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Optical caustics in natural phenomena

James A. Lock

James H. Andrews

When observing a distant point source of light through a water droplet adhering to a pane of glass
near one’s eye or the scattering of light from raindrops, one often sees optical caustics. In this
paper, diffraction integrals are used to investigate these caustics. The caustic shapes are related to
divergences in the stationary phase method for approximating the diffraction integrals. These
divergences correspond to the coalescing of two or more geometrical light rays in ray optics or the
coalescing of two or more regions of stationary phase in wave optics. The number of coalescing
light rays is related to a polynomial approximation of the phase function in the diffraction
integral. Also, the relation between the shape of the resulting caustic and the elementary caustic
forms of the catastrophe optics classification scheme is described.

INTRODUCTION

If at night you look at a distant street lamp through a
drop of water on your eyeglasses or on a window pane close
to your eye, you will see not just the image of the street
lamp, but also a webbing of bright light surrounded by
interference patterns of lesser brightness.! Such a webbing
is shown in Fig. 1. Similarly, a gentle late afternoon rain
occasionally reveals the bright arc of a rainbow and some-
times the supernumerary interference pattern adjacent to
it.’” The curving bright lines in these natural phenomena
are examples of optical caustics. Postponing for the mo-
ment a precise definition of an optical caustic, one can say
that it is associated with some degree of focusing of reflect-
ed or refracted light. The purpose of this paper is to under-
stand how the optical caustics in these phenomena are
formed. In doing so, we describe a convenient method for
both characterizing and quantitatively describing them
Neither the analyses of the natural phenomena discussed in
this paper nor the method for characterizing caustics that
we describe is fundamentally new. But much of the litera-
ture on optical caustics employs rather specialized vocabu-
laries that may be somewhat foreign to an interested but
uninitiated reader. In this paper we demonstrate that a de-
scription of optical caustics based on wave interference is
straightforward and, at the introductory level, does not re-
quire the specialized vocabularies used in much of the cur-
rent research on optical caustics. _

Optical caustics may be described either in terms of light
rays or in terms of light waves. A simple cx_ample suffices to
explain what an optical caustic is and how its ray optics and
wave optics descriptions are related. Consider a perfectly
focusing circular lens of diameter d and focal length /. If a
family of parallel light rays is incident along the symmetry
axis of the lens, all of the refracted rays pass through the
focal point producing an infinite light intensity there. The
focal point is an optical caustic. In fact, the locus of all the
points at which the intensity of the light rays that are re-
flected or refracted by an object is infinite is one of the
definitions of an optical caustic. . £ all

Ray optics is valid, however, only \yhcn the sizes of a
the pertinent objects and structures in the problem are

much larger than the wavelength A of the light that is used.
This criterion 1s violated at the infinitesimally small focal
point of the perfectly focusing lens, and at every point on an
optical caustic in general. Thus the intensity of the light in
the vicinity of a caustic 1s more properly calculated using
wave optics. For example, it is relatively easy to show with
wave optics that the infinite intensity focal point of a per-
fect lens becomes a focal waist of large but finite intensity
whose cross section in the focal plane is the central maxi-
mum of the circular aperture Fraunhofer diffraction pat-
tern
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Fig. 1. Photograph of far-field caustic of a water droplet adhering to a
vertical glass microscope slide and illuminated by an expanded beam of a
He-Ne laser. The arrow marks one of the prominent cusps produced by
irregularities near the edge of the droplet.
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where ris the distance in the focal plane from the geometn-
cal focal point. The central maximum, sometimes referred
to as the Airy disk, is surrounded by the remainder of the
diffraction pattern of Eq. (1). Away from the focal plane n
either direction, the intensity is a circular aperture Fresnel
diffraction pattern.

The example of a perfectly focusing lens can also be used
to motivate a qualitative characterization of two different
approaches that have been taken in analyzing optical caus-
tics. One approach can be said to emphasize the fogusmg
properties of the lens, and the other emphasizes the diffrac-
tion pattern in the vicinity of the caustic. In the first ap-
proach, if one considers a real lens rather than the idealiza-
tion of a perfectly focusing one, the ray optics caustic
produced by an incident plane wave grows from a single
focal point to a more complicated three-dimensional struc-
ture due to the aberrations of the lens. Points on the caustic
may correspond to the focusing of an infinite number of
light rays due to the rotational symmetry of the circular
lens. The various lens aberrations and the caustics that they
produce have been described in great detail in terms of both
the refraction of light rays through the lens and the changes
in the curvature of the exiting wave fronts produced by the
lens. These methods give the exact shape of the entire caus-
tic produced by the reflecting or refracting surface, and
greatly simplify for high symmetry situations such as a lens
or a system of lenses.* ’

The second approach is appropriate for the caustics pro-
duced by plane waves incident on various reflecting or re-
fracting surfaces that do not possess the high rotational
symmetry of a circular lens. For these surfaces, only a small
number of light rays focus to form the caustic. The electric
field in the vicinity of these caustics can be written as an
integral over the phase ® associated with each of the opti-
cal paths that light waves can take in going from the reflect-
ing or refracting surface to an observation point.* '* These
integrals are known as diffraction integrals and have been
discussed in an intuitive way in a popular book by Feyn-
man." Consider a diffraction integral of the form

E(xnd’uv?-o) =j-l-e@l‘-f-ﬁ-r_r,,h.1dx dy,

where the xy plane is the entrance plane of the irregular
reflecting or refracting surface and (x,.y,,z, ) are the co-
ordinates of an observation point. The value of the integral
is dominated by the small number of regions in the xy plane
of integration where the phase function ® is stationary.
These correspond to regions of constructive interference of
the light waves and are identified'’ with the geometrical
light rays that form the caustic and its surrounding inter-
ference structure. For the remainder of the xy plane, the
phase function @ is rapidly varying and corresponds to
destructive interference. It contributes little to the value of
the integral in Eq. (2).

The purpose of the next two sections of this paper is to
show that a simple and convenient way to describe the opti-
cal caustics observed in the natural phenomena described
at the beginning of this section is in terms of a diffraction
integral such as Eq. (2) where the phase function ® has
been approximated by a polynomial of low degree in x and
. As we will show, the degree of the polynomial in x and y
is related to the maximum number light rays which can
focus to form the caustic. This is the second approach re-
ferred to above. It cannot be applied to situations involving
circular symmetry because an infinite number of rays focus

(2)

to form the caustic. The first approach, used for lens Sys-
tems and high symmetry situations, can be applied to low
symmetry irregular reflecting or_rel‘ructmlg surfaces and
gives the exact shape of the resulting caustic. The calcula-
tions involved in doing so, however, become quite compl;-
cated. The polynomial approximation to ® in Eq. (2), on
the other hand, implies that all the details of the caustic
calculated in this way are not rendered exactly. But enough
terms in the Taylor series expansion of ¢ are retained to
preserve all of the caustic’s fundamental structure and fea-
tures. Thus the polynomial approximation of & permits a
great simplification in the calculation of the shape of the
caustic and the interference structure that surrounds it
when the caustic is due to the focusing of only a few rays.

Since the caustics described at the beginning of this sec-
tion are produced by two different mechanisms acting on
two different types of water droplets, i.e., refraction
through an irregularly shaped droplet and scattering by a
spherical droplet, the derivations of the forms of the dif-
fraction integrals describing each phenomenon in practice
proceed in different ways. We consider scattering by a
spherical droplet in Sec. Il and refraction through an irreg-
ularly shaped droplet in Sec. III. In Sec. Il we derive the
applicability of diffraction integrals and polynomial ap-
proximations to the phase functions from basic principles
in the context of the simplest caustic, the rainbow. In Sec.
IIT we demonstrate the power and simplicity of the use of
polynomial approximations to the phase function for more
complicated caustics.

CAUSTICS AND LIGHT SCATTERING

One can describe the rainbow appearing in the far-field
scattering of light by a spherical water droplet using either
ray optics or wave optics. We briefly review first the ray
optics treatment and then the Airy theory of the rainbow in
order both to motivate our wave optics analysis and to in-
troduce our notation. In ray optics, a family of parallel rays
is incident on a water droplet of radius @ and refractive
ndex n. Each ray, as in Fig. 2, has a different impact pa-
rameter b with respect to the droplet center, and the angle

of incidence of such a ray with the droplet surface is ¢
where

sinf, =b/a. (3)

The ray incident with the angle 6, is deflected through the
angle © during the scattering process. If the scattering pro-
cess is identified with transmission into the droplet, one
internal reflection, and then transmission out of the drop-
let," the deflection is given by

©(6,)=7+26 —40,, (4)
where
sin f, = n sin @, (5)

Since @< 7 for this process, the deflection angle is identical
to the scattering angle 6. For other scattering processes,
;uch as transmission out of the droplet after two or more
internal reflections, the deflection angle of the emerging
ray 1s greater than 7. For those processes, the relation be-
tween the deflection angle and the scattering angle, which
is defined to be less than or equal to , is somewhat more
complicated.

By relating the power incident on the portion of the
droplet surface bounded by the angles 6, and 6, + d6, to
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Fig. 2. Schematic of a water droplet showing an internally reflected light
ray incident at the angle # . The ray has the impact parameter b and it is
scattered through the angle © = ¢

the scattered power entering the far field and bounded by
the angles © and © + dO, the scattered intensity is found
to be'

I,a* sin 6, cos 6
Oa wr:lfgljﬂn(ﬂllru(ﬂ)
R? sin®

oo s
d@/dé,|

In this expression, /, is the incident light intensity, R is the
distance from the water droplet to the observer, 7, and
T,, are the fractions of the intensity (with a given incident
polarization state) transmitted into and out of the droplet,
respectively, and R, is the fraction of the intensity that is
internally reflected.'® For unpolarized incident light, the
parallel and perpendicular polarization states must be
treated separately and the resulting intensities are then
summed. _

The deflection angle of Eq. (4) possesses a single relative
minimum at the incident angle 6 ” given by

cos’ 67 = (n* — 1)/3. (7
The ray incident at this angle is known as the Descartes
ray, or the rainbow ray. For this ray, d©/db, va_mlshcs and
1(©) diverges signaling the presence of a caustic. The cor-
responding scattering angle

6°=0(67) (8)
is known as the rainbow scattering angle. .

An improvement upon ray theory is provided by the
Airy theory of the rainbow. Airy theory is in a sense a

combination of the ray theory approach to caustics men-
tioned in Sec. I and the diffraction integral approach of Sec.

1(©) =

(6)

IIL. In the first step of Airy theory, one follows the paths of
the geometrical rays through the water droplet and deter-
mines that an initially flat wave front exits the droplet in
the vicinity of the rainbow scattering angle with a cubic
shape.'® In the second step of the theory, the cubic exiting
wave front is Fraunhofer diffracted into the far field. The
Fraunhofer diffraction integral is of the form of Eq. (2)
and is recognized as the Airy integral.'™'*

The purpose of the remainder of this section is to show
from first principles that the rainbow caustic appearing in
the far-field light scattering by a spherical water droplet
(and by analogy the more complicated caustics described
in the next section as well) may be described by a diffrac-
tion integral. The derivation of a similar diffraction inte-
gral for quantum mechanical scattering by a spherically
symmetric potential whose range is much larger than the
de Broglie wavelength A is known as the semiclassical ap-
proximation to scattering and was carried out by Ford and
Wheeler many vears ago.'” The derivation of the diffrac-
tion integral for electromagnetic scattering by a spherical
water droplet (the rainbow caustic) proceeds in an almost
identical manner. In this derivation we employ the vocabu-
lary of scattering theory and point out analogies between
quantum mechanical and electromagnetic scattering. A
number of the results we find for the resulting one-dimen-
sional diffraction integral will be repeated and generalized
to two dimensions as we examine the more complicated
caustics of the next section. Readers primarily interested in
the description of caustics and their associated wave fields
or who are familiar with the scattering theory motivation
for diffraction integrals may turn to the last paragraph of
this section without any loss of continuity.

We begin our derivation of the diffraction integral for
the rainbow caustic with an exact solution to the electro-
magnetic boundary value problem of a plane electromag-
netic wave incident on a dielectric sphere. In the simpler
boundary value problem provided by quantum mechanical
scattering, when the incident and scattered wave functions
are decomposed into sums of partial waves, the far-field
scattered wave function takes the form

Uanieres (R,6,8) = (*F /kR)F(0), (9)

where the scattering amplitude F'is given by

F(6) =S 21+ 1)fP, (cos §). (10)
=0

The coefficients f; are called the partial wave scattering
amplitudes. In electromagnetic scattering, the incident
plane wave, and the internal and scattered electric and
magnetic fields are also decomposed into sums of partial
waves. The partial waves are the transverse electric (TE)
and transverse magnetic (TM) spherical multipole waves
familiar from radiation and antenna problems.* If the in-
cident electric field has strength £, and is polarized in the
i, direction, then matching the boundary conditions for
the various components of the electric and magnetic fields
at the surface of the water droplet gives an exact solution to
the electromagnetic boundary value problem known as the
Mie scattering solution. One has in the far field'**'*

E.caeres (RO,6) = iE, (¢“* /kR)

X [S,(8) sin diz, + S, (6) cos by |,
(11)
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where the electromagnetic scattering amplitudes S, and S,
are given by

and
5,(8) = i a1 [a;7,(8) + b7, (8)], (13)
- r-|!(f-:'-|)
and where the angular functions 7, and r, are given by
7,(0) = (1/sin @) P} (cos ) (14)
and
f;(ﬂ)Z-J—P} (cos 8). (15)
de

The coefficients a, and b, are the partial wave scattering
amplitudes for the TM and TE multipoles, respectively.
They are functions of 7 and the size parameter of the water
droplet

X=2ma/A. (16)

Their explicit forms are analogous to the explicit form of
the partial wave scattering amplitudes f; for quantum me-
chanical scattering by a spherical straight-edge well.>*

If a plane wave is incident at an angle 8, on a flat inter-
face with either TE or TM polarization, the portions of the
incident electric field that are transmitted or reflected are
given by the Fresnel coefficients 1(#,) and r(8.).'" If the
plane wave were instead incident at an angle 6, on a flat
thin film, the portions of the incident electric field trans-
mitted or reflected by the film may be written as a sum of
contributions, each of which depends on the single inter-
face Fresnel coefficients and is interpreted as specular re-
flection, direct transmission, or transmission following an
arbitrary number of multiple internal reflections.”* Simi-
larly, if a spherical multipole wave with either the TE or
TM polarization encounters a concentric spherical inter-
face, a portion ¢, of its amplitude is transmitted with the
phase change £, and a portion 7, is reflected with the phase
change y,.” When the multipole wave interacts with a
spherical water droplet, the partial wave scattering ampli-
tudes a, and b, may be written as sums of contributions,
each of which depends on the single interface factors r,e*'
and 7, and is again interpreted as diffraction, specular
reflection, direct transmission, or transmission following
an arbitrary number of multiple internal reflections.?® This
is known as the Debye series and it allows one to decom-
pose the total scattering amplitude into its constituent
physical processes. Employing this decomposition, the
portion of the partial wave scattering amplitudes that cor-
responds to transmission into the droplet, one internal re-
flection, and then transmission back out is*’

a: reflection __ [(r}'“)’/n](r}""‘)e"’”"*”"", (17)

b: reflection _ [(‘}Ijzfnl{r;n:)eatlﬂ' + r:“J‘

(18)

For a raindrop illuminated by visible light with a~ 1
mm, thousands of partial waves make important contribu-
tions to the scattering amplitudes S, and S,. For /> 1 and @
away from 0 or , the angular functions 7, and 7, may be
approximated by’

| )m‘[(.ui)e—-”-] 19
”‘m"nno(mna i L\ iy GO o

.

2 §* l)g_i
”w’:’(mua) m[(“z 4

and the scattering amplitudes of Egs. (12), (13) become

§)raesen(g) = 3 AT T ]
I=1
+,-e'[2£.-"-|.” uun-:w]) (a1
and
§)eton(g) = 3 AP T e
l=]
FiglBM s ine]y )

where A [Eand A ™ are slowly varying amplitude factors.
In the X» 1 limit, the localization principle in optics*®

associates a small range of partial waves centered about /,

with a geometrical light ray whose impact parameter is
b=(l,,./X)a. )

A consequence of the localization principle is that the
dominant contribution to the partial wave sums of Egs.
(21), (22) is preserved if the sum over partial waves is
replaced by an integral over the associated impact param-
eter.”® With this replacement, we have

S: r-ﬂmwn{g):'[ d!ATE({](e"'T-"“" + w»".m
0
(24)
and
S; nﬂﬂlmn(o}:j diA “4{”“@'}‘1 Lé) + f.e,rvaa‘“-.' #) ).
0
(25)
where
P, (L6)=2&() + y(D) + 18, (26)

for either the TE or TM polarization. The integral over
e*- corresponds 1o rays that enter the sphere above the
centerline and exit below the centerline as in Fig. 2. This
will be the dominant term for scattering into the primary
rainbow that we are presently calculating. The integral

over ™ corresponds to rays that enter the sphere below
the centerline but also exit below the centerline. This would
be the dominant term, for example, for transmission fol-
lowing two internal reflections resulting in the second-or-
der rainbow. Assuming that 4 " (/) and A "™ (/) are slowly
varying, the scattering amplitudes of Egs. (24), (25) are of
the form of the diffraction integral of Eq. (2) except that
the integration is over a single variable rather than over
two. In the neighborhood of the partial wave / 2, given by
Egs. (3), (7), and (23), 4 "E(/) is an order of magnitude
larger than 4 ™ (/) due to the internal reflection of the
rainbow ray occurring near the Brewster angle. This pro-
duces the strong polarization of the rainbow, and, as a con-
sequence, we may neglect the scattering amplitude S, as
compared to S, .

We now discuss the evaluation of the diffraction integral
of Eqs. (24), (25) in the limit X3 1. In this limit, the phase
changes £ and y have the asymptotic forms**
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ETE( =E™()
=(WX* -2 _ (x2_ )12

— I |arcsin(/ /X) — arcsin(//nX) | (27)

ra

and
rTl‘?(!) ~ Y'IM(‘[)

=2’ X =12 _ |7 — 2arcsin(//nX)] — =
(28)

independent of polarization, and the phase functions & |
for the primary rainbow become '

D, (10) =4(w°X* — 132 _3(x2 _ 2y12
=1 [7 + 2arcsin(1/X)

—4arcsin(//nX) 6] — 7. (29)

A numerical examination of the first derivative of the func-
tion® _ (160) showsthat ®  (,6) has no relative maxima
orminima in / for any value of 6 and thus contributes little
to the scattering amplitude. The function ¢ . (18), on the
other hand, is found to possess two nearby stationary
pointsin/, a relative maximum and a relative minimum, for
scattering angles & somewhat larger than 67, As @ ap-
proaches 6 °, the two stationary points coalesce at the par-
tial wave / . For @ less than @ °, the function ® . (1,0) has
no stationary points and also contributes little to the scat-
tering amplitude. In ray optics, for > 8 2, the two station-
ary points are identified with the two geometrical rays that
interfere to form the supernumerary pattern below the pri-
mary rainbow in the sky. The coalescence of the stationary
points as & approaches 6 ? is identified with the coalescing
or focusing of the two supernumerary rays to form the rain-
bow itself. The absence of stationary points for 8 <87 is
identified with the absence of light rays in Alexander's dark
band above the primary rainbow in the sky.’

The locations of the stationary points of ® _ and their
contributions to the scattering amplitudes may be estimat-
ed by Taylor series expanding ® , (/,6) about the point of
coalescence / . But how many terms in the Taylor series
must one retain in order to describe adequately the caustic
that is produced? The answer is that since the coalescence
of two stationary points produces the focusing at the loca-
tion of the caustic, one retains the fewest number of terms
in the Taylor series that exactly reproduces this pattern of
coalescence of the relative maximum and minimum of the
function ® | (/,8) of Eq. (29). For the present situation,
when ® | is Taylor series expanded about / ”, retaining the
terms that are at most cubic in / — /? produces a polyno-
mial approximation to ® , , which we call ®#*""™ and
for which there are also two nearly stationary pointsin/ for
0> 6 ” that coalesce at / ” as 6 approaches € ”, and that has
no stationary points for @ <  °. In this approximation we
have

Wynmmnl(l,e):@*_ (19.9) +X(9—~ ef)](;_ !D)
=¥k [(1=1"2/3]), (30)

where
h=3sin 6°/4 cos’ 6 2. (31)
This cubic wave front is also the result produced by the

Airy model described in the beginning of this section and is
the essential element to any wave theory description of the

rainbow. Equation (30) may also be recognized as the
phase function of what is called the fold caustic.
For 6> 67, ®vebmomsl hag stationary points at

I5=1°% 4+ (0—-07)"/p', (32)

Substituting Eq. (30) into Eqs. (24), (25). neglecting the
variation of A(/) near /”, and using the definition of the
Airy integral,'” we obtain

s: ﬂ:ﬂnlmn{a) C’:Al[( — X¥/h He — 9”)]_ (33)

For negative values of its argument, the Airy integral is
oscillatory with a slowly decreasing amplitude giving the
supernumerary interference pattern.” For positive values
of its argument, it rapidly decreases monotonically giving
Alexander’s dark band. Although ray optics predicts that
the rainbow caustic will occur when 6 = 62, the Airy inte-
gral reaches its largest value when its argument is about
— 1.01, corresponding to a scattering angle slightly dis-
placed from 6 2.

The polynomial approximation to® , and the use of the
Airy integral imply that Eq. (33) is not an exact evaluation
of the scattering amplitude. But the approximations intro-
duced only affect the details of the supernumerary interfer-
ence pattern far from the rainbow caustic. The approxima-
tion does not affect the scattering amplitude in the vicinity
of the caustic itself. This is shown in Fig. 3. The physical
basis of the approximation may be understood in the fol-
lowing way. The stationary points of Eq. (32) increase
above and decrease below / ” at equal rates as @ is increased
beyond 6 °. For the exact phase function ® . of Eq. (29),
however, the rate of increase of the / * > / ? stationary point
soon lags behind the rate of decrease of the /5 < I ? station-
ary point since it is identified with the geometrical light ray
incident near the edge of the droplet which is constrained
to have the impact parameter b<a. The /* </ stationary
point is identified with the light ray incident nearer the
center of the droplet whose impact parameter is not simi-
larly constrained. This asymmetry, along with the vari-
ation in A(/) near / “, limits the quantitative validity of Eq.

) T 1 § | T T T T T T T | ] 1 1
@

- ~ -4

z [
=2 |
I

g ! r

& ; 1

£ ! 0

= ol fi [
L) 1]
e ]

2 i |

- r . 7

I I I [ L T B

I T O il

I L L ' I

I : A ll.i_L

VI B S| § 5 0 o e O L
135° [} 150°

Fig. 3. Comparison between the square of the Airy integral approximation
of Eq. (33) (dashed curve) and the exact evaluation (solid curve) of the
scattered intensity | S| “*“**|* for the size parameter X = 1000 and the
refractive index n = 1.333.

401



ring angles near 6 °. If terms beyond third
c(iz;!eemws::e";ons?dcregd in the Taylor series r:xpansxo;ll o.f
& _ (18), they would preserve the stationary point co : SS
oerioe behavior of the cubic appmnflmallon of Eq. ‘( 1)!;
They would only lessen the rate of increase of the /° > 4
stationary point with respect to the rate of decgease of the
/S < 1P stationary point as § increases beyond 6 7. All of the
fundamental physics concerning lh_c caustic is a{r&ady
present in the third degree polynomial approximation of
Eq. (30). Only the details of the interference_p_attcm ;ha!
surrounds the caustic are improved by the a{ldmon of high-
er degree terms in the Taylor se_riﬁ expansion ofd . .
Assuming that the two stationary pcu:ts of ¢'|;e are
separated, the integral over e~ may be ap-
;or:l:i::;d in a different way using the rnethpd of station-
ary phase. In this approximation, a Taylor series expansion
about each stationary point is truncated at second degree,
the resulting Fresnel integrals are analytically evaluated,
and the results are added together. This is difficult to carry
out for Eq. (29) since the stationary points of ® , cannot
be determined analytically in closed form. We can, how-
ever, get an idea of what happens in the stationary ph_ase
approximation if we apply it to @77 ™ instead. Using
Eq. (32) for the positions of the relative maximum and
minimum of Eq. (30), the stationary phase procedure
gives

_yu3
M(_h{" (6—86 "’j)
1
o —ee

(8_ 80)!}4

Dy372
% 2 X(0-6" _'_1.')‘

S : (34)
The stationary phase approximation to the Airy integral is
quite accurate when the contributing stationary points of
7o are well separated for 6> 8 ° as is seen in Fig. 4.
But as 6 approaches 6 ” and the stationary points coalesce
at the rainbow scattering angle, the stationary phase ap-
proximation diverges. The rainbow caustic itself is accu-
rately described by the integral over ¢ * and by the Airy
integral approximation which is everywhere finite. But
neither the original integral over e™ * nor the Airy integral
may be approximated by the stationary phase method near
the location of the caustic.

All of the results of this section were derived for the
primary rainbow or fold caustic that occurs in far-field
light Scattering by a spherical water droplet. A similar
u-m]yw_; of the scattering amplitude can be used to derive
:ﬁ;:ftun integrals f(;r 1ih: higher-order rainbows that oc-

ransmission following an arbitrary number of in-
ternal reﬂechn_ns‘ The processes of transmission out of the
d!-oplc.t following a certain number of internal reflections
Bive rise o emerging geometrical rays that are in general
verging as they leave the water droplet. This diverging of
the rays results in caustics appearing in the far field. An
exception to the divergence of the €merging rays occurs in
the backwarq and forward directions where light rays ax-
ially focus atinfinity giving the backward or forward glory.
These m.lzl:sucs must be calculated in a somewhat different
 For light scattering by a spherical water dropl i
Ing also occurs after direct lranmimou’:)ie'tt'h?‘llisgll:‘t:
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Fig. 4. Comparison between the square of the Airy integral approximation
of Eq. (33) (solid curve) and the square of the stationary phase approxi.
mation of Eq. (34) (dashed curve) for the size parameter X = 1000 and
the refractive index n = 1.333.

into and out of the droplet. In the case of direct transmis-
sion, all of the emerging light rays are converging as they
leave the water droplet. This convergence produces a cusp-
shaped caustic of revolution accompanied by an axial caus-
tic in the near field which are calculable using near-field
scattering theory to derive the appropriate diffraction inte-
gral.’' A far simpler model that is commonly used to de-
scribe this focusing, however, is that the spherical droplet
acts as a thick lens, and the shape of the near-field caustic is
easily exactly calculated in ray optics using the methods of
the first approach referred to in the Introduction. ™

Caustics are produced in light scattering by water drop-
lets with more complicated shapes as well. For light scat-
tering after one internal reflection by an oblate spheroidal
water droplet in the atmosphere, the emerging light rays
are again diverging, and the more complicated far-field
caustic that occurs™ is presumably again calculable by
converting the sum over the appropriate partial wave scat-
tering amplitudes into a diffraction integral over impact
parameters as was done in this section for the simpler rain-
bow caustic. .

Anticipating the situation treated in the next section, the
electromagnetic boundary value problem for a plane wave
incident on an irregular water droplet adhering to a pane of
glass could in principle be solved, and a diffraction integral
describing the resulting caustics could be derived from the
pertinent scattering amplitudes. But, due to the low sym-
metry of this problem and the resulting complexity of the
analysis, such a procedure has never been attempted. Rath-
er, a much more manageable starting point related to Fer_-
mat’s principle is chosen for such low symmetry pr ot?iems-
This starting point assumes the applicability of the diffrac-
tion integral description, rather than deriving it from more
basic principles as was done in this section. This new start-
ing point for the analysis of low symmetry situations 1S the
topic of the next section.

CAUSTICS AND DROPLETS OF WATER ON
WINDOWPANES

Consider a droplet of water on a windowpane or a pair g;
eyeglasses. The thickness of the droplet as a function
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location on Ithe_ glass (the z = plane) is assumed to be
known and is given by /(x ) The droplet’s refractive in-
dexis n. The droplet is illuminated by a distant light source
which we can represent by plane wave of wavelength 4
propagating along the z axis as in Fig. 5. The caustics pro-
duced by the light refracted through such droplets have
been the subject of considerable study.'' ™+

Our experimental observation of the caustic produced
by direct transmission through the water droplet can be
made either on a viewing screen placed some distance from
the droplet or by looking through the droplet from very
close range and focusing one’s eye on the distant light
source. In the former case, the electric field can be repre-
sented by Eq. (2) where the phase function
D(x.X0.50,2,) is the optical path length of a light wave
propagating from the point (x,y) in the z =0 entrance
plane of the droplet to the location (X.¥5 ) on the viewing
screen a distance z, from the entrance plane,*

P(xpXovo:20) = (27/2){(n — 1)1(x,p)
+x—x) + -y + 2 1"},
(35)

This phase function in the paraxial approximation
(20> X.0,X,.5, ) Is given by

P(xpx0.¥002, ) = *ii ((ﬂ — Dt(xy) + X

Y=
&=Ln
+£__ixl._}£,'.
0 z” ZIJ
Xa 2
+z0+i+}“). (36)
2z, 2z,

where the last three terms may be neglected since they rep-
resent an overall phase factor that cancels out when one
examines the light intensity.

If the caustic is directly observed by one’s eye, the analy-
sis proceeds similarly except that @ is no longer a function
of z, but of £;, the relaxed focal length of the eye, and the
electric field at the location (x,,y, ) on the retina is*

E(xy.5,) -_--[J-t’m e dx dy, (37)

where

7 XXy VI
P(xy.x0.00) = —2,1: ((n =)o) ==l

_ﬂ] J‘:.’

hhr Ty y,‘,) (38)

T

Assume that the windowpane or eyeglasses are dusty or
scratched so that the water droplet’s thickness tx,py) is
irregular. Examination of actual water droplets shows that
there are always sufficient irregularities for our purposes,
especially when the supporting glass stands vertically so
that the weight of the droplet is balanced by the force of its
adhesion to the glass. Since the irregular water droplet does
not possess circular symmetry, the caustics that it produces
are formed by the focusing of only a few rays, at most N of
them, for example. In this section we outline a straightfor-
ward prescription for calculating the caustics produced by
such droplets. We follow this prescription with a sample
calculation for a realistic droplet shape.

By the method of stationary phase, the value of the elec-
tric field of Eqgs. (2), (36)—-(38) and thus the intensity of
the refracted light at (x,.y,.z,) is dominated by the con-
structive interference of the light waves in the vicinity of
the N stationary points of ¢ which we denote by
(x=xp=y)orr, =xi, +yi, for 1<j<N. To find
these points, we need to solve

Vo, =0, (39)

since V|, +ii, is the directional derivative of ® at r,in the
i, direction. Equation (39) may be thought of as two equa-
tions in two unknowns. The unknowns are (x,.y,), the co-
ordinates of the geometrical light rays leaving the exit
plane of the droplet on their way to the observation point
(x,.¥5.2, ). The equations 1o be solved simultaneously fora
given (x,.y,.2,) are

P |, E@i = i (X0, %0 :05:25) =0 (40)
: ax |«
and
‘br'r _—:@' _-f:‘—r,-}'-.-".,.}'-..zl.) =0 (41)
: ay r,

Assume that we can solve these equations either analyti-
cally, numerically, or graphically to find their N solutions,
the stationary points {r }. The stationary point r, is arela-

Fig. 5. Schematic of the formation of a
combination of cusp caustics A, through
F, by cove shaped irregularities A
through Faround the perimeter of a wa-
ter droplet lens.
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tive maximum or relative minimum of @ if #®|, >0,
where*

*.‘¢:l_ E(bl: r(bv\ e, — Q’i\ r Eh(x‘--}','xu-yu-zﬂ )

(42)

and is a saddle point of ® if #®|, <0. Equation (42)
defines the so-called Hessian of @ evaluated at r,. It is a
generalization of the second derivative for a function of two
variables and tests for relative maxima, minima, or saddle
points in the way that the second derivative does for a func-
tion of one variable.

If the stationary points are all separated from each other
by a reasonable distance (i.e., they are isolated), we can
approximate Egs. (2),(36)-(38) very accurately using the
method of stationary phase. In this method, the contribu-
tion of a stationary point to the electric field in Egs.
(2),(37) may be calculated by Taylor series expanding ¢
about the point r,, neglecting terms of third order and high-
er, i.e., approximating

D (X0 VorZ0 ) =P (X, ¥ XoorZo) + 1P r, (X — X))
+§¢nirl,(y_y;)!
+¢xy1r_,(x_x;)(y_y;)- ‘43)

and analytically evaluating the resulting Fresnel integral.
Carrying out this procedure for all of the stationary points
and adding the results, we obtain

N o, e"‘" X ¥ p Xpn Fipn 2y}

E(xmyq.zo}zhr;; W (44)
where
+i for #®|, >0 and ®, |, +®,/, >0,
o =4 —i for #®|, >0 and ¢ |, + @, ., <0,

+ 1 for #®|, <0.
(45)
Z®|, is equal to the Gaussian curvature of the surface
®(x,y) at the position of the stationary phase point r,.

If there is an observation point (x,,¥,.2,) = (X5.,5.25)
for which two or more of the N solutions to Egs. (40),(41)
are identical, then these stationary points have coalesced
and are no longer isolated. In other words, for a given ob-
servation point, if

HP|, =0 (46)
then two or more stationary points of ¢ coalesce in the
entrance plane, producing a locally flat wave front. In ray
optics this corresponds to the coalescing of two or more
geometrical light rays and focusing on the viewing
screen.”” The #®|, =0 condition represents, for func-
tions of two variables, a generalization of the vanishing of
the second derivative of a function of one variable at the
confluence of a relative maximum and minimum.

For these observation points on the caustic, the station-
ary phase approximation of Eq. (44) obviously is no longer
applicable. In ray optics this corresponds to infinite intensi-
ty at (x§,¥5.25 ), and the set of all such points forms the
caustic. In wave optics the electric field at the caustic is
given by Eq. (2) which remains finite and is dominated by
the regions of constructive interference. The classical infin-
ity is softened by diffractive and wave interference effects.

For the irregular water droplet, how many light rays can
leave the droplet at different values of r, and pass through a
single point on the viewing screen or the retina? Assuming
the droplet is irregular in that it lacks the perfect circular
symmetry of a spherical lens, the answer 1s only a few. Put
another way, how many stationary points, r,, does 4 have?
Again the answer is only a few. Thom's theorem of catas-
trophe theory'''*** states the surprising and significant
result that if only a few rays can coalesce to form a caustic,
then the coalescence can occur in only a few different ways,
i.e., only a rather small number of different optical caustics,
known as the stable catastrophes, can be created on the
viewing screen. These caustic shapes may simultaneously
occur at many locations on the viewing screen due to differ-
ent irregularities at different locations on the droplet sur-
face, and may appear in varying sizes or asymmetrically
stretched, contracted and distorted. Still, there are only a
few different caustic types and they can often be quickly
recognized. The power of Thom's theorem is that it is not
based upon the explicit form of the irregular thickness of
the droplet #(x,y) but only upon the maximum number of
coalescing light rays it admits, that is, the maximum num-
ber of solutions that Eq. (39) has. Table I shows the con-
nection between the number of stationary points or light
rays coalescing and the number of caustics that can be so
produced for up to five stationary points or rays. Pictures
of these caustics appear in Refs. 11, 12, and 44.

For a given number of rays, one caustic is distinguished
from another by the different ways in which all of those
rays come together and coalesce to produce the strongest
focusing of the caustic. Our knowledge of the shape of the
droplet enables us to trace parametrically the shapes of the
caustics which can be seen. In turn, the shape of the caustic
can sometimes be used to identify details about the drop-
let’s shape.

We can determine the shape of the caustic for a given ¢
in the following manner. To be stationary points of ®, the
coalescing points (x,,y,) on the water droplet correspond-
ing to the point (x{,y5,2; ) on the caustic must satisfy**

fl (&J,..tf,y{,.z{,} =0,
S (x,,%6.56.25) =0,
h(x;.,.%5.06.2) = 0.

For the paraxial experimental observations of Eq. (36),
these three equations reduce to

fi(x,0,2%) — x5/2 =0,
L2 (x,9,,%) — y6/25 =0,
h(x,,2) =0,

(47)

(48)

Table 1. Relationship between the number of coalescing rays A and the
number of and types of different caustics which can be produced.

Number
N of caustics Standard names of caustics
2 1 Fold (ie., Rainbow)
3 1 : Cusp
; ; Elliptic umbilic, Hyperbolic umbilic, Swallowtail

Butterfly, Parabolic umbilic
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where f, and /. are the portions of the derivatives of ® with
respect to x and y. respectively, that have no X, and y;
dependence. Fora given =z, A(x. WV,.25 ) = Odefines a curve
in the xy plane of the droplet. Each of the points on this
curve represents the location of the coalescence of at least
two stationary points for some value of (x5.55.25). For
each such point, xj and y; are given parametrically by

X =2/, (x,0,,25) (49)
and
¥ =2ef1(x,0,.25). (50)

If we then vary z; and repeat this prescription over and
over again, we obtain the complete caustic in three-dimen-
sional space.

For the paraxial experimental observations correspond-
ing to Eq. (38), the three equations reduce to

}‘| (x;*y;) - x:)/f; = 0»
j:,- (X,-J’;) —»/fo =0,
h(x,y,) =0.

where again f, and /, are the portions of the derivatives of
® with respect to x and y that have no X, and y;, depend-
ence. The procedure for tracing out the shape of the caustic
is similar. We are limited, however, to the single cross sec-
tion of the caustic determined by £, the focal length of the
eye, which for focusing at infinity corresponds to letting
Zp— .

To simplify the evaluation of Egs. (2),(37), instead of
using the exact thickness function t(x.y), we use a Taylor
series expansion of it about the location in the xy plane
where all of the stationary points coalesce to produce the
source of the strongest focusing of the caustic. If this ex-
pansion has a nonzero radius of convergence, truncating
the expansion at a given degree in x and y provides a poly-
nomial approximation for  and an approximation to the
shape of the resulting caustic. Here we need to ask again, as
we did in expanding the phase function for the rainbow
caustic, how many terms of the Taylor series do we keep?
The answer is the minimum number so that all the different
coalescences of some or all of the N stationary points of
dreiveomal are the same as for the N stationary points of the
original . We need not work too hard to guarantee that
this will happen because, for caustics of only a few rays,
only a few terms in the expansion of @ are needed to pre-
serve the full pattern of stationary point coalescences.**

In Table II we show the relationship between the num-

(51)

Table I1. Relationship between the number of coalescing rays V and the
highest degree of terms in ™" required to produce the given caustic

Highest degree of terms

N Name of caustic in Taylor series expansion
2 Fold Third

3 Cusp Third

4 Elliptic umbilic Th%rd

4 Hyperbolic umbilic Third

4 Swallowtail F ifth

5 Butterfly Sixth

5 Parabolic umbilic Fourth

ber of rays, up to five, and the degree of the polynomial
phase function necessary to produce the particular caustic.
By degree, we mean the combined powers of x and y in the
polynomial. In practice, this procedure is often inverted.
One does not know the exact 7(x,y). But by recognizing the
caustic, one can work backwards to find the approximate
polynomial form of 7(x,y).*’

Replacing the phase function @ in the diffraction inte-
grals by a low degree polynomial in the integration vari-
ables gives only an approximate description of the interfer-
ence pattern surrounding the caustic and of the shape of the
caustic itself away from its strongest focusing point. The
approximation, however, is quite accurate if one is close to
the most strongly focusing part of the caustic, which is
often the case experimentally. In this limit, Thom's de-
scription of caustics provides one with both a convenient
way of classifying the types of caustics that can be pro-
duced by the focusing of a small number of light rays and a
practical way of calculating the electric field strength in the
vicinity of the caustic. While the stationary phase method
fails at the caustic, it can still be used to calculate the dif-
fraction structure away from the caustic.

We now apply this prescription to find parametric equa-
tions for the cusp caustic, since, for the irregular water
droplet lens, the cusp is generally the most commonly en-
countered caustic shape. We will assume the shape of the
droplet generally is a spherical cap with radius of curvature
R. We can then approximate the thickness of the droplet in
a Taylor series (neglecting terms fourth degree and higher
in x and y) as

z2=R—x/2R — y°/2R. (52)

To this cap we add small irregularities in the droplet’s
shape due to gravity, dust, scratches on the glass, or other
causes. One such irregularity might be a combination of a
shight cove at the top of the droplet giving way to a slight
protrusion at the bottom of the droplet. Again we expand
the irregularity in a Taylor series to third degree, for exam-
ple,

z2=€xy, (53)
where € indicates the severity of the irregularity and is a
positive number with dimensions of (length) . The topo-
graphy of this irregularity is shown in Fig. 6(a). Substitut-
ing Egs. (52), (53) into Eq. (38) as 1(x,p) yields

§
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(a) {b)

Fig. 6. (a) Schematic of the water droplet lens thickness inegulan;% of
Eq. (53). (b) The cusp caustic of Eq. (56) resulting from the irregl.lj1 ity.
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where f, is again the relaxed focal length of the eye and Fis
the focal length of the spherical cap,

F=R/(n—1). (55)

Substituting Eq. (54) into Egs. (51) and eliminating x

and y yields the following equation for the downward
pointing cusp caustic seen by the eye

2 3
(ﬁ?-) =-‘irle(n—1)(;—°+___—' )
Jo 27 " 2F%(n—1)

(56)

x, =0,

yo = — fo/2Fe(n = 1), (57)
and comes from the point on the droplet

x=0,

y=1/2Fe(n—1). (58)

Thus, for this thickness irregularity, the cove in the top half
of the droplet produces the cusp caustic below the image of
the center of the droplet. The cusp caustic of Eq. (56) 1s
shown in Fig. 6(b). The cusp resembles the joining of two
curving fold caustics at a point. Exterior to the cusp, only
one light ray contributes to the electric field. Inside the
cusp, three light rays contribute and produce an interfer-
ence pattern that resembles the superposition of the two
supernumerary patterns of the twofold caustics. In the
three ray region far from the caustic, the interference pat-
tern may be approximated using the method of stationary
phase. For an arbitrary location inside the cusp, this is diffi-
cult to actually carry out since it requires solutions to cubic
equations. But on the cusp’s symmetry axis, the equations

The tip of the cusp is then at simplify and one obtains’
L\yo/fo + 1/2F(n - 1)| ', for 7, (__—f«_
I(x, =0y,) = | 3 2F€(n—1)
o =0 = Iy(yo/fo + 1/2F%€(n - 1)) '[3—2"’7sinK(}%+——, )] -/
H  2F%€(n—1) for yo>———.
2Fe(n—1)
(59)
where CONCLUSIONS
I, =27%/e(n - 1), (60) When observing the caustics that are associated with
and these and other natural phenomena, such as the reflection
K=nF/A. (61) of light by warped windowpanes*® and the light refracted

Equation (59), as expected, diverges at the location of the
cusp. But just as the electric field of the fold caustic is ev-
erywhere finite and is given by the Airy integral, the elec-
tric field of the cusp caustic is also everywhere finite and
the diffraction integral with ®™""*™* of Eq. (54) may be
transformed into what is known as the Pearcey integral,”**
ie.,

E(u,v)=j dp @i, (62)

Again, if the Taylor series expansion of the cove and
protrusion retained higher degree terms beyond Eq. (53),
the presence of these additional terms would keep the
shape of the cusp caustic near the cusp point intact. They
would only perturb the shape of the caustic far from the
cusp point and slightly change the details of the associated
interference pattern far from the caustic.

In practice, an irregular water droplet, such as the one
which produced the far-field caustic of Fig. 1, has many
such coves and protrusions. If we decompose the droplet
surface into various regions of influence, each cove can be
thought of as the source of a cusp caustic, giving a compos-
ite caustic such as the one indicated in Fig. 5. If two adja-
cent coves are very close together, or if a localized region on
the droplet is described by a more complicated irregularity,
more complicated caustics, such as the ones cataloged in
Table I, appear on the viewing screen or the observer’s ret-
ina.

or reflected by the surface of a rippling stream.”” we now
have a framework for understanding the caustic’s shape
and orientation. The caustics associated with these natural
phenomena are different from the lens aberration caustics
that one sometimes sees when looking at a star through a
telescope in that they involve diverging rays, irregularities,
or a lack of symmetry which dictates that only a small
number of light rays coalesce to form the caustic. There are
important and powerful ray optics methods for analyzing
the exact shape of caustics generally and which may be
applied to the caustics associated with natural phenomena.
But, since these methods give the exact caustic shape, they
are unable to capitalize on an underlying simplicity inher-
ent when the caustic is the result of just a few coalescing
rays. By calculating the caustic shapes only approximately.
the underlying simplicity, i.e., the connection with catas-
trophe theory, becomes evident. There is not an endless
variety of fundamentally different caustic forms that can be
produced in systems involving only a few rays. For few-ray
systems, only a few different caustic shapes can occur.
Since only a small number of few-ray caustics are possible.
the job of theoretically calculating them or experimentally
recognizing them becomes more manageable.
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