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Abstract. Cyanobacterial blooms are a nuisance and a potential hazard in freshwater systems

worldwide. Remote sensing has been used to detect cyanobacterial blooms, but few studies have

distinguished among genera of cyanobacteria. Because some genera are more likely to be toxic

than others, this is a useful distinction. Hyperspectral imaging reflectance microscopy was used

to examine cyanobacteria from Upper Klamath Lake, Oregon, at high spatial and spectral res-

olution to determine if two species found commonly in the lake, Aphanizomenon flos-aquae and

Microcystis aeruginosa, can be separated spectrally. Of the analytical methods applied, a spectral

shape algorithm applied to the derivative was found to be most successful in classifying these

species in microscope scenes. Further work is required to determine if the spectral characteri-

zation of cyanobacterial genera can be scaled up to remote sensing applications. © The Authors.
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1 Introduction

Cyanobacterial blooms in eutrophic inland waters are a worldwide concern. Blooms are exac-

erbated by high nutrient inputs and warm waters and have been appearing with increasing fre-

quency in water bodies used for drinking water supply or recreation, a problem which will likely

worsen as the climate warms.1–3 Cyanobacterial blooms are a nuisance for their unsightly surface

scums and the production of taste-and-odor compounds, and some strains of cyanobacteria pro-

duce toxins that are hazardous to human and animal health.4 Toxic cyanobacterial harmful algal

blooms, or cyanoHABs, are not immediately distinguishable from nontoxic nuisance blooms;

laboratory analysis is required to identify the species present and test for toxins.2 For large water

bodies, collecting point samples is insufficient to quantify the true extent of the toxic algae,

particularly as blooms are often heterogeneous and dynamic.5

Some of the most widespread cyanobacterial toxins are microcystins. Microcystins are potent

hepatotoxins that can cause illness and death in exposed animals and humans, and over 100

variants are known Ref. 6. Microcystins are released by several genera of cyanobacteria, includ-

ing Microcystis, Planktothrix, and Dolichospermum, but toxin production is not guaranteed by

the presence of these organisms. Blooms of Microcystis, for example, may consist of strains of

microcystin-producing and nonmicrocystin-producing cells distinguishable only by laboratory

analysis of gene expression.2 Higher nutrient concentrations and increased temperature may

favor the growth of microcystin-producing strains.2 With toxic blooms potentially growing
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more dangerous, the ability to determine the extent of toxic genera within a bloom would be

valuable.

For many years, remote sensing has been used to map algal blooms. Mapping of chlorophyll

a is widely used as an indicator of water quality, but because both eukaryotic algae and cyano-

bacteria contain chlorophyll, chlorophyll a can suffer from a lack of specificity and is most

successful in blooms that are known to be dominated by cyanobacteria.7 An alternative is

using the accessory pigment phycocyanin, produced by cyanobacteria but not by many other

phytoplankton, as a proxy.1,8–10 However, methods that measure phycocyanin in the laboratory

are not standardized, and phycocyanin is less easily detected with remote sensing.7 Another

approach is the cyanobacteria index, which uses the absorption feature at 681 nm to distinguish

cyanobacteria from eukaryotic algae.7 Chlorophyll a in eukaryotic algae fluoresces at 681 nm,

but chlorophyll a in cyanobacteria is contained in photosystem I and does not fluoresce, so the

signal at this wavelength is dominated by chlorophyll absorption and the difference in spectral

shape can be quantified to determine the type of algae present.7

Recently, there has been an increase in the availability of hyperspectral imaging sensors that

can measure over 30 narrow bands (usually over 100 bands) to produce a complete, high-res-

olution spectrum. These spectra may reveal details that were previously invisible to sensors with

fewer bands, opening a path to the development of new models that consider the entire spectrum.

Kudela et al.11 made use of a spectral shape algorithm to discriminate Aphanizomenon, a non-

toxic genus in many water bodies, from Microcystis in California lakes. The Aphanizomenon-

Microcystis index uses a ratio of the width of the major chlorophyll a reflectance feature to the

width of the phycocyanin absorption feature and was developed using aerial hyperspectral

imagery. The algorithm provides an estimate of the relative abundance of Microcystis and

Aphanizomenon in a pixel and was calibrated with measured cell counts.11

The high-resolution spectra provided by hyperspectral imaging sensors also invite other

analysis techniques, such as the spectral derivative. Hunter et al.12 used first-derivative analysis

to discriminate among phytoplankton color groups, although the study was not particularly

focused on separating cyanobacterial genera. The spectral derivative accentuates differences

among spectra that might not otherwise be apparent, providing a useful tool for the separation

of spectrally similar species.

The spectral similarity of some cyanobacterial genera is a major obstacle to identifying

blooms of potentially toxic genera. However, in this case, the ability to spectrally distinguish

among the genera is desirable for several reasons. First, not all cyanobacteria produce toxins in

all environments, so locating areas that are more at-risk for toxin production is a priority. This

knowledge could help water managers decide where to collect water samples for toxin analysis.

In addition, the ability to identify different genera could lead to an improved understanding of

bloom dynamics, particularly in cases with spatially or temporally heterogeneous blooms. This

study aimed to undertake a close examination of Aphanizomenon flos-aquae and Microcystis

aeruginosa to determine if these two common species are spectrally separable. To this end,

a hyperspectral microscope at the National Institute of Standards and Technology (NIST)

was employed to study algal samples from Upper Klamath Lake (UKL) in Oregon. The hyper-

spectral microscope allows for the study of cyanobacteria at high spatial and spectral resolution

and in a controlled environment, without the interference of variable sunlight or cloud condi-

tions. In this way, cyanobacteria and other associated organisms can be characterized at the

organismal level. In future work, this characterization could ideally be used for target identifi-

cation of cyanobacterial genera in remote sensing data collected with hyperspectral sensors.

2 Study Site and Methods

2.1 Study Site

UKL in Oregon, and (Fig. 1) consistently experiences cyanobacterial blooms each summer. The

shallow lake (3-m average depth) has become increasingly eutrophic due to human activity, such

as the draining of wetlands for agriculture, which has resulted in higher nutrient inputs.13

Cyanobacteria blooms are so persistent and extensive that an industry has developed around
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one of the lake’s most common genera, A. flos-aquae, which is harvested from the lake and sold

as a health supplement. Although some strains of Aphanizomenon have been shown to produce

toxins, the A. flos-aquae has not been found to be toxic in UKL.14 However, Microcystis is also

consistently present in the lake and does produce microcystins in this environment, which is

a problem for both the harvesting of Aphanizomenon as well as the recreational activities on

the lake. Blooms in this region often proceed from a progression of dominance by Aphanizomenon,

followed bymixed blooms, and then by dominance ofMicrocystis, sometimes with multiple cycles

in one season and typically in mid- to late-summer.11 The prolonged appearance of these blooms is

also thought to affect the fish populations in the lake, particularly two species of endangered

suckers, because the oxygen demand of decaying blooms can lead to hypoxic conditions.13

The same four general locations on UKL were sampled in summer 2016, from July 15, 2016

(week 1) to September 15, 2016 (week 10). Raw water samples were collected in opaque plastic

bottles, chilled and sent overnight to NIST for spectral analysis. Samples were processed as soon

Fig. 1 Location of UKL, Oregon.
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as they were received or refrigerated until they could be processed. Wet slides were prepared with

algae taken from the top of each sample bottle. A reference slide was prepared with distilled

water and cover glass.

2.2 Hyperspectral Microscope

The NIST hyperspectral microscope consists of two parts: the microscope component is an

Olympus MVX-10 microscope with an MX-2X Objective and a 1 to 4× magnification changer,

and the hyperspectral imaging component is a Surface Optics SOC-710 hyperspectral camera

(Surface Optics, San Diego, California). The SOC-710 measures 128 spectral bands, at 4.69 nm

spectral sampling over the 400 to 1000 nm spectral range. The finest spatial resolution of the

system is on the order of <0.2 μm∕pixel. Illumination was provided by three quartz-halogen

lamps set with dichroic reflectors to match the solar spectrum with a high color temperature.

Before sample measurement, reference data cubes were collected from the reference slide

placed on top of a Spectralon® disk (Labsphere, North Sutton, New Hampshire), and integration

times were optimized for each desired magnification level. Data cubes were then collected from

the sample slides, generally one slide per sample bottle. Depending on integration time, image

acquisition took between 2 and 15 min to complete. Two to 10 images were collected per slide,

depending on algal abundance. A fresh reference slide was measured after data collection was

finished, 4 to 6 h later. Slides were kept out of direct light when not being measured. Figure 2

shows examples of the true color composites from the hyperspectral microscope images.

2.3 Data Analysis

Data cubes were normalized in ENVI (Exelis, Boulder, Colorado) to the reference data cube.

A principal component (PC) transformation was applied to a spectral subset of bands 7 to 65

(402.5 to 701.1 nm) to avoid the noisy regions of the spectrum. The spectral derivative of each

cube was calculated with the ENVI user function “Spectral_Derivative.” The derivative transforma-

tion was applied to a subset of bands 13 to 59 (432.6 to 669.5 nm) to encompass the main features

that were observed to differ between the derivative spectra of Microcystis and Aphanizomenon.

Basic statistical and hyperspectral processing techniques were utilized to determine the separability

of the spectral classes in this and many other applications. Both principal components analysis

(PCA) and derivative transformations help determine the separability of basic algal signatures.

The normalized data, the PC data, and the derivative data were then analyzed with several of

the algorithms and classification methods included in ENVI to evaluate the separability of

Microcystis and Aphanizomenon. PCAwas used to determine quickly whether different genera

Fig. 2 True color composites derived from data cubes collected by the hyperspectral microscope.

(a) Aphanizomenon, Microcystis, and green algae. (b) Aphanizomenon at full magnification, with

a visible heterocyte. (c) Microcystis at full magnification, with green algae (circled). Scale bars are

50, 20, and 20 μm, respectively.
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were dissimilar enough to classify separately. These transformed datasets were chosen as basic

hyperspectral processing techniques that are used to determine if specific spectral signatures are

separable in a dataset.

Analysis of the normalized and derivative spectra was carried out using the ENVI linear

spectral unmixing algorithm. Endmembers were collected from the input image as representative

cells and example images from the week of August 8 (week 5) were chosen to extract repre-

sentative spectra for Aphanizomenon, Microcystis, and green algae because they represented

outstanding visual examples of the target species and spectra. These endmembers were used

to apply the unmixing algorithm to all 6 weeks of imagery. See the Appendix for additional

spreadsheets and graphics of data transformations.

Additional analysis took the form of multiband algorithms sensitive to spectral shape. The

spectral shape equation [Eq. (1)] was adapted to be applied to the first derivative spectra to

separate Aphanizomenon and Microcystis.7 The adapted equation is shown in Eq. (2) and is

referred to as the derivative spectral shape (derivSS) equation. This was applied to two sections

of the spectra, at 468 and 509 nm, where the shape of the derivative was observed to differ

significantly from Aphanizomenon to Microcystis (Fig. 3 and Index 1)

EQ-TARGET;temp:intralink-;e001;116;544SSðλÞ ¼ RðλÞ − Rðλ−Þ þ fRðλ−Þ − RðλþÞg ×
ðλ − λ−Þ

ðλþ − λ−Þ
; (1)

EQ-TARGET;temp:intralink-;e002;116;499derivSSðλÞ ¼
dR

dλ
ðλÞ −

dR

dλ
ðλ−Þ þ

�

dR

dλ
ðλ−Þ −

dR

dλ
ðλþÞ

�

×
ðλ − λ−Þ

ðλþ − λ−Þ
; (2)

where SS is the spectral shape, λ is the wavelength, and R is the value of the calibrated reflec-

tance. For derivSS(468), λ− ¼ 452 nm and λþ ¼ 478 nm. For derivSS(509), λ− ¼ 488 nm and

λþ ¼ 529 nm (Index 2). The wavelengths were chosen to encompass the peak features observed

in the Microcystis derivative spectrum at these locations, based on manual observations of spec-

tra drawn from several. Dataset weeks of samples.

A third index was also employed, the slope of the derivative curve from 628 to 632 nm. This

index was chosen because 628 nm was the location of the phycocyanin absorption feature for

Aphanizomenon, so the index was positive, while for Microcystis, the phycocyanin feature

occurred at a shorter wavelength and the index was less positive (data not shown). In addition,

the slope of the derivative for green algae at this point is negative. These three indices served to

demonstrate that the spectral features that appeared to differ between the two genera in region-of-

interest (ROI) average spectra were consistent across all the imagery collected.

For some instances, a dataset was prepared consisting of single-cell ROIs from nearly all

images collected in the final 6 weeks. Between three and six ROIs were designated in each

Fig. 3 Derivative spectra of Aphanizomenon and Microcystis, with differing features at 468, 509,

and 628 nm circled. This plot shows a subset of the full wavelength range of the hyperspectral

microscope.
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image, resulting in a dataset with 165 samples of Aphanizomenon and 195 samples of

Microcystis. In addition, ROIs for other organisms found in the samples, such as diatoms,

green algae, and other cyanobacteria, were catalogued and included in this dataset. Average

values from these ROIs were used to assess the ability of different algorithms to separate genera.

The “ROI dataset” in the following discussion refers to this collection of spectra. For each week,

a mosaic image was constructed with all the data collected at the highest magnification so clas-

sification methods could be tested on images with more spectral variation.

3 Results

3.1 Observations

Hyperspectral image cubes collected during the final 6 weeks of sampling, August 8th to

September 15th, were used in analysis because a different data collection method was used

for the first 4 weeks and the cubes are not comparable.

Gas vesicles are visible in bothMicrocystis and Aphanizomenon cells. Heterocytes (nitrogen-

fixing cells) and akinetes (resting cells) were observed in Aphanizomenon filaments. Both

Microcystis and Aphanizomenon were observed in week 1 (July 13, 2016) through week 7

(August 22), but week 8 (August 29) was dominated by Microcystis, and Aphanizomenon

was less plentiful in weeks 9 and 10. This reduction corresponded well with recorded cell counts

from these weeks (data not shown).

Various unspecified green algae were observed throughout Microcystis colonies, beginning

the week of August 8 (week 5). An unidentified cyanobacterium was associated withMicrocystis

colonies in week 6. Protozoans were observed grazing onMicrocystis during weeks 9 and 10, as

the bloom died off. Pennate diatoms were also observed during these weeks. These observations

potentially underestimate the diversity of the phytoplankton population because only a small

fraction of the algae in the sample bottle was transferred to a slide.

In general, the reflectance spectrum for cyanobacteria consists of a Chl-a reflectance peak at

565 nm, phycocyanin absorption at 620 nm, and Chl-a absorption at 680. Both Aphanizomenon

and Microcystis spectra include these features, and the spectra of green algae lack the phyco-

cyanin feature. Figure 4 shows sample spectra from the major taxa present in the UKL samples.

Although the major spectral features were similar for all algae, there was significant variation

with each genus. Aphanizomenon and Microcystis were both observed in a range of colors from

yellow-green to blue-green.

It should also be noted that spectral areas of traditional vegetation analysis, the red edge and

the near-infrared (NIR) slope, did not lend themselves to spectral distinction between the algal

species. This was likely due to the mixed-media environment of partially submerged vegetation

Fig. 4 Example spectra from cells of Aphanizomenon (green), Microcystis (red), and green algae

(blue). Reflectance at 565 nm and absorbance at 680 nm is indicative of chlorophyll a, while

absorbance at 620 nm is indicative of phycocyanin.
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in water, and this could prove to be an important departure from standard hyperspectral veg-

etation analysis.

3.2 Data Analysis

The linear spectral unmixing algorithm returned the most accurate results compared to other

ENVI classification methods (Fig. 5), but still resulted in misclassified pixels. Figure 6(a)

shows the average abundance values returned by the algorithm over single cell ROIs. Points

above the 1∶1 line are classified as Aphanizomenon and points below are classified as

Microcystis. Misclassified pixels could be dangerous from a false positive/false negative stand-

point. Unclassified pixels are not useful, but in the hyperspectral microscope imagery, there were

generally enough classified pixels in an area to infer the identity of the unclassified ones. This

should be less of a problem with imagery of increasing areal extent, capturing more pixels.

Data transformations such as the spectral derivative accentuated the subtle, consistent

differences between Aphanizomenon and Microcystis spectra. Figure 5(b) shows how the

Fig. 5 (a, d) Classification methods applied to normalized images, (b, e) PC transformations, and

(c, f) spectral derivative transformations of the scene shown in Fig. 2(a). Both (a–c) the support

vector machine classification and (d–e) the linear spectral unmixing algorithm were most success-

ful when applied to derivative transformations. The unmixing maps have been optimized with con-

trast stretching. Scale bars are 100 μm.
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two cyanobacterial genera became more separable after the derivative transformation. However,

the mapping algorithms still resulted in errors, and differentiated cells and color variations still

led to some incorrectly classified pixels. For the ROI dataset, 70% of Aphanizomenon and 69%

of Microcystis were classified correctly.

However, keep in mind that there are other cellular variations and structures within the matrix

of features in the typical algal sample, not just the pure algal species. These components and

variations have different structural components and different color variations and lead to some

incorrectly classified pixels, especially when mapping algal species. Classification applied to PC

transformations was less successful than the same process applied to derivative data, resulting in

more misclassified pixels [Fig. 5(e)].

The derivative spectral shape indices were developed to determine if classification could be

improved by focusing on key segments of the spectrum, and to determine if the unique spectral

features observed for each genus were applicable across all the imagery collected. The indices

focus only on the wavelengths at which Aphanizomenon and Microcystis differ the most, taking

advantage of peaks and troughs that are accentuated by the derivative transformation. The

derivSS(468) and derivSS(509) were observed to be more positive for Microcystis, while the

second derivative at 628 nm is close to zero for Microcystis and positive for Aphanizomenon.

In addition, the second derivative at 628 nm is markedly negative for green algae. The values of

the derivative indices applied to the ROI dataset are shown in the scatterplot in Fig. 7. This

scatterplot was used to develop thresholds for each class, which were applied to data cubes

Fig. 6 (a) Average linear spectral unmixing values for the ROI dataset. (b) Average linear spectral

unmixing values for the ROI dataset after derivative transformation. Points above the 1∶1 line are

classified as Aphanizomenon and points below are classified as Microcystis. Red diamonds are

cells identified in the imagery as Microcystis; green squares, Aphanizomenon; and blue circles,

green algae.

Fig. 7 Derivative spectral shape values of the ROI dataset. Class thresholds were established

based on this plot and on a plot of the second derivative at 628 nm.
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to construct classification images. Pixels for which all three indices match the criteria for a given

class were assigned the designated color for that class, and pixels that failed a single criterion

were left unclassified. Of all classification methods used, the method based on the spectral shape

indices resulted in the fewest misclassified pixels. Figure 8 shows a mosaic of images from week

5, classified with linear spectral unmixing and with the derivative spectral shape indices. The

derivative spectral shape indices resulted in fewer misclassifications than the linear spectral

unmixing algorithm (Fig. 8). In the ROI dataset, 96% of Microcystis cells were classified cor-

rectly, and 100% of Aphanizomenon cells were classified correctly, in this case meaning that the

number of pixels in the ROI classified as the observed cell genus was greater than the number of

classified genus, disregarding unclassified pixels.

4 Discussion

The goal of this pilot study was to determine if Aphanizomenon and Microcystis have unique

spectral features. With hyperspectral microscope imagery collected from UKL water samples

over 6 weeks, it was determined that these features exist and can be accentuated through deriva-

tive transformation. In hyperspectral microscope scenes, Aphanizomenon andMicrocystis can be

treated as individual target materials and can be classified accordingly. The success of the deriva-

tive spectral shape equations shows that the spectral differences are consistent across all the

imagery collected from UKL samples in summer 2016. It is not known from this study precisely

what causes the differences in Aphanizomenon and Microcystis spectra.

The hyperspectral microscope operates under laboratory conditions, but further study is

required to determine if those conditions affect the cells adversely. Slides were kept in the

dark when not under the microscope, but because the pushbroom scan requires high integration

times (∼650 ms∕line) at high magnifications, a single slide was often under the illumination

source for an hour or more. This study did not examine the effects that these conditions

may have had on the spectra, and that is an area for further research.

Fig. 8 Mosaics of week 5 imagery after different classification methods. Each image is labeled

with the manually identified genus, AFA for Aphanizomenon and MC for Microcystis. (a) Linear

spectral unmixing of normalized data. (b) Linear spectral unmixing of derivative data. (c) Linear

spectral unmixing of PC data. (d) Derivative spectral shape index classification. Red pixels have

been classified asMicrocystis; green, Aphanizomenon; blue, green algae. All unmixing algorithms

included the three genera and a background endmember. Contrast stretching was applied to opti-

mize each unmixing map.
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The derivative spectral shape indices will not be applicable to other datasets without adjust-

ments. They are also unlikely to be useful in systems with different cyanobacteria populations.

However, the spectral shape indices demonstrate that identifying key features for certain genera

and classifying based on these features, instead of using the entire spectrum, could improve

identification. A similar approach is taken by the U.S. Geological Survey program Tetracorder,

which matches continuum-removed field spectra against a library of spectral features to identify

minerals, using only features previously identified as characteristic of a mineral to generate the

best match.15 Continuum removal was explored only briefly in this study, but a similar process

with derivative spectra could be developed for cyanobacteria.

As this is a pilot study, future work is required to determine the applicability of these results

to remotely sensed data. It is acknowledged that observations made on the microscope scale may

not be detectable in remote sensing data of natural waters. Natural waters, particularly in eutro-

phic inland systems, are complex and there is potential for these fine spectral features to be

obscured. Microcosm or mesocosm experiments in the laboratory or in the field could be devel-

oped to determine the effect of colored dissolved organic matter and inorganic sediment on the

spectral features. Hunter et al.12 reported that suspended particulate organic matter added to

phytoplankton mesocosms altered spectral shape, thus reducing the ability of derivative analysis

to distinguish between taxa.

Analyses such as the derivative spectral shape equations were applied to the data to determine

if the features observed were present throughout the imagery, but the success of those methods

does not necessarily indicate that the spectral features are universal across each genus. Color

variation observed in UKL samples led to a higher proportion of misclassified or unclassified

pixels, and variations occurring over multiple seasons or in different lake systems will add fur-

ther complications. A spectral library developed from lake samples and cultures would be a step

toward overcoming this issue.

Pigment variability due to cell metabolism and environmental conditions is another

obstacle to the optical characterization of different genera, because different conditions can

have a significant effect on pigment composition and therefore spectral response.5,12 This was

evident in the UKL samples, both in the observed color variation under the microscope and in

the range of spectra collected for each genus. However, this variation could also provide

insight into water quality. If changes in the spectrum resulting from interactions of cell pig-

ments with the environment can be constrained, then spectral analysis might provide further

information in addition to species identification. A microfluidics chip could be used to estab-

lish a nutrient gradient on the scale of the hyperspectral microscope, which could then record

the spectral response of cells to different concentrations.16 In addition, further microscope

analysis of dead and dying cell material is needed to determine if crashing blooms have a

characteristic signature.

The ability to detect specific genera of cyanobacteria could lead to improved estimates for

toxin concentrations. Algorithms developed to estimate toxin concentration generally use the

spectral features associated with chlorophyll a or phycocyanin, and then use measurements

and models to determine relationships that exist between toxin concentration and pigments.12

However, these relationships assume that toxins are intracellular and uniformly distributed

through a bloom, which is not necessarily the case, especially in heterogeneous blooms.12

The ability to constrain toxin predictions to only the areas that contain toxic genera could

improve the accuracy of such maps. However, this does not address the problem of extracellular

toxins. Dissolved toxins such as microcystin have no spectral signature in the visible or NIR

wavelengths.7 Since toxins are released upon cell lysis, the presence of decaying blooms is

a useful indicator of when high levels of toxin might be present. However, it should be

noted that toxin levels may not correlate spatially with bloom biomass, and toxins may persist

even after the bloom has dissipated.5

5 Conclusion

Aphanizomenon and Microcystis have unique spectral features that can be distinguished with

hyperspectral microscopy. The spectral derivative is useful for accentuating these features.
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Algorithms applied to the spectral derivative were more successful in classifying genera cor-

rectly, and identifying cyanobacteria by a few characteristic features instead of the entire spec-

trum yielded improved results. The results indicate that there is value in the spectral

characterization of cyanobacteria. Further research is required to determine if these spectral fea-

tures can be detected in smaller-scale, overhead, remote sensing data.
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