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Abstract. The influence of smoke on the aerosol loading
in the free troposphere over Thessaloniki, Greece is exam-
ined in this paper. Ten cases during 2001–2005 were identi-
fied when very high aerosol optical depth values in the free
troposphere were observed with a UV-Raman lidar. Particle
dispersion modeling (FLEXPART) and satellite hot spot fire
detection (ATSR) showed that these high free tropospheric
aerosol optical depths are mainly attributed to the advection
of smoke plumes from biomass burning regions over Thes-
saloniki. The biomass burning regions were found to extend
across Russia in the latitudinal belt between 45◦ N–55◦ N, as
well as in Eastern Europe (Baltic countries, Western Russia,
Belarus, and the Ukraine). The highest frequency of agricul-
tural fires occurred during the summer season (mainly in Au-
gust). The data collected allowed the optical characterization
of the smoke aerosols that arrived over Greece, where lim-
ited information has so far been available. Two-wavelength
backscatter lidar measurements showed that the backscatter-
relatedÅngstr̈om exponent ranged between 0.5 and 2.4 in-
dicating a variety of particle sizes. UV-Raman lidar mea-
surements showed that for smoke particles the extinction to
backscatter ratios (so-called lidar ratios) varied between 40 sr
for small particles to 100 sr for large particles. Dispersion
model estimations of the carbon monoxide tracer concentra-
tion profiles for smoke particles indicate that the variability
of the optical parameters is a function of the age of the smoke
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plumes. This information could be useful on the lidar com-
munity for reducing uncertainty in the aerosol backscatter
coefficient determination due to the lidar ratio assumption,
starting from a simply elastic backscatter lidar as the first
satellite-borne lidar CALIPSO.

1 Introduction

Biomass burning is a major source of air pollution and
the second largest source of anthropogenic aerosols (IPCC,
2001). The Fourth Assessment Report of the Intergovern-
mental Panel on Climate Change (Forster et al., 2007) re-
ports a contribution of roughly +0.04 W/m2 of biomass burn-
ing aerosol to the global radiative forcing (RF) with a stan-
dard deviation of 0.07 W/m2. This estimate of the direct RF
is more positive than that of the Third Assessment Report
(IPCC, 2001) and it is linked with improvements in the mod-
els in representing the absorption properties of biomass burn-
ing aerosol and the effects of their vertical distribution. Tex-
tor et al. (2006) showed that there are still significant uncer-
tainties in the aerosol vertical distribution in global aerosol
models, information that is critical in assessing the magni-
tude and even the sign of the direct RF of biomass burning
aerosols.

In the last decade, a large number of biomass-burning
studies concentrated on the physical, chemical, and thermo-
dynamic properties of biomass-burning particles. A con-
siderable body of research using in situ measurement tech-
niques has been published on the optical properties of smoke.
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This includes the analysis of laboratory burns (Patterson and
McMahon, 1987) and intensive field campaigns involving
large-scale forest fires in the North America (Hobbs et al.,
1996), as well as over Brazil (Andreae et al., 1996; Kauf-
man et al., 1998) and over Africa (Eck et al., 2001). Finally,
smoke studies using remote-sensing techniques have in-
cluded ground-based sun photometry (Kaufman et al., 1992)
and quantitative inversions of satellite imagery for smoke op-
tical properties (Ferrare et al., 1990). A detailed review of
biomass burning literature is presented in Reid et al. (2005a,
b).

Studies mentioned above are referring to laboratory, in-
situ and columnar sunphotometric measurements mainly of
fresh smoke. Smoke particles from biomass burning change
rapidly in size and composition after being emitted into the
atmosphere (Westphaal and Toon, 1991; Liousse et al., 1995;
Hobbs et al., 1997; Reid et al., 1998). There are a variety
of mechanical, chemical and thermodynamic processes that
can alter smoke properties. Under most circumstances, mea-
surements of the characteristics of fresh smoke plumes and
laboratory burns cannot be assumed to be applicable to the
aged smoke that is of greatest interest when studying its ra-
diative effects or its impact on regional air quality (Reid et
al., 2005a). Evidence suggests that most particle growth in
size and mass occurs on fairly short time scales (Abel et al.,
2003; Reid et al., 1998). Excluding scavenging processes,
studies on smoke particle evolution and growth have focused
on Brownian coagulation in dispersing plumes, and gas-to-
particle conversion and exchange (e.g., Turco and Yu, 1997).
These calculations indicate that after a plume has dispersed
into a regional haze or is undergoing long-range transport,
particle coagulation is the significant mechanism for parti-
cle growth over long enough timescales. If this evolution of
smoke particles is not properly accounted for, large errors
may result in calculations of their RF on regional and global
scales (M̈uller et al., 2005)

For an accurate smoke characterization, first the smoke
particles have to be identified in a non-mixed aerosol state
and that can only be achieved by studying lofted smoke lay-
ers in the free troposphere on the basis of long-term obser-
vations by means of lidar technique. Up to date, only few
lidar studies investigated the optical, radiative (Wandinger
et al., 2002; Balis et al., 2003) and microphysical proper-
ties (Müller et al., 2005) of smoke particles in lofted lay-
ers. Mattis et al. (2003) reported on strongly enhanced
values of particle backscattering and extinction in the free
troposphere over Germany in spring/summer of the year
2003, when a large-scale event of free tropospheric trans-
port of biomass burning particles from Siberia occurred. The
above mentioned studies were based on Raman lidar obser-
vations carried out in the framework of the European Aerosol
Research Lidar Network (EARLINET) (B̈osenberg et al.,
2003). Ground-based lidar measurements of particle optical
properties with high spatial and temporal resolution give de-
tailed information on the occurrence, extent and development

of aerosol structures. EARLINET can follow the evolution
of smoke plumes from Siberia and Russia over the European
continent and report on changes of the optical properties of
these particles with age.

Forest fires in Russia are a major source of pollution in the
Northern Hemisphere (Wotawa et al., 2001). For that rea-
son, there has been increased interest in recent years to as-
sess the impact of these fires on climate (e.g. Kasischke and
Bruhwiler, 2003). According to an investigation of the spa-
tial and temporal occurrence of fires in croplands based on
MODIS (Moderate Resolution Imaging Spectroradiometer)
active fire product (Koronzi et al., 2006), the Russian Feder-
ation was found to be the largest contributor to agricultural
burning globally during the period 2001 to 2003, producing
31–36% of all agricultural fires. This globally highest con-
centration of agricultural fires, found to be extended across
Russia in the latitudinal belt between 45◦ N–55◦ N during
the spring (April–May), as well as in Eastern Europe (Baltic
countries, western Russia, Belarus, and the Ukraine) during
the late summer (August).

In this study we present analyses of smoke optical proper-
ties measured over Southeastern Europe based on measure-
ments of the EARLINET lidar station of Thessaloniki during
ten episodes of very high free tropospheric aerosol optical
depths (AOD) caused by the advection of air masses over
Greece, mainly from biomass burning agricultural regions
in Russia and Ukraine. In Sect. 2 we describe the instru-
mentation and the dispersion modeling tools used. Section 3
presents a smoke case study as an example of the analysis fol-
lowed for all the days of our smoke measurements. The vari-
ability of the optical properties is then attributed to smoke
ageing by coagulation leading to variable observed mixing
state and size distribution of the agricultural fire aerosol in-
vestigated. Finally, our conclusions are given in Sect. 4.

2 Instrumentation and methods

2.1 Description of the lidar system and lidar data pro-
cessing

At the Laboratory of Atmospheric Physics (LAP) (50 m
above sea level), Aristotle University of Thessaloniki, a
355 nm Raman-backscatter lidar is used to perform contin-
uous measurements of suspended aerosols particles in the
Planetary Boundary Layer (PBL) and the lower free tropo-
sphere (FT). It is based on the second and third harmonic
frequency of a compact, pulsed Nd:YAG laser, which emits
pulses of 300 and 120 mJ at 532 nm and 355 nm, respectively,
with a 10 Hz repetition rate (more technical details can be
found on: Balis et al., 2000; Amiridis et al., 2005). The
optical receiver is a 500 mm diameter telescope. The LAP
lidar was successfully intercompared with other EARLINET
instruments showing on the average an agreement of better
than 5% for heights above 2 km in the backscatter coefficient
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(Matthias et al., 2004). The lidar-data handling procedures
that are routinely used at LAP for the application of Fernald-
Klett and Raman retrieval methods were successfully tested
by two algorithm intercomparisons that took place during
the EARLINET project (B̈ockmann et al., 2004; Pappalardo
et al., 2004) and include error estimates for all participating
groups. According to these studies the mean deviation from
the solution in the determination of the backscatter coeffi-
cient with the Klett method was 5.5% at 355 nm and 2.9%
at 532 nm, while the mean deviations from the solution for
extinction at 355 nm with the Raman method was within
10% and 20% for boundary layer aerosol, reaching although
even 40% for lofted layers, and for the solution of backscat-
ter within 10% for all heights. The incomplete overlap be-
tween the laser beam and the receiver field of view affects
significantly lidar observations of particle optical properties
in the near-field range. At LAP we apply an overlap correc-
tion based on a technique proposed by Wandinger and Ans-
mann (2002), down to the height where the overlap function
is equal to 0.5. This correction allows extending the profile in
most cases down to 1000–1500 m above sea level. An appli-
cation of this methodology and its experimental verification
is presented in Balis et al., (2002).

2.2 Particle dispersion model and satellite hotspot de-
tection

To simulate transport processes, we employed the La-
grangian particle dispersion model FLEXPART (version 6.3)
(Stohl et al., 1998; Stohl et al., 2005). Information on FLEX-
PART can be obtained via the internet athttp://transport.
nilu.no/flexpart. FLEXPART was driven here by operational
analysis data from the European Centre for Medium-Range
Weather Forecasts (ECMWF) model. The ECMWF data
had 60 model levels and 1×1 degree global resolution. For
the emission inputs for carbon monoxide, nitrogen oxides
and sulfur dioxide, the Emission Database for Global At-
mospheric Research (EDGAR) version 3.2 emission inven-
tory for the year 2000 (fast track) on a 1×1 degree grid was
used. Backward simulations were performed for 500-m in-
tervals along a vertically stacked array at the location of our
surface station for times when particularly interesting mea-
surements were obtained (seehttp://zardoz.nilu.no/∼andreas/
EARLINET/). Every simulation consists of 40 000 particles
released in the volume of air sampled. The backward sim-
ulations were done with full turbulence and convection pa-
rameterizations. The mathematical theory of these compu-
tations is described in Seibert and Frank (2004), and an ap-
plication to aircraft measurements was presented by Stohl et
al. (2003). The model output is a sensitivity field of emission
fluxes, which were stored on a 3-D grid with three altitude
levels (0–100 m, 100–3000 m, and above) and a horizontal
resolution of 1×1 degree globally (0.5×0.5 degree resolu-
tion in a nest over the area of most interest). The emission
sensitivity in the 0–100 m layer is of high interest since emis-

sions typically occur at or near the ground. By multiplying
the emission sensitivity value with the emission flux, a grid-
ded source contribution field is obtained which, after spatial
integration, yields a mixing ratio at the measurement site.

For estimating the smoke emission for the fires under
study, we used fire count data from the low resolution Along
Track Scanning Radiometers ATSR-2 onboard the ERS-2
satellite (2000-2002) and AATSR onboard ENVISAT (2003-
2005). ATSR allows the detection of active fires using its
thermal infrared channel centered at 3.7µm. ATSR data was
obtained from the Ionia website of European Space Agency,
ESA (http://dup.esrin.esa.int/ionia/wfa/index.asp). Hotspot
data used in this study were calculated with the version 2
algorithm that uses a detection threshold of 308◦K (Dozier,
1981).

Following Seiler and Crutzen (1980) the emissions of car-
bon monoxide (CO) from the fires were estimated. CO is
often used as a tracer for long-range pollution transport and
will be used here to identify when and at what altitudes the at-
mosphere above Thessaloniki was affected by fire emissions.
CO emissions were calculated using the equation:

E = ABab (1)

whereA is the area burned (m2), B is the biomass per area
(kg/m2), a is the fraction of the biomass consumed by the
fire, andb is the CO emission factor (g/kg). Every detected
fire was linked to a certain land cover type, using a global
land cover classification with a resolution of 1 km (Hansen et
al., 2000), for which a certain biomass per area was assumed.
The largest uncertainty in this calculation is the area burned
for a detected hot spot, here taken to be 600 ha. Since this
number is more or less arbitrary for the ATSR data, the re-
sulting tracer concentrations are rather qualitative. The emis-
sion calculations (but based on MODIS hot spot data) are
described in detail in Stohl et al. (2007).

3 Results and discussion

Regular aerosol extinction and backscatter measurements us-
ing a UV Raman lidar have been performed from January
2001 to December 2005 at Thessaloniki, Greece, in the
framework of the EARLINET project. Dispersion model
simulations showed that for ten days of our lidar measure-
ments, smoke was advected over Thessaloniki from regions
with strong fire activity in Eastern Europe and Russia. These
dates of smoke presence and the main source of particles are
presented in Table 1. The height ranges of smoke layers are
additionally denoted in Table 1 along with the lidar derived
mean values and standard deviations of optical parameters
for the specific layers, namely the AOD, the mean lidar ratio
and the mean backscatter relatedÅngstr̈om exponent.

Figure 1 shows an aggregate plot of all ATSR and AATSR
fire detections for the ten days of the lidar measurements.
Location of the burning regions was also verified by the
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Table 1. Dates of smoke presence over Thessaloniki, as indicated by the synergy of lidar measurements and dispersion modeling. The source
of smoke particles is denoted along with the height range of smoke layers and the lidar derived optical parameters, namely the AOD, the mean
lidar ratio and the mean backscatter-relatedÅngstr̈om exponent along with the sandard deviation of these values from vertical averaging.

Date Source Height range [km] AOD LR [sr] Ångstr̈om

12 Jul 2001 Russia 2.12–3.83 0.47 86±2 1.39±0.02
16 Jul 2001 Russia 1.28–2.30 0.25 71±8 1.57±0.13
9 Aug 2001 Ukraine 1.67–3.47 0.74 56±1 1.71±0.26
16 Aug 2001 Ukraine 1.64–4.22 0.71 78±14 1.41±0.08
20 Aug 2001 Russia 2.42–4.73 0.31 50±1 1.80±0.06
8 Jul 2002 Russia 2.45–3.77 0.20 76±3 1.76±0.05
22 Aug 2002 Ukraine 2.63–4.10 0.20 39±12 2.20±0.21
28 Jul 2005 Russia 1.67–3.14 0.52 69±12 1.98±0.15
1 Aug 2005 Russia 2.21–3.17 0.22 94±5 0.78±0.25
12 Sep 2005 Russia 2.06–3.56 0.28 53±6 1.29±0.22
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Fig. 1. Location of fires for the ten days of lidar measurements over
Thessaloniki as detected by ATSR. Symbols indicate the dominant
land cover where the detection occurred.

MODIS Fire Product (http://modis-fire.umd.edu/products.
asp, not shown here). Symbols indicate the dominant land
cover where the detection occurred based on a global land
cover classification with a resolution of 300 m derived from
the European Space Agency’s Global Land Cover service for
the production of global land-cover map for the year 2005,
using ENVISAT MERIS Fine Resolution (300m) data that
replaced the GlobCover2000 product which had 1km res-
olution (http://dup.esrin.esa.int/projects/-summaryp68.asp).
Figure 1 strongly suggests that smoke particles discussed in
this paper were produced mainly by agricultural burning ac-
tivities.

To explore whether the observed aerosols in our lidar pro-
files were advected over Thessaloniki from the agricultural
fires mentioned, the Lagrangian particle dispersion model
FLEXPART was used. A case study example for the 20th
August 2001 (18:00 UTC) is presented here to describe the
analysis followed for the ten days used in this work. In Fig. 2

Fig. 2. Emission sensitivity obtained from the 20-day backward
simulation with FLEXPART for the layer between 2500 and 3000 m
on the 20th of August 2001 at 18:00 UTC. The column vertical
emission sensitivity is shown. Numbers represent the days back-
ward in time as plotted at the retroplume centroid location. Hot
spots detected by ATSR are superimposed (black circles) only in
grid cells where the daily column-integrated emission sensitivity on
the very day of the hot spot identification is above 8 ns m/kg, indi-
cating the significant possibility of smoke advection.

the column-integrated emission sensitivity obtained from
the backward simulation with FLEXPART for the height
range 2.5–3.0 km over Thessaloniki (corresponding simula-
tions were done for all other 500 m intervals up to 10 km alti-
tude) is presented along with the hot spots detected by ATSR,
representing the position of fires as black dots. FLEXPART
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Fig. 3. Carbon monoxide concentration vertical profile over Thes-
saloniki for 20th of August 2001 at 18:00 UTC, from FLEXPART
simulations. Model calculations were performed considering CO
emissions only from fire hotspots detected by ATSR. The age of
CO is indicated by the color bar.

was run backward in time from the smoke layers over Thes-
saloniki, as those detected by the lidar profiles. According to
Fig. 2 for the 20th of August 2001, the vertically integrated
emission sensitivity shows a maximum over Bulgaria and
Ukraine, where the retroplume was located approximately
on days 1 and 2, backward in time. As one can see in Fig. 2,
the regions with the largest emission sensitivity are regions
with strong fire activity. The hot spots detected by ATSR are
superimposed on the column-integrated emission sensitivity
map only in grid cells where the daily column-integrated
emission sensitivity on the very day of the hot spot identifica-
tion is above 8 ns m/kg, indicating the significant possibility
of smoke advection.

To estimate the age of the smoke air mass detected by our
lidar measurements, FLEXPART simulations have been used
for the estimation of a carbon monoxide (CO) tracer profile
over Thessaloniki. An example is presented in Fig. 3 for the
20th of August 2001 at 18:00 UTC. CO concentration pro-
files have been estimated with the assumption of CO emis-
sions originating only from fires. Based on ATSR hotspot
detection, CO emissions were calculated using Eq. (1). For
these calculations we have assumed a fraction of the biomass
consumed by the fire equal to 600 ha/hotspot, which in gen-
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Fig. 4. Lidar derived vertical profiles of the extinction coefficient at
355 nm, the backscatter coefficients at 355 and 532 nm along with
the lidar ratio at 355 nm and the backscatter-relatedÅngstr̈om ex-
ponent measured at Thessaloniki on 20th of August 2001, between
18:24 and 19:18 UTC.

eral is considered a low estimation. This value was subjec-
tively determined, since no information on how much area
was actually burned per detected hotspot is available. The
uncertainties in CO fire emissions in our calculations are
even larger due to the limited capability of ATSR to correctly
detect agricultural fires. For these two reasons, the final sim-
ulated CO vertical distributions from biomass burning activ-
ities used in this study might be rather low in absolute con-
centration terms. However, under-estimation of CO should
not affect our study, since in the following we will use only
relative differences between the ten days of simulations. This
under-estimation must be of common magnitude for all cases
examined due to the linearity of Eq. (1) and changes in the
constant parameters assumed would only scale CO concen-
trations to higher values, affecting only the absolute values
of the simulated relative vertical distributions.

For the ten days of the smoke advection over Thessaloniki
as indicated from dispersion calculations, we have calcu-
lated the extinction and backscatter coefficient profiles from
the measured Raman lidar signal at 355 nm and the elastic-
backscatter signals at 355 and 532 nm. As an example we
present in Fig. 4 these profiles together with the derived li-
dar ratio at 355 nm and the backscatter-relatedÅngstr̈om
exponent (calculated from 355 and 532 nm backscatter co-
efficients) for the 20th of August 2001, between 18:24 and
19:18 UTC. The error bars indicate statistical errors corre-
sponding to signal averaging. The backscatter maximum at
both wavelengths for that case was observed within the 1.5
and 4.5 km height range. This aerosol layer showed quite
a stable maximum during the measurement period. The
lidar ratio was almost constant with an average value of
47.6±4.6 sr. The lack of significant vertical variability of
the lidar ratio suggests the presence of aerosol of the same
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Fig. 5. Lidar derived vertical profiles of the extinction coefficient at
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the lidar ratio at 355 nm and the backscatter-relatedÅngstr̈om ex-
ponent measured at Thessaloniki for ten days that smoke presence
was detected. Black lines correspond to the complete vertical profile
measured for each day while height ranges indicated with different
colour correspond to the smoke layers.

type throughout this layer. Backscatter-relatedÅngstr̈om ex-
ponent for the same height range was found to be equal to
2.25±0.16. Hence the lidar profiles, the dispersion model-
ing results shown in Figs. 2 and 3 and additional trajectory
analysis (not shown here) confirmed that air masses in the
height region between 1.5 and 4.5 km originated solely from
regions with biomass burning activity, suggesting the pres-
ence of smoke particles in the free troposphere over Thessa-
loniki.

The above presented analysis for the 20th of August 2001
was repeated for the entire ten day data-set discussed in
this paper, where smoke advection over Thessaloniki was
strongly indicated by the synergy of lidar measurements and
dispersion modeling. Vertical profiles of the extinction co-
efficient (355 nm), backscatter coefficient (355 and 532 nm),
lidar ratio (355 nm) and backscatter-relatedÅngstr̈om expo-
nent (355/532 nm) referring to smoke particles for the days
discussed are presented in Fig. 5. The dates follow the same
colour-code as the profiles on the figure. Smoke layers, as
they have been identified by emission sensitivities calculated
for different arrival heights above the station, are indicated
with different colour for each day. Only the smoke layers are
indicated with colours, while black lines correspond to the
complete vertical profile measured for each day. The lidar ra-
tio for smoke particles found to vary between 32 and 103 sr.
The backscatter-related̊Angstr̈om exponent ranged between
0.5 and 2.4. It has to be emphasized here, that backscatter-
relatedÅngstr̈om Exponent values presented in this paper are
not directly retrieved by measurements, since the backscatter
profile at 532 nm used for the calculations is retrieved after
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Fig. 6. Vertical mean values of the lidar ratio at 355 nm versus
weighted mean age of the carbon monoxide tracer, calculated for
height ranges of smoke presence.

the assumption of an unknown vertically constant lidar ra-
tio. However, even if affected by a large uncertainty due to
lidar ratio assumption, backscatter-relatedÅngstr̈om Expo-
nent can still provide an indication about the size of the par-
ticles.

The variability of the lidar ratio and backscatter-related
Ångstr̈om exponent for smoke particles cannot be attributed
to different source characteristics, since for the case stud-
ies discussed here the main and common source of smoke
is the agricultural fires in Russia and Ukraine. In this re-
gion, farmers burn each year the crop stubble off recently
harvested fields in anticipation of the next sowing. The vari-
ability of the optical parameters can be attributed to the fact
that the fire regions were located in variable distances from
Thessaloniki which affects the optical characteristics of the
observed smoke aerosols due to different ageing processes,
depending also to the meteorological conditions responsible
for the speed of the smoke plume.

To investigate the variability of the lidar derived opti-
cal parameters during the days of our interest we attempted
to estimate the relative age of the air mass, by calculating
weighted averages of the CO age over Thessaloniki from
the model estimated vertical profiles based on fire emis-
sions (shown in Fig. 3 for the example of 20th of August
2001). Only the height ranges with smoke presence iden-
tified both by lidar measurements and FLEXPART simula-
tions were considered. For the calculation of the mean age
of CO from biomass burning activities, the CO concentra-
tions were used as weights. Calculated age averages are
plotted against vertical mean values of the lidar ratio binned
at 0.5 km in Fig. 6. A correlation of the order of 0.77
was found for the vertical mean values of the lidar ratio and
the relative age of the air mass. This figure suggests that
the lidar ratio for smoke particles under investigation is a
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function of the age of the particles. In general, the lidar ra-
tio can be calculated by Raman lidars that can perform in-
dependent measurement of backscatter and extinction pro-
files (Ansmann et al., 1992) and High Spectral Resolution
Lidars (HSRL) (Fiocco et al., 1971). However, most lidars
used in aerosol research are elastic-backscatter lidars and in
that case, the lidar ratio is an important parameter for the de-
termination of the particle backscatter coefficient from the
elastic-backscatter signal alone. New space-borne missions
like the Cloud-Aerosol Lidar and Infrared Pathfinder Satel-
lite Observation (CALIPSO) need the lidar ratio information
to invert the elastic-backscatter signals to reliable backscat-
ter profiles. The lidar ratio for backscatter lidar inversions
is usually being hypothesized based on aerosol type assump-
tion. Usually, the aerosol type is assumed based on syner-
getic satellite data and modeling aerosol source estimations
(for e.g. air-mass trajectories). Additional lidar parameters
measured, like the depolarization ratio and the backscatter-
relatedÅngstr̈om exponent (for multi-wavelength backscat-
ter lidars) could be synergistically used to characterize the
aerosol type. However, the choice of a representative con-
stant lidar ratio for a specific aerosol type could be a large
source of uncertainty in backscatter retrievals. As we are
showing here, the lidar ratio is variable for smoke particles,
depending mainly on the age of the air mass. Specifically for
the case of smoke particles, Reid et al. (1998) suggested that
if just one optical property of the particles is measured, then
some of the other properties of the particles, such as parti-
cle size distribution parameters and single-scattering albedo,
can be deduced. In this paper we apply this suggestion for
the lidar ratio. For smoke particles and in the case of elastic-
backscatter lidar (e.g. CALIPSO), one can estimate the age of
the air mass from model runs (e.g. the age of the CO tracer)
and then, assume a specific value for the lidar ratio based on
the aerosol type. In this paper we demonstrated that the li-
dar ratio for smoke under investigation vary with the age of
the air mass. The choice of the lidar ratio for the retrieval of
backscatter profiles from multi-wavelength backscatter lidars
can be improved using relationships extracted by ground-
based Raman lidar measurements of a specific aerosol type
like the one presented in Fig. 6. However, we have to men-
tion that the choice of the lidar ratio is more complicated in
mixed aerosol states. The state of mixing and the age of the
air mass are the reasons that the lidar ratio is not constant
since this parameter is dependent on the size distribution and
the refractive index. Only in a well defined aerosol layer of a
specific type, the lidar ratio can be assumed based on ground-
based Raman lidar measurements.

In regard to the smoke aerosol size, there is strong evi-
dence from observations of biomass-burning plumes in dif-
ferent regions of the world that particles grow in size during
the ageing of the plumes, (e.g., Fiebig et al., 2003). Pro-
cesses that lead to the increase of particle size are, gas-to-
particle conversion of inorganic and organic vapors (Reid
and Hobbs, 1998; Reid et al., 1998), condensation of large

organic molecules from their gas phase in the first few hours
of ageing (Reid and Hobbs, 1998; Pósfai et al., 2004), par-
ticle growth due to coagulation (Westphal and Toon, 1991;
Fiebig et al., 2003), and photochemical and cloud-processing
mechanisms. Liousse et al. (1995) found a significant in-
crease of particle size with age of plumes that originated
from savannah fires in Ivory Coast in Africa. A decrease
of theÅngstr̈om exponent (450–550 nm wavelength), which
is equivalent to an increase of particle size was observed
for fires in tropical forest and cerrado during SCAR-B cam-
paign (Reid et al., 1998). In situ observations showed that
Ångstr̈om exponents were on the order of 2.2±0.2 for fresh
smoke and 1.2±0.2 for aged smoke.

The values for aged smoke are very similar to the val-
ues reported here for the backscatter-relatedÅngstr̈om expo-
nent (355–532 nm wavelength) calculated from lidar obser-
vations. As we already mentioned, the backscatter-related
Ångstr̈om exponent values presented in this paper are not
directly retrieved by measurements, since the backscatter
profile at 532 nm used for the calculations is retrieved af-
ter the assumption of an unknown vertically constant lidar
ratio. However, backscatter-relatedÅngstr̈om exponent val-
ues were validated against the extinction-relatedÅngstr̈om
exponent values taken from sunphotometric measurements
(350–400 nm), showing a correlation coefficient of 0.94 for
the 10 studied cases and as such they are considered trust-
worthy. We have to additionally mention that CALIOP lidar
instrument on board of CALIPSO satellite aims to provide
backscatter-related Angstrom Exponent values in a global
scale operating with 2 backscatter channels. In this pa-
per, we demonstrate the potential of a ground-based lidar
to provide Lidar Ratios to be used by the space-borne lidar.
Providing a possible relationship between Lidar Ratio and
backscatter-related Angstrom Exponent for specific aerosol
types, CALIPSO’s algorithms could improve their retrievals
by choosing an appropriate lidar ratio for the retrievals based
on its own CALIPSO estimations of the backscatter-related
Ångstr̈om exponent.

In Fig. 7 we present the vertical mean values of the lidar
ratio (up) and the weighted mean age of the air mass (down)
against our estimated backscatter-relatedÅngstr̈om exponent
values, binned at 0.5 km. A shift of particle size toward larger
values is indicated by Fig. 7, since̊Angstr̈om exponents de-
crease with the age of the air mass. This can be attributed to
a systematic shift of particle size toward larger values with
increasing distance from the source of fires. Additionally, li-
dar ratios are larger for larger particles. Lidar observations
of an aged biomass-burning plume that had originated from
western Canada in 1998 and which was observed over Ger-
many during the Lindenberg Aerosol Characterization Ex-
periment (LACE) 98 showed that the̊Angstr̈om exponent
was as small as 0.06 which indicates well-aged smoke parti-
cles even larger than the ones found in this study (Fiebig et
al., 2002; Wandinger et al., 2002). Dual-wavelength Raman
lidar observations of Siberian forest fire smoke were carried
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Fig. 7. (Up) Vertical mean values of the Lidar Ratio ver-
sus the backscatter-related̊Angstr̈om exponent estimated from
the backscatter coefficients at 355 and 532 nm, calculated for
height ranges of smoke presence. (Down) Vertical mean values
of the weighted mean age of the carbon monoxide tracer ver-
sus the backscatter-relatedÅngstr̈om exponent estimated from the
backscatter coefficients at 355 and 532 nm, calculated for height
ranges of smoke presence.

out at Tokyo on 21 May 2003 (Murayama et al., 2004).
Smaller particles than those observed in Leipzig on 29 May
2003 were found with an̊Angstr̈om exponent on the order of
1.35. It has to be emphasized here that the extinction-related
and the backscatter-related̊Angstr̈om exponents can differ
and a direct comparison between these parameters is not in
general appropriate. However, it has been shown by Müller
et al. (2005) that the lidar ratio at 355 and 532 nm for smoke
particles is almost equal. No spectral variability of the li-
dar ratio is mathematically translated to the equivalent of the
Ångstr̈om exponents for the extinction and the backscatter.
Finally, we have to mention that the fires described here and
the fires discussed in the cited literature, certainly have dif-
ferent properties. Thus, conclusions regarding the increase
of particle size with ageing have to be treated with caution
to each case (depending on source characteristics) and are
subject for future studies.

4 Summary and conclusions

In this paper, Raman lidar measurements for ten selected
cases during 2001–2005, when air masses were advected
over Thessaloniki from regions with intense fire activity,
have been presented, in terms of extinction (355 nm) and
backscatter coefficient (355 and 532 nm) and the correspond-
ing lidar ratio (355 nm) and backscatter-relatedÅngstr̈om ex-
ponent (355/532 nm). Lidar ratios in the range of 32–103 sr
were observed for smoke particles, while the backscatter-
related Ångstr̈om exponent varied between 0.5 and 2.4.

Knowledge of the optical properties of smoke in South-
eastern Europe is very important for climatic studies, tak-
ing also into account the increasing trend of fires during
the last decade. It was found that the optical characteris-
tics of smoke aerosol were variable and this behaviour was
mainly attributed to the fact that the burned regions are lo-
cated in variable distances from the lidar station of Thes-
saloniki which affects the optical characteristics of the ad-
vected observed smoke aerosols due to different ageing pro-
cesses. To justify this assumption we compared the lidar ra-
tio at 355 nm (directly measured) and the backscatter-related
Ångstr̈om exponent (estimation), which is mainly depended
on particle size, with dispersion model estimations of the
mean age of the carbon monoxide produced by the fires and
advected over our site. Our results show that particle size
is likely to increase with the age of the advected air mass.
The increase of smoke particle size with age has fundamen-
tal implications for climate modeling and could be combined
with modeling efforts to better constrain the radiative effect
of biomass burning aerosols on regional/global scales. Fi-
nally, the correlation of the lidar ratio with the age of the air
mass and the size of the particles found in this study is con-
sidered valuable information to be used by backscatter lidar
inversion algorithms in case of smoke presence for reducing
uncertainty in the aerosol backscatter coefficient determina-
tion due to the lidar ratio assumption, starting from a simply
elastic backscatter lidar as the first satellite-borne operation
lidar CALIPSO. However, we have to mention that the agri-
cultural fires described here could not be representative for
all fires and the whole globe. Thus, conclusions regarding
the increase of lidar ratio with ageing have to be treated with
caution to each case (depending on source characteristics)
and are subject for future studies.
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Kristjansson, J. E., Krol, M., Lauer, A., Lamarque, J. F., Liu,
X., Montanaro, V., Myhre, G., Penner, J., Pitari, G., Reddy, S.,
Seland, Ø., Stier, P., Takemura, T., and Tie, X.: Analysis and
quantification of the diversities of aerosol life cycles within A
eroCom, Atmos. Chem. Phys., 6, 1777–1813, 2006,
http://www.atmos-chem-phys.net/6/1777/2006/.

Turco, R. P. and Yu, F.: Aerosol invariance in expanding coagula-
tion plumes, Geophys. Res. Lett., 24, 1223–1226, 1997.
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