in the sense that the
coordinate systems of source function and observation are allowed to be different, which
is necessary to express the co-axial interferometric imaging process in the same formula-
tion. Then, with the general imaging process formulated as matrix–vector multiplication,
the inversion can be analyzed by means of Singular Value Decomposition. Besides giving
insight into the interferometric imaging process, this decomposition is also essential in
order to regularize the inversion, since straightforward inversion will not lead to mean-
ingful image reconstructions.

4.1 Imaging as linear system of equations

Deconvolution

As stated in Chapter 2, the problem of imaging extended or multiple sources in classi-
cal terms, is the assignment of complex visibility data to the Fourier transform-plane of
an image. In the general formulation of the imaging process in an interferometer, the
intensity measurement is a sum of weighted responses to an ensemble unit amplitude
point sources. A linear system of equations results, relating elementary point sources to
their corresponding intensity detector responses. For ‘true’ imagers—by homothesis or
monolithic telescopes—this linear system of equations resembles a convolution matrix.
Hence, the inverse solution resembles a deconvolution process. For imagers that need
modulation—because of the pupil plane combination—the linear system represents a
transfer matrix from sky distribution to a measurement in ‘detector space’, where this
space not only extends over the linear detector coordinate θ, but also in OPD direction
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d . This can be regarded as a multivariate convolution in an extra dimension. Analo-
gously, a two-dimensional luminosity distribution on the sky L(θ0,φ0) will be convolved
into three-dimensional data.

Image reconstruction for the Large Binocular Telescope

The reconstruction of an extended source was studied for the case of the Large Binoc-
ular Telescope (Bertero and Boccacci, 2000), a homothetic optical interferometric array
of two telescopes. Although the two primary mirrors are fixed on a common mount,
the baseline configuration is not constant. Earth rotation allows the LBT to sample the
sky from different rotation angles, so that the spatial frequencies of the source or the
(u, v)-plane can be sampled in more than one direction. This provides a different PSF or
convolution kernel as a function of the rotation angle. In general, a homothetic array will
be able to sample the sky in a number of observations, where for each observation the
kernel can be estimated or even recorded. The observation of the sky can be denoted as
a convolution of the true intensity distribution on the sky with this kernel.

Since a homothetic array acts as a masked monolithic telescope, the convolution ker-
nel is—in the absence of aberrations—field-invariant. Misalignment or misplacement
of a single aperture, or other aberrations over the synthetic aperture will give rise to a
field-dependent PSF, complicating the deconvolution. Reconstruction with variant ker-
nels is possible (Nagy and O’Leary, 1998) but for small variations of the PSF over the
field, the standard deconvolution can be applied, be it that only a (small) part of the
Field-of-View can be deconvolved with this (incorrect) invariant kernel, as suggested for
Densified pupil imaging (Labeyrie, 1976; Tallon & Tallon-Bosc, 1992).

An efficient deconvolution scheme for the homothetic LBT is presented as the Or-
dered Subsets Expectation Maximization (OS-EM) algorithm (Bertero and Boccacci, 2000).
This iterative method is stable and converges rapidly. The de-convolution problem is
posed as a fairly straightforward double convolution calculation. Based on a Fast Fourier
Transform (FFT), convolution can be performed quickly. This example illustrates that
for the case of imaging with field-invariant convolution kernels, that yet are different per
baseline configuration and hence yield different observations of a scene, efficient itera-
tive methods exist to process all recorded data jointly, in order to produce a single high-
definition reconstruction of the stellar source. Incorporation of a de-convolution algo-
rithm for field-dependent kernels (Nagy and O’Leary, 1998) is possible, but outside the
scope of this research. The result would be a general deconvolution algorithm, treating
the data jointly and allowing both field- and baseline dependent PSFs. A less efficient,
but easily implemented linear version of such an algorithm however, is derived in the
following section.

General deconvolution

The reconstruction of an extended source can be considered as a deconvolution prob-
lem. As pointed out, the convolution kernel may even be variant. In that case, recon-
struction is still possible, but a more general approach is needed. Although dedicated al-
gorithms exist for image reconstruction with variant kernels, a reconstruction approach
is developed that is not necessarily linked to image reconstruction. Deconvolution is typ-
ically an ill-posed linear inverse problem. To solve this type of problems, several strategies
exist. These begin with the formulation of the problem

b = Ax+n, (4.1)
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where the recorded data b is a result of the matrix multiplication of transfer matrix A

with the sought function x. The recording process and the photon statistics ‘add’ noise
n to it. The transfer matrix can now be considered as the convolving function, that may
contain variant PSFs, variant amplitude response and even the presence of ‘dead pixels’.

Solution estimates of this linear system of equations can be obtained in many differ-
ent ways (Hansen, 1992) based either on Singular Value Decomposition (applicable to
discrete Tikhonov regularization) or on iterative convergence, as is the case with Conju-
gate Gradients (CG). The goal of all of these methods is to dampen the devastating os-
cillatory behavior of the high spatial frequency components of the solution. The nature
of ill-posed inverse problems causes even the slightest presence of noise in the measure-
ment to completely blow up the solution. Taking the singular value decomposition of a
large matrix—the number of elements in A will be the number of recorded pixels, times
the number of resolution elements on the sky to recover, times the number of observa-
tions times the number of baseline configurations—is numerically a costly process. For
such large systems, halted iteration of Conjugate Gradients (referred to as Partial CG) is
more efficient. No actual matrix inversion has to be calculated, nor is a decomposition
like SVD necessary. The reason for successful reconstruction lies in the fact that with
CG, low order spatial structure of the sought solution appears more quickly in the esti-
mate of the solution than the high order spatial modes. For an excellent description of
the mathematics of CG and a proof of convergence, the reader is referred to (Shewchuk,
1994).

For problems with smaller transfer matrices and for illustrative purposes of the regu-
larized inversion, the SVD-based regularization methods provide quick and satisfactory
results, as will be shown in Sec. 4.2. In the preceding sections, two aspects in image re-
construction were treated. Dealing with multiple observations of the same source, as well
as dealing with variant convolution kernels can be accommodated. Moreover, insight is
given into the formulation of such a multiple-configuration observation as a straightfor-
ward matrix-vector multiplication. To complete the formulation of the forward imaging
problem for all interferometric imagers, the final step is to realize that the detected data
and the original observed function do not necessarily need to have the same coordi-
nates. This is the case for co-axial interferometers; their imaging treatment results in
essentially the same problem formulation: a convolution for multiple observations with
a field-variant kernel.

General deconvolution algorithm

Homothetic arrays provide reconstructions of the sky after true deconvolution, that is
convolution with a single kernel function. Misaligned or aberrated arrays can be repre-
sented by a linear system as described above, where multiple kernels are contained in
a transfer matrix. From here, it is a small step to co-axial interferometers, where just as
well a deconvolution approach can be used in order to reconstruct the luminosity distri-
bution on the sky.

In the case of co-axial beam combination, the information from the high spatial fre-
quencies is not present in the image plane itself, but in sets of image planes. Sequential
recordings of these pixels (in general only a few large pixels) for various settings of added
delay, provide a recorded data vector b that is a result of the sky distribution x. The trans-
fer matrix A is different, because it does not necessarily relate image locations to object
locations (as for image deconvolution). When the co-axial imaging process is described
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as a linear system of equations, the same regularized inversion techniques can be ap-
plied and the recorded data sets are actually deconvolved to yield an estimate of the sky.

By processing all possible imaging interferometers as a linear system of equations,
they can be compared efficiently and fairly. The traditional processing of (u, v)-data with
algorithms such as CLEAN or MEM can be overcome, which provides flexibility in the
simulation environment. Quick simulations of reconstruction with various interfero-
meter types and baseline configuration are possible for the same modeled sky, where
the characteristics of the retrieved sky are not depending on interferometer-bound (and
possibly optimized) solution algorithms. Hence, the comparison of the interferometers
is purely based on the nature or efficiency of the interferometric signals from each in-
terferometer. Although the detection by all interferometers (forward problem) can be
expressed by a matrix–vector multiplication, the direct inversion of this multiplication
does not provide meaningful solutions. The following section will discuss this problem
and ways to overcome it.

4.2 Analysis of ill-posed problems

A deconvolution problem or a decomposition of data onto basis functions can be per-
formed by inverting a linear system of equations. The two mentioned problems of image
deblurring and tomographic imaging, as well as many other linear problems, do not al-
low the naive inversion of this linear system to provide a solution. The reason for this is
that the problem is considered to be ill-posed. The basis functions resemble each other
a lot and are far from being orthogonal. When the system is inverted, small deviations in
the data from an exact result of the forward problem (like measurement noise) will cause
the solution of the inverse system to explode. The inverse basis functions are combined
with very high amplitude to produce a source function that, multiplied with the transfer
matrix, produces the noisy data exactly. This effect is illustrated in Fig. 4.1.

The solution exists and is even unique. But because of the very high amplitudes, it
is useless. To obtain useful solutions of the inverse problem, regularization is needed.
In general, regularization techniques modify the inverse problem, so that a well-posed
or well-conditioned problem arises, that provides a good estimate to the sought solution
of the original inverse problem. For more rigorous background material on this topic,
reference is made to the work of Tikhonov and Goncharsky (Tikhonov and Goncharsky,
1977) or Hansen (Hansen, 1998).

Considering a stellar source to be a collection of mutually incoherent point sources,
imaging them is numerically performed by adding point source intensity responses. A
matrix vector multiplication then performs the transfer of any source into an intensity
measurement. As stated, to invert this process, analysis of the discrete transfer matrix
is necessary. A very good treatment of this analysis and the resulting solution of the
inverse problem is given by Visser (Visser, 2004), on whose text the following paragraphs
are based.

Singular Value Decomposition

A particularly useful numerical tool for the analysis of ill-conditioned problems is the
Singular Value Decomposition (SVD) since it reveals all the difficulties associated with
the ill-conditioning of matrix A, e.g. see (Tikhonov and Goncharsky, 1977; Hansen, 1994).
Considering the rectangular transfer matrix A ∈ R

m×n , the SVD of this matrix is written
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as

A = U ·S ·VT =
∑

i

uiσi vT
i . (4.2)

In the case of an overdetermined system (m > n), matrix U is of dimensions m×n and V

is of n×n. For an underdetermined system (m < n), U is of dimensions m ×m and V of
n×m. In both cases U and V are unitary matrices—UT ·U = Im and VT ·V = In—with their
columns representing the left and right singular vectors ui and vi , respectively:

U =
[

u1 u2 · · · umin(m,n)
]

and V =
[

v1 v2 · · · vmin(m,n)
]

. (4.3)

The nonnegative and real singular values σi are collected on the diagonal of matrix S =
diag

(

σ1 σ2 · · · σmin(m,n)
)

in descending order such that σ1 ≥σ2 ≥ ·· · ≥σmin(m,n) ≥ 0.

The condition number of A equals the ratio of the largest and smallest singular value
σ1/σmin(m,n). This ratio is a measure for the sensitivity of the solution to perturbation
errors in matrix A or the right-hand side b. It has to be remarked that the SVD presented
in Eq. (4.2) is a so-called ‘economy-sized’ type of decomposition, i.e. the singular val-
ues and vectors associated with the null-space of matrix A are intentionally left out of
consideration.

In connection with discrete ill-posed problems, three characteristic features of the
SVD of A are often found (Hansen, 1990; Hansen, 1994; Hansen, 1998; Visser, 2001):

1. The singular values σi decay gradually to zero with no particular gap in the spec-
trum.

2. The condition number of A is large.
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3. The left and right singular vectors ui and vi tend to have more sign changes in

their elements as index i increases. In other words, for the lower values of σi the
singular vectors become more oscillatory.

These characteristics are confirmed by the decomposition of the imaging transfer matrix,
e.g. the multiple baseline homothetic interferometer transfer matrix. Figure 4.2 clearly
illustrates the gradual decay of the singular values σi . Moreover, the condition number
spans several orders of magnitude.
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Figure 4.2: Singular value spectrum of an 1592×151 image transfer matrix A, as in Equation (4.1).

In Fig. 4.3 it is confirmed that the left and right-hand singular vectors indeed contain
more oscillations as the index of the singular value increases. In the case of an interfer-
ometric transfer matrix, the modes can be separated into three regimes, based on their
index i :

◮ For indices 1 ≤ i ≤ nPSFs, where nPSFs is the number of incoherent PSFs fitting in
the field-of-view, the modes relate to the low-resolution or incoherent image of the
sky.

◮ The modes for indices nPSFs < i < iB , where the major spatial frequency of the
mode with index iB relates to the maximum baseline length Bmax, are the modes
related to the interferometric character of the array.

◮ The region of indices i > iB contains modes of very high spatial frequency, which
do not physically relate to the source nor the measurement, since these spatial
frequencies are not sampled. This occurs when the discretization step size (θ(2)

0 −
θ(1)

0 ) is smaller than the smallest spatial period that is sampled, λmin/Bmax.

Clearly, the latter set of modes (related to the smallest singular values σi ) has to be
banned in all cases from the construction of a solution to the inverse problem.

The SVD also gives important insight into another aspect of ill-conditioned problems,
namely the smoothing effect. This is typically associated with integral kernels encoun-
tered in many physical problems (Hansen, 1994; Hansen, 1998). For example, consider
the mathematical mapping b = A·x of an arbitrary vector x. Application of the SVD yields

b = U ·S ·VT ·x, or alternatively, b =
∑

i

σi

(

vT
i ·x

)

ui . (4.4)
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The product vT
i
·x can be interpreted as a measure for the spatial matching (or participa-

tion factor) between singular vector vi and vector x. With this knowledge and recalling
that the singular vectors ui and vi become more oscillatory as σi decreases, it is obvious
that the multiplication with σi leads to more damping of the high-frequency compo-
nents of x and less damping of the low-frequency components in the map A ·x. As a con-
sequence, in forward problems the solution b is generally smoother than the prescribed
vector x.

In contrast, the inverse problem (containing 1/σi ) will show the opposite effect, am-
plifying the high-frequency oscillations in the right-hand side b. Owing to the smoothing
characteristics of the forward problem, noise often has a relatively strong contribution to
the high-frequency oscillations in b. Therefore, especially the noisy components are sub-
jected to a large amplification in the inverse process.

Concluding, the forward operation of mapping input vector x onto output vector b

has a smoothing effect on x, whereas the opposite operation tends to amplify oscilla-
tions in vector b. Hence, if a solution of x is required with a limited L2-norm, then not all
distributions b form a valid right-hand side. In fact, vector b must be sufficiently smooth
to ‘survive’ the inversion back to a physically meaningful x. The mathematical formula-
tion of this smoothness criterion on b, given a certain kernel or transfer matrix, is known
as the Discrete Picard condition (Hansen, 1990; Hansen, 1998).
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∣

∣uT
i
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∣
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∣

level off at m−1/2||eb||.

Discrete Picard condition

Throughout this chapter the errors in the given problem A · x = b are restricted to the
right-hand side b and hence the assumption is made that the transfer matrix forms an
accurate description of the actual physical system. An amount of noise is added to the
data vector

b = b̄+eb, with b̄ = A · x̄, (4.5)

where b̄ represents the exact unperturbed measurement data, x̄ is the corresponding ex-
act solution and vector eb represents the errors in the data.

According to Hansen (Hansen, 1990), a regularized solution xreg that approximates
the exact solution x̄ is obtained if the corresponding exact right-hand side b̄ satisfies the
discrete Picard condition:

The unperturbed right-hand side b̄ in a discrete ill-posed problem satisfies
the discrete Picard condition if the exact Fourier coefficients

∣

∣uT
i
· b̄

∣

∣ on the
average decay faster toward zero than the singular values σi . Fulfillment of
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this condition ensures that the exact, unknown, solution x̄ can be approxi-
mated by a nearby regularized solution xreg.

In practice, the errors in the right-hand side arise from many sources, e.g. measurement,
rounding and approximation errors and in the case of light also the quantized nature of
the arrival of photons. Consequently, these errors typically tend to have components in
each left singular vector ui or measurement mode. As explained by Hansen (Hansen,
1990), if the elements of eb are unbiased and uncorrelated, then the expected values E

of the Fourier coefficients of eb satisfy

E
(∣

∣uT
i ·eb

∣

∣

)

= m− 1
2 ||eb||, i = 1, . . . ,min(m,n). (4.6)

For this reason the perturbed Fourier coefficients
∣

∣uT
i
·b

∣

∣ level off at m− 1
2 ||eb|| approxi-

mately, even if the unperturbed right-hand side b̄ satisfies the discrete Picard condition,
because these Fourier coefficients are dominated by

∣

∣uT
i
·eb

∣

∣ for large i . This is illustrated
in Fig. 4.4.

Naively solving the inverse problem results in constructing the least squares solution.
With the SVD as defined in Eq. (4.2) this solution can be written as

xLS =
∑

i

uT
i
·b

σi
vi , (4.7)

where the factors uT
i
·b/σi represent the contribution of each singular vector vi (source

mode) in the least squares solution xLS. If now the Fourier components
∣

∣uT
i
·b

∣

∣ are lev-
eled off at a noise floor, they cannot decay as fast as the singular values σi . The direct
consequence is that the solution xLS is dominated by terms in the sum corresponding
to the smallest singular values σi ; thus, the shape of the solution is mainly determined
by the source mode shapes vi associated with large i . Since these mode shapes have a
highly oscillatory nature, the solution appears to be completely random. Apart from the
many oscillations, the magnitude of the solution xLS usually ends up being extremely
large owing to the division by the very small singular values. This knowledge clarifies
that the purpose of regularization is to dampen or filter out the contributions to the so-
lution corresponding to the small singular values.

4.3 Regularization

Truncated Singular Value Decomposition

Once it is known that the ill-behavior is related to the smallest singular values σi , the
most obvious cure is to simply truncate the number of terms in the solution xk :

xk =
k
∑

i=1

uT
i
·b

σi
vi , with k ≤ min(m,n). (4.8)

This truncation effectively eliminates the influence of all singular vectors vi associated
with singular values smaller than σk . Essentially, the TSVD approach replaces the ill-
conditioned transfer matrix A with a new well-conditioned, but rank deficient, matrix Ak

(Hansen, 1998).
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Tikhonov regularization

Tikhonov regularization (Tikhonov and Goncharsky, 1977) is probably the most popu-
lar and well developed method to handle discrete ill-posed problems. It differs from
the TSVD approach in the fact that the initial ill-conditioned problem is solved simul-
taneously with a side constraint imposed on certain properties of the sought solution
(Hansen, 1994). These constraints are usually associated with smoothness properties
of the solution since ignoring contributions related to small singular values leads to a
smoother solution with a reasonable L2-norm. In discrete problems, the problem of
Tikhonov regularization takes the form

min
x

{

||A ·x−b||2 +Λ
2||L ·x||2

}

, (4.9)

where L represents the so-called regularization matrix. For a discussion of choosing the
smoothing operator L, the reader is referred to the work by Visser (Visser, 2004) on acous-
tical transfer matrices.

The most simple form of Eq. (4.9) is obtained with L = I. The Tikhonov regularized
solution can in combination with the SVD be written as

xΛ =
∑

i

uT
i
·bσi

σ2
i
+Λ2

vi . (4.10)

The regularization parameter Λ is chosen to lie between the largest and the smallest sin-
gular values. Like the TSVD approach, the Tikhonov method acts as a low-pass filter in
the singular value spectrum, be it that TSVD manifestates an abrupt cut-off, whereas the
filter spectrum in the Tikhonov case shows a gradual decline. Regularization of a linear
inverse problem now comes down to finding the regularization parameter Λ, so that the
norms

‖A ·xΛ−b‖ and ‖xΛ‖, (4.11)

respectively the data misfit-norm and the solution norm, are small. Figure 4.5 plots these
two norms against each other, for a range of values of Λ. The result is a plot that clearly
has an L-shape, as is generally the case for ill-posed discrete inverse problems (Hansen,
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1992). In the corner, the sum of the two norms is smallest, meaning that the correspond-
ing Λ minimizes the expression in Eq. (4.9).

With Λ found, a solution can be calculated with Eq. (4.10). The participation of the
solution modes vi can now be controlled. Figure 4.6 shows the participation strength
uT

i
·bσi /(σ2

i
+Λ

2) for three values of Λ, corresponding to an under-regularized solution,
an optimally regularized solution and an over-regularized solution. In Fig. 4.7, the cor-
responding regularized solutions are plotted. Respectively, these show an estimate with
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amplification of noise (under-regularization), an optimal estimate and an estimate, un-
able to recover sharp edges (‘over-smoothing’ due to over-regularization).

With the regularization tools in place, optimal estimates can automatically be ob-
tained from photon-starved or otherwise degraded interferometric measurements. The
transfer of stellar information through any of the four presented interferometers into
interferometric signals can be described and stored in a single transfer matrix A. For
various sources L(θ0) and changing observation times, each interferometer will produce
simulated measurements, from which optimal reconstructions L̂(θ0) are produced. The
next Chapter will present detailed results of these simulations.



Chapter 5

Comparison of imaging

interferometers

In this chapter, the four beam combination schemes and detector configurations for in-
terferometric imaging, that have been discussed in the previous chapters, will be com-
pared. The working principles as explained in Chapters 2 and 3 will be simulated. For
every array, the same observation is simulated: the same source is observed with the
same set of baseline lengths, for the same total observation time. The same image re-
construction algorithm is used for all four interferometers, so that this comparison is
not relying on the strengths of optimized or better developed algorithms for one inter-
ferometer type. After a discussion on the implementation of noise in the simulations in
Sec. 5.1, the simulation process is detailed in Sec. 5.2 for the two classical types, having
perfect detectors. This illustrates that detection signals of very different nature can pro-
duce the same image with the same reconstruction algorithm. In Section 5.3, two other
methods are included in the comparison, together with the introduction of realistic read-
noise for observations with a CCD camera.

5.1 Photon-starved regime

Optical interferometers observe weak stellar sources and are therefore said to operate in
the photon-starved regime. To adequately simulate low-light level observations, a noise
model considering the statistics of photon arrival is a necessity. Moreover, since the de-
tected data are the start of an inversion process, these data should represent realistic
noisy recordings since the inversion and hence the final image formation shall be limited
by the noise level in the recordings. Therefore, the noisy read-out process of an infrared
detector array is also simulated.

The analytical expressions for the intensity detector response, derived in Chapter 2,
predict the ‘image’ that the detector array will observe. However, this pattern will only
be observed for very bright sources, when unlimited amounts of photons are available.
The response of a weak source, such as the astronomical objects of interest, is better
expressed by the arrival of photons from the object, at a certain location and at certain
time intervals. Figure 5.1 illustrates this for a few arrival events. The analytical intensity
distribution I (θ,d) is now seen as a likelihood distribution over space and time, where
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(b)Figure 5.1: Classical and detected images: (a) classical image intensity I (x); (b) detected image
d(x). From: Statistical Optics (Goodman, 1985).
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Figure 5.2: A polychromatic fringe pattern I (θ,d) out of a co-axial two-aperture interferometer.
The images from left to right show observations of the theoretically predicted fringe pattern, mov-
ing from a photon-starved to a photon-rich regime. The maximum amount of photons per bin is
indicated (max.) as well as the provided total amount of photons (tot.). These examples exhibit
zero detector noise.

time is in this case the applied delay d . Time-dependency stems from the shot-noise,
which is the arrival probability of a photon. This probability follows Poisson statistics1 ,
so that the probability P of a certain integer number k of unit rate Poisson random events
occurring in a given interval of time t is

Pt (k) = e−λt (λt)k

k!
, (5.1)

where λ is a constant, defined as the average time between events (Papoulis, 1991),
which is a measure for the photon flux. The analytical intensity response defines the
average fluxes in all bins (‘tiles’ in (θ,d)-space), being pixels and delay settings. For each

1The statistical behaviour is only Poissonian, if the observation time tobs is larger than the coherence time,
tobs > tc where tc is defined as lcoh/c0. The integration time for a stellar observation will be at least in the
order of seconds, whereas the coherence time is in the order of femtoseconds.
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bin, with its average flux, the number of photons per readout (after an integration time
tint) is then discretized, in such a way that the total number of photons is a specific de-
sired amount Ntot, that can be chosen to match the integration time tint and the magni-
tude mv of the stellar object. The simulated amount of photons per bin (pixel and delay)
is then returned, based on the calculated average amount, by an implementation of the
Poisson statistics, as described in Numerical Recipes (Press et al., 1989). A few examples
are depicted in Fig. 5.2.

Thermal radiation of other origin than the stellar object, for example warm telescope
optics, cause the presence of background counts, which are also Poisson distributed.
Readout noise (the electronics register non-existing photons) further contributes to the
degradation of the acquired images. This noise is characterized as a Gaussian random
process. Note that the quantum efficiency of the detectors makes that not all photons
are transferred to electrons for measurement. The image data acquired by a CCD cam-
era can be expressed as (Snyder et al., 1995)

r ( j )= nobj( j )+n0( j )+ g ( j ), j = 1,2, . . . , J , (5.2)

where r ( j ) are the data acquired by a readout of pixel j of the CCD camera array, nobj( j )
is the number of object-dependent photoelectrons, n0( j ) is the number of background
electrons, g ( j ) is readout noise, and J is the number of pixels in the CCD camera array.
Since the radiation from the object and the background are indistinguishable and follow
the same statistics, there is no need to account for this noise in the simulations, other
than taking a source L(θ0) that incorporates a certain background level. For the readout
noise, an actual camera should be considered, in order to arrive at a sensible mean value
for the amount of electrons (photon arrival events can also be expressed in electrons)
added to the detected count, and a proper standard deviation.

As an example, the IRAC camera for the Spitzer Space Telescope is considered (Fazio
et al., 2004; Hora et al., 2000). The measured total read noise can be taken to have a mean
µ = 15 electrons (e−) and a variance σ2 = 8 e−. Note that these values are depending
on gain setting and numerous device-dependent parameters. The mean value is usually
subtracted from the data, which may result in negative values or counts in the detected
signals.

It should be noted that in interferometry, ‘background’ signal is also generated by the
source itself. In a polychromatic situation, the ‘incoherent’ tails of two fringe packets
may cause the summed intensity pattern to have a large non-modulating component.
For the detector signal, the modulating part holds the information. The background
hence contains ‘non-information’, but the classical definition of background would be
‘information from elsewhere than the source’.

5.2 Comparison for perfect detectors

In this study, only the two classical beam combination schemes are chosen. Co-axial
combination is the most common type (Shao and Staelin, 1977) whereas the homothetic
combination type (Angel et al., 1998) is often referred to as the only one being capable
of covering a wide field-of-view. The two modeled arrays are addressed as ‘Multipixel
Michelson’ and ‘Fizeau’. The collection and combination schemes are depicted in Fig. 5.3
for the case that there is no beam compression.

To illustrate the principles used here in the simulation and analysis more easily, only
a two-element interferometer is considered. This means that the high angular resolution
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Relay optics

Delay (t)

Collecting Elements

Focusing

Detectors

Co-axial combination (Multipixel Michelson) Image plane combination (Fizeau)

Figure 5.3: Two types of beam combination for optical aperture synthesis: co-axial combination
for ‘Multipixel Michelson’ and image plane combination ‘Fizeau’. The necessary number of pixels
in the detector is indicated schematically.

is only attained in one direction. Therefore, all simulations are one dimensional. The
detector is a line-detector; the source is a linear luminosity distribution on the sky. The
source that is used as an example in the simulation, is depicted in Fig. 5.4. This is the
young galaxy UGC00597, as observed by the Hubble Space Telescope. The dimensions of
the object are chosen to be ∼2 PSFs and the detector array to cover ∼3 PSFs. The dish
diameter D = 3.5 m and a central wavelength λc = 10µm result in an angular PSF diame-
ter of 7 µrad. The cross-section in the figure indicates the linear luminosity function that
is actually used in the simulation. The PSF size is indicated and the narrowest feature in
the source is about 1/16th of this diameter. Therefore, the sampled baseline lengths will
be limited to 16D. The number of resolution elements in the simulated source is 231,
with a spacing that is not necessarily resolvable by the synthetic aperture. Other specifi-
cations of the simulation parameters for both arrays are listed in Table 5.1. The divisions
by 4 indicate that a fringe is sampled in respectively 4 delay bins or 4 detector pixels.Table 5.1: Measurement settings for simulations

Case Pixels Pixel Size OPD Range OPD Step

Michelson 6 (3 PSFs) ≃ PSF/2 2Bmaxθmax λc /4

Fizeau 235 (3 PSFs) PSF D
Bmax

/4 — —

The simulated telescope array is considered to be consisting of two free-flying tele-
scopes of ESA’s Darwin mission. The beam combiner for the nulling task is replaced by
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Figure 5.4: The young galaxy UGC00597 (Hubble Space Telescope image). The dashed line indi-
cates the position of the slice of the image of which the pixel values were used as linear luminosity
distribution L(θ0). The thick line represents this function. The angular dimension of this source
was set to be twice the diffraction-limited spot size of a single telescope (indicated with a thick
line), the resolution limit without interference.

the simulated beam combiner. The alignment requirements for nulling in the Darwin
mission provide a co-phased array with all metrology necessary to fulfill the needs for
image overlap and fringe stability to a degree that is far beyond the needs for imaging.
Therefore, no fringe shifts are assumed in this simulation and diffraction limited PSFs are
assumed for all beams. Given the Darwin hardware, a number of interesting targets for
imaging has been acquired. This led (see Chapter 1) to the imaging requirements listed
in table 5.2. Table 5.2: Darwin imaging requirements

Requirement Specifications

Flux 1 µJy per hour
Bandwidth 4 .. . 28 µm
Field-of-View 3 arcsec (= 14.5 µrad)
Resolution 1 mas (= 4.9 nrad)
Dynamic range 1 : 100
Spectral Resolution 200 bands

1 Jy (Jansky) = 10−26W m−2Hz−1

The complete wavelength range will be covered in a few channels, typically half oc-
taves. For the simulation, the range is λ = 8 . . . 12 microns. This range has no astro-
physical reason, it is just taken as a broad-band range and the spectrum is shaped by
a Gaussian envelope. In the current Darwin design, the telescope primaries have a di-
ameter D = 3.5 meter. This yields a PSF with an angular diameter on the sky of dAiry =
2.44λc /D = 7 µrad, so the desired FOV is as large as two PSFs.

As discussed before, to model the detector response of such a source for the co-axial
type, the ‘traditional’ fringe modulation prediction according to the restricted quasi-mono-
chromatic theory of partial coherence (Born and Wolf, 1980) as applicable to radio inter-
ferometry could not be used. This theory assumes a narrow bandwidth, a stellar object
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Reconstruction

-1

reg

Preparation

CCD spectrum

Detection

Figure 5.5: Flowcharts of the stages in the simulation process: Preparation, Detection and Recon-
struction. The Preparation phase is the calculation of the response of the interferometer, based on
the type of beam combination, the baseline configurations and the locations of source points and
detector pixels. The output is a transfer matrix. With this matrix, the Detection can be performed,
consisting of summing the weighted point source response functions and applying a discretiza-
tion to the sum. Here, photon statistics and detector noise are applied and one signal per baseline
configuration results. Finally, the Reconstruction takes the measured data and the transfer matrix.
Without knowledge of the source, an optimal reconstruction of the sky is produced by multiplica-
tion of the noisy measurement with a regularized inverse of the transfer matrix.

no larger than the single-dish PSF and point-like collecting elements in stead of tele-
scopes with a certain diameter. These assumptions are not applicable to the intended
observation. The FOV larger than a PSF and the coherence length of only a few times the
central wavelength, require the response function approach. The simulation process,
based on response functions collected in a transfer matrix, is illustrated in Fig. 5.5.

5.2.1 Shot-noise limited detection

Recent developments in detector technology have led to CCDs for low light levels that
can be assumed to provide shot noise limited read-out signals (Mackay et al., 2001).
Perfect quantum efficiency is assumed and there is no thermal or detector noise. To
simulate shot noise limited interferometer responses, the theoretical intensities I j k (d)

and Ik (θ̂) are treated as temporal and spatial probability distributions (Goodman, 1985).
The photons will arrive with Poisson-distributed interval times and will be spatially dis-
tributed as well. The realization of the photon statistics is implemented according to the
Rejection Method (Press et al., 1989) that will iteratively create a measurement vector with
the theoretical intensity as distribution and Poisson statistics as input. The observation
time of the weak source is expressed as a total number of received photons, yielding 108

as an amount for high SNR observations. The detected signals with 108 photons are dis-
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B = 8DFigure 5.6: Tabular display of all Fizeau convolution results Ik (θ), the recorded intensities (photon
counts) per pixel for each baseline length. The number of pixels is 256. The baseline lengths are
B = D ·[1, . . . 8] in steps of D/2. For these sketches, the number of photons was 105, to illustrate the
characteristics of the detector signals. The measurements are all normalized to one value, whereas
the function on the sky is normalized to itself. The modulation amplitude as compared to the
envelope is about 8% at best, since the source is partially resolved.

played in Figs. 5.6 and 5.7. To give more detail on the bin-integration and quantization
process, Fig. 5.8 was included as well. Here, the theoretical intensity is plotted over the
‘recorded’ photon counts (also expressed as intensity) for the co-axial case.

5.2.2 Comparison of shot-noise limited classical beam combiners

It should be noted that both sets of intensity data resemble each other a lot. Compared to
the short period of the fringes, the average signals in both the Michelson and the Fizeau
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B = 8 DFigure 5.7: Tabular display of all Michelson I j k (d), the recorded intensities (photon counts) per
pixel for each baseline length. The number of pixels is 6, the number of delay steps is 117. The
baseline lengths are B = D · [1, . . . 8] in steps of D/2. The fringes are sampled with 6 samples per
λc and the total scan range ensures the ‘coverage’ of fringe packets for the longest baseline config-
uration on the outermost detectors. Observe the envelope lengthening for growing B , as indicated
with the dashed line in the column for Pixel 5.
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AnalyticalFigure 5.8: Detailed plot of two I j k (d), the recorded intensities (photon counts) per delay bin, for

pixel j = 5 and baselines k = 1,15, or B = 1D and B = 8D, respectively, cf. Fig. 5.7. The period in
each fringe packet is λc . Three effects appear very clearly from these plots. Firstly, the phase of the
fringes with respect to the envelope changes, which is in accordance with experiences from narrow
field imaging. Secondly, the length of the fringe packet changes with baseline length. Finally, the
shape of the envelope changes. To generate an image of the sky from these data, the three men-
tioned features must be included in the inversion process. A joint deconvolution of all collected
intensity traces does just this. The modulation 1.04−0.96 as compared to the average normalized
signal 1 is again about 8% at best, as for the Fizeau case (Fig. 5.6).

case, can be assumed to be constant, even for the long-period-envelope in the Fizeau
case. Hence, both of these signals represent a strong background signal with a small
amplitude modulation on it. The difference is only that the modulation is either in d- or
θ-direction. As a result, the expected performance for inversion will be quite the same.
For low light levels, the number of available photons per pixel or per delay bin goes down
and this limits the reconstruction.

The number of pixels for homothesis is related to the desired ultimate resolution. The
number of bins for co-axial combination is just as well related to the ultimate resolution.
In the first case, the spatial period of the fringes gets smaller for larger baselines and
these fringes should remain resolvable. For the other case, the fringe period is a constant,
but the central location of the fringe packet and the extent of it grow for larger baselines
and hence more bins are needed to sample it.
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Without a compensation scheme (Montilla et al., 2005) for the baseline length-de-

pendent external path length difference, the ‘simple’ co-axial type will have a poor SNR
for long baselines, just as the homothetic type. The homothetic type will have the same
high number of bins (pixels) for the long as well as for the short baselines, whereas the
co-axial type is allowed to have less bins for the shorter baselines. So for the photons per
bin treatment of the SNR, the homothetic type has a constant value, whereas the co-axial
type can have a decreasing value for growing baselines, but will end up in a SNR just as
bad. Treating the SNR as the amount of modulation on top of the background signal,
both types display the same decrease of SNR for growing baselines. The long baselines
give the content of highest resolution in the sought image, but for both schemes, this
SNR is low.

To compare the reconstruction possibilities at low light levels, the regularization rou-
tines (for blind imaging; the source is unknown) are slightly assisted in finding the op-
timal filtering parameter. This is done to be able to present the best possible recon-
struction. It should be noted however that the optimum found by the algorithms hardly
differed from the tuned one. With the proper value for the regularization parameter Λ, a
few reconstructions can be produced for Λ=Λ·[1/5, 1, 5]. In this way, the effects of over-
and under-regularization can be seen, showing up as too noisy or too smooth solutions,
both resulting in a bad fit. For the reconstructions, the fit to the known object function
can be given as a value ǫ. The non-normalized L2-norm for a vector is used, given as

ǫ=
1

N

√

∑

i

∣

∣Ii − Îi

∣

∣

2
, (5.3)

where ǫ is the fit error, and Ii and Îi are the pixel intensity in the object function and the
reconstruction, respectively. Some results are presented in Fig. 5.9. Note that ǫ will never
reach zero—even for unlimited amounts of photons—since not all baseline lengths are
sampled.

The photon counts and reconstruction quality for decreasing light levels (shorter in-
tegration times or weaker sources) are listed in Table 5.3. Note that the number of resolu-
tion elements is 231, so an ǫ≃ 231 indicates a fit where all point intensities are recovered
with an average error of 1, compared to the simulated average signal level of 100, which
compares to a dynamic range of 1/100.Table 5.3: Blind imaging performance with shot noise limited detection. Simulated source:
UGC00597.

ǫopt ǫopt min., max. min., max.
Photons Fizeau Michelson Photons/bin Fiz Photons/bin Mich

108 42.6 71.7 1344, 59964 981, 13294
107 72.0 141.2 134, 5996 98, 1329
106 162.0 233.0 13, 600 10, 133
105 255.4 370.9 1, 60 1, 13

As predicted, the performance is nearly equal. The homothetic setup performs a bit
better (reconstruction remains good down to 106 photons) but it should be noted that



5.2. COMPARISON FOR PERFECT DETECTORS 81
Michelson Fizeau

−2 −1 0 1 2

x 10
−6

0

50

100

150

200

Sky direction [rad]

In
te

n
si

ty
 o

n
 s

k
y
 [

a
.u

.]

Source

ε=366.7

ε=736.6

ε=656.4

−2 −1 0 1 2

x 10
−6

0

50

100

150

200

Sky direction [rad]

In
te

n
si

ty
 o

n
 s

k
y
 [

a
.u

.]

Source

ε=282.1

ε=450.6

ε=547.4

(a) (b)

−2 −1 0 1 2

x 10
−6

0

50

100

150

200

Sky direction [rad]

In
te

n
si

ty
 o

n
 s

k
y
 [

a
.u

.]

Source

ε=63.3

ε=162.2

ε=141.5

−2 −1 0 1 2

x 10
−6

0

50

100

150

200

Sky direction [rad]

In
te

n
si

ty
 o

n
 s

k
y
 [

a
.u

.]

Source

ε=50.8

ε=76.5

ε=136.7

(c) (d)Figure 5.9: Top row: best blind reconstructions (continuous lines) of L(θ0) for the ‘Michelson’
and the ‘Fizeau’ cases when 105 photons in total were collected. The dashed lines indicate under-
and over-regularized solutions (noisy and smooth). Bottom row: same as top row, but now for 108

photons available. The ǫ-values are the L2-norms of the differences with the now known original
image; values below 231 indicate roughly a dynamic range of 1 : 100. Since the noise is different in
every simulated detection–reconstruction run, the ǫ-values are not exactly equal to those displayed
in Table 5.3. The horizontal lines in each plot indicate the detector pixel size and the diameter of
the Airy disc, projected on the sky.
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the performance of the co-axial type could be greatly improved if the scanning range—
and with it the number of bins—was reduced. A solution exists in the form of a Staircase
Mirror. Another way to increase the performance is to limit the background presence
relative to the modulated signal, since the fringes carry the high spatial frequency infor-
mation. This could naturally be done by limiting the bandpass, but that will also limit
the number of photons.

The homothetic setup performs well in this simulation, but the realization of the
hardware needed to produce a scalable and reconfigurable array of entrance and exit
pupils is complicated (d’Arcio, 1999). However, solutions exist (Van der Avoort et al.,
2004b) for providing enough image and fringe stability to allow the assumption of a
field-invariant convolution kernel. Should the kernel be field-variant in a known way,
then imaging can still be performed, be it that the interferometric FOV is not as large
as the single telescope FOV. The interferometric FOV can however be extended then by
changing the delay, so that both spatial and temporal fringe encoding is used and inter-
ferometry can be done with only a few pixels and a few steps in delay. This is what is
done in Densified pupil imaging.

Without detector noise, both the Michelson and the Fizeau approach are able to re-
turn a wide field-of-view where fine features of the luminosity function L(θ0) can be re-
covered. Moreover, there is no difference in observation time necessary to reconstruct
with a certain quality. In the next section, detector noise will be included. Moreover,
two alternative beam combiners are added. Both the Staircase mirror approach as an
alternative to the Michelson co-axial interferometer and the Densified pupil approach
as an alternative to image plane interferometry will be subjected to the same simulated
observation.

5.3 Comparison for real detectors

In the following simulations, detector noise is introduced. The previous examples made
clear that, principally, the detector signals for spatially or temporally encoded fringes can
be used for wide-field source reconstruction. Moreover, the presence of photon-noise
showed that the number of pixels versus the number of delay steps pose a comparable
limit to the reconstruction quality for a given total number of photons. With the in-
troduction of detector noise, the dynamic range in the detector signals is lowered and
hence the nature of the signal will start to play a role in the resulting fitness of detector
signals. Pupil densification was ‘invented’ to improve the signal to noise ratio in detec-
tion signals. The Staircase Michelson solution has the goal to limit the observation time
by partially equalizing the external OPD, at the cost of signal contrast.

After the comparison of the basic types, pupil versus image plane combination, the
two other methods (see Fig. 5.10) presented in Chapter 3 are now subjected to the same
simulation. The weaknesses and advantages of the Densified Pupil solution as compared
to the homothetic interferometer have been addressed in Chapter 3. The same holds
for the Staircase solution as compared to the Michelson Stellar interferometer. In short,
these comparisons are as follows:

The hardware for the Staircase-solution is more complex than that of a classical Mi-

chelson interferometer. It does facilitate much shorter scans of OPD, but the key feature
of the optics—a staircase-shaped mirror in intermediate focus per arm—is required to
change shape with time (step width) and baseline length (step height). Active mirrors
that can perform this task and maintain their optical accuracy do not yet exist.
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A. Co-axial combination

B. Co-axial combination
     with staircase

Staircase mirror
in intermediate
focus

C. Densified pupil imaging

D. Homothesis

Relay optics

Figure 5.10: The four possible beam combination schemes, Michelson, Fizeau, Densified and
Staircase. For clarity, beam compression is not applied, so M = 1. The diagrams of the focal planes
indicate the ‘movement’ of the central fringe with respect to the center of the diffraction envelope.
Hence, these four diagrams indicate the instantaneous FOV of the four methods.

5.3.1 Parameters

For the simulation runs with four methods, the discretizations of the (θ,d)-observation
space are given in Table 5.4.Table 5.4: Measurement settings for all simulations. B0 in the case of Densified beam combina-
tion, is the fixed exit baseline length. The Pixel range spans 3 PSFs, in all cases, whereas the object
L(θ0) spans 2 PSFs.

Case Pixels Pixel Size OPD Range Size Steps Bins

Michelson 6 ≃ PSF/2 2Bmaxθmax λc /4 234 1404

Fizeau 235 pθ(Bmax)/4 — — 1 235

Densified 31 pθ(B0)/4 −lcoh . . .+ lcoh lcoh 3 93

Staircase 6 ≃ PSF/2 − 3
2 lcoh . . .+ 3

2 lcoh λc /4 25 150

The number of bins—photons arrive in (θ,d)-space with the calculated fringe pattern
I (θ,d) as likelihood distribution—are now respectively 1404, 235, 93 and 150 bins. These
are the minimum number of bins to guarantee for all methods the coverage of the full
FOV in all spatial frequencies up to the maximum sampled frequency. The fringe sam-
pling for the co-axial methods is according to the ABCD-method (Shao and Staelin, 1977).
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The fringes in the image plane also have to be sampled with four pixels per period. For
both the densified as well as the homothetic mode, the angular fringe period is derived
from the earlier presented general expression for I (θ,d), and is calculated as

pθ(B0) =
(

λc

B0

)

, (5.4)

where for the homothetic case B0 = B . For all methods, the fringe sampling is now ad-
justed to four samples per fringe, either in d-direction or in θ-direction. The exit base-
line B0 for Densified is fixed to B0 = 2D. The maximum exit baseline for Homothesis is
B0 = B = 8D, so that the required number of pixels in focus is indeed reduced by a factor
of 4.

For full densification (B0 = D) the fringe period is pθ(D) = λc /D, which is close to
the radius of the diffraction limited envelope. Although recombination at this separation
is feasible and the detection of an entrance baseline-dependent signal is possible, this
ultimate combination baseline was not chosen for these simulations.

Hardware is also the limiting factor for the first of the image-plane combined schemes,
Homothesis. The beam combination scheme implies extra degrees of freedom to con-
trol. Hence, complicated metrology and active actuation are needed. However, clever
solutions to reduce the degrees of freedom to easily controllable ones do exist (Van der
Avoort et al., 2004b). Next, the detector resolution poses a resolution limit to not only
the recorded data, but as well to the final reconstructed image. The software needed to
process data, taken in the form of snapshots, into a reconstruction of the sky is simple.
For the case of iterative (see the Ordered Subsets Expectation Maximization algorithm
developed for LBT, described in Sec. 4.1) FFT based deconvolution (Bertero and Boc-
cacci, 2000), such software is also fast. Densified Pupil Imaging reduces the hardware
requirements—fringe stability, number of detectors and size of detectors—greatly, but
the interferometric field-of-view gets proportionally smaller as the exit baseline B0 tends
to co-axial combination. Multiple observations have to be made, where intentional OPDs
in the order of the coherence length are applied in the arms. If enough observations are
made, the full FOV is recoverable. The data has to be processed jointly. However, the
number of detector pixels necessary is much lower than for Homothesis, since the fringe
encoding is spatially, but the fringes have a fixed and long period. For an exit baseline
B0 = 2D, the fringe period on the detector will be 1/4th of the diffraction envelope. There-
fore, the total number of ‘bins’ can be less. Since there are less detector pixels, the flux
per pixel will be higher, resulting in a more favorable signal-to-noise ratio.

5.3.2 Results

Optical aperture synthesis imaging of UGC00597

The overall comparison of all interferometers, with respect to signal strengths or mod-
ulation depths, background or incoherent radiation levels and necessary pixels or delay
positions, is given in Fig. 5.11. As discussed, the dynamical range is related to the indi-
cated error ǫ. For a dynamical range of 1/ǫ= 100, Fig. 5.11(a) shows the efficiency of each
array or beam combination method. The lower the amount of photons per bin needed
to achieve this dynamical range, the better, since, apparently, the beam combination
method provides a fringe signal with larger information content. The read-noise level
was set at σ2 = 8 counts per pixel, conform the Spitzer-IRAC specifications. Amounts of
photons reaching a detector pixel below this level can not be considered useful, for any
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Figure 5.11: The reconstruction quality ǫ versus the number of photons per bin (top panel) and
versus the total number of photons (bottom panel). Note that the number of ‘bins’ (pixels and
delay settings) is different for each method. The total amount of photons is for each method
equally spread over the baseline configurations, which are also the same for all methods. The
reconstructed source is UGC00597.

shape of detection signal. It is only above this level that differences start to show up. The
error figure ǫ for very low numbers of photons per bin (the range 8–100) is already agree-
able. This is because the stellar object resembles the shape and size of the diffraction
pattern of a single telescope. Since all methods provide at least a few detectors in a row,
this very rough envelope can already quickly be recovered. And because of the match in
shapes, this already leads to a fit of ǫ≈ 0.015.
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Method Photons bin−1

Homothetic 2.5 ·102

Michelson 6.3 ·102

Densified 7.9 ·102

Staircase 1.3 ·103

From Table 5.5 it is clear that the two ‘classical’ methods, Michelson and Homoth-
etic, are most and nearly equally efficient. Densified performs slightly worse, since in
the data taking, the recordings with non-zero delay settings provide fringe-less informa-
tion for the largest part of the sky. Hence, a great number of photons is not contribut-
ing to reconstruction of high spatial frequencies. The efficiency for Densification could
be improved by omitting the observations at non-zero delay settings for the short base-
lines. Apparently, the Staircase method is the least efficient. Although fringe packets are
present throughout the measured signals, there is either redundancy in the information
or less modulation, since a large number of photons per bin is needed to reconstruct
the sky to the level of ǫ = 0.01. Appendix B deals with the details of the measured Stair-
case signals. The fringe envelope of the point source interference response signal can be
regarded as having a fringe envelope with two maxima instead of one2. Therefore, the
responses do not uniquely link a source to a measurement. For example, a single point
source falling near the edge of a stair, can produce the same response as two separated
weaker point sources3. Despite the slight inefficiency, it can still be observed that the
Staircase solution is an improvement with respect to the Michelson method, on the ac-
count of the total observation time needed. The number of bins can be drastically lower.
The next tables (Table 5.6a,b) compare the methods on the aspect of total number of
photons (or observation time) needed to reach the reconstruction quality ǫ = 0.01 (a)
and the best reconstruction (or smallest value of ǫ) achievable with a fixed number of
photons (b).Table 5.6: Observation time needed to reach 1/ǫ = 100 (a) and the reconstruction error ǫ for a
fixed observation time (time expressed in total received amount of photons) of 107 photons (b)

Method Photons

Homothetic 105.7

Densified 105.7

Staircase 106.2

Michelson 106.8

(a)

Method Error ǫ Dyn.R. 1/ǫ

Densified 10−2.4 250
Homothetic 10−2.4 250
Staircase 10−2.2 167
Michelson 10−2.0 111

(b)

In both tables, the two image-plane combination methods perform best. This means
that the inefficiency of the post-processing in the case of Densification is compensated
by the reduced number of bins needed. Moreover, it is clear that both co-axial types

2As measured experimentally (Montilla et al., 2005), and studied in more detail in App. B.2.
3See App. B.4 for a more detailed study of this effect.
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The measurement data only contains a
single polychromatic observation for the
baseline B = 28m. The optical bandpass
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spatial frequencies present. Due to mul-
tiple detectors, also the single-dish spa-
tial frequencies are covered, resulting in
the low-frequent envelope function. The
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reconstruction unknown) source.

need either more time, or produce worse images given the same time, than the image-
plane types. The dynamic range in the produced images is—for the same amount of 107

photons—nearly twice as large for the image plane methods. Recall that the number of
bins is minimal in all cases.
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Figure 5.14: The object HH47 (New Technology Telescope image). The dashed line indicates the
position of the slice of the image of which the pixel values were used again as the linear luminosity
distribution L(θ0). The thick line represents this function. Again, the diffraction limited spot size
of a single telescope is indicated in red.

Spatial frequencies in the solution

From both reconstruction plots (Fig. 5.11), it can be seen that ǫ never reaches zero. This
is because of the limited maximum baseline length. A spatial frequency analysis of a typi-
cal reconstruction result can clarify this. Figure 5.12 shows the FFT of the source function
L(θ0) and the FFT of the best possible reconstruction L̂(θ0) when only one observation
with B = 8·D = 28m is used as measurement data. The beam combiner simulated here is
the Densified Pupil. A very large amount of photons is available. The spatial frequency
co-ordinate in the figure is expressed in equivalent baseline length at a wavelength of
10 µm. Because of the polychromatic detection signal, a range of spatial frequencies
around B/λc is covered. The very short baselines are also covered, since the detector
has multiple pixels and the single-dish diffraction envelope is larger than a single pixel.
The limit in reconstruction quality can be explained by the amplitudes (presence) of the
non-covered spatial frequencies. Accordingly, the reconstruction L̂(θ0) contains only a
few harmonic functions. For illustration, the reconstruction with only B = 28m is pre-
sented in Fig. 5.13. It is noteworthy to see that the limited set of harmonic functions is
approximately lined up with the original function, while this is a blind reconstruction
from the measured data only. The steep edges of the source nearly co-align with the
edges in the reconstruction.

Optical aperture synthesis imaging of HH47

The source UGC00597 could nicely be recovered by all beam combination methods. How-
ever, the steep edges and hence high spatial frequencies are predominantly present in
the central region, close to on-axis observation angles. Even a reconstruction within only
the central PSF could probably create a nice match to the source. Therefore, all simula-
tions are repeated again with a different source, depicted in Fig. 5.14. The Herbig–Haro
object HH47 is showing two jets out of an obscured stellar core. An image cross-section
shows large contrasts, steep edges and features far out of the central region.

In Fig. 5.15, the results of a large number of simulations are displayed again, once as
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Figure 5.15: For reconstruction of the source HH47, the reconstruction quality ǫ versus the num-
ber of photons per bin (top panel) and versus the total number of photons (bottom panel) are
plotted. With the steep edges and hence high spatial frequencies at the outer regions of the FOV,
the Densified solution shows limited reconstruction quality. This is due to the chosen coverage of
the higher spatial frequencies, as detailed in Fig. 5.16.

the reconstruction error ǫ at best regularization versus the number of photons per bin
that the interferometer received, and once as the reconstruction error ǫ versus the total
amount of photons received. The curves in both plots resemble the ones found in the
simulated observations of UGC00597, except for two differences.

Firstly, the jump in reconstruction quality around 8 received photons per bin is ab-
sent. This level corresponds to the simulated read-out noise per pixel and hence per
bin. The ǫ-levels for more than 8 photons per bin, are equal in the UGC00597 and the
HH47 cases. Apparently, the ‘random’ reconstructions L̂(θ0) for recordings, drowning in
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 Figure 5.16: Visualization of the contents of the transfer matrix in the case of Densified pupil
imaging. For a fixed recombination baseline B0 = 2D, point source intensity response functions
are calculated for entrance baseline lengths B = (2. . . 16)D in steps of 2D. The detector intensity
is displayed as a (vertical) column of pixels for a certain angle of incidence θ0. This pixel column
is given per baseline length. For the indicated B = 2D = B0, the beam combiner is homothetic,
resulting in a field independent convolution kernel. For all other baselines, the fringe pattern—
with fixed fringe period—moves out of the diffraction envelope, for incidence angles off-axis. For
the longest baselines, fringes are lost toward the edges of the FOV. In these regions, the highest
spatial frequencies cannot be reconstructed.

read-out noise, match slightly better to the original L(θ0) in the case of HH47, as com-
pared to UGC00597. However, reconstructions with ǫbest = 2 ·10−2, obtained just above
the read-noise level, are still far from being useful.

The second and more important difference between Figs. 5.11 and 5.15 is the curve
for Densified pupil imaging. In the case of UGC00597, where a wide field was imaged,
but the really narrow features were mainly present on-axis, the Densified-method proved
to be superior, in both imaging efficiency as well as imaging speed. But in the case of
HH47, the Densified-lines do not approach the level ǫbest = 10−3, whereas the other three
do. This under performance is related to the nature of the function L(θ0) in the case of
HH47. In the function, steep edges are present near the boundary of the FOV. This means
that high spatial frequencies are present, in regions far off-axis. The Densified method is
known to have a FOV that narrows down for larger baselines. With the additional delay
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A
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qFigure 5.17: Illustration of the detection principle when the polychromatic fringe pattern is not
detected on a line detector, but detected after dispersion. Right after the slit in plane B, a dispersive
element (not drawn) adds a wavelength dependent angle to the field, causing an intensity pattern
in plane C as a function of θ and λ.

settings, presented in Table 5.4, this FOV-narrowing is apparently compensated correctly
for the source UGC00597, but not for HH47. Figure 5.16 illustrates this effect. The dia-
grams show the contents of the interferometric transfer matrix, in case of Densified pupil
imaging. The regions for which only incoherent information is received, are identified
by the lack of intensity modulation. The diagrams then show, that the ultimate imag-
ing resolution, obtained at telescope separation B = 16D, is, due to the delay settings
d = (−16, 0, +16) µm, achieved only in the region of the source, for which the angle of
incidence is −1µrad < θ0 <+1µrad. This region is large enough to cover the high spatial
frequency content of UGC00597, but is too limited to represent HH47 with a solid range
of spatial frequencies in all regions of the source. More delay settings are required.

5.4 Spectral capabilities

The discussion of imaging capabilities only considered the task of obtaining a (monochro-
matic) luminosity function L̂(θ0) out of polychromatic observations. To perform spec-

troscopy at this high angular resolution, one would rather perform this image reconstruc-
tion in a number of very narrow bands. To derive spectra from the fringed data makes
it very hard to obtain spectra at the high angular resolution, since the number of pix-
els is low and an extra convolution process in the detection would have to be inverted.
Therefore, pairwise beam combination4 with dispersed detection, through a dispersive
element placed perpendicular to the orientation of B0 will be necessary to arrive at a
beam combiner for the high spatial, high spectral resolution imaging task. See Fig. 5.17
for an illustration of this detection principle. Then, measurement signals can be recorded
with which image reconstruction, finding L̂(θ0), can be performed for narrow wavelength
bands. With a set of reconstruction images per band m available,

Lm = L̂(θ0;λ(m)
c ), (5.5)

a spectrum S(m) can be returned for a desired angle θ0. Of the presented four beam
combination schemes, a version including a dispersive element can be designed. Whether
the beams are combined co-axially or in focus, the response signals I j k (d) or Ik (θ,d) can

4The examples presented in this thesis have not shown beam combination for three or more beams—
although all methods allow this.
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be generated as presented, spreading the wavelength dependent information over any
range from 0 (no dispersion; as presented) to what the dimensions of the CCD detector
allow.

To illustrate this dispersion for a case where B0 = 0 and one where B0 < B , Eq. (2.26)
is recalled,

I (θ,d) = 4D2sinc2 [Dπ(θ−Mθ0)/Mλ] cos2 [π(d +B0θ−Bθ0)/λ] . (5.6)

For simplicity, M = 1 so only uncompressed beams are combined. The intensity I (θ,d) =
|A′(θ,d)|2 is in fact also a function of λ, resulting in I (θ,d ,λ). When the focused signal
on the line detector would be dispersed, a two-dimensional signal as function of θ and
λ can be measured. These data slabs can be recorded for any d , so that in principle
an intensity data ‘cube’ can be measured. Figures 5.18 and 5.19 provide an example for
a single point source, for the co-axial case B0 = 0. Figure 5.20 does the same for the
case the combination baseline length is B0 = 3D while the telescope separation is taken
B = 8D.

The examples showed the dispersed detection of a single point source from direction
θ0. Since the intensity responses of all point sources can be summed, this detection
principle can be used to observe a general source L(θ0). The detected information in
(θ,d ,λ)-space can be used to generate narrow banded I j k (θ,d) or Ik (θ) polychromatic
intensity signals, with which—as simulated and discussed—aperture synthesis can be
performed and an estimate of the source in that narrow band can be obtained.

5.5 Singular value analysis

The simulations in this chapter have shown the imaging result after the full simulation
cycle of generating response functions, summing them to a measured intensity signal,
‘noisyfying’ that signal to represent low light levels and imperfect detection and, finally,
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(b)Figure 5.19: For 5 values of delay d , the co-axial polychromatic focal field is dispersed. This results
in 5 detector signals, I (θ,λ;d), shown in panel (b). With these two-dimensional data, provided
there is enough signal, aperture synthesis can be performed in very narrow wavelength bands. For
three wavelengths, the intensity as a function of applied delay d is plotted in panel (a). The stars
indicated the sample positions in panel (b). For the central value d = 15.68 µm, all wavelengths
are at zero ODP, since the point source is placed at θ0 = 0.56 µrad and with a baseline B = 28m, the
zero OPD delay is Bθ0 = 15.68 µm.
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(a) (b)Figure 5.20: Line detector detection and dispersed detection of a point response function with
spatially encoded fringes, see respectively panels (a) and (b). Again, D = 3.5 m, B = 28 m, θ0 =
0.56 µrad. Now, B0 = 3D = 10.5m. Again, the spectrally dispersed data provides narrow-banded
spatial intensity data, with which aperture synthesis per band can be performed.
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Figure 5.21: Comparison of the first 20 solution modes vi for the Michelson and the Staircase
method. Generally, the modes are a sum of several harmonics. Note the occurrence of symmetrical
and anti-symmetrical modes, e.g. in the Staircase modes 5 and 6.

estimating an image out of these signals. Based on these estimations, a comparison of
the imaging performance of four interferometers was made. In this section, these find-
ings are compared with information on the interferometers that was already available
after the generation of the response functions and transfer matrices. With these transfer
matrices available, a plot can be made of the singular values related to the four interfer-
ometers and the chosen array parameters, such as delay settings and pixel dimensions.

The regularization process is described in detail in Sec. 4.3. Out of a measurement
vector b, an estimate of the source L̂(θ0), represented by vector xΛ, is given according to

xΛ =
n
∑

i=1

uT
i

bσi

σ2
i
+Λ2

vi , (5.7)

where Λ is the regularization parameter, ui and vi are the measurement- and the solu-
tion modes, respectively, and σi are the singular values. This decomposition of the solu-
tion of the inverse problem is a direct result of the Singular Value Decomposition of the
transfer matrix, based on point source responses. Based on the fact that the mode vec-
tors ui and vi are unitary, Eq. (5.7) makes clear that the constant Λ and the values of σi ,
balance the participation of solution modes vi in the estimate xΛ. The solution modes
are ordered by the SVD with respect to spatial frequency content, from low to high, as
depicted in Figs. 5.21 and 5.22. From a signal theory point-of-view, a good imager would
be susceptible to all spatial frequencies with nearly equal amplitude. Examples are the
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Figure 5.22: Comparison of the first 20 solution modes vi for the Homothetic and the Densified
method. Note how the FOV narrows down in the Densified case, as the spatial frequency increases.

flat frequency response of professional loudspeakers or the gradually decreasing Mod-
ulation Transfer Function (MTF) of a microscope in coherent imaging mode. In other
words, it would be good if the singular values associated with the solution modes show a
slow decline and a small ratio between the largest and the smallest participating singular
value.

The plot in Fig. 5.23 shows the normalized singular values for the four beam com-
biners. This singular value plot can be separated into three regimes, based on the index
i :

◮ Incoherent regime: For indices 1 ≤ i ≤ nPSFs, where nPSFs is the number of inco-
herent PSFs fitting in the field-of-view, the modes relate to the low-resolution or
incoherent image of the sky.

◮ Interferometric regime: The modes for nPSFs < i < iB , where the major spatial
frequency of the mode with index iB relates to the maximum baseline length Bmax,
are the modes related to the interferometric character of the array.

◮ Unsampled regime: The region i > iB contains modes of very high spatial fre-
quency, which do not physically relate to the source nor the measurement, since
these spatial frequencies are not sampled.

As stated, a good imager would demonstrate a slow decline in the singular values and a
small ratio of the largest (in all cases normalized to one) and the smallest singular value.
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Figure 5.23: The normalized singular values σi /σ1 for the four interferometry methods. A flat
line upto the cut-off induced by the maximum baseline Bmax (around i = 100) indicates a proper
transfer of all spatial frequencies. See text for details.

Therefore, the limited condition number

Ci =
1

σi
(5.8)

can be defined, should the plot be limited to index i . In terms of a flat frequency re-
sponse, the Homothetic and the Michelson beam combiners perform well. The height
difference between these two curves relates to the responsiveness of the very low order
modes. Apparently for Michelson, the very low frequent nature of the source (imaged
on the six large pixels) is relatively much stronger represented than the fine structure of
the source. Like the Homothetic response, there is a large drop over the first few values.
This can be related to the fact that the low-frequent response is present in every mea-
surement at baseline length Bk . But the levels of the second regimes differ between the
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Michelson and Homothetic lines. This is due to the nature of the measurement signals. A
typical Michelson signal shows an extended incoherent signal (related to low spatial fre-
quencies) of length (dmax−dmin) ≫ lcoh within which a relatively very short fringe packet
of length lcoh is present. In the homothetic case—with field invariant point response
functions—the high-frequent information is present all over the signal.

Compared to the relatively flat interferometric frequency response of the Homoth-
etic and Michelson beam combiners, the beam combiners Staircase and Densified show
steeper declines for the singular values in the interferometric regime. The curve for Den-
sified is not even reaching the spatial frequencies related to the maximum baseline Bmax.
This was noticed before in the reconstruction of the source HH47, where the transients at
the edges of the FOV were not reconstructed. The singular value plot nicely shows how
the Densified FOV narrows down for higher spatial frequencies, which is also visible in
the vi in Fig. 5.22. Clearly, more steps d are necessary for the Densified simulation to
present a proper frequency transfer—which was not done for illustrative purposes.

The Staircase transfer is slowly degrading up to the frequency limit related to Bmax.
This means that the higher spatial frequencies are relatively more susceptible to loss of
signal strength induced by the staircase mirror. A possible source for this inefficiency
is treated in Sec. B.4, namely that the ‘folding’ of the fringe signal destroys the unique
relation between source L(θ0) and measurement I j k (d). Apparently, this effect is growing
worse for increasing baseline lengths.

5.6 Wavefront filtering

The interferometers under consideration are intended to operate in space. It should be
noted however, that operation of these interferometers on the ground requires several
adjustments of the optical systems, changing possibly the outcome of the comparison.
The use of optical fibers for wavefront filtering, makes the interferometer inherently co-
axial and therefore, it can be concluded that a fiber-equipped interferometer acts as an
optical correlator, equivalent to a radio interferometer (Coudé du Foresto, 1993; Tallon
& Tallon-Bosc, 1994). This prohibits the use of fibers for spatial wavefront filtering on
image-plane interferometers. However, for earth-based stellar interferometry, wavefront
filtering is essential (Saha, 2002; Keen et al., 2001; Buscher et al., 1995).

5.7 Conclusions

In this Chapter and in Appendix C,5 four beam combiners have been compared in per-
forming the same imaging tasks. The major point of comparison has been the image
quality versus the time needed to acquire it. The ability to cover a wide field-of-view is
a property of all methods. The study only considered pairwise beam combination and
one-dimensional images. Although the measurement signals are of very different nature,
the encoded information of the source can be sampled by a focal plane array, at one or
more positions of a delay line in one of the two interferometer arms.

5In Appendix C, the four methods are simulated again. In this case, a very wide FOV of 11 PSFs is taken, that
is fully covered by all four methods. A solid range of spatial frequencies is covered, for all angles of incidence
θ0. Baseline lengths up to 112 m are taken, in order to approach the desired resolution for the Darwin imaging
mission.
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The simulations show that the image plane combiners, Homothesis and Densified,

image faster than co-axial imagers for relatively narrow FOVs. For a wide FOV, Densified
imaging loses its advantages rapidly. Homothesis is then the most efficient and fasted
imaging method. For the co-axial methods, Michelson and Staircase, it can be stated
that the Michelson method is as efficient as Homothesis, but that it is less apt for wide
FOVs, resulting in long observation times, since essentially multiple directions have to be
imaged sequentially. Trading off for efficiency, the Staircase method cancels the need for
sequential imaging with Michelson. Hence, the Staircase method gains imaging speed
and is nearly as fast as Homothesis. Besides image quality and speed, the hardware re-
quired to build and operate a specific type of beam combiner can also be compared. This
results in Table 5.7.Table 5.7: Comparison of four beam combination methods. The ‘Imaging efficiency’ and ‘Imaging
speed’ are based on the quantitative numerical simulations in this Chapter. The ‘Robustness’ is of
qualitative nature.

Description Homothesis Densified Michelson Staircase

Imaging efficiency ⋆ ◦ ⋆ ◦
Imaging speed ⋆⋆⋆ ⋆⋆ ⋆ ⋆⋆

Robustnessa ◦◦ ⋆ ⋆ ◦◦

Legend: ⋆= positive, ◦ = negative.

aThe amount of moving surfaces needed for operation of the beam combiner is inversely proportional to
the robustness of the beam combiner.

The conclusions drawn from this Table can be sorted with respect to the desired FOV
for an observation. For narrow-field—or single-PSF—interferometry, a Michelson beam
combiner is the optimal solution. A high imaging efficiency is realized with a very simple
and robust beam combiner. For a FOV that is larger, comparable to the UGC00597-case,
a Densified beam combiner provides the solution that still has a robust beam combiner
and performs fast imaging. For very wide FOVs, the beam combiner needs to be more
complicated. With the remark that the Homothetic imager performed better than the
Staircase imager in all cases, with respect to both efficiency and speed, one of the two
will have to be chosen. The technical difficulties to overcome are summarized in the
following list:

◮ A homothetic imager with fixed beam compression needs a complicated and ac-
curate opto-mechanical solution to position and point the beams in the exit pupil
plane.

◮ A homothetic imager with variable beam compression can be equipped with a
much simpler, fixed and robust beam combiner. However, variable beam com-
pressors (in all beams) or zooming optics that consist of reflecting surfaces at vari-
able separation, require stringent control of the degrees of freedom of these sur-
faces, since not only beam position and pointing have to be controlled, but also
the phase aberrations on the exiting beams.
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◮ A Staircase imager would principally need a staircase-shaped mirror, of which the

stair height h0 is actuatable while keeping all stair-facets parallel. This problem re-
quires a mechatronical solution comparable to Adaptive Optics, with the difference
that the staircase mirror is an element to be placed in the focal plane.

◮ Without an actuatable mirror, a Staircase imager can still operate with a (large) set
of staircase mirrors available, each with a stair height optimized for one specific
baseline length. In the case that the number of baseline lengths requires too many
mirrors available, a limited set of mirrors can be used, so that for some baseline
lengths, staircase mirrors with sub-optimal stair height h0 can be used. The pres-
ence of a set of mirrors is not enough. A mechanical system is required, that can—
like an optical filter-wheel—switch between the staircase mirrors in the focal plane.
This switching would need tightly toleranced positioning accuracy.

With this list of mechanical difficulties and the performed study on the interferomet-
ric signals out of which images have to be produced, the comparison of techniques for
interferometric wide-field stellar imaging is complete. A wide FOV requires a compli-
cated beam combiner of Homothesis-type or Staircase-type, which have, for each of the
four options, mechanical difficulties to overcome. Further research can prove the feasi-
bility of these options and quantify the tolerances or opto-mechanical requirements for
proper operation.





Chapter 6

Experiments on homothesis

In this chapter, a practical implementation of homothesis is demonstrated. The stability
and alignment requirements to maintain homothesis, are validated in an experimental
set-up. In the optical set-up, artificial stars are observed by artificial telescopes and the
collected polychromatic light is coherently combined. The crucial part for the success
of a homothetic observation lies in the accuracy with which the ‘placing’ can be made
‘identical’, that is the accuracy of placement of the relayed pupils. Less crucial—but
nonetheless also scrutinized in literature (ESO, 1995)—is the detector. Critics of homoth-
esis have always condemned the relaying step, because of its too strict tolerances and
the detection for being too noisy, since the light is spread over a large amount of pixels.

This chapter will deal with the specific opto-mechanical tolerances that are required
to ensure proper pupil relaying. In Sec. 6.1, the VLTI geometry is used as a model for
these difficulties. Section 6.1.2 then details the solutions that the experimental set-up
by the Dutch institute TNO TPD offers. Experiments with this homothetic beam com-
biner are clarified in Sec. 6.2.3 and the results are discussed in Sec. 6.3. The chapter is
concluded in Sec. 6.5.

6.1 Design of a homothetic array

6.1.1 The Very Large Telescope Interferometer

In the early 90’s of the previous century, a nearly complete study was presented concern-
ing the Homothetic imaging mode of the VLTI (ESO, 1995). During planning and building
of the site on top of Cerro Paranal, even an extra ‘pit’ was generated in the concrete base-
ment below the future optical switchyard. The pit was meant to house the beam com-
biner for the homothesis. Detailed sketches for this beam combiner—a Cassegrain type
telescope with movable inlets for collimated parallel beams from the delay lines—have
been made. Yet, the beam combiner was never realized and the pit remained empty.

When an input pupil configuration of variable dimensions has to be relayed to an
exact but scaled copy, and the delivery of beams is in a plane, it seems logical to direct
these beams with mirrors to directions perpendicular to this delivery plane, as sketched
in Fig. 6.1. Placing the mirrors at the desired locations yields parallel beams with a con-
trollable configuration that allows a scaled copy of the input pupils. However, the mirror
placement has to be a tilt-free translational placement in two directions. Mechanically,
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Figure 6.1: “Possible configuration of the on-axis

light beams or pupil images at the entrance of the

beam combining telescope. The four large dark

circles are the beams of the 8 m telescopes, the

small ones those of the auxiliary telescopes. The

beam/pupil images are positioned by linear move-

ment of the flat mirrors Mp , which send the light

horizontally into the beam combining laboratory,

and by movements of the flat mirrors Mq which

transfer the light downward into the beam com-

bining telescope. Mq is replaced by M ′
q in case it

is desirable to rotate the image and/or pupil over

180o (as is the case when combining telescopes lo-

cated on opposite sides of the interferometer tun-

nel).” From: J.Optics (Paris), 1991 (Beckers, 1991)

this is hard to realize.

6.1.2 The Delft Testbed for Interferometry

In order to image with a synthetic aperture, the homothetic conditions should be met.
These can be described as: making sure that from input to exit pupils the system behaves
as a regular imaging system. Otherwise, violation of the ‘Golden Rules’ (Traub, 1986)
would disqualify the system for performing proper imaging and would lead to either a
reduced field-of-view or poorly reconstructed images.

For a certain magnification or beam compression factor M, the wavefront of an off-
axis point source at θ0 produces beams of diameter D passing through the input pupils,
separated by a center-to-center distance B . Compared to the exit pupils, the relations

B0 = B/M

θ′0 = Mθ0

B0

D0
=

B

D
, (6.1)

should be maintained. These relationships provide that the spatial information from the
imaged object, related to this B and D, is preserved, and that internal optical path length
differences remain zero for all angles of incidence θ0 at which the sky is observed. Con-
sequently, there is a field-dependent OPD when the exit baseline length B0 is not set
properly. Controlling this length to have no field-dependent OPD effects is a key issue.

DTI has a magnification of M = 1. The next section will detail the tolerances needed
for homothetic performance over the field-of-view of DTI. For an interferometer like
VLTI, the magnification is MVLTI = 800. There, for proper homothetic performance, the
exit pupils need to be positioned with tolerances of 1/M times the tolerances required for
the M = 1 case (d’Arcio, 1999). However, the practical field-of-view of interest for such an
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sky simulator

delay lines

tilt mirrors

beam combiner

telescope mask

Figure 6.2: The experimental set-up for homothetic mapping DTI, the Delft Testbed for Inter-
ferometry (Van Brug et al., 2002), in the labs of TNO-TPD in Delft, the Netherlands. Systems for
telescope movement and sky rotation are not shown in this picture.

interferometer is much smaller than that of the DTI. DTI offers a FOV of 800 times that
of the VLTI, if imaging aberrations can be neglected.

When a smaller field-of-view is accepted, so that fringes ‘drift’ off-center for off-axis
stars, the absolute mapping condition in Eqs. (6.1) can be relaxed. Experimentally, one
can determine to what extent the mapping can be relaxed and at what tolerance the exit
pupils need to be positioned. From the formed image of the stars on the CCD, the map-
ping quality can be derived and position feedback to the pupil locations is possible. After
discussion of the measurement algorithms and the actuation strategy, one experiment is
performed. The goal of this experiment is to demonstrate the measurement of fringe
phase on all stars in the FOV and to steer the beam combiner in such a way that the
differences between these phases are less than the limit for cophasing.

6.1.3 Tolerances

Various authors have discussed the strenuous task of aligning an optical array of tele-
scopes with combined focus (Meinel, 1970; Traub, 1986; Beckers, 1990; d’Arcio, 1999).
Within the VLTI context, an extensive study was presented by Beckers. The study derives
tolerances for the degrees of freedom that have to be restricted per beam: pupil rotation,
magnification, pointing, path length and translation. As will be discussed, path length
and translation are restrictions related purely to interferometry. The other three are ob-
vious, considering the image on the camera that is provided by each beam. Every single
beam offers a low-resolution image of stars or stellar objects on the sky. Multiple beams
deliver multiple images of the sky, that should therefore not be rotated, magnified or
displaced (displacement in focus is a tilt of the beam) with respect to each other. There-
fore, the diffraction envelopes of point sources at the edges of the FOV should coincide
with a tolerance of the size of a fraction of the diffraction envelope. The effect of having
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Figure 6.3: Illustrations of two mapping errors, beam translation (left) and differential magnifica-

tion (right). The phase fronts for two stars, at θ(1)
0 and θ(2)

0 before collection are indicated, as well
as the partial wavefronts in the beams just before entering the beam combiner. The translated

exit pupil causes a field-dependent OPD, since the partial wavefronts in the righthandside beam

for θ(1)
0 and θ(2)

0 have an extra difference with their respectively correct wavefronts. For the differ-

ential magnification, there is an extra tilt between the partial wavefronts, causing non-overlapping
images of the sky. Moreover, the path length error is field-dependent again.

differential translation or path lengths of the beams, is illustrated in Fig. 6.3.
In 2002, the Delft-based organization of TNO, TPD, built a demonstrator for homoth-

esis, called DTI, equipped with a different approach for pupil placement. For this set-up,
the tolerancing study as done by Beckers, is repeated. The image overlap is allowed to
be 1/10th of a diffraction envelope size. This will not lead to very strict tolerances on
the alignment. The amount of path length differences and variations (δP ) across the
field-of-view that can be allowed, determine more strictly the tolerancing of the pupil
configuration parameters. Beckers considers three cases for δP :

1. A cophased field-of-view in which δP << 1 wavelength. In this case the white light
fringe stays with a star1 image, to within a fraction of a fringe, when the star is
moved across the field-of-view.

2. A highly coherent field-of-view in which δP < a few wavelengths. In this case, all
stars in the field-of-view have fringes, but the fringe-phase of a star depends on its
location on the sky.

3. A poorly coherent field-of-view in which δP < many wavelengths. In this case

1In this study, stars are considered to be point sources. In the lab, the stars have a finite size, but are much
smaller than the PSF. Wide-field stellar objects, much larger than a PSF, are not considered.



6.1. DESIGN OF A HOMOTHETIC ARRAY 105Table 6.1: Required tolerances for the testbed DTI to perform homothetic mapping up to a co-
phased condition, defined as 1/20th fringe movement. The table is equivalent to that in “Factors

affecting wide field-of-view operation” (Beckers, 1990). AField overlap: 10% of Airy diameter mis-

match allowed.

Criterion at field Cophased FOV
θ0,max is 20 µrad δP < 0.1 µm DTI Criterion Should match to

θ(1)
0 terms

Fractional baseline ∆B /B 1.67 ·10−4 Exit baseline B0 10 cm ±16.7 µm

Fractional magnification ∆M/M 1.67 ·10−4 Magnification M 1±1.67 ·10−4

θ(2)
0 terms

Transverse exit pupil
placement [µm] 5 ·104 Pupil Piston 0±25 nm

Fractional magnification ∆M/M 5 ·10−1 (M less severe) —
Image matchingA dθ0 = 6.1 µrad
Fractional magnification ∆M/M 8 ·10−4 Pupil tilt 0±6.1 µrad

Pupil rotation [degrees] 0.045 (M less severe) —
Pupil rotation

φmax [degrees] .002 Pupil rotation .23 deg or 4 mrad
δφ [degrees] .001

δPt ot [µm] 0.22 Fringe movement 1/4 fringe

Numbers in bold are critical tolerances.

fringes may be visible on a star in the field-of-view, but might have moved off for
another star.

Ad 1. The fraction by which the fringe is allowed to move depends on the application.
For astrometry, a more accurate fringe phase is needed than for imaging. For the DTI,
the fraction is chosen to be 1/20, so that over the FOV, the central fringe is centered on a
star and is not moving more than 1/20th of a fringe width off-center.
Ad 2. After construction and coarse alignment of the beam combiner and relay optics by
hand, the highly coherent FOV is already achieved. The optical alignment and mechani-
cal construction lead to fringes on all stars in the field-of-view, be it clearly not centered
on each star.

Beckers then constructs the following equation for the internal path difference Ω for
off-axis rays in the VLTI:

Ω(θ0) ≈ d −Σ ·
(

1−
M2θ2

0

2
·

M4θ4
0

24

)

−B0

(

Mθ0 −
M3θ3

0

6

)

, (6.2)

resulting from series expansion for small values of θ0. The term Σ results from off-zenith
observations, causing a field-dependent external delay that has to be compensated with
delay d in the delay lines. DTI observes near zenith with all telescopes in one plane,
eliminating the occurence of length Σ.

The tolerances following from the set of Beckers’ equations—where all sources of un-
wanted field dependent OPDs (or δP ) are summed—are listed in Table 6.1. The indi-
cations in bold refer to critical tolerances, based on knowledge of the relay optics. For
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Figure 6.4: Sketch of an in-line version of the DTI set-up. Light from a point source is colli-
mated, after which it encounters an aperture mask. Beams are then relayed independently from
each other, with magnification M = 1. Then, the collimated beams are focused by a parabolic–
hyperbolic mirror pair, indicated by positive and negative lenses, respectively. This combination
was chosen to increase the effective focal length.

VLTI and DTI, the bold indications occur at different positions, since different hardware
is used. Matching the baseline length B0 = B remains critical, but DTI’s 3 µrad tilting
mirrors with a separation of 1 meter give a high enough accuracy, even for the shorter
baselines. The transverse exit pupil placement was found critical for VLTI,2 but is not
critical for DTI: both input and exit pupils do not have freedom to move out-of-plane
and the path lengths can be controlled easily to be differing less than λc /20 = 25 nm.
Pupil rotation as mentioned for VLTI is also not critical because the symmetric lay-out
of the relay trains prevents pupil rotation to occur in the amount as specified for DTI.
However, another source for image mismatching is pupil tilt. Since the DTI exit pupil
placement system consists of tilting mirrors, it is necessary to monitor the occurrence
of unwanted tilts. Both tilting mirrors have an angular accuracy of 3 µrad and the com-
bined tilting of both (for pupil translation) is calibrated with a direct feedback on tilt, as
will be described in Sec. 6.2.2.

6.1.4 Detector

The 1995 VLTI documentation speaks of several observational modes. One detector ar-
ray should execute three tasks, being fringe tracking, imaging and spectrometry. This
means that every single pixel should incorporate energy resolution, while keeping the
individual detectors small enough to be able to detect fringes. For VLTI, the detector
is not specified further. By using an array of fibers, the information in the focal plane
could be transported for dispersed detection elsewhere. Therefore, the three observa-
tional modes seem possible. For DTI, an optical CCD camera was used as focal plane
intensity detector. For the demonstrator, imaging and spectrometry are left out. Fringe
tracking however, can be demonstrated with the intensity images the camera provides.

6.2 Measurement and actuation

As discussed before, the pupil relay and beam combination are toleranced with respect to
beam rotation, pointing and magnification for sky overlap. Moreover, pupil positions and
optical path lengths are toleranced to ensure a cophased FOV. The unknowns here, are
the positions of every star i on the sky θ(i)

0 , the baseline lengths B and B0 (only relative

2For a general off-zenith observation at the site of VLTI, the telescopes are not in one plane, resulting in
differential path lengths. The path lengths are equalized in the long delay lines, but after beam compression.
This causes differential diffraction effects for each beam.
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(a) Sub-image of a single star (b) DTI telescope configurationFigure 6.5: Typical image of a point source, imaged through the DTI system: (a) an Airy envelope
and fringe packets across it, perpendicular to the three baseline directions (b).

coordinates of pupils have to be considered) and the delay d j per beam j . The knowns
are listed in Table 6.2. Table 6.2: Specifications of DTI.

Specification Value

Beam diameter D = 1 cm
Magnification M = 1
Focal length f = 5 m
Central wavelength λc = 500 nm
Pixel size pix = 7.5 µm

The only data available for arriving at B0 = B and d j ′ −d j = 0, are images from the
camera. The algorithm for deriving the fringe phases is based on analysis of the Fourier
space of a two dimensional image from the CCD camera. For clarity, the procedures in
the algorithm will be explained by a one-dimensional example. This one-dimensional
example can be regarded as a cross-section through a two-dimensional star image in the
direction of any of the baselines.

6.2.1 Measuring star and fringe packet

The CCD-camera provides an image of the sky containing three stars, all resembling
Figure 6.5a. The origin of the diffraction envelope of a star is measured in meter, as
x1 = f · θ0. The coarse location x0 is easily detected and a small sub-image I (x) for
−dAiry < (x − x1) < dAiry can be cut out around this location. The Fourier transform of
such a sub-image allows to look at the spatial frequency content of the sub-image.

A star with fringes on it (see Fig. 6.6) is regarded to be a superposition of informa-
tion in two different spatial frequency regimes. The star envelope is relatively large with
respect to the size of the sub-image and yields information in the low spatial frequency
band. The fringe pattern in the envelope consists of narrow lines and is hence related
to higher spatial frequencies. The Fourier spectrum of the data is given in Fig. 6.7. The
amplitude part clearly shows the presence of the envelope in the low spatial frequencies
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Figure 6.6: This dataset represents an Airy envelope with a packet of interference fringes in it. The
envelope is not centered in the dataset (representing an unknown exact location of the star) and
the fringe packet is not centered in the envelope, representing a non-zero OPD.

(in the center) and the fringes at some higher frequencies (on two sides of the center). In
the definition of the Fourier transform,

F [ f (x)](k) =
∫∞

−∞
f (x)e−2πikx dx, (6.3)

shifting a function f (x) to f (x−x0) yields an addition of a phase contribution linear with
wavenumber k and proportional to the shift x0. Using u = x − x0, this phase addition
appears in

∫∞

−∞
f (u)e−2πikudu =

∫∞

−∞
f (x − x0)e−2πik(x−x0)d(x − x0)

= e2πikx0

∫∞

−∞
f (x − x0)e−2πikx dx, (6.4)

where d(x − x0) = dx since x0 is a constant. The result of Eq. (6.4) is referred to as the
shifting theorem. It is the basis for both envelope position determination as well as fringe
phase estimation. The Fourier amplitude spectrum and phase spectrum are defined as

F (k) = |F [ f (x)](k)|
Φ(k) = arg

{

F [ f (x)](k)
}

. (6.5)

The Fourier amplitudes of the shifted function F (k) are used to identify the regions of
interest and the Fourier phases Φ(k) in these regions provide the amount of shift. If the
steepness

α=
dΦ(k)

dk

∣

∣

∣

∣

k=0
(6.6)

of the central lobe’s phase function is measured, the linear contribution in the total

Fourier-phase function (after unwrapping) can be subtracted, according to

Φ2(k) =Φ(k)−αk, (6.7)
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Figure 6.7: The representation of the dataset
in Fig. 6.6 in Fourier amplitude and phase.
Top: the amplitude part on a logarithmic scale.
Middle: the phase information, wrapped be-
tween minus and plus π. The fitted line φ =
7.2 ·10−4k is indicated. Bottom: the processed
phase information. The typical values for the
spatial frequencies of the envelope and the
fringe packet correspond to the wavenumbers
±kd = 1.9 ·103 and ±k f = 2.0 ·104 m−1.
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Figure 6.8: Thresholding the Fourier ampli-
tude data clarifies the twofold slope retrieval.
Top: the amplitude graph identifies a central
lobe (containing the presence of the envelope)
and two periferic lobes (for the presence of
the fringe packet). Middle: the phase trend
(present everywhere, but measured in the cen-
tral lobe region) that is to be removed. Bottom:
fitting a line through the phase information
of the packet-lobes yields a measure for the
packet position. The fitted line φ = 1.0 ·10−4k

is indicated.

making the ‘shift’ of the function I (x) undone. Comparing the multiplication with the
phase factor exp[2πi kx0] in Eq. (6.4) with the addition of −αk in Eq. (6.7), it can be de-
duced that the shift x0 = 2πα. This measure for how far the envelope was out of the
center, together with the coarse cut-out location x1, yields an accurate sub-pixel resolu-
tion position of the star as

x2 = x1 −2π
dΦ(k)

dk

∣

∣

∣

∣

k=0
. (6.8)

The algorithm breaks down when the steepness is that high, that phase unwrapping
in the central region is necessary. In practice, this occurs when the envelope is close to
falling outside the boundaries of the sub-image, when the detected value of x1 is too far
out of range. Taking 128 pixels squared for a sub-image and having a diffraction envelope
of approximately 50 pixels, the coarse position estimation should be accurate up to 78
pixels, which is easily achievable.

Figure 6.8 shows what happens in the regions of interest, using a threshold on the
Fourier-amplitude graph in Fig. 6.7 to identify the spatial frequency regions where actual
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information is present. The spatial frequencies of interest in Figs. 6.7 and 6.8 can be
found around kd , the wavenumber of the diffraction envelope, and k f , the wavenumber
of the fringe packet, given by

kd =
2πD

2.44λc f

k f =
2πB0

λc f
. (6.9)

After removing the linear slope in Φ(k), resulting in the Fourier-phases Φ2(k), the re-
maining phase-slopes in the sidelobes around k f provide likewise the information on
how far the fringe packet is off-center, assuming a symmetric fringe packet. Again, the
shift property of the Fourier transform is applied, this time to the function representing
the fringe packet.

Whereas the total function was centered by fitting a line through the central phases
Φ(k), for −kd < k < kd , the retrieval of the fringe phase (or packet position) is a result
of a least squares fit through the peripheric phases Φ(k), for |(k −k f )| < kd . Both fitting
functions are a straight line, so φ= a ·k +b with b ≃ 0. The outcome for b can be used to
check the fit, since the line has to pass through zero. For steep lines (a packet far away
from the center), phase unwrapping is necessary, starting from the origin. The algorithm
breaks down at steepness values that make the unwrapping unreliable. This will occur
when the packet is nearly off the envelope, so when the optical system is getting close
to not being coherenced. ‘Rough coherencing’ should therefore be performed before this
algorithm for fine coherencing can be used. The resolution of measuring the fringe shift
by this principle can become very high by taking more than one measurement. This
allows cophasing up to the level that fringes are being detected at 1/20th of a fringe-
distance off-center.

Measurements

To obtain information on the mechanical stability of the DTI set-up, a long term mea-
surement was performed, logging the directions of nine beams running through DTI.
Figure 6.9 shows the focused image of these nine beams. It is obtained by observing
three white-light point sources through three apertures. The images of the sky are inten-
tionally not overlapped. In the resulting image, the centroids of the spots are identified
and logged.

This position logging resulted in the data represented in Fig. 6.10. Overnight, the
passive opto-mechanical construction, placed in an unconditioned room, maintains a
pointing accuracy of typically 8 µrad. Both the short-term pointing errors and the OPD
behavior—after correct alignment so that fringes appear on the stars—were not mea-
sured. However, visual inspection of the CCD-feed (of which a still is depicted in Fig. 6.11)
showed fringes at a fixed position, with a constant visibility value.

In the fringe-phase accuracy measurements, the fringe phase on each star with index

i is expressed as a piston pi . Through several measurements p
( j )
i

, with j = 1, 2, . . . , J , a
straight line is fit, according to

p̂
( j )
i

=αi p
( j )
in,i +p0,i , (6.10)

where p
( j )
in,i and p0,i are the applied pistons (OPD) and the OPD off-set, respectively. For
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the resulting misfit, the standard deviation is taken to be the square root of the bias-
corrected variance, and is given as

σN−1 =

√

√

√

√

1

N

N
∑

i=1

(

pi − p̂i

)

. (6.11)

The measurement, as well as the fit and the standard deviation, are presented in Fig. 6.12.
From this Figure, it can be concluded that the fringe phase on each star, expressed as
OPD in meters, can be measured with an accuracy of approximately 10 nm.

6.2.2 Actuation of beam relay

As mentioned, wrong baseline lengths B0+∆B in the exit pupil configuration show up as
field-dependent OPD effects, δP =∆B ·θ0. The location of the optical axis on the camera
is unknown and the axis might even be projected outside the CCD. Therefore, only rela-
tive coordinates of the stars θ(2)

0 −θ(1)
0 can be measured with the procedure described in

Sec. 6.2.1. With this relative coordinate known, the measured OPDs on all stars are the
sum of the true OPD between to beams plus the field-dependent OPD effect,

δP12 = (d2 −d1)+∆B(θ(2)
0 −θ(1)

0 ). (6.12)

This requires that a baseline has to be set to at least two values of ∆B , for which then the
fringe positions on the stars are measured, before distinction can be made between the
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Figure 6.10: Stability of DTI. The graph shows the filtered time trace of the centroid locations of
one star, as imaged via three beams. As a function of time, the coordinates on the CCD register
the angular stability of DTI. The measurement started at 15h in the afternoon and ran until 9h
in the morning. After the air circulation in the adjacent laboratory was shut down at 21h in the
evening, the set-up drifts are typically 40 µm. This yields a long-term pointing drift of 8 µrad. The
short-term effects due to vibrations were not properly measured.

unknown OPD (d2 −d1) and the unknown baseline-error-OPD ∆B(θ(2)
0 −θ(1)

0 ). The loca-
tion of the optical axis can be found by extrapolation of the obtained data. Additionally,
since exit pupil displacement in the DTI is performed by a periscope system, at least four
measurements on at least two different stars are needed. The following experiment will
clarify this.

Pupil positioning

To reach homothesis B0 = B , the tilt mirrors need to place and point each beam (exit
pupil) to the proper position and direction. It is required that this can be done auto-
matically and for changing B . For correct homothetic mapping3, stars over the total field
should look the same, so that the PSF is field-independent.

Periscope

The exit pupils are placed with a so-called periscope system of mirrors, as depicted in
Fig. 6.13. By controlling the orientation of the two mirrors, one can influence the out-
going light in three manners. The direction of the wavefront normal can be changed
(by tilting either of the mirrors), the optical path length through this subsystem can be

3Mapping is the process of arriving at and maintaining B0 =B .
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in the FOV display fringes in three directions.

changed (by pistoning either of both mirrors) and the location of the virtual exit pupil
position can be changed by tilting both mirrors over exactly the same angle.

These six degrees of freedom, namely two orientations of the exit beam, two positions
of the exit beam and two pistons of the mirrors, have to be controlled by six mounted
actuators. The actuators are piezo elements with nanometer positioning accuracy over
a 30µm range. A linearized system is valid for the small angles that are envisaged, so a
system of equations can be constructed that relates the effect of every single actuator to
the six degrees of freedom. The six degrees of freedom are not all directly measurable.
However, very good estimates of them can be made. Most important is the strict control
of the direction of the light exiting the periscope. If any combined piezo movement in
the periscope results in a tip or tilt of the outgoing beam with respect to the common
plane of incidence, the star field overlap with the star fields in the other beams is lost.
This important degree of freedom, tilt of the exit beam, is directly measurable on the
camera, since a tilt will result in displacement of the stars related to one beam.

The to be calibrated 6×6 matrix C, relating the 6 piezos to the 6 degrees of freedom,
will then look like

C ·p = b
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where li is the length of piezo element i , ranging from 0 to 30 µm, a j are 36 unknowns
and Tx and Ty are beam translations in directions x and y , respectively. If 36 measure-
ments would be performed, where all li take on random values and the measurement
vector could be obtained, the unknowns could be derived. However, as mentioned, the
observables are partly only observable indirectly.

This problem is solved in the following way. Firstly, the piston movement per mirror
is taken to be the average of the lengths of the three piezos attached to it, so PistonA =
1/3(l1 + l2 + l3). Secondly, the idea of putting random values on the piezos is abandoned.
For all measurements, all piezos are first set to a central stretch of li = 15 µm. Then only
one piezo is set to another length li ′ = 15+∆l , making sure that the resulting tilt4 does
not shift the spot off the detector area. In this way, knowing which mirror is moving,
the tilt can be accounted for in constructing the measurement vector p separately for

4A change of any li results in a combined tip and tilt for the corresponding beam, since the actuators are
mounted at 120o angles.
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movements of mirror A (piezos 1,2 and 3) or mirror B (piezos 4,5 and 6):
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In these expressions ∆x and ∆y are the shifts of one focused spot on the camera and R is
the distance between mirrors A and B. A tilt is thus expressed as a lateral shift, measured
in units of pixels. Tilting mirror A results not only in a measurable tilt of the beam, but
also in a displacement of the exit location, depending on mirror separation distance R.
These measurements do not require fringes on the stars.

6.2.3 Validation

Tilting the periscope mirrors A and B, induces a parallel translation of the exit beam.
It also induces a quadratic dependence of the optical path length, with respect to the
tilting angles of both mirrors. This quadratic behavior of the OPD of one moving beam
with respect to one or more static beams was used as reference for both the FFT-based
measurement algorithm and the C-matrix actuation equation.

Assuming that mirrors A and B pivot around a fixed coordinate, the lateral position
∆x of a beam exiting the periscope and the change of path length ∆l with both mirrors
at an angle α (see Fig. 6.14), are

∆x = R sin(2α), ∆l = R[1−cos(2α)]. (6.15)

Limited series expansion of these expressions yields

∆x(α) = R(2α), ∆l(α) = R(2α2). (6.16)

This change of path length ∆l results in an OPD with the other beams. As a result, fringes
will shift position. At the same time, star overlap has to be maintained, since a pure beam
translation is free of tilt and focuses the beam on the same focal plane location. For
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the experiment, the fringe phases φ1 and φ2 in one baseline direction are measured on
two stars at directions θ(1)

0 and θ(2)
0 . Then, the length of this baseline is either stretched

or shortened by an amount ∆B at the exit pupil plane, by making use of the periscope
system. The extra δP for a star with an off-axis angle θ0 with respect to the projected
baseline is:

δP =∆B sinθ0, (6.17)

which is, for small angles, linear with respect to ∆B as well as to star position on the
sky. Note also that a general OPD effect in the optical train results in a fringe shift that is
equal for all stars. The OPD effect of the DTI exit pupil placement method—the quadratic
function ∆l(α) ≃ δP (∆B)—will therefore show up equally in all stars.

If both the piezo-calibration and the fringe-sensing algorithms are correctly imple-
mented, the quadratic ODP dependence should be measurable and can be fit to the
expected curve, based solely on the separation R of the tilting mirrors—neglecting the
pivot point of the mirrors. The measured results and fitting process are depicted in
Fig. 6.15. The residuals (Fig. 6.16) can be explained as results from slight mis-alignment
in the beam combiner. This is a parabolic-hyperbolic mirror pair, which is known for
its aberration sensitivity for small displacements of the mirrors. These aberrations will
introduce small pupil-position dependent OPD effects that are not accounted for. To
obtain an estimate of this OPD-landscape, a method for in-situ aberration retrieval—
necessary, since aberration measurements on the two parabolae and the hyperbolic mir-
ror do not include alignment errors—was devised, based on a Hartmann-type measure-
ment (Malacara, 1992). When DTI is built up, the full aperture of the beam combiner
is unavailable for measurements. Only the D = 1 cm beams are available. The method
described in Sec. 6.4 can obtain an OPD landscape of the beam combiner, for a small
area around a beam. Without compensation for this OPD-landscape, the found standard
deviation in the measurement of δP can be used to predict the obtained interferometric
FOV.

6.3 Obtained interferometric Field-of-View

With the results presented in Figs. 6.15 and 6.16, the obtained interferometric FOV can
be calculated. After correction for the periscope-induced delay effect, a straight line can
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(a) Fit through measured data (b) Data corrected with parabolaFigure 6.15: The measured OPD effect δP(∆B) of making a baseline shorter or longer is corrected
for the parabolic OPD effect of the periscope. Panel (a) shows the measured δP(∆B). The data are
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part clearly shows up, because the parabola is subtracted. Homothetic conditions are met at the
intersection of these lines: at this baseline length, the fringe phases in the stars are equal and can
be set to zero by adjusting the delay d .

be fit through the measured pi (∆B) data, resulting in p̂i (∆B), equivalently to the expres-
sion in Eq. (6.10). The steepnesses of the lines indicate, that the stars #1 and #2 have a
separation |θ(2)

0 −θ(1)
0 | on the sky of 193 µrad, perpendicular to the projected baseline di-

rection. The absolute differential optical path length |p2 −p1| is therefore measured at a
separation smaller than the FOV. The found standard deviation on these measurements
is at best 5 nm. After adding this standard deviation as an error η to the fit through the
differences, a guaranteed FOV can be found. Therefore,

FOV(∆B) =
|θ(2)

0 −θ(1)
0 | · λ

20

|p̂2(∆B)− p̂1(∆B)|+η
, (6.18)

in which the cophased field-of-view (or interferometric FOV) is stated to be the region
on the sky for which the OPD or |p̂2(∆B) − p̂1(∆B)| + η < λ/20. The measurement er-
ror η therefore narrows down the guaranteed cophased FOV. Figure 6.17(b) shows three
obtained FOVs, as the exit baseline length B0 is scanned (from an arbitrary origin) and
approaches the entrance baseline length B . For the case η = 0 nm, the FOV is larger
than the FOV of the camera in the range −692 <∆B < −656 µm, which is in accordance
with the baseline length tolerance derived from Beckers’ calculation, given as 10 cm ±
16.7 µm. However, η is not zero in practice. Due to noise sensitivity the algorithm pro-
vides estimates with η= 15 nm (see the piston measurement in Fig. 6.12) but even after
averaging, other error sources cause a remaining η= 5 nm (see the residuals in Fig. 6.16).
As a result, the co-phasing of the full FOV can not be guaranteed to be at least λ/20. Al-
though DTI is equipped with a pupil positioning system that can easily meet the 10 cm ±
16.7 µm requirement, no proof can be given that the desired FOV of 1.5 mrad is achieved.
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(a) (b)Figure 6.17: Two stars on the sky at θ(1)
0 and θ(2)

0 , have a fringe phase translated to piston
pi (∆B) in meters. A measurement error η is added to a fit through these pi , resulting in panel
(a), |p̂2(∆B) − p̂1(∆B)| + η. With this difference, the interferometric FOV(∆B) can be calculated,
panel (b). See text for details.

Repeating the calculation with η = 2.5 nm results in a co-phased 1.5 mrad FOV with a
10 cm ± 4 µm tolerance.

Both the algorithm that estimates the central fringe position relative to the star enve-
lope and the origins of remaining OPD variations across the field have to be improved.
The latter—causing residuals in the expected linear OPD behavior—is an effect that can
be compensated for, once known. For the algorithm, a more sophisticated estimator
has to be developed, especially when weaker stars have to be used as references for co-
phasing.
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(a) (b)Figure 6.18: (a) Image of three stars in best focus, as observed by the full synthetic aperture
without telescope mask. The full area of the beam combiner (synthetic aperture) was not intended
to approach the diffraction limit. (b) Three stars, as imaged through three telescopes on the DTI.
If the images of the sky are intentionally placed side-by-side, it is clear that the images of the sky
are not exactly the same. This makes it impossible to overlap corresponding stars from different
beams.

Measured

Fit

Figure 6.19: This diagram indicates the measurement locations of the aperture in the synthetic
pupil. For each position of the aperture, the displacement of the focus on the camera is measured.
This displacement is indicated in the plot, originating from the aperture location (although the
focus remains close to the origin) with arrows having a scaled length, of arbitrary units.

6.4 In-situ aberration retrieval

The images of the sky as ‘seen’ through the three telescopes are not exactly the same.
Figures 6.18(a,b) show a three-star sky, imaged through DTI once with and once without
a three-telescope aperture mask. Although differential pupil rotation is eliminated, it is
impossible to obtain exact overlap of the sky images from each beam. In other words,
three images of one star can be made to overlap, but this will result in a non-overlap of
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the three images of another star in the sky. This might be due to differential deformation
of the images of the sky, which can be expected if the beam combination optics show
aberrations. Aberrations include production inaccuracies on the various curved surfaces
as well as alignment errors of these surfaces with respect to each other. The locations
of the three apertures make that completely different parts of the curved surfaces of the
beam combiner elements are addressed. Moreover, the relatively long path that has to
be traveled from the entrance pupil to the beam combiner optics (≃2 meter) makes that
essentially all of the nine beams present (three telescopes looking at three stars each)
hit a slightly different part of the beam combiner. An aberration on one of the surfaces
or generally on the beam combiner will then add a different tilt to each beam. These
beam and star dependent extra tilts cause improper image overlap at the camera. Fig-
ure 6.19 shows a measurement of this beam location-dependent tilt effect. But moreover,
location-dependent added OPD can be expected as well, resulting in OPD changes as a
function of the location of a beam in front of the beam combiner. Knowledge of such a
‘beam combiner induced OPD landscape’ is essential to be able to automatically align a
set-up such as DTI to homothesis. A situation might occur, in which the phases of the
fringes on stars in the FOV cannot be equalized to a degree comparable to the detection
accuracy.

Production accuracy

The production accuracy of the curved beam combiner surfaces was chosen such, that
a 1 cm beam footprint would experience small enough aberrations, to reach a nearly
diffraction-limited spot in focus. To no extent it was desirable to produce the full syn-
thetic aperture of the beam combiner to operate near the diffraction limit. The synthetic
aperture has a diameter in the order of 10 cm, a beam is 1 cm in diameter. The desirable
diameter of a near-to-aberration-free virtual surface through the beam combiner lies in
between these values. For proper image overlap, the footprint of the full FOV on the
beam combiner should be nearly aberration-free.

A tilt of a wavefront causes a shift in focus. For an overlap of two beams, encountering
two different areas of the beam combiner, the differential tilt for them to be overlapped
better than a tenth of an Airy diameter, is then λ/10D, since a phase shift of 2π over the
beam diameter induces a tilt as large as the angular Airy diameter. For an image of the
sky, where the stars at the edges are overlapped just as well as the central stars, the same
rule of thumb has to be applied to the footprint of the FOV on the beam combiner. The
optical path length from the entrance pupil plane to the virtual plane of the single-lens
beam combiner, is roughly5 2 m. This yields a footprint diameter of FOV · 2 = 2 mm.
Around the three exit pupil positions, there should hence be areas of approximately 1.5
times the beam diameter, where the OPD landscape has a Peak-to-Valley height of less
than a tenth of the central wavelength. Only then, the full FOV, as imaged through three
apertures, can be overlapped.

The next section will demonstrate how the beam combiner-induced tilts are mea-
sured and how a virtual OPD landscape is calculated from these data. Knowing the added
OPD as a function of the position in the synthetic aperture, differential fringe phases per
star can be compensated for.

5The beam combiner is illustrated as a single-lens imaging system. However, in practice, the beam combiner
is a Cassegrain-telescope, consisting of a parabolic and a hyperbolic surface, separated by a certain distance.
The distance of 2 m is the best case estimate for the distance from entrance apertures to the beam combiner,
since this is the distance at which the first surface—the parabola—is encountered.
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Sideview

Aperture

Aberrated beam combiner

Focal
plane

Frontview

x , yi i

Figure 6.20: Sketches illustrating the in-situ measurement of beam combiner aberrations. The

side view shows how two stars, from directions θ(1)
0 and θ(2)

0 , are imaged via two apertures. An
aberration-free beam combiner would focus these stars twice, on top of each other, with interfer-
ence fringes. The sketch shows how in stead of two focused stars, four spots are visible in focus.
This is due to the aberrations, indicated schematically at the back of the lens. The front view

illustrates how one beam can be translated (without additional tilt) to a position (xi , yi ). The aber-
ration profile in the area around this location will cause a slight but measurable displacement in
focus. For the measurement of these displacements, only one beam at a time is passing through
the beam combiner.

The pupil function P (r,ϑ) = 1 ·exp [iΦ] represents a uniform amplitude part and an
unknown phase departure Φ(r,ϑ). Based on the Zernike polynomials Z m

n , any complex
pupil function can be expressed as the sum of several of these functions. The amplitude
(transmission through the pupil) is assumed to be constant and of unit magnitude. The
phase function can be expressed as

Φ(r,ϑ)=
∑

n,m
αnm Z m

n (r,ϑ), (6.19)

where αnm is a constant for the participation factor of that polynomial. The sought
‘added OPD landscape’ can now be approximated by

P ′(r,ϑ) =
λc

2π
arg[P (r,ϑ)] . (6.20)

Since the deviations are expected to be very small as compared to the dimensions of the
pupil, there holds ei x ≈ 1+ i x and the sought landscape is, apart from a constant, very
well approximated by the sum in Eq. (6.19).

This landscape will be sampled at discrete locations rather than over the full coor-
dinate range. Moreover, rather than measuring ‘heights’ or the phase profile, only the
surface normal vectors can be measured. Similar to the famous Hartmann screen test,
e.g. as described in (Malacara, 1992), the focus locations of various sub beams within
the aperture are analyzed. However, in stead of a drilled screen, only one beam was used
and repositioned sequentially. Both the Hartman test and this one rely on the fact that
an aberration-free optical system focuses parallel beams on the same location and has
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Figure 6.21: Illustration of the decomposition modes, corresponding to the x- and y-derivatives
of the Zernike functions, evaluated at the measurement locations. The circle represents the area of
the full synthetic aperture.

a linear relationship between off-axis angle of the collimated beam and the off-axis lo-
cation in focus. Deviations from this location, depending on the area of the pupil that
was used, are due to aberrations. The spot dislocation hence leads to a measure for the
deviation of the surface normal and the normal vector can be rotated by π/2 to give the
surface tangential vector, corresponding to the derivatives of the ‘landscape’. Figure 6.19
shows this measurement of dislocations. Unlike the Hartmann- or alternative tests, the
method based on Zernike derivatives does not require a regular sampling grid. Extrapo-
lation from probe locations to the full aperture is easy using the Zernike functions and is
allowed as long as the Zernike derivatives, evaluated at the probe locations, form a near
orthogonal basis, like the full Zernike functions. Naturally, very localized defects on an
optical surface can only be reconstructed when the area of this defect is probed.

The derivatives to be measured in x and y-direction, are introduced in the expression
as

∂P ′

∂x
=

∂Φ

∂x
=

∑

n,m
αm

n

Z m
n (r,ϑ)

∂x
. (6.21)

Analytically, the derivatives of the Zernike functions would have to be calculated. Nu-
merically, this is realized by a few extra evaluations of the Zernike functions at minimally
separated locations, from which the Euler derivative can be calculated. The polar coor-
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dinates are transformed according to x = r cosϑ and y = r sinϑ. Still only considering the
x-derivative, this yields, at a location (xi , yi ), the expression

∂Φ

∂x

∣

∣

∣

∣

xi ,yi

=
∑

n,m
αm

n

Z m
n (xi , yi )

∂x

=
∑

n,m
αm

n

Z m
n (xi +∆x, yi )−Z m

n (xi , yi )

∆x
, (6.22)

where ∆x is very small. The same expression can be given for the y-direction. The coeffi-
cients α that are sought are the same for the expressions in x and y directions. Therefore,
the linear system of equations that is constructed, consists of two parts.
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(6.23)

The derivatives are a linear combination of the derivatives of the Zernike functions. This
expression can be denoted as

d = Z ·α. (6.24)

A few examples of these Zernike derivatives are presented in Fig. 6.21. The Zernike par-
ticipation coefficients αm

n can be found after a regularized inversion α = Z−1
reg ·d. With

the coefficients found, the pupil function or the OPD profile can be constructed as the
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Figure 6.24: Enlargements of three regions of Fig. 6.23. See text for details.

sum of regular Zernike functions, as in Eq. (6.19). This allows for evaluation of the lo-
cally added OPD at other locations than the probe locations. Moreover, the sample loca-
tions do not necessarily have to be located in a grid, unlike for conventional integration
(Malacara, 1992). Since the expected aberrations are assumed to be smooth, the Zernike
expansion even allows for extrapolation outside the scanned area. In addition, the com-
ponents for defocus (Z 0

2 ) and tip and tilt (Z±1
1 ) can be removed, since these aberrations

are not effectively present as aberrations of the beam combiner. Including them would
falsely aggravate the Peak-to-Valley height difference in the OPD landscape.

In Fig. 6.22, the result of the fitting operation is illustrated. As in Fig. 6.19, both the tip
and tilt measurements are plotted, for both the horizontal and the vertical set of probe
locations. The fit with Zernike derivatives produces an adequate representation of the
noisy measurement. With the participation factors αm

n known, the virtual OPD land-
scape can be composed. The result is depicted in Fig. 6.23. The beam combiner is found
to be strongly astigmatic, which is qualitatively in accordance with the full-aperture PSFs
as imaged in Fig. 6.18(a), where—going through best focus—clearly a horizontal and ver-
tical orientation of the foci before and after best focus, respectively, could be observed.
Quantitatively, the OPD landscape shows deviations in the order of microns, where the
Peak-to-Valley range is 15 µm. Over areas of the diameter of the FOV-footprint, devia-
tions in the order of 1000 nm can be expected, which would—considering a wavelength
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of λc = 500 nm—cause stars at the edges of the FOV to be possibly mis-overlapped with
their images from other beams by an amount of two Airy diameters. During the experi-
ments, such severe mis-matches were never encountered. The square areas in Fig. 6.23
are enlarged and plotted in Fig. 6.24. These contour plots basically demonstrate mainly a
tip or tilt over the area, which can be accounted for by re-pointing the three beams. But
the other features, indicated by the fact that the lines are curved, cannot be compensated
for and will cause distortion of the image of the sky, that is different for the three images
delivered by the three telescopes.

6.5 Conclusions

In this Chapter, an experimental set-up and a number of different experiments have
been described. Unlike in the preceding Chapters, image reconstruction was not the
main issue in these experiments. The set-up DTI offers only a single (although not rigid)
baseline configuration, which provides far too little information to reconstruct an image.
However, a number of conclusions can be drawn from the performed experiments.

Mechanically, DTI performs outstanding. Without feedback loops to control beam
pointing or piston movements, the pupil relay optics are stable enough to provide an
image of the sky where all stars in the FOV are visible as diffraction envelopes with clearly
visible fringe patterns on them.

The interferometric FOV, for which the imaging array can be considered to provide a
field-invariant interferometric PSF, is as large as the FOV of the detector. However, this
statement is largely depending on the measurement accuracy of a fringe packet position
with respect to its envelope. The Fourier transform-based algorithm for this task provides
enough accuracy, be it that DTI is operating in a photon-rich regime.

To properly measure the relative position of a fringe packet with respect to a diffrac-
tion envelope, the diffraction envelope needs to be well-defined. The single-telescope
images of the sky need to be overlapped perfectly, in order to find the correct centroid
of a star. This is impossible with DTI. Aberrations in the beam combiner induce dis-
tortions in the single-telescope images that are different per image. It should be noted
however, that a slight mis-overlap of images of a star does not shift the resulting fringes
noticeably. But the fact that field-dependent distortions occur, means that there exists
field-dependent optical path lengths, causing fringes to shift directly. Erroneous mea-
surements of fringe phases will be the result.





Chapter 7

Aberration retrieval

7.1 Introduction

Aberrations play an important role in any optical imaging system. Constant monitoring
of them is required. For complicated optical projection systems as encountered in lithog-
raphy, long-term drifts or deformations might occur, degrading the performance of the
lithographic imager. For optical systems in astronomy, short-term changes of the aberra-
tions are induced by the changing atmosphere and the dynamics of the support structure
and housing of the telescope. In the special case of interferometry, an improper place-
ment, pointing or co-phasing of one of the apertures in the array, can be considered as a
strongly localized aberration of the synthetic and sparsely filled aperture.

Although several methods exist for aberration retrieval, (Farrar et al., 2000; Zach et

al., 2001), a new approach was developed, based on the analysis of the intensity point-
spread function at multiple values of defocus. For low to moderate numerical aperture
optical systems, the Extended Nijboer–Zernike (ENZ) formalism was developed (Janssen,
2002; Braat et al., 2002; Dirksen et al., 2003; Janssen et al., 2004). With ENZ, the inten-
sity PSF in the focal region can be described, given a de-focus parameter, the numerical
aperture and an (aberrated) pupil function. The heart of the method lies in the fact that
analogous to the series expansion of the pupil function in Zernike functions, the focal
electric field can also be represented by a series of focal field functions. Moreover, it
is shown that with knowledge of the intensities rather than the electric fields at various
planes around focus, decomposition of the intensity data into contribution factors of
the elementary focal field functions becomes possible. These contribution factors then
deliver the Zernike coefficients of the aberrated pupil function (Van der Avoort et al.,
2005a).

Although developed for aberration retrieval in lithography, the ENZ formalism for
aberration retrieval was applied to interferometry. After presenting the theory in Sec. 7.2,
its use for retrieving aberrations on the beam combiner of an optical imaging array are
investigated. Moreover, an analogue description and retrieval experiment will be given
for retrieval of alignment and co-phasing errors of a sparse aperture. The following de-
scription of the ENZ formalism is a shortened version of the description in (Van der
Avoort et al., 2005a), in which also proofs, limits and enhancements of the theory are
discussed.
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7.2 High-accuracy general aberration retrieval

The ENZ theory for low to moderate numerical aperture optical systems can perform
aberration retrieval for two cases, being pure-phase aberrations and general aberrations,
including transmission differences over the pupil. Clearly, the second case includes the
first, yet they will be described separately. The theory for phase-only is much simpler
and describes the basis of the retrieval process.

Zernike representation and retrieval for pure-phase aberrations

A pure-phase aberration in the pupil function P in normalized coordinates is written as

P (ρ,ϑ) = exp[i Φ(ρ,ϑ)] , 0≤ ρ ≤ 1, 0 ≤ϑ≤ 2π , (7.1)

with Φ the real-valued aberration phase. This Φ is thought to be expanded as a Zernike
series

Φ=
∑

n,m
αm

n Z m
n , (7.2)

with real αm
n and Zernike functions Z m

n given as

Z m
n (ρ,ϑ) = Rm

n (ρ)

{

cosmϑ

sin mϑ
, 0 ≤ ρ ≤ 1, 0 ≤ϑ≤ 2π , (7.3)

with Rm
n the Zernike polynomials in standard convention (Born and Wolf, 1980), Sec. 9.2

and App. VII. The summation in Eq. (7.2) is over all integer n,m ≥ 0 with n −m ≥ 0 and
even. The usual symmetry assumption on Φ: Φ(ρ,−ϑ) =Φ(ρ,ϑ), is made, so that only the
cosine-option in the right-hand side of Eq. (7.3) needs to be considered1. The α’s in the
expansion in Eq. (7.2) carry physical significance: α0

2 represents defocus, α1
1 represents

tilt, α2
2 represents astigmatism, α0

4 represents spherical aberration, α1
3 represents coma,

etc.2 The complex amplitude at normalized defocus parameter f of the point-spread
function is denoted by U and follows from Fourier optics as

U (x, y ; f ) ≡U (r,ϕ ; f ) =

=
1

π

∫

ν2+µ2≤1

∫

exp[i f (ν2 +µ2)+ i Φ(ν,µ)] exp[2πiνx +2πiµy]dνdµ =

=
1

π

1
∫

0

2π
∫

0

exp[i f ρ2] exp[i Φ(ρ,ϑ)] exp[2πiρr cos(ϑ−ϕ)]ρdρdϑ . (7.4)

Note the use here of Cartesian coordinates ν, µ and polar coordinates in the exit pupil
[(ν,µ) = (ρcosϑ,ρ sinϑ)], and Cartesian coordinates x, y and polar coordinates in the
focal planes [(x, y) = (r cosϕ,r sinϕ)]. The relationship between normalized image coor-
dinates (x, y) and defocus parameter f on one hand and the image coordinates (X ,Y , Z )
in the lateral and axial direction is given by

x = X
2πNA

λ
, y = Y

2πNA

λ
, f =

πNA2

λ
Z , (7.5)

1The general case can be treated by working with two sets of α-coefficients, one for the cosine- and one for
the sine-functions in Eq. (7.3).

2Also see (Born and Wolf, 1980), Sec. 9.2 for this matter.
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with NA the numerical aperture of the lens and λ the wavelength of the used light. In all
this, it is assumed that NA is sufficiently small, say NA ≤ 0.60, so that certain approxima-
tions are permitted; in particular, the third formula in Eq. (7.5) follows from linearizing
the true focal quantity 2πZλ−1(1− (1−NA2)1/2) as πNA2Zλ−1.

Under the assumption that Φ is sufficiently small, exp[iΦ] may be linearized, and
inserting Eqs. (7.2)–(7.3), this results in

exp[i Φ(ρ,ϑ)]≈ 1+ i Φ(ρ,ϑ) = 1+ i
∑

n,m
αm

n Rm
n (ρ)cos mϑ . (7.6)

Using that for integer m

2π
∫

0

exp[i z cos(ϑ−ϕ)] exp(i mϑ)dϑ= 2πi m exp(i mϕ) Jm(z) , (7.7)

with Jm the Bessel function of the first kind and of order m, the integration over ϑ in
the integral in Eq. (7.4) can be carried out term-by-term by inserting the right-hand side
expression in Eq. (7.6). There results

U (r,ϕ ; f ) ≈ 2V 0
0 (r, f )+2i

∑

n,m
i m αm

n V m
n (r, f )cosmϕ , (7.8)

where

V m
n (r, f ) =

1
∫

0

ρ ei f ρ2
Rm

n (ρ) Jm (2πrρ)dρ . (7.9)

In (Janssen, 2002) and (Janssen et al., 2004), series representations for the integrals in
Eq. (7.9) are presented. The representation in (Janssen, 2002) is a generalization of Lom-
mel’s representation of the aberration-free point-spread function, see (Born and Wolf,
1980), Subsec. 8.8.1, and reads

V m
n (r, f ) = ei f

∞
∑

l=0

(−i f

πr

)l p
∑

j=0
ul j

Jm+l+2 j+1(2πr )

2πr
, (7.10)

where

ul j = (−1)p (m + l +2 j +1)

q + l + j +1

(

m + j + l

l

)(

j + l

l

)(

l

p − j

)

/

(

q + l + j

l

)

, (7.11)

for l = 0,1, ... and j = 0,1, ..., p , and where p = 1
2 (n−m), q = 1

2 (n+m). This representation
can be used for values of | f | as large as 10π, where as a rule of thumb some 3 | f | terms
in the infinite series over l at the right-hand side of (7.10) are required, see (Braat et al.,
2002), App. B. The series representation of V m

n given in (Janssen et al., 2004) is somewhat
more complicated, involving both spherical Bessel functions and Bessel functions of the
first kind and integer order, but has the advantage that it can be used for any value of f

(and r ).
The term 2V 0

0 at the right-hand side of Eq. (7.8) corresponds to the aberration-free
pupil function P ≡ 1. For relatively small aberrations, this term dominates the totality of
all other terms. Accordingly, the intensity point-spread function I = |U |2 is written as

I (r,ϕ ; f ) = 4|V 0
0 (r, f )|2 −8

∑

n,m
αm

n Im[i mV m
n (r, f )V 0∗

0 (r, f )]cosmϕ+C (r,ϕ ; f ), (7.12)



130 CHAPTER 7. ABERRATION RETRIEVAL
where

C (r,ϕ ; f ) = 4
∑

n1,m1 ;n2 ,m2

αm1
n1

αm2
n2

Re[i m1−m2V
m1

n1
(r, f )V m2∗

n2
(r, f )]cosm1ϕcosm2ϕ (7.13)

comprises all second order cross-terms.
Equation (7.12) shows how one can compute the intensities in the focal planes from

the Zernike coefficients α of the pure-phase aberration Φ (assumed that the exp[iΦ] may
be linearized). The inverse problem, in which the α’s are computed from the intensity I

is, in principle, awkward due to the C-term at the right hand side of Eq. (7.12) involving
the α’s quadratically. In Sec. 7.2 a strategy is presented for handling Eq. (7.12) in which
the C-term disappears altogether from the formulas, leaving a set of linear systems in α

(decoupled per azimuthal order m) that can easily be solved. Thus, within this proce-
dure, it is permitted to delete C .

The procedure detailed in this Section to compute α’s from intensities I forms the
basis for the aberration retrieval algorithm related to the ENZ formalism. Thus the as-
sumption is made to have available recorded intensity functions Imeas. The subscript
“meas” serves here to distinguish from the “theoretical” intensity I in Eq. (7.12); no truly
measured data are available. Applying the procedure of Sec. 7.2, with I at the left-hand
side of (7.12) replaced by Imeas, results in finding α’s that are considered to describe the
pupil function that gave rise to the recorded Imeas.

Inversion process

The retrieval procedure derives the Zernike coefficients αm
n of the aberration phase

Φ(ρ,ϑ) =
∑

n,m
αm

n Rm
n (ρ)cos mϑ (7.14)

occurring in the pupil function P = exp[iΦ] from the intensity I = |U |2 in the focal region.
The pupil exp[iΦ] is linearized as in Eq. (7.6) so that the approximation Eq. (7.8) of

U results. Measurements Imeas of the intensity I in the (r,ϕ ; f )-space are considered
to be available, and αm

n are intended to be estimated by adopting a best-fit approach
in Eq. (7.13). A convenient decoupling in subproblems per m occurs by multiplying
Eq. (7.13) by cos mϕ and integrating over ϕ ∈ [0,2π]. Thus the functions Ψ

m
meas are in-

troduced for m = 0,1, ... by

Ψ
m
meas(r, f ) =

1

2π

2π
∫

0

Imeas(r,ϕ ; f )cosmϕdϕ (7.15)

and
Ψ

m
n (r, f ) =−8ε−1

m Im[i m V m
n (r, f )V 0∗

0 (r, f )] , (7.16)

where ε0 = 1, ε1 = ε2 = ... = 2 (Neumann’s symbol). The Ψ
m
meas in Eq. (7.15) are obtained

from the measured data by a Fourier analysis in which only the cosine part matters be-
cause of the symmetry assumption. Equation (7.16) is restricted to integer n,m ≥ 0 with
n −m ≥ 0 and even; all V m

n are analytically available in accordance with (7.10)– (7.11).
With these notations, one can write Eq. (7.12) under deletion of the term C in Eq. (7.13)
as

Ψ
m
meas(r, f ) ≈ 4δmo |V 0

0 (r, f )|2 +
∑

n

αm
n Ψ

m
n (r, f ) , (7.17)
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where m = 0,1, ... and where Kronecker’s delta δmo is used.

Being decoupled per m = 0,1, ... , the αm
n , n = m,m + 2, ... are chosen, such that in

Eq. (7.17) the match between the left-hand side data and the (approximate) theoretical
expression at the right-hand side is optimized. For this, the inner product for functions
Ψ(r, f ) and χ(r, f ) is introduced as

(Ψ,χ)=
∞
∫

0

∞
∫

−∞

Ψ(r, f )χ∗(r, f )r dr d f . (7.18)

Before proceeding, it is noted that

(|V 0
0 |

2,Ψ0
n′ ) = 0 , for all n′ . (7.19)

This follows from the more general fact, see Eq. (7.9), that for all m, n

V m
n (r,− f ) =V m∗

n (r, f ) , (7.20)

so that |V 0
0 |

2 is even in f while all Ψ0
n′ are odd in f . Taking inner products in Eq. (7.17)

yields for m = 0,1, ...
∑

n

αm
n (Ψm

n ,Ψm
n′ ) ≈ (Ψm

meas,Ψm
n′ ) , (7.21)

in which n, n′ are restricted to the range m,m +2, ... .
For m = 0,1, ... a vector of estimates α̂

m of αm = (αm
n )n=m,m+2,... can now be obtained

from Eq. (7.21) as follows. A Gram matrix Γm is defined by

Γ
m =

(

(Ψm
n ,Ψm

n′ )
)

n′,n=m,m+2,... , (7.22)

and a right-hand side vector rm by

rm =
(

(Ψm
meas,Ψm

n′ )
)

n′=m,m+2,... , (7.23)

and the estimate is then

α̂
m = (Γm)−1 rm , (7.24)

where (Γm)−1 is the inverse of the Gram matrix Γ
m in Eq. (7.22). This completes the

description of the estimation procedure.
It has been observed numerically, that the functions Ψ

m
n , n = m,m + 2, ... , for fixed

m = 0,1, ... are close to being orthogonal with respect to the inner product in Eq. (7.18).
As a consequence, the Gram matrices in Eq. (7.22) are well-conditioned, and the inver-
sions in Eq. (7.24) present no problems.

In a practical implementation of the method, the ranges in Eq. (7.21) for n, n′ are
finite, say m,m +2, ...,m +2M . The solution vector α̂m(M) obtained by solving the trun-
cated system has the property that

∥

∥

∥Ψ
m
meas −

∑

n=m,m+2,...,m+2M

ηm
n Ψ

m
n

∥

∥

∥

2
(7.25)

is minimal for ηm
n = α̂m

n (M), n = m,m +2, ...,m +2M . Here ‖ ‖ is the inner product norm
corresponding to ( , ) in Eq. (7.18).
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Retrieval of general aberrations

The problem of retrieving the phase Φ of a pupil function P = exp[iΦ] with a pure-
phase aberration resulted in an algorithm that is surprisingly simple and easy to im-
plement. However, its application range is restricted to pure-phase aberrations. In this
section, a method for retrieving both amplitude A > 0 and phase Φ of a pupil function
P = A exp[iΦ] from the intensity point-spread function in the focal region will be de-
rived.

The pupil function P is expanded into a Zernike cosine series

P = A exp[iΦ]=
∑

n,m
βm

n Z m
n ; Z m

n (ρ,ϑ) = Rm
n (ρ)cos mϑ , (7.26)

where now the βm
n are general complex numbers. In the often occurring case that A ≈ 1,

Φ small, one has that β0
0 ≈ 1 while all other βm

n are small, and in that case the imaginary
parts of the βm

n describe Φ while the real parts of the βm
n describe A. When A 6≈ 1 and/or

Φ is not small, the physical significance of the β’s is not straightforward anymore, but this
diminishes in no way the efficiency of the representation of P by means of its complex
Zernike coefficients.

Assume that β0
0 is positive and relatively large compared to the other βm

n ’s. For the
point-spread function from Eq. (7.26) the exact representation is

U (r,ϕ ; f ) = 2β0
0 V 0

0 (r, f )+2
∑

n,m

′
βm

n i m V m
n (r, f )cosmϕ , (7.27)

where the ′ on the summation sign means to indicate that the term with n = m = 0 has
been deleted. Expansion of I = |U |2 results in

I ≈ 4(β0
0)2 |V 0

0 |
2 + 8

∑

n,m

′
β0

0 Re(βm
n )Re[i m V m

n V 0∗
0 ]cosmϕ

− 8
∑

n,m

′
β0

0 Im(βm
n ) Im[i m V m

n V 0∗
0 ]cos mϕ , (7.28)

with omission of the term

4
∑

n1,n2 ;n2 ,m2

′′
Re[βm1

n1
β

m2∗
n2

i m1−m2 V
m1

n1
V

m2∗
n2

]cos m1ϕcos m2ϕ , (7.29)

where the ′′ on the summation sign means to indicate that all terms with n1 = m1 = 0 or
n2 = m2 = 0 have been deleted.

Then, as in the pure-phase case, the use of the functions Ψ
m
n in Eq. (7.16) appearing

on the second line of Eq. (7.28), is extended with the functions

χm
n (r, f ) = 8ε−1

m Re[i m V m
n (r, f )V 0∗

0 (r, f )] (7.30)

with εm Neumann’s symbol as in Eq. (7.16). Furthermore, there is the same Ψ
m
meas as in

Eq. (7.15). Then, upon multiplying the near-identity in (7.28) by cos mϕ and integrating
over ϕ ∈ [0,2π], there results

Ψ
0
meas ≈ 1

2 (β0
0)2χ0

0 +
∑

n

′
β0

0 Re(β0
n)χ0

n +
∑

n

′
β0

0 Im(β0
n)Ψ0

n , (7.31)

Ψ
m
meas ≈

∑

n

β0
0 Re(βm

n )χm
n +

∑

n

β0
0 Im(βm

n )Ψm
n , (7.32)
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for m = 0 and m = 1,2, ... , respectively.

As previously, the inner products are taken. Note that as a consequence of Eq. (7.20),
for all m = 0,1, ..., the products

(χm
n ,Ψm

n′ ) = 0 , all n,n′ = m,m +2, ... . (7.33)

Indeed, it follows from Eq. (7.20) that χm
n is even in f when m is even and odd in f when

m is odd, whereas Ψ
m
n′ is odd in f when m is even and even in f when m is odd. Hence,

by building for m = 0,1, ... linear systems as in Eq. (7.21) by taking inner products in the
near-identities in Eqs. (7.31)–(7.32) with χm

n′ , Ψ
m
n′ , a decoupling occurs according to















1
2 (β0

0)2(χ0
0,χ0

n′ ) +
∑

n

′
β0

0 Re(β0
n)(χ0

n ,χ0
n′ ) ≈ (Ψ0

meas,χ0
n′ ) ,

∑

n

′
β0

0 Im(β0
n)(Ψ0

n ,Ψ0
n′ ) ≈ (Ψ0

meas,Ψ0
n′ )

(7.34)

for m = 0 where n,n′ = 0,2, ... , and










∑

n

β0
0 Re(βm

n )(χm
n ,χm

n′ ) ≈ (Ψm
meas,χm

n′ ) ,

∑

n

β0
0 Im(βm

n )(Ψm
n ,Ψm

n′ ) ≈ (Ψm
meas,Ψm

n′)
(7.35)

for m = 1,2, ... where n,n′ = m,m +2, ... .
The procedure to estimate the βm

n ’s is now as follows. The first system in Eq. (7.34)
is solved, involving (β0

0)2, β0
0 Re(β0

n) linearly. This then gives β0
0 (which was assumed to

be positive) and subsequently Re(β0
n), n = 2,4, ... . Having found β0

0, the second system
in Eq. (7.34) can be solved, involving β0

0 Im(β0
n ) linearly and the two systems in Eq. (7.35)

involving β0
0 Re(βm

n ) and β0
0 Im(βm

n ), respectively, linearly for m = 1,2, ... . Estimates β̂m
n

are obtained by replacing all ≈ in Eqs. (7.34)–(7.35) by = and solving the linear systems.
Note that in the case of purely imaginary βm

n , only the second lines in Eqs. (7.34)–
(7.35) need to be considered (and also the first line in Eq. (7.34) with n′ = 0 to find β0

0).
This then yields the pure-phase retrieval method.

As in the case of pure-phase retrieval, the systems are normally well-conditioned
since either system (Ψm

n )n=m,m+2,... and (χm
n )n=m,m+2,... is close to being orthogonal. Also,

the finitization issues are similar to those in the pure-phase retrieval case.
However, the deletion of the small-cross-terms expression Eq. (7.29) from the theo-

retical intensity I = |U |2 has a quite different effect on the linear systems in Eqs. (7.34)–
(7.35) than that deletion of Eq. (7.13) had on the systems in Eq. (7.21). The reason for
this is that the functions

Re[βm1
n1

βm2∗
n2

i m1−m2 V
m1

n1
V

m2∗
n2

] (7.36)

are, in general, neither even nor odd in f since the βm
n are general complex numbers.

A simple predictor-corrector approach, however, can in many cases completely elim-
inate the error incurred by deleting the term in Eq. (7.29). Here one constructs iteratively
estimates β̂m

n (k) of the βm
n as follows. Let β̂m

n (0) = β̂m
n , where β̂m

n are the estimates of
βm

n as found by applying the above procedure in which the ≈ in Eqs. (7.34)–(7.35) are re-
placed by =. Having available β̂m

n (k) for some k = 0,1, ... , the above procedure is applied
for finding β̂m

n , however, with the measured Imeas replaced with Imeas −E (k) in which
E (k) is the term Eq. (7.29) with

β̂
m1
n1

(k)(β̂m2
n2

(k))∗ substituted for β
m1
n1

(βm2
n2

)∗ . (7.37)
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Under normal conditions, this predictor-corrector procedure converges rapidly while even
under not so favorable conditions (with β0

0 not large or even rather small compared to
some of the other βm

n ) convergence, be it slow, often takes place as well (Van der Avoort
et al., 2005a).

The computational scheme for the predictor-corrector approach requires handling
the quantities Imeas−E (k), k = 0,1, ... , as if they were measured quantities. Thus, these I−
E (k) have to be multiplied by cos mϕ and integrated over ϕ ∈ [0,2π], and, subsequently,
inner products with the χm

n′ , Ψ
m
n′ have to be taken.

As an example, Table 7.1 and Fig. 7.1 show the final result of a general aberration
retrieval and the convergence of the predictor–corrector approach. From intensity data,
general aberration coefficients β̂m

n are obtained, that after k iterations converge to the
applied aberration coefficients βm

n .Table 7.1: Applied and retrieved (100 iterations) aberration coefficients.

n m Re(β) Re(β̂) Im(β) Im(β̂)

0 0 0.6610 0.6611 0 0
2 0 -0.0303 -0.0312 0 -0.0000
4 0 -0.2875 -0.2869 0 0.0000
6 0 -0.5506 -0.5502 0 -0.0000
1 1 0 0.0000 -0.1007 -0.1006
3 1 0 -0.0000 1.7948 1.7924
5 1 0 -0.0000 -0.1867 -0.1858
2 2 -0.4872 -0.4857 0 0.0000
4 2 0.0852 0.0876 0 -0.0000
6 2 -0.6983 -0.6991 0 -0.0000
3 3 0 -0.0000 -0.1134 -0.1125
5 3 0 0.0000 -0.2385 -0.2376

It is also interesting to consider a case where some of the |βm
n | are allowed to be larger

than β0
0, see Table 7.1. These βm

n are obtained as the quantities 1
3β

m
n (α) resulting from

Zernike mode expansion, Eqs. (7.38)–(7.45), of the comatic pupil function exp[iαZ 1
3 ] with

α as large as 2
p

1.6 (twice the diffraction limit) and n ≤ 6, m ≤ 3. Evidently, for accurately
representing exp[iαZ 1

3 ] where α is this large, considerably more terms should be consid-
ered; however, the present intention is just to show that perfect reconstruction is possible
with a non-dominant β0

0-term, and taking exp[iαZ 1
3 ] with large α is such a case. The 4th

and 6th column show reconstruction results after 100 iterations. In Fig. 7.1, the recon-
struction error curves |βm

n − β̂m
n (k)| are displayed for the n,m as in Table 7.1 that occur

with βm
n 6= 0. Indeed, convergence takes place, but at a very slow rate.

Zernike mode expansion

When P (ρ,ϑ) is a (symmetric) pupil function, its Zernike expansion coefficients βm
n in

P (ρ,ϑ) =
∑

n,m
βm

n Rm
n (ρ)cosmϑ (7.38)
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Iteration kFigure 7.1: The absolute values of the reconstruction errors |βm
n − β̂m

n (k)| decrease slowly but
steadily for the high value of α1

3 = 2
p

1.6, describing a comatic pupil beyond the diffraction limit.

The largest error after 100 iterations (k) is below 10−2.5.

are given from orthogonality of the Zernike functions, see (Born and Wolf, 1980), formula
(3) on p. 523, as

βm
n =

1

π
(n+1)εm

1
∫

0

2π
∫

0

P (ρ,ϑ)Rm
n (ρ)cosmϑρdρdϑ (7.39)

with ε Neumann’s symbol, ε0 = 1, ε1 = ε2 = ... = 2. Next the Zernike expansion coefficients
1
3β

m
n (α) of P (ρ,ϑ) = exp[i αR1

3 (ρ)cosϑ] shall be computed. The integral in Eq. (7.39) over
ϑ can be done using Eq. (7.7), resulting in

1
3β

m
n (α) = 2(n+1)εm i m

1
∫

0

Rm
n (ρ) Jm (αR1

3 (ρ))ρdρ . (7.40)

Inserting the series expansion of Jm , see (Abramowitz and Stegun, 1970), formula 9.1.10
on p. 360, into the right-hand side integral in Eq. (7.40), there results

1
3β

m
n (α) = 2(n+1)εm i m

∞
∑

j=0

(−1) j ( 1
2 α)m+2 j

j ! ( j +m)!

1
∫

0

(R1
3 (ρ))m+2 j Rm

n (ρ)ρdρ . (7.41)

The remaining integrals can be evaluated by using that R1
3 (ρ) = 3ρ3 − 2ρ, Newton’s bi-

nomium, and the fact that, see (Braat et al., 2003), formula (A2) on p. 2289,

1
∫

0

ρm+2s Rm
m+2p (ρ)ρdρ = 1

2 (−1)p
(−s)p

(m + s +1)p+1
, (7.42)

where Pochhammer’s symbol is used, defined as

(a)0 = 1; (a)k = a(a +1) · ... · (a +k −1) , k = 1,2, ... . (7.43)
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|P’(ρ,θ)|
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Figure 7.2: Of the aberrated sparse aperture P ′(ρ,ϑ), the transmission profile is given as |P ′(ρ,ϑ)|,
where the two-aperture mask is clearly visible. The phase profile arg[P ′(ρ,ϑ)] comprises tilt, coma
and astigmatism of various magnitudes and at various angles (leftmost figures). This pupil function
is approximated by the pupil function P(ρ,ϑ) =

∑

n,m βm
n Z m

n , in which the Zernike polynomials
with maximum indices nmax = mmax = 9 are taken into account (rightmost figures).

This yields

1
∫

0

(R1
3 (ρ))m+2 j Rm

m+2p (ρ)ρdρ =

= 1
2 (−2)m+2 j

m+2 j
∑

l=0

( m +2 j

l

)(−3

2

)l (− j − l)p (−1)p

(m + j + l +1)p+1
, (7.44)

and with some final rewriting this results in

1
3β

m
m+2p (α) = (m +2p +1)εm

∞
∑

j=0

(−iα)m+2 j

j ! ( j +m)!
·

·
m+2 j
∑

l=0

( m +2 j

l

) (−1)p (−j − l)p

(m + j + l +1)p+1

(

−
3

2

)l
. (7.45)

7.3 Application to interferometry

Alignment of sub-apertures

The ENZ formalism is applicable to any optical imaging system. Especially the forward
problem of obtaining the PSF, given an exit pupil function, can be illustrated for aper-
ture synthesis. Using the ENZ formalism, the intensity PSF of a synthetic aperture can
be calculated, after describing the synthetic aperture as a general pupil function, de-
composed onto the Zernike basis. Then, the βm

n -coefficients of the (large set of) Zernike
functions are used in the summation of the V m

n functions to calculate the electrical field.
The squared modulus of this field results indeed in a fringed PSF, where the diameter of
the envelope is related to the diameter of the individual apertures and the fringe period
is related to the separation of these apertures.

Although a typical interferometer pupil function is easily transformed into a fringed
focal field, see Fig. 7.3, the inversion of this process is not readily available using ENZ.
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z=−396 µm z=−198 µm z=0 µm z=198 µm z=396 µm

Figure 7.3: Through-focus intensity data, as obtained by illuminating the aberrated sparse aper-
ture, described by the pupil function P(ρ,ϑ) of Fig. 7.2.Table 7.2: The complex βm

n -coefficients that construct the pupil function P =
∑

n,m βm
n Z m

n , for
the pupil function P depicted in Fig. 7.2. Two sets of Zernike functions Z m

n are taken, having either
cosine-symmetry or sine-symmetry. Only the largest contributions are listed, which are all larger
than β0

0.

Z m
n (ρ,ϑ) = Rm

n (ρ)cosmϑ Z m
n (ρ,ϑ) = Rm

n (ρ)sinmϑ

(n,m) Re(βm
n ) Im(βm

n ) Re(βm
n ) Im(βm

n )

0,0 0.0275 0.0244 — —
4,0 -0.0638 -0.0552 — —
8,0 0.0500 0.0372 — —
4,2 -0.0459 -0.0690 -0.0757 -0.0301
8,2 0.0398 0.0531 0.0622 0.0201
6,4 -0.0267 -0.1076 -0.1059 -0.0134
8,6 0.0093 -0.1131 -0.1057 0.0150

The decomposition of the sparse pupil function3 resulted in a series of βm
n -coefficients,

see Tab. 7.2, where β0
0 is no longer the largest, or nearly largest component. This results

in the following breakdown of the retrieval process, including the predictor–corrector it-
erations. The initial guesses of all β̂m

n (k = 0) are very wrong. This has a too large effect on
the cross-product correction term, that is added to the measured intensities, after which
these altered intensities are used as a new measurement for the retrieval of the set β̂m

n (1).
The resulting intensity pattern is no longer significantly related to the physical imaging
system under study, a beam combiner with a sparse pupil function. It should also be
noted, that the representation of the sparse pupil function required a large number of
Zernike modes and consequently the cross-product term involves are very large amount
of innerproducts, which again qualifies the ENZ approach as accurate, but not optimized
for speed. The retrieval process for the example with a strongly comatic pupil function
already showed that the relatively large values of all βm

n with respect to β0
0 resulted in very

slow convergence. For the case of the synthetic aperture, convergence is lost completely.
For correct retrieval of both the amplitude mask |P ′| and the phase profile, a different

approach is required, in which the factor 1/β0
0 is not incorporated in the estimate of all

βm
n . Moreover, for an array of telescopes there is very accurate knowledge on |P ′|. In-

cluding this a priori information will—as in any inverse problem—improve the estimate

3Evidently, the set of Zernike functions with nmax = mmax = 9 is too small to represent the aperture mask
with steep edges. However, including more Zernike functions would not decrease the values of the βm

n ’s for the
low order functions. The example of the fact that β0

0 is no longer governing the expansion, would remain the
same.
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of P ′.

Higher order aberrations in sub apertures or beam combiner

As demonstrated, the ENZ formalism allows straightforward description of a focal field,
given the series representation of a pupil function. In addition, several fields may be
co-added, resulting an intensity pattern showing interference effects. Principally, this
methodology is very promising for retrieving higher order aberrations—instead of only
piston and tilt—in the individual apertures of an array of telescopes. This might provide
information on the alignment of optical surfaces in each telescope and or in the beam
compressor in each interferometer arm. However, the representation of a sparse pupil
function requires a very large amount of coefficients, that have a large range in contribu-
tion amplitudes.

Studies have been done to represent a sparse aperture by a limited set of Zernike
functions, by altering the Zernike functions to a function with a displaced origin. Even if
a formalism for translated Zernike functions is available, the inverse operation, compa-
rable to the ENZ predictor–corrector approach, has to be tailor-made, based on this set
of translated functions. To develop such an analytic mathematical tool is a task too far
out of the scope of this thesis.



Chapter 8

Chromatic multi-beam nulling

8.1 Introduction

To detect an Earth-like planet around a nearby star and to perform spectroscopy on its
atmosphere, two difficulties have to be overcome. Firstly, a regular telescope would need
a very high resolution to separate the planet from the star. Secondly, an immense dy-
namic range in detection is required, since the intensity contrast ratio between the bright
star and the dim planet is 106 in the infrared regime and even higher for visible wave-
lengths. One solution to meet these two requirements is nulling interferometry. In short,
this technique consists in two or more separated telescopes that deliver beams which
are co-phased and combined with intentional phase shifts in such a way that destructive

interference between the beams occurs for the starlight. Since the planet is at a small off-
axis angle θ0, its light is combined with an additional phase shift, e.g. θ0B/λc , causing
constructive interference of the planetary light. Because of the very high contrast ra-
tio, the phases or relative optical path lengths of the beams have to be controlled down
to the picometer level in order to prevent ‘leakage’ of the stellar light into the detected
signal. The optical path length difference (OPD) or phase error ǫ(λ) is a function of wave-
length, resulting not only from path length control, but also from the fact that a star has
an angular dimension. Therefore, the nulling performance of an array of telescopes will
improve if the choice of beam combination results in a destructive interference that is
less dependent on ǫ(λ).

Such a beam combination strategy for N beams was found and an experimental set-
up for three-beam nulling was built in the Optics Research Group (Mieremet and Braat,
2002; Mieremet and Braat, 2003). The promising theory that even allowed chromatic
nulling—no optical elements for achromatic phase shifting were necessary—was to be
proved in practice. Despite repeated efforts, the theoretical result was never attained. A
small study was performed to analyze the origin of this failure. The theory and expected
result will be explained, after which the issue of robustness of this theory will be detailed.
Finally, in Section 8.6, a recommendation is stated for future multi-beam nulling experi-
ments. The text of this Chapter is largely based on an earlier publication (Van der Avoort
et al., 2004a).
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N f1 . . . fN φ1 . . .φN

2 1 1 0 π

3 1 2 1 0 π 2π

4 1 3 3 1 0 π 2π 3π

5 1 4 6 4 1 0 π 2π 3π 4π

6 1 5 10 10 5 1 0 π 2π 3π 4π 5πTable 8.1: Overview of the values of fi , φi for N = 2,. . . ,6 (for simplicity, the ǫ terms have been
left out)

8.2 Role of amplitude and phase in a nulling experiment

Recently, an alternative family of nulling interferometers was found that was less sensi-
tive to phase shift errors that are produced by the ‘achromatic’ phase shifters (Mieremet,
2003; Mieremet and Braat, 2002; Mieremet and Braat, 2003). As a consequence, the tight
constraint of achromaticity of a few milliradians could be relaxed to such a level that
delay lines are possible candidates to function as phase shifter for Darwin (Léger et al.,
1996). A small summary on this idea is given below.

In a nulling interferometer, each telescope provides a beam with a relative amplitude
f and phase φ. After recombination of the beams of each telescope, the final transmit-
tance of the star is expressed in terms of rejection. Even without any phase and am-
plitude noise, the achievable rejection strongly depends on the choice of f and φ. The
following amplitude and phase distribution was proposed by Mieremet (Mieremet and
Braat, 2003):

fi =
(

N −1

i −1

)

φi = [i −1][π−ǫ(λ)]. (8.1)

In this distribution, N represents the number of telescopes, ǫ(λ) the wavelength depen-
dent phase shift error introduced by the phase shifter and i the index of the telescope.
Note that ǫ(λ) does not represent noise, but a systematic phase shift error with respect
to an achromatic phase shift. In Table 8.1 an overview of f and φ is shown for several
values of N .

It can be derived that for this case the rejection ratio R is given by

RN (λ1,λ2) ≈
(

2N −2

N −1

)

〈ǫ2(N−1)(λ)〉−1, (8.2)

where the 〈〉 represent the average of the wavelength region [λ1,λ2]. The approximation
sign has been used because higher order effects have been neglected.

The main result is that the influence of ǫ(λ) becomes much less for larger N , since
RN ∝ 〈ǫ2(N−1)(λ)〉−1, which implies that the achromaticity requirement is strongly re-
duced for increasing N . This is not the case for other nulling interferometers. For N = 2,
a rejection ratio of 106 requires that ǫ must be of the order of milliradians. This level of
achromaticity is mentioned in literature.
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(a) DAC nulling interferometer (b) Optimized nulling interferometerFigure 8.1: The advantage of applying more than only one chromatic phase shift of approximately
π. When more beams get a shift, the residual in complex amplitude of the combined beams will
be smaller. The sum of complex vectors of the DAC interferometer (a) clearly has a much larger
vertical component left over as compared to the optimized configuration (b).

To understand why the influence ǫ(λ) becomes much less for larger N , an example
is shown, comapring a N = 3 configuration to the Degenerate Angel Cross (Angel and
Woolf, 1997) (DAC) nulling interferometer, see Fig. 8.1. Below each telescope, the com-
plex representation of each beam is drawn. The state of the recombined beam can be
obtained by adding the vectors. For the DAC nulling interferometer, the vertical com-
ponent is far from perfectly ‘nulled’ and causes the DAC interferometer to have a 〈ǫ2〉−1

dependence. If this is compared with the three-telescope configuration of example (b),
it becomes clear that for that case the vertical component is much better nulled causing
the 〈ǫ4〉−1 dependence.

8.3 Experiments

8.3.1 The set-up

The goal of the experimental setup was to give a proof-of-principle. This would be a-
chieved, when a higher rejection ratio was measured for the proposed configuration than
for any other. A three telescope system is chosen, which is the most simple configura-
tion to take benefit from the nulling approach. As can be deduced from the theory, such
an experiment could even in the case of perfect performance not reach a nulling depth
of 106, over the wavelength range of 500 to 650 nm. However, a depth of several thou-
sands should be possible, whereas the combination of three beams with equal amplitude
would yield a null of a few hundreds.

The Delft nulling set-up (see Fig. 8.2) can be divided in three stages: the star-simulator,
the interferometer and the detection stage. The star simulator consists of a color-filtered
Xe arc light source (LS), focused on a pinhole (PH). From here the light is collimated
so that flat wavefronts emerge as starlight. This light is then not collected by separated
telescopes, but branched off by means of two beam splitters (BS1, BS2) to produce three
beams. Each of the beams is sent into another light path.

The nulling part is the heart of the set-up. Two of the three beams are directed onto
retro-reflectors mounted on piezo translation stages serving as delay lines. In this way,
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Figure 8.2: Schematic diagram of the previous delay-line-only nulling set-up. Region A is the star
simulator. Region B is the actual interferometer and C is the detection stage

the optical path difference between all three beams can be controlled. The path of the
third beam is used as a reference. The beams are recombined again by using beam split-
ters (BS2 and BS4). Between BS2 and BS4 a diaphragm (DIA) or a functionally similar
component is placed to be able to control the amplitude of beams 2 and 3 with respect
to beam 1.

The recombined beams have a common path and are directed to a matched system
of achromatic lenses and a single-mode fiber. The single mode fiber acts as a modal and
spatial filter (Tatulli and Chelli, 2004). The exiting power after the fiber is detected with a
sensitive power meter.

The setup allows to investigate both different amplitude and phase distributions by
changing the diaphragm and delay lines, respectively. Interferograms can now be recor-
ded using the power meter and the known setpoints of the two delay lines. When both
delay lines are used, a two dimensional ‘interferogram’ is produced, resembling a land-
scape with peaks and valleys aligned in some grid shape. This landscape represents the
achieved null of the star as a function of different phase shift distributions. The deepest
valley is the configuration that provides the best nulling performance.

8.3.2 Three-beam nulling

Experiments have been performed with combining three beams to perform nulling, both
according to ‘conventional’ schemes (all amplitudes equal and hence OPDs needed of
fractions of a wavelength) as well as with ‘optimized’ schemes. For the latter, ampli-
tude matching involved more than adjusting a few percent by placing a knife-edge in the
beams.

Obtaining the prescribed amplitude ratio of 2 : 1 : 1 for the N = 3 case, which corre-
sponds to a power ratio of 4 : 1 : 1, is not trivial. Placing neutral density filters in the paths
is not an option: the third beam would also need extra optical path and all elements in-
serted should have exactly the same thickness and quality, to prevent dispersion effects.
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Alternatively, a knife-edge would have to be inserted far into the beam, causing its fo-
cus on the single-mode fiber to be displaced and hence have coupling losses, which are
chromatic and would distort the spectral shape. As a possible solution, a diaphragm was
tried. It gives diffraction effects, but the focal shape and central position are not altered
and it provides a power tuning possibility.

Two sets of spectra have been intensively investigated. The first set is the equal am-
plitude distribution, while the second represents the amplitude distribution as given in
Eq. (8.1). During the experiments, it was found that the three-beam nulling experiments
with beams with equal amplitude could quite nicely match the expectations from simu-
lations (see Table 8.2). But the much deeper nulls that should come with the optimized
strategy were never measured. It was suspected that the method of power reduction (that
had to keep the spectral shape the same) was ruining the measurement. Either the re-
duction method adjusted the spectral balances in the beam itself, or it adjusted the chro-
matic coupling efficiency into the detection fiber, where the actual nulling takes place.Table 8.2: Expected and measured nulling ratios for the combination of three beams for a wave-
length range of 500 to 650 nm. The given value is the ratio of maximum and minimum total inten-
sity.

Power Balance Theoretical null depth Measured

1 : 1 : 1 275 188
4 : 1 : 1 3100 42

In order to analyze the problem of proper beam attenuation further, the individual
beam spectra were measured. Because of low light levels, it was done by Fourier analy-
sis of pairwise interferograms (an explanation of this procedure can be found in Sec. 8.4).
Figure 8.3 shows the derived spectra for three beams in two different cases, having power
balances of 1 : 1 : 1 and 4 : 1 : 1. Clearly, these balances are not constant nor exact over the
wavelength range. Simulations that were used for the prediction of the null depth were
adjusted to be able to process three different spectra. The results (see Fig. 8.4) show strik-
ing resemblance with what was measured: the deepest null measured in a two-delay-line
scan was limited in the 1 : 1 : 1-case, but near to nothing in the 4 : 1 : 1-case. Experi-
ments were repeated, where the power ratio of 4 : 1 : 1 was realized in many different
ways (knife-edges, density filters, irises and metal wire gratings) but the expected gain in
null-depth was never found.

8.4 Beam spectra out of three interferograms

It is essential that the spectra of the three beams in the experiment are very close. The
power in each beam is rather low (typically 1 nW) and obtaining an accurate spectrum
of the light emitting from the fiber is not feasible with general spectrometers, since the
power, even in relatively wide wavelength bins, is in the order of picowatts. Another
way was sought to obtain the spectra. This was achieved by performing an extended
Fourier analysis of interferograms. The notion that three spectra are sought, and that in-
terferograms can be measured successively, resulting from three different combinations
of beams, led to the following procedure.
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(a) Spectra with almost equal power (b) Spectra with power ratio 4 : 1 : 1Figure 8.3: The top panels show the measured spectra of each beam for the equal amplitude
distribution (top left) and the optimized distribution (top right). The three beam Fourier technique
delivers the complex spectra per beam. The phase spectra were brought together at 633 nm, where
a laser interferogram provided the zero OPD for that wavelength. The derived complex spectra are
for the case that the three beams have equal power (left-hand side) and for the case that two beams
pass through an iris, to limit their power (right-hand side).

The spectrum of one beam of light in the nulling system can be expressed as Si (k)
where k is the wave number, i is the index to beam 1, 2 or 3. An interferogram resulting
from interference of beams i and j as a function of optical path length difference x is
then

Ii j (x) =
1

2

∫∞

−∞

[

Si (k)+S j (k)+2
√

Si (k)S j (k)eikx
]

dk (8.3)

where Ii j (x) is the recorded intensity. The Fourier transform G(k) of this expression is
written as

Gi j (k ′) =
1

2

∫∞

−∞

∫∞

−∞

[

Si (k)+S j (k)+2
√

Si (k)S j (k)eikx
]

e−ik ′x dkdx

=
1

2

(∫∞

−∞

[

Si (k)+S j (k)
]

dk

)

δ(k ′)+
∫∞

−∞

√

Si (k)S j (k)dkδ(k −k ′)

=
1

2

(∫∞

−∞

[

Si (k)+S j (k)
]

dk

)

δ(k ′)+
√

Si (k ′)S j (k ′). (8.4)

Equation (8.4) shows that the Fourier-transformed interferogram is the sum of the
DC values of both signals and a square root term of the product of both, per wavenum-
ber. Application to three measured interferograms now gives the three individual beam
spectra:

G12(k ′) = (P1 +P2)k ′=0 +
√

S1(k ′)S2(k ′),

G13(k ′) = (P1 +P3)k ′=0 +
√

S1(k ′)S3(k ′),

G23(k ′) = (P2 +P3)k ′=0 +
√

S2(k ′)S3(k ′), (8.5)
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(a) 1 : 1 : 1-nulling (b) 4 : 1 : 1-nullingFigure 8.4: Color-coded representation of the null-depth as a function of delay line-positions
DL1 and DL2. The scales indicate the log10-value of the null-depth. With the spectra (as given in
Fig. 8.3) obtained at the set-up, a three-beam nulling simulation is performed. Figure (a) shows a
pattern as expected, with a null-depth that is worse than expected. (Depth is 188, whereas exactly
equal spectra would provide a depth of 275.) Figure (b) shows a pattern of deteriorated ‘islands’, in
which a null depth of only 42 is found, whereas a value over 3000 was calculated for spectra having
the same envelope but a constant power ratio according to 4 : 1 : 1.
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Figure 8.5: The spectra of the three individual beams (right panel) can be obtained from the
Fourier transforms of three interferograms, obtained from pairwise combinations (left panel). The
data for this example were taken when a diaphragm was placed in beams 2 and 3, in order to
arrange an intensity balance of 4 : 1 : 1. Apparently, the spectra of these beams—as detected after
the fiber—are non-uniformly attenuated.
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where Pi is the total power in beam i , represented as the DC term of the transform.
Rearranging these expressions yields e.g. the spectrum of beam 2:

[

G12(k ′)− (P1 +P2)
][

G23(k ′)− (P2 +P3)
]

[G13(k ′)− (P1 +P3)]
=

√

S1(k ′)S2(k ′)
√

S2(k ′)S3(k ′)
√

S1(k ′)S3(k ′)
= S2(k ′). (8.6)

Likewise, each element of S1(k ′) and S3(k ′) can be calculated per ‘frequency’ k ′. See
Fig. 8.5 for the results. The total power Pi for each beam i can simply be measured before
recording an interferogram or can be obtained from the zeroth element of the Fourier
transform of this interferogram. With three FTs available, the different total powers or
DC terms per beam can be obtained from a linear system of equations.

8.5 Robustness

The investigation to ways of achromatically reducing the power present in two of the
three beams led to the insight that it might not be the method of reduction that caused
the lack of a deep null, but that the method itself simply was more vulnerable to mis-
matching amplitudes.

To verify this assumption, simulations with either amplitude or phase perturbations
in the beams have been performed. The results of these simulations are shown in Fig. 8.6.
In the left panel, the achievable rejection ratio as a function of wavelength is shown
for the two distributions of interest in the case that no amplitude and phase noise are
present. As a next step, an amplitude and phase noise of 1% are applied. The conse-
quences of this are shown in the middle and right panel, respectively. Figure 8.6 clearly
shows that the optimized nulling technique is much more vulnerable to mismatching
amplitudes or phases. The constructed Delft nulling set-up was not designed to attain
much better matching than ∼1% in intensity, since the coatings on the beam splitters
could not be applied at a tighter tolerance.
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8.6 Recommendation

As demonstrated, configuring the differential amplitudes and phases in nulling interfer-
ometers (either without or with the aid of dispersive elements for phase shifting) accord-
ing to Pascal’s triangle will theoretically improve the destructive interference. However,
the assumption of equal spectra per beam is too optimistic. The exact balance of ampli-
tudes is needed for every single wavelength. Slight variations in coatings on mirrors or
beam splitters will induce variational spectra and the recombination of these beams will
result in moderate to weak nulling. Full control of spectra (both amplitude and phase) is
a necessity in nulling, and the optimized theory relies even more on such control.

Since the coupling efficiency of a single mode fiber (used for wavefront filtering in
many nulling experiments) is chromatic, and taking into account the spectral tolerances
declared before, very tight pointing and positioning tolerances are posed on the fiber
coupling as well.

The shape of the focus of a beam is depending on the cross section of the beam. Tun-
ing the power of one beam with respect to another in a nulling set-up should therefore
not be performed with a knife-edge, especially not when amplitude ratios according to
Pascal’s triangle are to be obtained. The cross section of the attenuated beam will be
altered and hence the shape of the focus. The size of the focus is again wavelength-
dependent, so even when coupling into a fiber for wavefront filtering, the knife edge will
induce spectral differences and hence degrade nulling performance.

Full spectral tuning has been demonstrated (Weiner, 2000) for high power femtosec-
ond pulses. To keep the pulse short, the phase spectrum of the pulse needs to be con-
trolled. With the aid of dispersion and polarizing liquid crystal screens, this can be done.
If spectral control is performed by choosing high-quality coatings or when possible a
symmetric nulling set-up (Serabyn and Colavita, 2001), it should be possible to attain
three (or more) beams of equal spectral shape from a source. For the optimized theory
to work, it is required that these beams then get a different amplitude. Since a knife-edge
can not be used because of the chromatic spot shape and a uniform gray filter would
mean extra glass in the light path, other attenuation means have to be sought. This can
be found in the area of metal wire gratings. When placed in a beam, multiple beams will
exit at an angle with the central beam. The ratio between obstructed and unobstructed
area in the grating will tune the attenuation in the central beam and the pitch of the grat-
ing will tune how far the first diffraction order will be focused next to the fiber. To a very
high degree, the attenuation will be achromatic without altering the beam cross section
or the optical path length. That makes a grating very suitable for a reflection-only set-up.

8.7 Measured spectra

As explained in the previous sections, the spectral mismatch of the three beams was
identified as an origin for the disappointing nulling achievement of the set-up. The
Fourier analysis of the recorded interferograms allowed to make an estimate of the spec-
tra. A direct measurement of the spectra was difficult to obtain, due to the low power and
the broad spectrum, over which this power is distributed. With an addition to the exper-
imental set-up, realized years later, the relative power in the beams could be measured
at certain selected wavelengths. For this goal, interference filters were used, with pass-
bands of ∆λ ≃ 20 nm, around the central wavelengths λ = 500,550,600,650 nm. In ad-
dition, a continuous spectrum could be measured with a spectrometer, equipped with a
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linear CCD-detector allowing long integration times. The fiber-fed spectrometer returns
a noisy and—due to a large slit width—smoothened spectrum for each beam. To be able
to compare the spectral measurements, the relative spectra were considered. With beam
three taken as a flat reference S3(λ) ≡ 1, the spectra S1(λ)/S3(λ) and S2(λ)/S3(λ) are plot-
ted. In Figure 8.7, the continuous CCD-spectra are plotted, together with the relative
intensities acquired with the interference filters.

The measurements with the interference filters and the CCD are in good accordance.
The diagram shows power differences of 20% for certain wavelengths, while all beams
pass through an equal number of coated BK7 elements in the set-up. The coupling of
each beam into the single-mode fiber might give rise to spectral imbalances, but the
measurements with the interference filters were performed both before and after this
fiber. The measurements before the fiber, e.g. the ✷-series, show a non-flat spectral
balance between two beams.

8.8 Conclusions

The studies of the transformed interferograms, as well as the directly measured spec-
tral differences, lead to the conclusion that the three-beam nulling set-up suffers from
spectral unbalance, even when no individual beam attenuation is applied. This causes
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a worse nulling performance than predicted. The approach of chromatic nulling with
optimized power balances suffers more from spectral unbalance than equal-amplitude
multiple beam nulling.





Chapter 9

Conclusions and

recommendations

The research described in this thesis treated various topics related to aperture synthesis.
The main part covered synthesis imaging, but also nulling interferometry can be seen
as a special kind of observation with a synthetic aperture. In addition, the influence of
aberrations on imaging has been treated. For ultimate performance of synthetic aper-
tures for the stated applications, knowledge of aberrations—of both the synthetic aper-
ture or beam combiner as well as the individual apertures—is essential. Although null-
ing interferometry was the rationale for this research, it did not become its main topic.
ESAs Darwin mission is primarily a nulling mission. This mission however, can valuably
be extended with a wide-field imaging mode. In Chapter 1, the research objective was
therefore defined as follows:

The goal of this research can be summarized as a comparison of the per-
formance of different types of stellar interferometers for the specific task of
imaging an extended source and retrieving spectral information from that
source within a limited observation time.

To perform this comparison, the path of numerical simulation of actual observations
was chosen. More specifically, the imaging process in every interferometer under con-
sideration was regarded as a multi-dimensional convolution operation. Regarding the
optical systems and their consecutive responses in this convolution-oriented way, pro-
vided valuable insight in the nature and limitations of the stellar interferometers under
consideration. Their performance in delivering high resolution spatial and spectral infor-
mation on a stellar source could not only be simulated, but also predicted by analysis of
the decomposition of the so-called optical transfer matrix. The conclusions and recom-
mendations following from the research described in this Thesis are listed group wise,
regarding the topics of aperture synthesis imaging, nulling interferometry and aberra-
tion retrieval. Since aperture synthesis imaging is the main subject, the conclusions and
recommendations on this subject will be bulleted.
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9.1 Conclusions

Aperture synthesis imaging

◮ The approach of modeling the response of interferometers as a superposition of
intensity patterns showed two advantages. Firstly, physical insight is gained with
respect to the theory of partial coherence. Secondly, this approach made possi-
ble that the image reconstruction capabilities of different interferometers could
be compared easily for various parameter settings of either the modeled interfero-
meter or the source under observation. The singular value decomposition of the
obtained optical interferometric transfer matrices proved to be a valuable tool to
predict the performance of a chosen beam combiner concept and to compare per-
formances of several beam combiners, irrespective of the modeled stellar source.

◮ For the defined task of imaging a stellar source of several PSFs wide, with high
angular and spectrometric resolution, given the array dimensions for the Darwin
nulling mission under consideration, a Homothetic imager is best suited, even al-
though the collected information is spread over many detector pixels. However,
a co-axial Staircase imager approaches the superior qualities of Homothesis with
respect to imaging efficiency and needed observation time. In practice, both solu-
tions require delicate actuatable opto-mechanical systems to operate. For narrow
fields or moderate resolution requirements, a Densified pupil imager offers a good
solution regarding both the imaging speed and the practical issues as combiner
robustness and detector dimensions.

◮ Regarding the co-axial Michelson imager and observing the polychromatic wide-
field source fringe patterns it delivers, it can be stated that performing spectroscopy
on this source by Fourier-analysis of recorded interferograms, will not lead to the
desired spectroscopic resolution. The morphology of the source alone, whilst the
spectrum is uniform for all parts of the source, is already providing a different
spectrum for each pixel and each baseline length in the measurement data set. In
the interferograms, it can be seen that the fringe packets have different envelope
shapes and lengths. The co-axial Staircase imager is totally excluding the possibil-
ity of performing spectroscopy on recorded interferograms, because of the fringe-
packet multiplexing. For both co-axial imagers, spectroscopy has to be performed
by dispersion in the detection, after which synthesis imaging can be performed in
narrow wavelength bands, resulting in a stellar luminosity distribution per wave-
length band.

◮ Performing wide-field synthesis imaging with the Staircase mirror is possible. Al-
though a discontinuous surface is present in the interferometer, the reconstructed
field will be continuous. The multiplexing nature of this interferometer reduces
observation time, but also reduces the efficiency of the imager. This is caused by
the fact that multiplexing destroys the unique source–response relationship per ar-
ray configuration.

Nulling interferometry

For multiple-beam nulling experiments, the Fourier analysis of pairwise-recorded inter-
ferograms can provide spectroscopic information on the individual beams, even if the
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optical power in these beams is very low. Rough spectroscopic measurements confirmed
the presence of spectral differences in the beams of the experimental three-beam null-
ing beam combiner. Nulling with optimized amplitude distribution in the interferometer
beams, is more vulnerable to spectral mismatches than regular multiple-beam interfero-
metry with equal amplitudes.

Aberration retrieval

For optical systems of moderate numerical aperture and in the absence of birefringence,
the Extended Nijboer–Zernike aberration retrieval can provide very accurate and fast
aberration measurements on both phase aberrations and transmission defects. The re-
trieval of aberrations is possible for amplitude and phase aberrations with a magnitude
of two, indicating transmission variations over the pupil of 100% and optical path length
variations of two wavelenghts. However, to reconstruct the amplitude and phase pupil of
a synthetic, sparse aperture, many Zernike modes are necessary, with much larger am-
plitudes. Consequently, such a pupil cannot simply be reconstructed from recorded focal
intensity data; the use of prior knowledge about the geometry of the synthetic aperture
might alleviate the problem.

9.2 Recommendations

Aperture synthesis imaging

◮ Wide-field imaging always requires data of more than one fringe per observation.
It should be noted that the working principle of a correlator, scanning only the
central fringe, should be abandoned.

◮ For planning a wide-field imaging observation, more consideration than only that
of u, v-plots is necessary, as these plots do not give information on the FOV of
the observation. The analogy and difference between Fourier analysis and wavelet
multi-scale analysis of a function, where the analogy is the organization of the in-
formation into a scale spectrum, but the difference is the localization property of
the wavelet transform, should be applied to the analysis of the response of a stel-
lar interferometer, regarding wide-field imaging. The simulations have shown, that
one not only has to cover spatial frequencies by setting the proper baseline lengths,
but also has to deal with field narrowing as a function of baseline length and co-
herence length, causing the presence of certain spatial frequencies in the solution
to indeed be present, although not in the full field-of-view. Only by taking into ac-
count not only the baseline lengths, but also the coherence length, the delay scan
length and the angular dimensions of the diffraction envelope, the coverage of spa-
tial frequencies over the multiple-PSF wide field-of-view can be guaranteed.

◮ As clarified by the diagrams in Fig. 3.10 for a co-axial interferometer, the choices
of spectral range, telescope diameter, resolution and FOV, all interact—as they do
for an image plane interferometer. As a result, the imaging requirements for the
Darwin imaging mission, cited in Chapter 1, need to be reviewed.

◮ The wave diffraction and propagation after the Staircase mirror have to be inves-
tigated further. As extensively investigated in the work by Montilla, the polychro-
matic point-source response of this interferometer is generally a double-enveloped
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fringe packet. That these fringes can be used for imaging, was confirmed by the
numerical simulations presented in this thesis. However, no experimental confir-
mation of this imaging capability exists. Therefore, an experiment has to be con-
ducted, in which a range of baselines can be chosen and a well defined zero-OPD
position is available. Only then, a set of multiplexed fringe data can be obtained,
from which an image can be distilled. On a more fundamental level, the field re-
sponse as calculated and the scattering behavior of a realistic staircase mirror with
rounded-off edges should be measured.

◮ There will be no recommendation to perform the simulations presented here for
two-dimensional stellar objects. Instead, it is recommended that the evolution of
detector arrays with energy resolution is monitored. The simulations have shown,
that a one-dimensional object produces two-dimensional data (when the use of
delay is necessary), extendable to three if dispersion is applied. Consequently, two-
dimensional objects would require four-dimensional data sets (when the use of
delay is necessary), in order to perform synthesis imaging and spectroscopy. This
can only be performed with a two-dimensional detector array that embeds energy
resolution in each detector element.

◮ The beam combiner for homothesis is essentially an inverted telescope. In the DTI,
the optical elements for beam positioning are nicely separated from those for sky
tracking, but this leaves the beam combiner (the synthetic aperture) unavailable
as a whole for alignment measurements. Therefore, it is advisable to implement
an alignment strategy of the beam combiner itself, so that aberrations over the full
synthetic aperture can be minimized.

◮ This thesis regarded all interferometers as optical imaging systems. The use of
fibers for wavefront filtering, was not considered. Since a fiber-fed interferometer
acts as a correlator, equivalent to the practice in radio interferometry, the conclu-
sions of the performance comparison might change. For a space-based observa-
tion, wavefront filtering was not the primary concern. Should the course of this re-
search be followed for a ground-based observation, the application of fibers should
be included in the construction of the transfer matrices.

Nulling

The mayor hurdle in nulling interferometry at the time of the research, seemed to be
the contrast ratio of 106. Nowadays, this requirement is slightly relaxed as nulling capa-
bilities are sought in improved modulation schemes. Nonetheless, the recommendation
is made that beam combiners for broad band nulling interferometry are kept as simple
as possible, involving the least possible amount of optical surfaces. This, to reduce the
occurrence of spectral differences. Ultimately, this would lead to a symmetrical beam
combiner, in which all beams encounter the same optical elements. To achieve this, per-
forming nulling interferometry with an odd number of three or more beams would then
require a point-symmetric configuration of optical elements.

Aberration retrieval

Aberration retrieval on the pupil function of a sparse aperture is required mainly for
the retrieval of the very low-order aberrations piston and tilt in the areas of the sub-
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apertures. The phase-diversity method offers a solution for this retrieval problem, able
of providing frequently updated information on the array configuration. The Extended
Nijboer–Zernike analysis is in general capable of delivering much more aberration infor-
mation with much higher accuracy. However, the speed is low, which disqualifies ENZ
to be included in a feedback loop. Nonetheless, it is recommended that ENZ is used for
aberration retrieval of the telescopes/beam compressors and the beam combining op-
tics. These subsystems can be measured an corrected if necessary, on an incidental basis.
Highly accurate knowledge of the field-dependent OPD behavior will then be available.
In addition, an extension of the ENZ formalism for sparse apertures could be considered.
Working with translated versions of the Zernike polynomials, a sparse aperture could be
represented with much less polynomials. Then, possibly, a retrieval algorithm could pro-
vide aberration information per aperture, for as many aberrations as desired.





Nomenclature

General

The symbols that are used throughout this thesis are divided into three classifications:
Roman, Greek and Mathematical. Additionally, a list of abbreviations has been included
after the definition of the symbols.

The following typographic conventions are applied for the symbols. When a symbol
represents a scalar, it is written in a normal mathematic font like a or ρ. In the case of
a vector, two types are distinguished: a general purpose multi-dimensional data vector
and a geometrical three-dimensional vector. The data vector is always symbolized with a
bold character in lower case, e.g. b, whereas the geometric vector ~x is written in a normal
mathematic font with an arrow above the character. Symbols denoting a matrix or tensor
are always written in bold uppercase, like A or Γ.

In some rare cases, the same symbol is applied for different quantities. In these cases
the context of the symbol explains its meaning. The arrangement of the list is as follows,
first the symbol is written, then the description and finally the dimensions if applicable.

Roman

a Radius of the sphere [m]
A Amplitude for general purpose
A′ Electric field [V/m = kg m/C s2]
A Matrix for general purpose
B Baseline length, telescope separation [m]
B0 Beam separation before combination [m]
Bk Baseline length, index k [m]
b Right-hand side vector with measured data
C Constant for general purpose
C Control matrix for piezo actuation [–]
c0 Speed of light [m/s]
D Diameter of aperture [m]
d Delay or applied path length difference [m]
eb Right-hand side error vector, b = b̄+eb

f Frequency (= c0/λ) [Hz]
h Height of a Staircase step [m]
Ik Intensity for baseline Bk [W/m2]
I j k Intensity for pixel j and baseline Bk [W/m2]
Jn Bessel function of the first kind and order n [–]
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k Wave number (=ω/c0) [1/m]
L Luminosity distribution function [W/rad]
li Length of piezo i [m]
lc , lcoh Coherence length [m]
L Regularization matrix, set equal to I [–]
M Magnification
m Index into measurement vector
P Field-dependent path length, expressed as difference δP [m]
p Lengths of six periscope piezos [m]
S(λ) Intensity spectrum [W/m]
V Visibility [–]

Greek

β Size of detector pixel [rad]
βnm Participation factor of Zernike-mode Znm

γ Complex coherence [–]
Γ Gram matrix
ǫ Normalized reconstruction error [–]
ǫ0 Electric permittivity of vacuum [C2 s2/kg m3]
λ Wavelength [m]
λc Central wavelength [m]
µ0 Magnetic permeability in vacuum [kg m/C2]
ν Frequency [Hz]
σi i th singular value
θ Coordinate in detector plane [rad]
θ0 Coordinate in object plane [rad]
ω Angular frequency (= 2π f ) [rad/s]
Ψ Complex field disturbance [kg m/C s2]
Ψm Integrated measurement of order m [W]

Mathematical

· Inner product, first order contraction
x! Factorial of x

A−1 Inverse of matrix A

xT Transpose of vector x

|x| Absolute values of vector x

||x|| L2-norm of vector x

E (x) Expected value of x

i =
p
−1 Imaginary unit

I Identity matrix
Σ Summation
cond(A) Condition number of matrix A

()p Pochhammer’s symbol
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(

n

k

)

Newton’s binomium, k subsets out of a set of n items

Abbreviations

AU Astronomical Unit
CCD Charge Coupled Device
DAC Degenerate Angel Cross
DOF Degree(s) Of Freedom
DTI Delft Testbed for Interferometry
ENZ Extended Nijboer–Zernike
FFT Fast Fourier Transform
FOV Field-of-View
HD Hennen–Debye Catalog
HH Herbig–Haro
LBT Large Binocular Telescope
MAOT Multiple Aperture Optical Telescope
MEM Maximum Entropy Method
MTF Modulation Transfer Function
OPD Optical Path length Difference
PSF Point-Spread Function
SVD Singular Value Decomposition
TSVD Truncated Singular Value Decomposition
VLTI Very Large Telescope Interferometer
WFOV Wide field-of-view





Appendix A

The nature of the response signals

The following pages show the simulated measurements of the object HH47, for the four
types of beam combination. The nature of these signals is very different. In all cases, the
measured signal per baseline length setting k is given. Then, for the image-plane com-
biners Homothesis and Densified, the recorded intensity Ik (θ) as a function of detector
location θ is given. For the co-axial types Staircase and Michelson, the intensities I j k (d)
are given as a function of applied delay d . For each pixel with index j , such a trace or
interferogram is given.
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Figure A.1: The presented measurement data (Figs. A.2,A.3,A.4 and A.5) are all obtained from a
simulated observation of the object HH47. In this figure, the dashed line indicates the position of
the slice of the image of which the pixel values were used again as the linear luminosity distribution
L(θ0). The thick line represents this function. The diffraction limited spot size of a single telescope
is indicated at the bottom.
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B = 16DFigure A.2: Tabular display of all Homothetic simulated measurements I j k (θ), the recorded in-
tensities (photon counts) per bin for each baseline length. The number of pixels is 235. The base-
line lengths are B = D · [2, . . . 16] in steps of 2D. For these sketches, the amount of photons was
108. The Homothetic measurements are characterized by the presence of fringes over the full FOV
and a decrease of fringe period for an increasing baseline length.
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B = 16D, d = -16 mm
B = 16D, d = 0 mm
B = 16D, d = 16 mmFigure A.3: Tabular display of all Densified simulated measurements I j k (θ), the recorded inten-

sities (photon counts) per bin for each baseline length. The number of pixels is 31. The baseline
lengths are B = D · [2, . . . 16] in steps of 2D. For these sketches, the amount of photons was 108.
The measurements per delay setting d = −16,0,+16 µm, are plotted with an intentional off-set.
The Densified measurements are characterized by the fact that multiple images per baseline are
taken, that fringes are not present over the full FOV, especially for the longer baselines, and that
the fringe period is equal in all gathered images.
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B = 16DFigure A.4: The measurements for the Staircase simulation. The measurements I j k (d) are dis-

played as intensity traces, noise-free and photon-noise quantized, with a total of 108 photons.
There is one trace for every pixel j and baseline setting k. There are 6 pixels and 25 d-positions.
The FOV is focused on a staircase mirror having 6 facets, between which the height difference h0
is optimized per B and then rounded to the nearest multiple of λc . The Staircase measurement
signals are characterized by the fact that fringes are present in every measured signal, over the
complete scanning range. The range is of the order of several wavelengths.
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B = 16DFigure A.5: The measurements for the Michelson simulation. Again, the measurements I j k (d) are

displayed as intensity traces, noise-free and photon-noise quantized, with a total of 108 photons.
There is one trace for every pixel j and baseline setting k. There are 6 pixels and 234 d-positions.
The Michelson measurement signals are characterized by fringe packets that are present only on
a fraction of the scanned signal. The length and shape of the fringe packet differ per pixel and
baseline length.



Appendix B

Staircase response functions and

imaging efficiency

The set of response functions I j k (d) for the Staircase beam combiner are, unlike the
functions in all other cases, not simply obtainable by integrating the sinc–cos function
over a certain wavelength range for every sky direction θ0. In one ore more beams, there
is a discontinuous surface placed in an intermediate focus. The extended source will be
imaged over this surface, encountering one or more discontinuities. The electrical fields
are diffracted, propagate further and are combined. A two-beam interferometer with a
staircase mirror in one arm is depicted in Fig. B.1. To demonstrate the effects of the dis-
continuous surface on the response functions and the ensemble of response functions—
the measured signal from the stellar source—three calculations of the intensity response
can be made. These will be a naive calculation, a calculation based on Fourier optics and
a calculation where propagation of the electrical field through the entire optical train is
simulated.

B.1 Naive approximation

A two-element interferometer is considered. One arm of the interferometer (see Fig. B.2)
is equipped with the staircase mirror, the other one is unaltered. A plane wave of unit
amplitude in direction θ0,

A(x) = exp[−2πi xθ0/λ] (B.1)

at z0, for |x| < D/2, is focused in the plane z1. The z-dependence has been omitted for
the sake of simplicity. The aberration-free optics cause the focal field to be

A(θ) = Dsinc[π(θ−θ0)D/λ]. (B.2)

For a focal length f , this expression gives the electric field A′ at a location A′(x′) = A(x′/ f ).
The staircase mirror is now naively considered as a pure phase mask. With a discontinu-
ity placed at x′ = xm , the focal field receives a phase change φs given by

φs =
{

0 for x′ < xm

2πh/λ for x′ ≥ xm
, (B.3)
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Delay line

Stairs

Wide-field
source and
collimator

Beam combination
and imaging

Telescope 1

Telescope 2

Flat

Figure B.1: The principles of the Staircase path length compensation have been tested in an
experimental set-up, in which a several-PSFs-wide simulated sky was imaged with a two-element
co-axial interferometer.

z1z0 z3z2z

x

xmx = 

h 

Figure B.2: Sketch accompanying the shallow step approximation. The staircase mirror is mod-
eled as a phase mask, so that a part of the diffraction spot in focus receives an additional phase
φ= 2πh/λc .

so that the altered focal field is

A′′(x′) = 2Dsinc[
π(x′− x′

0)D

f λ
]exp[iφs]. (B.4)

The focal field of the other beam is now simply added to this focal field. A delay d is
applied in the other beam, so that the summed focal field yields

Atot(x′,d) = 2Dsinc[
π(x′−x′

0)D

f λ
]exp[iφs ]+2Dsinc[

π(x′−x′
0)D

f λ
]exp[2πi d/λ]. (B.5)

The intensity recorded is I (x′,d) = |Atot|2, and this function can be calculated for a num-
ber of wavelengths. The summation of these functions yields a fringe pattern as before,
consisting of a diffraction pattern as cross section and an enveloped cosine function for
the fringes, be it that a sharp discontinuity is present. Since for the co-axial beam com-
biners the detector array is chosen to have pixel dimensions of roughly half the size of
the diffraction envelope, the function

∫

λ I (x′,d) can be integrated over the pixel dimen-
sions. The sharp discontinuity is no longer visible and a fringe pattern with two regions
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(a) (b)Figure B.3: Logarithmic contour plot of the intensity in the focal region for low numerical aper-
ture (a) and the phase of the electric field (b). Ranging up to a millimeter out-of-focus, the intensity
is constant with respect to f and the phases do not change. Introducing a step at a defocus level
of 3 microns will not cause any other effect than a phase jump. Note: the Airy diameter is 20
microns.

of maximum interference results. The distance between the centers of these two regions
is, of course, the step height h. To prevent the halves of the double fringe packet to di-
minish the fringe contrast of the other, the step height should be chosen to be a multiple
of the central wavelength: h = N ·λc .

B.2 Shallow-step approximation

For shallow steps, the approximation of treating the staircase mirror as a phase mask for
the calculation of the electric field in focus, is valid. Figure B.3(b) shows the phase of a fo-
cal field at low numerical aperture. The phases near best focus z = 0 are nearly constant
in the range |z| < 10λ. A partial phase addition, as demonstrated in the naive approach,
is therefore a valid way to describe the electrical focal field just after the staircase mirror.
However, when this altered field is propagated again, the field at the plane z2 is radically
different from the original field at z0.

The field after re-collimation is the field that is combined with the plane waves in the
other arm. The combined field is focused again, and if an analytical expression can be
derived for this focal intensity, the response matrix can quickly be calculated. Figure B.4
shows two edge-adjusted fields. One was obtained by numerically propagating the ex-
pression in Eq. (B.4). The other one is mathematically derived. The first approach is as
follows. For a pupil function P = 1 for |x| < D/2, the focal field can be expressed as

A(θ) =
∫

x
P ·exp[−i 2πxθ/λ]dx. (B.6)



170 APPENDIX B. STAIRCASE RESPONSE FUNCTIONS AND IMAGING EFFICIENCY

−0.03 −0.02 −0.01 0 0.01 0.02
0

0.5

1

1.5

2

x [m]

|
P

(x
)|

 [
a
.u

.]

NUM, h=λ/8

NUM, h=0

FUN, h=λ/8

−0.03 −0.02 −0.01 0 0.01 0.02
0

0.5

1

1.5

2

x [m]

|
P

(x
)|

 [
a
.u

.]

NUM, h=λ/4

NUM, h=0

FUN, h=λ/4

Figure B.4: Comparison of numerical (NUM) and analytical (FUN) methods to calculate the elec-
trical field after re-collimation. The step height is taken h =λ/8 (left) and h =λ/4 (right), the angle
of incidence is θ0 = 0 and the step edge is located at θ = 0. Aperture diameter D = 0.01 m and the
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The result is the sinc-function. Numerically, the integral is expressed as

A(Θ)=
∑

X

P ·exp[−i 2πXΘ/λ] ·∆x. (B.7)

Here, X and θ are a set of discrete values, where X j = j∆x and Θk = k∆θ for indices
j = 1,2, . . . , J and k = 1,2, . . . ,K . The re-collimated field is then expressed as:

P ′(X ) =
∑

Θk′

A(Θ)exp[i 2πXΘ]∆Θ+

∑

Θk′′

A(Θ)exp[i 2π(h+XΘ)]∆Θ, (B.8)

where k ′ and k ′′ indicate the first and second half of the range over Θ, that will encounter
respectively the unraised and the raised part of the stair. This numerical Fourier analysis
takes the series X ,Θ with finite discretization and limited domains. This results in loss of
spatial frequencies in the result, as can be observed for the two lines in Fig. B.4 with the
‘NUM’ label. Even with step height h = 0, the exact pupil function P = 1 is not recovered.

An analytical expression can be found by using the convolution theorem, which states
that a convolution of functions is a multiplication of their Fourier transforms, and vice
versa. Since the focal field and pupil field form a Fourier pair, the analytical pupil ex-
pression can be obtained by convolving the original pupil function (giving an unaber-
rated diffraction pattern in focus) with the Fourier transform of the staircase function. A
simple staircase is taken, expressed as

S(θ) = H(−θ)+H(θ)exp[2πi h/λ]. (B.9)

Here, the Heaviside step function H(x) is used, given as

H(x) =







0 x < 0
1/2 x = 0
1 x > 0

(B.10)

This step function has amplitude |S(θ)| = 1 and a phase off-set for θ > 0. The Fourier
transform of this function is then

F [S(θ)](x) =
iλ(exp[2πi h/λ]−1)

2
p

2π3/2x
+

1

2

√

π

2
δ(x)(1+exp[2πi h/λ]), (B.11)

where Dirac’s delta function is used, which is the derivative of the Heaviside function:

δ(x) =
d

dx
H(x). (B.12)

The function F [S(θ)](x) is the pupil-plane equivalent of the staircase function in focus.
However, it is acting as a convolution kernel. The original pupil function is expressed as

P (x) =−H

(−D

2
− x

)

+H

(

D

2
− x

)

. (B.13)

Hence, the resulting pupil field is

P ′(x) = P (x)⊗F [S(θ)](x)

=
∫

ξ
P (x) ·F [S(θ)](x −ξ)dξ. (B.14)
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Unfortunately, this expression has singularities for |ξ| → ∞. However, it does turn out
that the interesting central region |ξ| < D is well approximated by limiting the integration
over ξ to a large value, typically |ξ| = 30. The result is

P ′(ξ) =
−1

p
2π3/2

[

eiπh/λ (

λsin[hπ/λ]
[

(− log[60]+ log[D +2ξ])

H(60−D −2ξ)+
(

−iπ+ log[1/60(−D +2ξ)]
)

H(−60+D −2ξ)+
(

log[60]− log[−D +2ξ]
)

H(60+D −2ξ)+ (log[60]− log[D +2ξ])

H(−30−D/2−ξ)+ iπ (H(D −2ξ)+H(−30−D/2−ξ)−
H(−D/2−ξ))]+πλcos[hπ/λ] [H(−D/2+ξ)−H(D/2+ξ)])] . (B.15)

With the appearance of several step-functions H(x), an expression for variable stair-
case step height h, arbitrary aperture diameter D ≪ 30 m and arbitrary wavelength λ is
obtained. In Fig. B.4, the dashed line shows the accordance of this expression with the
numerically derived expression, for the same D, h and λ. The analytical expression in
Eq. (B.15) can be evaluated very quickly.

It turns out that an implementation of arbitrary step edge location, other than at
θ = 0, or equivalently, the response from an off-axis point source at θ0 6= 0, is not yield-
ing any tractable analytical expression, even after applying some approximation. The
intermediate field, as derived in Eq. (B.15) would need to be calculated for any off-axis
direction, but this is not possible analytically1. It needs to be available for a proper con-
tinuation of the calculation, since only the field for |ξ| < D/2 is propagated further.

The electrical field is cut-off by the lens at z3. The displayed field is not consistent
with the flat field from the other arm and therefore the modulation of the interference
shall not be perfect. If now the electrical field at z3 is focused and compared to the fo-
cus of the beam from the other arm (Fig. B.5), the resulting focal fields have different
cross-section. The unaberrated focus of ‘Beam 2’ has the shape of the sinc-function. Any
aberration on a pupil function widens the point spread function. Therefore, the focus of
‘Beam 1’, after passing the staircase and the second aperture stop, is wider. The mod-
ulation of the interference between these foci will not be one; perfect extinction after
combination does not occur. Figure B.6 shows the effect of the step height h relative to
the wavelength and the effect of the angle of incidence θ0.

The numerical approach is lengthy, since fine discretization grids are necessary in
both the pupil and the focal domain. However, it does allow angles of incidence θ0 and
more complex (multi faceted) staircases are easily implemented. A parametric expres-
sion for the final focal intensity, without calculating intermediate planes, was not ob-
tained. For quick calculation of response functions, this would be favorable. However, in
the framework of an observation, the calculation of response functions would be carried
out off-line. The simulations in this thesis were performed with the naively calculated
fringe functions. Figure B.7 shows that this approximation is, apart from a scale factor,
valid for the integrated large pixel detector response.

1Introduction of either a general point source direction θ0 in the pupil function P (x) or a general step-edge
location in S(θ), see respectively Eqs. (B.13) and (B.9), results in the occurrence of the Exponential Integral,
defined as

E(x) =
∫∞

1

e−t x

t
dt , (B.16)

in the convolution expression of Eq. (B.14). The Exponential Integral is known to have no analytical solution.
Therefore, only a numerically approximated expression for the general pupil field can be evaluated.
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(c) (d)Figure B.6: Numerical evaluation of the pupil function P(x) and the focus A(θ), when a beam in
direction θ0 is focused on a step with height h. For the focus, only P(x) for |x| < D/2 is taken. The
step height is relative to the wavelength λ. The incoming beam angle is relative to the Airy-radius
r A . Figures (a) and (c) respectively show the pupil and focal field for various h, while θ0 = r A/4.
Figures (b) and (d) respectively show the pupil and focal field for various θ0, while h = λ/4.

B.3 Long baseline calculation

For very long baselines, the step height will be very large. For a FOV or 2θ0 of 14 µrad
and a baseline B of 200m, the external OPD is θ0B ≈ 3 mm, which means thousands of
wavelengths or hundreds of coherence lengths. In order to equalize this field dependent
OPD, either very tall steps are needed, or a large number of very narrow shallow steps
is needed. In the first case, a shadowing effect and large diffraction effect from the step
edges can be expected (see Fig. B.8) and for detection a delay scan of several times the
coherence length is necessary. In the latter case, the Airy diffraction pattern in focus
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Figure B.7: The intensity response of polychromatic light on one single detector is obtained by
integrating I (θ,d) over the θ-range corresponding to that detector. Due to the diffraction effects
and the fact that the field outside |ξ| < D/2 is cut off in the calculation where the step edge is prop-
agated, the resulting fringe contrast will be lower than the contrast predicted by the integration of
the naively split-shifted fringe packet. The same holds for the mean flux, since light is lost after the
re-collimation lens. However, the fringe functions are very alike. A correction factor applied to the
naive but quick calculation provides an adequate intensity response.

|A2|2 |A1|2 |A1 + A2|2Figure B.8: Three near-focus intensity images of a beam without step edge |A2|2, with an edge
present |A1|2 and the combined focus |A1+A2|2. The step height was taken 3 mm, which is 1000×
higher than the step used in the simulation.

falls on a ‘phase mask’ that is fragmented to such a degree, that an analytical expression
for the field after re-collimation is not available. The question rises whether that field
will still have regions of small phase slope, so that interference with another beam still
produces a periodic fringe pattern.

The alignment of the step edges is always perpendicular to the baseline orientation
of the telescope pair. Therefore, the field after the staircase will show differences for the
polarization components perpendicular to and parallel to the edge direction. A full vec-
torial analysis of the perpendicular and parallel components of the focal field is therefore
advisable. However, again for shallow steps, the field summed from these field compo-
nents will not differ much from the field derived with scalar diffraction theory.
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Figure B.9: The shape of the staircase has to be optimized for every needed baseline length and
should hence be actuatable. If this is not possible, a set of mirrors with fixed dimensions could
be placed in the intermediate focus. This illustration shows how one mirror, optimized for one
baseline length, B = 2D, still reduces the total necessary scanning time for three different baseline
lengths.

Sub-optimal step heights

For equalization of the external field-dependent path length differences, the heights of
the steps h of the staircase have to be adjusted to every baseline length Bk . Only then,
the necessary scan length (dmax −dmin) is minimal and constant for all baseline lengths.
Actuating such a mirror however, requires micro-mechanic mirrors that have not yet
been demonstrated. Unlike Adaptive Optics, the adjustable staircase mirror has to op-
erate in focus rather than on a collimated wavefront. However, even without a fully ad-
justable staircase mirror, benefit of the path length compensation can be taken. Fig-
ure B.9 shows a diagram of envelope/fringe packet center locations in (θ,d)-space for
three different baseline lenghts B . The necessary scan ranges with and without a stair-
case mirror present are indicated to the left and right hand side respectively, of the di-
agram. The staircase mirror under consideration has one height h for all three baseline
lengths and is hence not optimized. Still, the total necessary scan range is reduced.

B.4 Inefficiency of staircase response functions

Besides the loss of light due to the presence of edges in focus, there is also a signal pro-
cessing-related ‘loss’ connected to the Staircase method. As found in Chapter 5, the pro-
duction of estimates L̂(θ0) is in the case of Staircase imaging slightly less efficient than in
the case of Michelson imaging. Despite the fact that the Staircase compacts the fringed
measurement signals, it needs more photons per bin to obtain an estimate of equal fit
to the original. This inefficiency is again illustrated in Fig. B.10. The inefficiency can be
explained by the nature of the fringed signal. In the case of Staircase imaging, there is no
unique relation between the location and intensity of a point source on the sky and the
resulting single-point response function.

Following the staircase-induced staggered line in (θ,d)-space for the origin location
of the envelope and the fringes, one can think of situations where the integrated response
signal in a pixel, as function of d , is the same, while a different L(θ0) caused these re-
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Lower singular values mean higher noise amplification in the inversion and hence require more
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Michelson Staircase StaircaseFigure B.11: Three elementary source functions L(θ0) are depicted. The detector responses
in (θ,d)-space are given, at a certain baseline Bk . The response in the Michelson case uniquely
matches to the given source function. Since in the case of Staircase imaging the fringe data is
compacted, the two sketched responses provide after integration over a pixel the same intensity
signal I j k (d), but a totally different—yet allowed—source function L(θ0).
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sponses. Figure B.11 illustrates such a situation, based on the fact that negative contri-
butions (L(θ0) < 0) to a response are, in principle, allowed. In the sketched situation,
the combination of a large and positive response with a small and negative response
yields the same measurement as the combination of a single, smaller, positive response.
Due to the fact that different source functions L(θ0) can lead to the same or nearly the
same measurement, the Staircase method will need more information to be able to give
a correct estimate of the sky. Therefore, given the same set of baseline lengths as the
Michelson case, it will perform worse, as is indicated by the singular values in Fig. B.10,
where the normalized singular values of the Staircase imager are lower than those of the
Michelson imager and show a steeper drop-off, and is confirmed by the numerical sim-
ulations, presented in Sec. 5.3.2, where the plot of the reconstruction error versus the
number of photons per bin (referred to as the imaging efficiency) shows that the Stair-
case imager needs more photons per bin (or less noise) to reconstruct an image as good
as the Michelson imager.





Appendix C

Prediction for the Darwin array

A final set of simulations is performed in order to predict the imaging performance of
the Darwin array. As for the other presented simulations, the array under consideration
is a two-element configuration, generating a one-dimensional, high-resolution estimate
of the luminosity distribution on the sky L̂(θ0). The simulations are performed at the ul-
timate values allowed by the software and the computer. Since a linear system of equa-
tions lies at the basis of the simulation process, large values of the FOV and ultimate an-
gular resolution generate matrices that reach the storage capacity of the internal memory
of the computer on which the simulations are run. For that reason, the following simula-
tions do not reach the requirements for the Darwin imaging mission, listed earlier in this
thesis; the achieved angular resolution is 71 nrad, whereas the requirement was 0.005”
or 24 nrad.

C.1 Simulation parameters

The original source function or luminosity distribution L(θ0) is again taken to be a cross-
section of the object HH47. In Fig. C.1, the function L(θ0) is depicted, together with the
PSF of a single telescope. The source function is chosen to span approximately 11 PSFs.
The magnification is again chosen to be M = 1. The detector array has the same angular
span as the source function.

The telescope diameter is D = 3.5 m. The baseline lengths B at which snapshots are
taken, are then given as

Bk =
{

2D k = 1
4(k −1)D k = 2, 3, . . . , 9.

(C.1)

The baseline length differences of 4D might seem large, but with an observational band-
width for which 6 µm ≤ λc ≤ 10 µm, this set of baselines leads to a spatial frequency
coverage with no gaps up to the desired ultimate spatial frequency, expressed as angular
wavenumber, given by

Bmax

λc
=

112

8 ·10−6
= 1.4 ·107[rad−1]. (C.2)

The frequency coverage is illustrated in Fig. C.2. The 11 PSFs wide source function is
discretized on a 333-points equidistant grid. This leaves 33 resolution elements per PSF,
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matching to the ratio Bmax/D = 32. Therefore, all features in the function L(θ0) should be
recoverable, leading to reconstruction error ǫ-values that are only limited by shot-noise.

Table C.1 provides a list of the detector discretization, needed for the four different
imagers, in order to cover the FOV and reach the same spatial angular frequency cov-
erage. For the methods other than Densified, the discretization is straightforward. The
necessary range of delay steps for the Densified case to have coherent information from
all regions of the sky, is derived from the modulation part of the intensity point-source
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response for a general interferometer, given as, see Eq. (2.28),

cos

[

πB0

λ

(

θ−
[

B

B0
θ0

]

+
d

B0

)]

= 1, for θ0 = θ(max)
0 . (C.3)

The expression of Eq. (C.3), states that a bright fringe is necessary at the boundary of
the field-of-view. Since the observation is polychromatic, this requirement is reduced to
finding the delay d , for which the central fringe appears in the center of the diffraction
envelope. This center is located at θ = θ(max)

0 . Equation (C.3) now reduces to

d = B0θ0

(

1−
B

B0

)

. (C.4)

With the given FOV of 11 PSFs wide, a combination baseline length of B0 = 7 m and a
maximum collection baseline length of B = 112 m, Eq. (C.3) yields a maximum delay
dmax = 1.5 mm, corresponding to 187 ·λc . The amount of steps to go through this delay-
range is then chosen such that for every direction θ0, the corresponding intensity PSF
shows an envelope with clearly visible fringes. This amount is related to the coherence
length and can be found by inspection of the calculated PSFs. Increasing the amount of
steps leads eventually to a PSF with a central fringe in it, for every sky coordinate θ0. A
very large number of steps will then be necessary. Decreasing the amount of steps leads
to regions of the sky for which the PSF hardly shows fringes, since only for the values
of θ0, matching to the delays d according to Eq. (C.4) the PSF will show a central fringe
in the center of the PSF. The 11 PSFs wide sky is adequately covered with 36 steps of d ,
spanning the −1.5. . .+1.5 mm range.

Table C.1: Measurement settings for the simulations. B0 in the case of Densified beam combina-
tion, is the fixed exit baseline length. Both the pixel range and the function L(θ0) span 11 PSFs, in
all cases.

Case Pixels Pixel Size OPD Range Size Steps Bins

Michelson 20 ≃ PSF/2 2Bmaxθmax λc /4 1561 31220

Fizeau 1562 pθ(Bmax)/4 — — 1 1562

Densified 101 pθ(B0)/4 −187λc . . .+187λc 10λc 36 3636

Staircase 20 ≃ PSF/2 − 3
2 lcoh . . .+ 3

2 lcoh λc /4 25 500

For the Staircase method, the number of stairs was chosen to be equal to the number
of pixels. The stair heights h0 are optimized for each baseline length. As a result, all
fringes are present within a very short d-range, as illustrated earlier by the sawtooth-
shaped (θ,d)-space plot. The ultimate delay d at which the central fringe can be found,
is a function of the stair width and the baseline length—and is in the h0-optimized case
equal to the stair-height.
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Figure C.3: The singular values σi are normalized with respect to the largest singular value σ1.
This allows comparison of the responsiveness of the imaging method with respect to spatial fre-
quencies in the observed luminosity function L(θ0). The graphs show an incoherent imaging
regime, for indices i ≤ 20, and a coherent imaging regime, for indices 20 < i ≤ 333. There is no
unsampled regime, because of the very long baseline lengths.

C.2 Simulation results

Comparison of the transfer matrices

The transfer matrices for the four methods can be composed and analyzed with Singular
Value Decomposition. The resulting series of singular values σi are plotted in Fig. C.3,
where each series is normalized by its largest singular value, σ1. Inspection of the plots
provides the following information.

Up to index i = 20, the singular values drop heavily. Inspection of the singular vectors
vi for these indices learns that these modes correspond to the incoherent regime. With a
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resolution, governed by telescope diameter D, the flux is addressed to the 11 PSFs wide
sky. Apparently, a set of ≃ 11 ·2 functions is sufficient for this task. The co-axial imagers
have 20 pixels on the detector, but the image-plane methods have much more.

In the coherent regime, for which 20 < i ≤ 333, the average level of the slowly decreas-
ing lines is a measure for the amount of coherent information in the detection signals.
Homothesis and Staircase both have fringe information in all regions of every snapshot
they record, whereas Densified and Michelson record large amounts of incoherent in-
tensity data per snapshot. However, not only the average level is related to quality. The
‘flatness’ of the traces is a measure for the coverage of the field at all spatial frequencies.
The flatness of Homothesis and Michelson is better than that of Staircase and Densi-
fied. Apparently, for a certain spatial frequency, not every direction θ0 is represented with
equal strength. In other words, these two non-classical methods have a field-variant re-
sponse, changing with the spatial frequency. However, this does not mean that not all
information of L(θ0) cannot be restored. For the Staircase method, an analysis of the
slight inefficiency is presented in Sec. B.4. For the Densified method, the reason for the
slight inefficiency lies in the fact that only a limited set of values of d is taken per baseline
configuration, and that the fringe packet moves out of the diffraction envelope.

The analysis of the transfer matrices by inspection of their singular values, can be
done before starting simulation runs for each method. Facts such as complete coverage
of field at all spatial frequencies, and a correct number of singular values related to the
incoherent image, can be checked. The simulations can then be started with transfer
matrices that match the desired imaging parameters, such as field and resolution. But
even without simulations, the lines in Fig. C.3 already predict which imaging method
will perform best. The method that demonstrates in its σi /σ1-trace

◮ a limited drop of magnitude between the incoherent and the coherent regime,

◮ an as limited as possible decrease of magnitudes in the coherent regime, and

◮ a coherent regime continuing until index i , where i is equal to the number of res-
olution elements in the function L(θ0),

is stated to be the best performing imaging method. The numerical simulations, incor-
porating detector-noise and shot-noise, should prove this statement.

Comparison of simulated observations

Figures C.4 and C.5 represent the results of 100 simulations. The four imaging methods
are applied to the same source L(θ0), from which an increasing number of photons is re-
ceived. Figure C.4 displays the imaging efficiency, expressed as the reconstruction error
ǫ, for the best reconstruction possible, versus the number of photons per bin. Detec-
tor noise is again 8 photons per bin. Above this amount of photons per bin, all imag-
ing methods demonstrate a drop in reconstruction error. The methods Homothesis and
Michelson—the two classical methods—have a comparable efficiency and perform bet-
ter in terms of efficiency than the methods Densified and Staircase. The reasons for this
lie in the large amount of incoherent information and the use of multiplexing, respec-
tively.

Figure C.5 finally, shows the performance of the four imaging methods as a func-
tion of observation time. Whether the best reconstruction is sought for a given observa-
tion time, or the shortest observation time is sought provided a minimum reconstruction
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Figure C.4: The normalized reconstruction error ǫ is expressed as a function of the number of
photons per bin. Above the indicated detector noise level of 8 photons per bin, the curves indi-
cate the efficiency of the imaging methods. Polynomials are fit through the data, for displaying
purposes only.

quality, the outcome will be the same. The best imaging method is Homothesis, followed
by the Staircase method.

C.3 Conclusions

Homothesis is the superior imaging method for wide-field, high angular resolution im-
ages. Not surprisingly, it is this method that resembles most the ideal situation of a very
large telescope with an aperture mask in front of it. However, the construction and oper-
ation of a homothetic imaging array are no trivial issues. The Staircase method achieves
storage of high resolution information from the sky into a minimal number of detector
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Figure C.5: The normalized reconstruction error ǫ versus the total amount of received photons for
the complete observation of L(θ0). Polynomials are fit through the data, for displaying purposes
only.

bins—with only 500 bins, it has by far the smallest amount. Although the reconstruction
process suffers slightly from this data-compaction by multiplexing, the Staircase method
performs very well in the sense that it is fast, or, in other words, that it needs less pho-
tons to reconstruct an image than Michelson or Densified. As in the case of Homothesis,
there are practical issues to overcome. A staircase-shaped mirror with 20 aligned facets
can be produced. But then, either an actuatable version with tuneable stair-height has
to be designed, or a system should be installed that can replace a rigid staircase mirror
for each of the k observations with baseline lengths Bk .

Considering the merit of the analysis of the transfer matrices, the conclusion can be
drawn that inspection of the singular values is a quick and accurate means to predict the
imaging performance of an interferometer. The superiority of Homothesis, followed by
the Staircase method, is in accordance with the final simulation results.
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Nawoord

Het proefschrift is geschreven, het werk is gedaan. Vier jaar geleden begon ik aan deze
klus, zonder al te veel kennis over optiek noch astronomie. En nu ligt er dan een proef-
schrift over apertuursynthese! De enige voorkennis op dat specifieke onderwerp had ik
opgedaan—maar dat realiseerde ik me pas later—in De ontdekking van de hemel. Het
zoveel jaren later doorgronden van de principes achter deze astronomische waarneem-
techniek was dan ook een fantastische ontdekking voor mezelf. Het doen van dit soort
ontdekkingen en uiteindelijk begrijpen wat je eerst nog niet wist, was wat ik wilde toen
ik begon—ik ben tevreden.

Minstens zoveel genoegen als uit het ontdekken kwam me toe uit de samenwerking
met anderen en het onderwijs dat ik kon geven. Alle docenten en collega-promovendi
met wie ik dit deed wil ik daarvoor dan ook bedanken. Een bijzondere samenwerking
was er met Rudolf, Eddy, Bastiaan en Teun als het gaat om de DTI. Deze opstelling kreeg
uiteindelijk geen hoofdrol in dit proefschrift, maar de vele uren rondom deze mepper

hebben me—mede dankzij jullie—veel inzicht en plezier opgeleverd.
Twijfels zijn er vaak geweest, maar op zulke momenten kon ik steun vinden bij velen,

niet in de laatste plaats bij mijn ouders. De voortgang en de inhoud van mijn werk baar-
den me nogal eens zorgen en het is te danken aan de goede begeleiding om me heen dat
ik het proefschrift toch heb afgerond. Luigi en Jan-Willem, van jullie heb ik veel opgesto-
ken, zowel op het gebied van astronomie en optica, als ook op het sociale vlak. Silvania
en Joseph, dankzij jullie werd ik wegwijs in de optica en ging ik geloven in mijn eigen
kunnen op dit gebied. Bedankt allemaal!

Voor de fijne sfeer in de Optica groep kan ik zonder uitzondering iedereen bedanken;
het was echt heerlijk om hier zo’n vier jaar rond te lopen. Lucia, Yvonne, Roland, Marnix,
Rob en ook Aad en Leen, jullie maakten (in veel gevallen letterlijk) de sfeer compleet
en hadden gelukkig altijd tijd voor een praatje. Praatjes waren er ook in de kamer van
onze concurrenten. De Kamercompetitie is bij mijn weten nog altijd onbeslist en Janne,
Arthur: dat moesten we maar zo laten. ‘Onze’ leidt natuurlijk naar Oana, Wouter en Bas.
Het kan aan het verdwenen uitzicht hebben gelegen dat het laatste jaar veel aandacht
binnen bleef in plaats van naar buiten vloog. Hoe dan ook, in onze kamer was altijd wat
te doen!

Tenslotte gaan mijn gedachten uit naar het water van Zuid-Holland en de bossen
rond Utrecht en Breda. Ook naar mijn auto’s en het asfalt dat ik gezien heb. Het is maar
goed dat ik rijden leuk vind, want zo stond me niks in de weg om bij Marleen te zijn,
samen te fietsen en haar alles te laten horen over het promoveren en vervolgens van
haar te horen dat alles goed zou komen. En dat kwam het.
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