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Abstract:

Light selection based purely on the angle of propagation is a long-standing sci-

entific challenge. In angularly selective systems, however, the transmission of

light usually also depends on the light frequency. We tailored the overlap of the

bandgaps of multiple one-dimensional photonic crystals, each with a different

periodicity, in such a way as to preserve the characteristic Brewster modes

across a broadband spectrum. We provide theory as well as experimental re-

alization with an all-visible-spectrum, p-polarized angularly selective material

system. Our method enables transparency throughout the visible spectrum at

one angle, the generalized Brewster angle, and reflection at every other view-

ing angle.
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The ability to control light has long been a major scientific and technological goal. In

electromagnetic theory, a monochromatic electromagnetic plane wave is characterized (apart

from its phase and amplitude) by three fundamental properties: its frequency, its polarization,

and its propagation direction. The ability to select light according to each of these separate

properties would be an essential step in achieving control over light (Fig. 1).

Tremendous progress has been made toward both frequency selectivity and polarization

selectivity. Frequency selectivity (Fig. 1A) can be obtained, for example, by taking advantage of

photonic bandgaps in photonic crystals (1–5). Polarization selectivity (Fig. 1B) is accomplished

for example by means of a “wire grid” polarizer (6) or by exploiting birefringent materials (7,8).

Methods based on interference and resonance effects have been explored for angular selectivity,

but they have limited applications because they are sensitive to frequency.

An angularly selective material-system should ideally work over a broadband spectrum.

Such a system could potentially play a crucial role in many applications, such as high efficiency

solar energy conversion (9,10), privacy protection (11), and detectors with high signal-to-noise

ratios. Some progress has been made towards achieving broadband angular selectivity by means

of metallic extraordinary transmission (12, 13), anisotropic metamaterials (14), combined use

of polarizers and birefringent films (11), or geometrical optics at micrometer scale (15). The

first two of these mechanism are difficult to realize in the optical regime; the other two work

only as angularly selective absorbers.

Here, we introduce a basic principle to achieve optical broadband angular selectivity. Our

result rests on i) the fact that polarized light transmits without any reflection at the Brewster

angle, ii) the existence in photonic crystals of band gaps that prevent light propagation for given

frequency ranges, and iii) the bandgap broadening effect of heterostructures. First, we prove our

fundamental idea theoretically for a single polarization and oblique incident angles, and also for

both polarizations and normal angle of incidence. Second, we experimentally demonstrate the

concept in the case of all-visible spectrum, p-polarized light. The demonstrator is transparent
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for all colors at one viewing angle and highly reflecting at every other viewing angle.

We begin by considering a simple quarter-wave stack with periodicity a, relative permeabil-

ity µ of µ1 = µ2 = 1, and relative permittivities ✏ of ✏1 and ✏2. In such a system, monochromatic

plane waves with frequency ! propagate only in certain directions; propagation in other direc-

tions is not allowed because of destructive interference (3). Another way to look at this is

through the photonic band diagram shown in Fig. 2A: Modes that are allowed to propagate

(so-called extended modes) exist in the shaded region; no modes are allowed to propagate in

the white regions (known as bandgaps). In the photonic band diagram, modes with propagation

direction forming an angle ✓i with respect to ẑ axis in Fig. 2 (in the layers with dielectric con-

stant ✏i) lie on a straight line represented by ! = kyc/(
p
✏i sin ✓i), where ky is the ŷ component

(as defined in Fig. 2) of the wave vector ~k and c is the speed of light; for general propagation

angle ✓i, this line will extend through the regions of the extended modes, as well as through the

bandgap regions.

However, for p-polarized light, there is a special propagation angle, known as the Brewster

angle ✓B, for which the extended modes exist regardless of ! (dashed line in Fig. 2A) (8, 16).

✓B = tan�1

r

✏2

✏1
, (1)

where ✓B is the Brewster angle the layers with dielectric constant ✏1. At ✓B, p-polarized light

is fully transmitted for all frequencies at both interfaces (from ✏1 to ✏2 layers and from ✏2 to ✏1

layers). This condition is not sufficient to achieve angular selectivity; we also need to remove

all the extended modes in other propagation directions. Because the location of the bandgap

scales proportionally to the periodicity of the quarter-wave stack, the effective bandgap can be

enlarged when we stack quarter-wave stacks with various periodicities together (17–19). The

details of this process are illustrated in fig. S1 (20). As a proof of principle, in Fig. 2D we plot

the band diagram of an ideal structure with ✏1 = 1 and ✏2 = 2 and the number of quarter-wave

stacks approaching infinity. By doing this with a finite system of 50 stacks (10 bi-layers in each

stack), we can achieve an angularly selective range of less than 2� and a frequency bandwidth
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of � 54%, similar to the size of the visible spectrum (Fig. 2G).

For s-polarized light, as there is no Brewster angle, this construction behaves as a dielectric

mirror that reflects over a wide frequency range and over all incident angles (Fig. S2) (20).

The mechanism above provides both angular selectivity and polarization selectivity, and

is therefore useful in many applications. For example, in most optically pumped lasers, the

pumping light comes in with a specific polarization and at one specific angle. A cavity built

with both angularly selective and polarization- selective mirrors will allow the pumping light to

get through, while at the same time trapping all the light with other propagation directions and

polarizations inside the cavity.

The restriction on the polarization can be lifted by releasing the conventional requirement

that µ1 = µ2 = 1. During the past decade, it has been demonstrated that metamaterials have

the potential to achieve ✏ = µ 6= 1 in broad frequency range (21–23). Consider two media with

✏1 = µ1 6= ✏2 = µ2; under those circumstances there is no reflection at the interface at normal

incidence because the two media are impedance matched, where the impedance Z is defined

as Z =
p

µ

✏
. The off-axis reflectivity can be calculated directly from the generalized Fresnel

equations (8):

✓

Er

Ei

◆

?

=
1

Zi

cos ✓i � 1

Zt

cos ✓t
1

Zi

cos ✓i +
1

Zt

cos ✓t
(2)

and
✓

Er

Ei

◆

k

=
1

Zt

cos ✓i � 1

Zi

cos ✓t
1

Zi

cos ✓i +
1

Zt

cos ✓t
, (3)

where the subscripts i and r denote incident light and reflected light, respectively, and the

subscripts ? and k indicate the direction of the electric field
�!
E with respect to the plane of

incidence. When Zi = Zt, the reflectivities for s- and p- polarized light become identical. In

particular, the Brewster angle is the same for both polarizations (✓B = ✓i = ✓r = 0�). As a

proof of principle we plot the band diagram of a quarter-wave stack with ✏1 = µ1 = 1, and

✏2 = µ2 = 2 in Fig. 2C. As in the previous case, we can broaden the bandgaps by stacking
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quarter-wave stacks with various periodicities together (Fig. 2F); this approach gives rise to

ultra-broadband angular selectivity at normal incidence for both polarizations (Fig. 2H).

Other than using photonic bandgaps to remove unwanted extended modes, there might ex-

ist even more optimized ways to forbid light from propagating in unwanted directions: The

narrowness of angular selectivity can be optimized using numerical tools (17, 24) to further

enhance the performance of the material system. Examples of optimizations based on three

different physical mechanisms are shown in fig. S3 (20).

To show the feasibility of the method described above, we present an experimental real-

ization for the ✏1 6= ✏2, µ1 = µ2 = 1 case. The sample was fabricated with the bias target

deposition (BTD) technique (25) at 4Wave Inc, using SiO2 (✏1 ⇡ 2.18, µ1 = 1) and Ta2O5

(✏2 ⇡ 4.33, µ2 = 1) on a 2 cm ⇥ 4 cm fused silica wafer (University Wafer Inc.). The sample

consists of 84 layers in total (Fig. 2E). There are six bi-layer stacks (m = 6), each bi-layer stack

consisting of seven bi-layers (n = 7), with the thicknesses of each layer equal in a given stack.

The periodicities of the six bi-layer stacks form a geometric series with ai = a0r
i�1, for the

ith stack, where a0 = 140 nm and r = 1.165. For index matching purposes, the whole sample

was immersed into a colorless liquid with dielectric constant ✏liquid = ✏1 = 2.18 (Cargille Labs)

(Fig. 3A). The sample could work in the air by adding a coupling prism or by using a porous

material for ✏1 that has a lower refractive index, such as aerogel (26).

The sample is transparent (up to 98%) to p-polarized incident light at ✓B = 55� (Fig. 3D);

the angular window of transparency is about 8�. It behaves like a mirror at all other incident

angles over the entire visible spectrum (Fig. 3B,C,E). For s-polarized incident light, the sample

behaves like a mirror at all angles (fig. S2) (20). The p-polarization transmittance of the sample

in the visible spectrum was measured using an ultraviolet-visible spectrophotometer (Cary500i);

a p-polarizer was used to filter the source beam. The experimentally measured result agrees with

the rigorous coupled wave analysis (RCWA) (27) simulation prediction (Fig. 4), which includes

the measured dispersion of materials (index variation < 1.3% for SiO2 and < 6.2% for Ta2O5
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over the wavelength range from 400 to 700 nm). In the experimental measurements, the peak

transmittance at ✓B becomes lower at shorter wavelengths (Fig. 4B) because the wavelength is

getting closer to the dimensional tolerance of fabrication.

Movie S1 is a video recording of the full process with the sample rotating 90� in this exper-

imental setup is provided in the supplementary materials (20).

Our method has a number of attractive features, including simplicity, narrow angle selec-

tivity, scalability beyond optical frequencies, and reproducibility on large scales. Furthermore,

this method can be implemented in other wave systems that have Brewster angle analogs, such

as acoustic and elastic waves. A natural next step would be to examine materials whose mag-

netic permeability is similar to their dielectric constant, so as to reach angular selectivity in both

polarizations.
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B Polarization Selectivity

?  ?  ?

C Angular Selectivity

A Frequency Selectivity

Fig. 1: Illustration of light selection on the basis of its fundamental properties (A) Fre-

quency selectivity provides control over transmission/reflection of different frequencies. Pho-

tonic crystals (such as omnidirectional mirrors) can select light in specific frequency band-

widths. (B) Polarization selectivity provides control over the transmission/reflection of differ-

ent polarizations. An ideal polarizer selects light with a specific polarization. (C) Angular

selectivity provides control over the transmission/reflection of incident angles; so far achieving

broadband selectivity has remained illusive.
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Fig. 2: Theoretical illustration. (A) Extended modes (shaded regions) for off-axis propaga-

tion vectors (0, ky, kz) in a quarter-wave stack with two materials having ✏1 = 1 and ✏2 = 2
respectively. The green region indicates modes with E fields polarized in the yz incidence

plane (TE or p-polarized). The dashed black line corresponds to the Brewster angle in both

layers. (B) Schematic layout of a simple quarter-wave stack. (C) The same plot as in part (A),

but with ✏1 = µ1 = 1, ✏2 = µ2 = 2, and for both polarizations. (D,F) Extended modes for

an ideal heterostructure with (m,n) ! 1. (E) Schematic layout of the heterostructure stack-

ing mechanism (G) p-polarized transmission spectrum of 50 stacks of quarter-wave stacks at

various periodicities. Each quarter-wave stack consists of 10 bi-layers of {✏1 = 1,✏2 = 2}
materials. The periodicities of these quarter-wave stacks form a geometric series ai = a0r

i�1

with a0 = 200nm and r = 1.0212, where ai is the periodicity of ith stack. A more detailed

discussion on how this stacking process works is presented in the supplementary material. (H)

p, s-polarized transmission spectrum for a structure that has the same number of stacks and lay-

ers per stack as in part (G), but with a0 = 140nm and r = 1.0164, and with different material

properties: ✏1 = µ1 = 1, ✏2 = µ2 = 2.
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Fig. 3: Experimental setup and observation. (A) Schematic layout of the experimental setup.

The system is immersed in a liquid that is index matched to ✏1 = ✏SiO2
= 2.18. (B)Normal

incident angle setup. The sample behaves as a mirror and reflects the image of the camera. (C)

✓i = 30� setup. The sample behaves as a mirror and reflects the image of MIT cups in the lab.

(D) ✓i = ✓B = 55� setup. The sample becomes transparent for the entire visible regime for

p�polarized light. (E) ✓i = 70� setup. The sample behaves as a mirror and reflects the figurine

placed at the corner of the table. In B-E a polarizer is installed on the camera so it detects only

p-polarized light.
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each bi-layer forms a geometric series ai = a0r

i−1 with the optimized a0 = 200 nm and r = 1.0212. the
total transmitted power in this optimization is 3% better than the result in part (A). (C) Transmission
spectrum for the structure optimized based on Constrained Optimization BY Linear Approximations
(COBYLA) algorithm (28). We set each layer thickness as a free parameter; the initial condition is set
to the result obtained in part (B) above. The total transmitted power in this optimization is 10% better
than the result in part (A)
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