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Abstract

Information encryption with optical technologies has become increasingly important

due to remarkable multidimensional capabilities of light fields. However, the optical

encryption protocols proposed to date have been primarily based on the first-order

field characteristics, which are strongly affected by interference effects and make the

systems become quite unstable during light–matter interaction. Here, we introduce an

alternative optical encryption protocol whereby the information is encoded into the

second-order spatial coherence distribution of a structured random light beam via a

generalized van Cittert–Zernike theorem. We show that the proposed approach has

two key advantages over its conventional counterparts. First, the complexity of

measuring the spatial coherence distribution of light enhances the encryption protocol

security. Second, the relative insensitivity of the second-order statistical characteristics

of light to environmental noise makes the protocol robust against the environmental

fluctuations, e.g, the atmospheric turbulence. We carry out experiments to

demonstrate the feasibility of the coherence-based encryption method with the aid of

a fractional Fourier transform. Our results open up a promising avenue for further

research into optical encryption in complex environments.

Keywords: Structured random light, Spatial coherence, Optical encryption,

Atmospheric turbulence

Introduction

As a fundamental attribute that describes statistical properties of random light fields,

optical coherence has played an important role in understanding and tailoring light-

matter interactions [1, 2]. Spatial coherence, in particular, governs a multitude of

intriguing optical phenomena and features in a number of applications [3, 4]. Even a

straightforward adjustment of a spatial coherence length of light can go a long way to

improve the image quality of a microscope [5, 6] and to reduce the turbulence induced

field degradation in optical communications [7]. The early theoretical [8, 9] and exper-

imental [10] work on light beams with nonuniform spatial coherence has triggered

research into engineering spatial coherence structure of random sources. This initial

interest has been further invigorated by the work of Gori and coauthors [11, 12] who have
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established a general framework for generating random beams with statistically uniform

(Schell-model) [13–19] and nonuniform [20–27] spatial coherence distributions. The spa-

tial coherence structure engineering at the source has been shown to endow optical fields

with a number of nontrivial features, such as diffraction-free propagation [9, 24], effi-

cient self-healing [28, 29], self-focusing [20, 30, 31], self-steering [32, 33], and self-shaping

[34, 35] capabilities as well as periodicity reciprocity [36, 37]. A rich repertoire of

propagation scenarios induced by the spatial coherence engineering enables a host of

promising applications to photovoltaics [38], diffractive imaging with low-coherence

light [39], optical target tracking [40, 41], and particle trapping [42, 43] among

others.

At the same time, information encryption with the aid of optical technologies has been

studied extensively in the past decade due to remarkable multidimensional capabilities

and ultrafast modulation speed afforded by the light fields [44, 45]. Numerous protocols

for optical information encryption have been proposed since the double random phase

encoding (DRPE) was developed by Réfrégier and Javidi [46]. Much research on optical

information encryption has been carried out to date using the DRPE or DRPE related

techniques, including a fractional Fourier domain DRPE [47], lensless DRPE in the Fresnel

domain [48], and multidimensional random phase encoding [49], among others. Recent

progress in the light field structure engineering [50–52], has highlighted the degrees of

freedom of a structured light field as powerful tools for information encoding. For exam-

ple, the optical encryption protocols based on the phase structure modulation [53] and

orbital angular momentum and polarization state mode division multiplexing [54–60]

have been developed lately.

To the best of our knowledge, however, the optical encryption protocols proposed thus

far have been primarily based on the modulation of the first-order characteristics of

coherent optical fields, such as the phase, amplitude, and polarization of light. The latter

are quite sensitive to any interference effects inevitably arising during light propagation

and its interaction with the matter [61]. On the other hand, the second-order correla-

tions of statistical light fields [1] are known to be fairly robust to environmental noise

such as the atmospheric turbulence, especially in the low coherent limit [7, 62]. This

observation begs a natural question: Can any information be encrypted into the spatial

coherence structure of a statistical light field and robustly transmitted through a hostile

environment?

In this work, we propose an efficient protocol for the encryption of optical image

information into the spatial coherence structure of a random beam with the help

of a generalized van Cittert–Zernike theorem involving the encoding system with

encryption keys. We argue that the measurement of the spatial coherence struc-

ture to decode the information enhances the protocol security because the measure-

ment of a statistical characteristic requires collecting much more data than is the

case for acquiring deterministic quantities employed in the traditional optical encryp-

tion protocols. Moreover, we demonstrate experimentally that the advanced proto-

col is extremely robust to the environmental fluctuations, such that the information

can be well reconstructed despite the atmospheric turbulence of any strength. Our

results pave a way toward robust optical coherence encryption in complex noisy

environments.
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Method

Principle of coherence-based encryption

We schematically represent an optical encryption protocol based on the spatial coher-

ence structure engineering in Fig. 1. The proposed protocol consists of three stages. At

the first stage, a plaintext (i.e., an amplitude image) is encoded into the spatial coherence

structure of a random light beam via a generalized van Cittert–Zernike theorem. Next,

the spatial coherence structure of the beam, containing a ciphertext, is measured through

a generalized Hanbury–Brown Twiss experiment. Finallly, the information encoded into

the plaintext is decoded by using the measured spatial coherence structure and the

encryption keys involved in the encoding system shown in part (a) to Fig. 1.

Encoding

In Fig. 1a we display the encoding stage of our protocol. The plaintext information, i.e.,

an image with its (real) transmission function t(v) is first embedded into a completely

incoherent light source by transmitting coherent light through a dynamic diffuser, e.g.,

a rotating ground-glass disk (RGGD). The characteristic inhomogeneity scale is much

smaller than the beam spot size on its surface [61]. The second-order correlations of

Fig. 1 Principle of optical coherence-based encryption. a Encoding of an optical image with a transmission

function t(v) (plaintext) into the spatial coherence structureW(r1 , r2) (ciphertext) of a random light beam

through a generalized van Cittert–Zernike theorem formed by a dynamic diffuser and an encoding system

with the encryption keys embeded inside. b The generalized Hanbury–Brown Twiss experiment setup for

measuring the complex spatial coherence structure. The phase difference between the reference fields is

controlled by the phase retarders. c Decoding of the plaintext from the measured spatial coherence structure

WR(r1 , r2) and the encryption keys via an inverse transfer function of the encoding system
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the light field generated by the incoherent source in the space-frequency domain can be

characterized by the cross-spectral density as

W (in)(v1, v2) = t(v1)t(v2)δ(v1 − v2), (1)

where v1 and v2 are two arbitrary position vectors in the source plane, δ(·) is a Dirac delta

function and we drop the frequency dependence of W hereafter, for brevity. We then

transform the incoherent light field into a partially coherent beam with the help of an

optical system with a transfer function H(r, v). The cross-spectral density of the partially

coherent beam then reads

W (r1, r2) =

∫∫

W (in) (v1, v2)H
∗(r1, v1)H(r2, v2)d

2
v1d

2
v2, (2)

where r1 and r2 are two arbitrary position vectors in the output plane of the optical system

and the asterisk denotes a complex conjugate.

We call the transform in Eq. (2) a generalized van Cittert–Zernike theorem as the orig-

inal one describes the evolution of the cross-spectral density of light, generated by an

extended incoherent source, on free space propagation [1]. The optical imaging system

that we employ does not merely consist of simple lenses and stretches of free space.

Rather, it is, in general, a complicated system containing the encryption keys. We remark

here that our protocol can accommodate any encoding system of the type previously

employed in optical encryption protocols with coherent light. The encryption systems

characterized by linear and nonlinear transfer functions will give rise to random light

beams with statistically uniform (Shell-model) [15] and nonuniform [27] spatial correla-

tions, respectively. Similar to the case of conventional, coherent encryption protocols, the

complexity of the encoding protocol ensures the encoded data security. The attack anal-

ysis for different types of encryption protocols was previously studied elsewhere [63, 64]

and will not be addressed here.

The difference between the traditional encoding protocols and our coherence-based

one is that in our case, given plaintext information is encoded into second-order field

correlations rather than into a deterministic first order characteristic, such as light field

amplitude, phase, or polarization. As a consequence, the information about an entire

statistical ensemble of a large number of field realizations is required to reconstruct

such field correlations, making the information concealed in the ciphertext hard to com-

promise. Furthermore, a relative insensitivity of the second-order field correlations to

the environmental fluctuations augur well for the robustness of our protocol in noisy

environments.

Ciphertext measurement

The spatial coherence of a partially coherent light beam can be measured, typically, with

the classic Young’s two-pinhole experiment. However, the tiny size of the pinhole opening

limits the light efficiency of themeasurement and the large sets of pinhole-separation data

increases the measurement time. Here, to fully recover a complex-valued spatial coher-

ence structure distribution, specified by the cross-spectral density, we apply a recently

advanced generalized Hanbury–Brown Twiss technique [40, 41]. To this end, we first

introduce a pair of independently controlled coherent reference fields ER1(r) and ER2(r)
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and combine them with the output random light beam [see Fig. 1b]. The field realizations

of two composite random fields can then be written as

EC1(r) = ER1(r) + E(r), (3)

EC2(r) = ER2(r) + E(r), (4)

where E(r) is a field realization of the partially coherent beam which yields the cross-

spectral density of the beam as W (r1, r2) = 〈E∗(r1)E(r2)〉. Hereafter unless specified

otherwise, the angle brackets denote ensemble (time) averaging over the field realizations.

The intensity-intensity cross-correlation of the two composite fields at any pair of

points can be expressed as

GC(r1, r2) = 〈IC1(r1)I
C2(r2)〉, (5)

where IC1(r) = EC1∗(r)EC1(r) and IC2(r) = EC2∗(r)EC2(r) denote the random intensi-

ties of the two composite fields. On substituting from Eqs. (3) and (4) into Eq. (5) and

employing a Gaussian moment theorem [61], we obtain

GC(r1, r2) =〈IU1(r1)〉〈I
U2(r2)〉 + |W (r1, r2)|

2 + 2
√

IR1(r1)IR2(r2)

×
[

W ′(r1, r2) cos�φ − W ′′(r1, r2) sin�φ
]

, (6)

where IU1(r) = IR1(r) + I(r) and IU2(r) = IR2(r) + I(r). Here IR1(r) = |ER1(r)|2 and

IR2(r) = |ER2(r)|2 are the intensities of the two reference fields, I(r) = |E(r)|2 is an

intensity of the random beam; prime and double prime denote, respectively, the real and

the imaginary parts, and �φ = arg[ER1(r1)]−arg[ER2(r2)] is a phase difference between

the two reference fields at points r1 and r2, with arg standing for the phase of a complex

function. We note that the Gaussian moment theorem is applicable here since the field of

a random beam is produced by an RGGD and therefore, it obeys Gaussian statistics [61].

We can infer from Eq. (6) that the information about the real and imaginary parts of the

cross-spectral density function is contained in the intensity-intensity cross-correlation

function GC(r1, r2). Hence, by setting the phase difference �φ to either 0 or π/2, we can

separately extract the real or imaginary part. Further, we notice that the first two terms in

Eq. (6) form irrelevant background which can be removed by first evaluating an auxiliary

intensity-intensity cross-correlation as

GU(r1, r2) = 〈IU1(r1)I
U2(r2)〉, (7)

where IU1(r) and IU2(r) are (fluctuating) combined intensities of the reference and ran-

dom beams. With the help of the Gaussian moment theorem, Eq. (7) can be written as

GU(r1, r2) = 〈IU1(r1)〉〈I
U2(r2)〉 + |W (r1, r2)|

2. (8)

It follows from Eqs. (6) and (8) that the real and imaginary parts of the cross-spectral

density can be obtained as

W ′(r1, r2) =
�G(r1, r2,�φ = 0)

2
√

IR1(r1)IR2(r2)
, (9)

W ′′(r1, r2) = −
�G(r1, r2,�φ = π/2)

2
√

IR1(r1)IR2(r2)
, (10)

where �G(r1, r2,�φ) = GC(r1, r2) − GU(r1, r2) is expressed in terms of the phase delay

�φ.
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It follows from Eqs. (3)–(10) that the cross-spectral density function can be fully

recovered by evaluating the intensity-intensity correlations in Eqs. (5) and (7). In the

experiment, the random intensities IC(r) and IU(r) of N realizations are recorded at

different time instants and the intensity-intensity correlations are then evaluated as [17]

GC(r1, r2) =
1

N

N
∑

n=1

ICn (r1)I
C
n (r2), (11)

GU(r1, r2) =
1

N

N
∑

n=1

IUn (r1)I
U
n (r2), (12)

where ICn (r) and IUn (r) are intensities of the nth field realization.We remark that whenever

a partially coherent beam is generated by a Fourier transforming system, such as a thin

lens, the time average in Eqs. (5) and (7) can be replaced with the space average over a

single instantaneous speckle pattern [40, 65].

Decoding

Once the cross-spectral density W (r1, r2) has been fully recovered, the plaintext can be

decoded by using an inverse transform of Eq. (2) with the correct encryption keys. As is

elucidated in Fig. 1c, the decoded paintext is correctly recovered only for the matched

spatial coherence and encryption keys.

Example

To demonstrate the feasibility of our encryption method, we present an example of our

protocol in which the optical encryption system performs a fractional Fourier transform

of a given order, c.f., [47]. The corresponding transfer function then reads

H(r, v) = A exp

[

iπ

λf

(

cotϕEv
2 − 2cscϕEv · r + cotϕEr

2
)

]

, (13)

where A = −icscϕE/λf , ϕE = pEπ/2 and pE is an order of the fractional Fourier trans-

form. The magnitude of pE can be regarded as an encryption key of the protocol. In

our experiment, the fractional Fourier transform system can be realized by a thin con-

vex lens of focal length fconvex = f / sinϕE, which is placed midway between the input

and output planes of the encoding system. The distances between the convex lens and

the input/output planes are equal to f tan(ϕE/2). Further, the encryption key falls in the

range: pE ∈ (0, 1], with pE = 1 corresponding to the ordinary Fourier transform limit.

It follows from Eqs. (2) and (13) that the ciphertext can the be expressed as

W (r1, r2) = A2

∫

IE(v) exp

[

iπ

λf

(

2cscϕEv · �r − cotϕEr
2
1 + cotϕEr

2
2

)

]

d2v, (14)

where IE(v) = t2(v) denotes the plaintext intensity and �r = r1 − r2. We can infer

from Eq. (14) that the cross-spectral density W (r1, r2) is a two-point fractional Fourier

transform of the image intensity IE(v). Thus, the image can be recovered by an inverse

fractional Fourier transform as

IR(v) =

∫∫

WR(r1, r2) exp

[

−
iπ

λf

(

2cscϕR�r · v − cotϕRr
2
1 + cotϕRr

2
2

)

]

d2r1d
2
r2.

(15)

Here IR(v) is an intensity recovered from the measured cross-spectral density func-

tion WR(r1, r2) and pR is a decoding key. Next, ϕR = pRπ/2. Only if does the measured
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WR(r1, r2) match the ciphertextW (r1, r2) and pR = pE, the plaintext intensity is correctly

recovered: IR(v) = IE(v).

Notice that Eq. (15) can be viewed as a four-dimensional Fourier transform of the

function WR(r1, r2) exp
[

iπ
λf

(

cotϕRr
2
1 − cotϕRr

2
2

)

]

, which can, in turn, be regarded as the

cross-spectral density of a “effective” chirped random beam. Further, it follows from

Eq. (14) that such a beam can be assumed to be generated from an incoherent light source

with its intensity being IR(v) with a Fourier transforming imaging system. Thus, per our

previous discussion, the cross-spectral density of the effective chirped random beam

can be recovered by using space instead of time averaging in the generalized Hanbury

Brown–Twiss experiment. The corresponding reference fields read

ER1′(r) = ER1(r) exp

(

iπ

λf
cotϕRr

2

)

, (16)

ER2′(r) = ER2(r) exp

(

iπ

λf
cotϕRr

2

)

. (17)

Here the quadratic phase can be introduce by a concave lens. The distance between the

lens and the output reference field is d = f /cotϕR− fconcave, where fconcave is a focal length

of the concave lens. On substituting from Eqs. (16) and (17) into Eqs. (3), (4) and (5) and

taking a Gaussian average, we obtain the real and imaginary parts of the recovered cross-

spectral density of the chirped random beam from Eqs. (9) and (10). Next, the plaintext

can be recovered by an inverse Fourier transform of the measured cross-spectral density.

We note in passing that the encryption key pR for decoding the plaintext is now used

in the chirped reference fields of Eqs. (16) and (17) that are introduced at the ciphertext

interrogation stage.

We exhibit our experimental setup in Fig. 2.We first convert an unpolarizedmonochro-

matic, coherent beam of carrier wavelength λ = 633 nm, generated by a He–Ne laser,

into an x-polarized beam by a linear polarizer (LP) and then split the beam by a beam-

splitter (BS) into two beams that go into the top and bottom arms, respectively, as shown

in Fig. 2. We employ the top arm in the figure to generate reference light beams with their

electric fields given by Eqs. (16) and (17). The purpose of the bottom arm is to encode

the image information into the cross-spectral density of a random beam as illustrated in

Fig. 1a. In the bottom arm, we impinge the x-polarized beam, having been expanded by a

beam expander (BE), onto a spatial light modulator (SLM) to which we preload an optical

image with a transmission function t(v). We then project the outgoing SLM-modulated

coherent light onto a rotating ground-glass disk (RGGD) by a 2f imaging system formed

by a thin lens L1 of focal distance f1 = 100 mm. In our experiment, the beam spot on the

RGGD is much larger than the characteristic inhomogeneity scale of the latter. Thus, the

emerged light from the RGGD can be regarded as incoherent and its cross-spectral den-

sity can be well approximated by Eq. (1). The incoherent light by the secondary source

is then transmitted through a fractional Fourier transform system represented by a thin

lens L2 of focal length f2 = 250 mm. The random beam with the encoded into its cross-

spectral density image information is thus generated in the output plane of the fractional

Fourier transform system. The distance l between the RGGD and L2 (or between L2 and

the output plane) can be varied to realize a fractional Fourier transform of any given order

pE. As a part of the fractional Fourier transform system, a half-wave plate (HWP) with its
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Fig. 2 Schematics of an experimental setup for optical image encryption into the spatial coherence structure

of a random light beam and a setup for measuring the corresponding cross-spectral density function. The

green arrows stand for the polarization directions of the light beams

fast axis making the angle π/8 with the x-polarization direction is inserted to transform

the x-polarized random beam into a π/4-linearly polarized one.

In the top arm, we first transmit the x-polarized beam through a neutral-density filter

(NDF), an HWP, and a quarter-wave plate (QWP). We set the fast axes of the HWP and

QWP to make the angle π/8 with respect to and to be parallel to the x-polarization direc-

tion, respectively. Therefore, we can generate a right-handed circularly polarized coherent

beam immediately past theQWP.We then expand the circularly polarized reference beam

by the BE to produce a collimated beam of virtually uniform intensity distribution. Due

to a fixed π/2 phase difference between the two orthogonal components of the circularly

polarized beam, its x- and y-polarized components can be viewed as two coherent ref-

erence fields required for the measurement of the cross-spectral density of the random

probe beam. We can introduce the quadratic phases of the reference fields in Eqs. (16)

and (17) by adding a concave lens (CL) of focal distance fconcave = 100 mm behind the

BE. We can adjust the quadratic phase by changing the distance d between the CL and

the output plane of the reference beam.

We next combine the reference beam, generated in the top arm, and the random beam,

generated in the bottom arm, with a BS to measure the cross-spectral density of the

composite beam (i.e., the ciphertext), as illustrated in Fig. 1b. We split the x- and y-

components of the composite field by a polarization beamsplitter (PBS) and image them

onto CCD1 and CCD2, respectively, by a 2f imaging system formed by a couple of thin

lens L3 of focal distance f3 = 250 mm. We use a direct-digital synthesis (DDS) signal

generator as an external trigger to control the two CCDs to simultaneously capture the

random intensities of the x- and y-components of the field.

In our experiment, the message in capital characters ‘SUDA’ is loaded into the SLM

and the fractional order of the encryption system is set to be pE = 0.6 by setting the

distance to l = 103mm. Tomeasure the cross-spectral density of the composite beam, we

record the intensity distributions Ix(r) and Iy(r) of the x- and y-components of the π/4-

linearly polarized random beam by blocking the reference arm, the intensity distributions
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IRx (r) and IRy (r) of the x- and y-components of the circularly polarized reference beam

by blocking the encryption arm, and the intensity distributions ICx (r) and ICy (r) of the x-

and y-components of the composite field. The real and imaginary parts of the recovered

cross-spectral density function follow from

W ′
R(r1, r2) =

〈

ICx (r1)I
C
x (r2)

〉

s
−

〈

[ Ix(r1) + IRx (r1)] [ Ix(r2) + IRx (r2)]
〉

s

2
√

IRx (r1)IRx (r2)
, (18)

W ′′
R(r1, r2) = −

〈

ICx (r1)I
C
y (r2)

〉

s
−

〈

[ Ix(r1) + IRx (r1)] [ Iy(r2) + IRy (r2)]
〉

s

2
√

IRx (r1)IRy (r2)
, (19)

where 〈·〉s denotes a spatial average. We can reconstruct the image IR(v) by evaluating an

inverse Fourier transform of the measured cross-spectral density WR(r1, r2). We control

the magnitude of the encryption key pR by adjusting the distance d between the CL and

the BS. For the correct key, i.e., pR = pE = 0.6, the distance is d = 178 mm.

Results and discussion

In Figs. 3a and b, we depict our experimental results for the measured cross-spectral den-

sity of the effective chirped random beam, corresponding to the fractional order pR in the

reference arm equal to the fractional order pE at the encoding stage. In Fig. 3d we show the

intensity IR(v) of a recovered image obtained with the aid of an inverse Fourier transform

of the measured cross-spectral density. We also display in Fig. 3c the image illuminat-

ing the RGGD, i.e., the plaintext, for comparison. It can be inferred from Fig. 3 that the

cross-spectral density of a random beam can, indeed, be viewed as an effective carrier of

optically encoded information. Furthermore, we find that whenever the encryption and

decoding key match well, the decoded image is consistent with the input to the system.

To verify the reliability of our encryption protocol, we vary the distance d between the

CL and BS to introduce mismatch between pR and pE. In Fig. 4 we exhibit the experimen-

tal results for the measured cross-spectral density and the corresponding reconstructed

image for pR = 0.5 (top) and pR = 0.7 (bottom). We can infer from Figs. 4c and f that the

original plaintext image is unrecognizable as long as pR �= pE. To visualize the evolution

of the reconstructed image with pR, we show in Fig. 5 the experimental results for the

reconstructed images with pR varying from 0.5 to 0.72, with the increments of 0.02. We

observe that the reconstructed image rapidly blurs as the difference between pR and pE

grows. The plaintext image, i.e., ‘SUDA’, can only be recognized for pR = 0.6 ± 0.04. The

existence of such value range is due to the property of the fractional Fourier transform

function used in the encoding system. The function contains only a single encryption key.

We remark that the security of the system can be further improved, e.g., by using a more

complicated response function and by increasing the number of encryption keys in the

encoding system [64].

We can infer from Eq. (14) that not only the structure but also the position of the image

can be encoded into the cross-spectral density function of a random beam. It follows that

our protocol allows for moving image encryption. To illustrate this point, we loaded a

string of characters ‘SUDA’, moving along a straight line, into the SLM. In the top two pan-

els of Fig. 6, we show the experimental results for the measured cross-spectral density of

the beam illuminating the moving string at different locations. In the bottom panels, we

display the corresponding reconstructed images. In this experiment, pE = pR = 0.6. The
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Fig. 3 Experimental results for the real (a) and imaginary (b) parts of the recovered cross-spectral density

WR(�r) for the case pR = pE = 0.6. c The measured intensity distribution of the encrypted image on the

RGGD. d The reconstructed image from the Fourier transform of the measured cross-spectral density

function in (a) and (b)

experimental results in Fig. 6 indicate that the cross-spectral density of the illuminating

beam can be successfully employed to carry information about the structure and instan-

taneous position of a moving image. We notice here the time scale for encryption and

decryption is about 0.733 seconds, which is shorter than the time difference (1 second)

between two locations of the object in our experiment. Thus, the object can be regarded

as the “moving” object. Moreover, we remark that the crosstalk appeared in the recovered

images is induced by the imperfect circular polarization of the generated reference beam,

which however can be decreased by using the wave plates with higher quality, e.g., the

true zero-order wave plates.

Finally, we demonstrate the robustness of our protocol against fluctuations in a noisy

environment, such as the turbulent atmosphere. In our experiment, the fluctuations are

simulated by a thermally induced turbulence generated by a hot graphitic plate with an

adjustable temperature T. The turbulence strength grows with the temperature, which

can be seen from the distortion of the intensity distribution, for example see in [40]. In

the experiment, the turbulence is added only in the path of the random beam, i.e., the

fluctuations are introduced into the 2f imaging system as shown in Fig. 7a, since the

cross-spectral density measurement with the reference fields can be performed, in gen-

eral, separately in a turbulence-free environment. In Fig. 7c—f, we show the experimental
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Fig. 4 a through e. Experimental results for the real (left panels and imaginary (middle panels) parts of the

recovered cross-spectral densityWR(�r) for pR = 0.5 (top) and pR = 0.7 (bottom), respectively. c and f

Reconstructed images from a Fourier transform of the measured cross-spectral density functions

results for cross-spectral density and the corresponding reconstructed images for noisy

environments at different temperatures. In Fig. 7b we exhibit the experimental results

with no hot plate. We infer from the figures that our protocol is quite insensitive to the

environmental noise. Hence, the encrypted images can be recovered despite the presence

of even strong medium fluctuations. Thus, the second-order optical correlations can be

regarded as a robust “lock” for our encryption system that serves to protect against attacks

aimed at erasing rather than compromising the encrypted information. The robustness of

the cross-spectral density distribution of light in our protocol against the environmental

fluctuations is tightly linked to efficient self-healing of low-coherence light [28, 29, 40].

Fig. 5 Experimental results for the reconstructed images for pR varying from 0.5 to 0.72 with the step size of

0.02. The scale bar is shown in panel (l)
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Fig. 6 Encryption of a moving object with the modulation of the cross-spectral density function. a–d

Experimental results for the real part of the measured cross-spectral density of the beam illuminating a

moving object located at different instantaneous positions. e–h Experimental results for the imaginary part

of the corresponding measured cross-spectral density functions. i–l Experimental results for the

reconstructed images at different locations

Conclusions

We have presented a protocol for optical information encryption into the second-order

correlations of random light fields expressed in terms of the cross-spectral density of the

field. We have verified the feasibility of our protocol by carrying out a proof-of-principle

experiment by encoding an optical image (plaintext) into the cross-spectral density of a

random light beam with the aid of a fractional Fourier transform encoding system and

decoding the plaintext through the measurement of the said cross-spectral density with

the help of the recently introduced generalized Hanbury Brown–Twiss technique [40].

We argue that the vast amount of data required to reconstruct the cross-spectral density

distribution, compared with a relative paucity of data necessary in the traditional encryp-

tion protocols based on measuring first-order deterministic characteristics of light fields,

enhances the security of the encryption protocol. We have demonstrated experimentally

that the cross-spectral density measurement is extremely robust against environmen-

tal fluctuations, e.g., the atmospheric turbulence. Therefore, the optical information can

be well reconstructed despite a high level of noise in the ciphertext. This circumstance

bestows certain advantages on our protocol over the alternatives in the application sce-

narios where an attacker aims to deliberately destroy the ciphertext rather than temper

with it. Our results indicate that the spatial coherence of a random light beam can serve as

a versatile tool in optical security and encryption applications. Finally, we remark that the
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Fig. 7 Robustness of the coherence-based encryption in the face of thermally induced turbulence modelling

the atmospheric turbulence. a The schematics of a 2f imaging system in the presence of thermally induced

turbulence. b The experimental results for the cross-spectral density of the illuminating beam and the

corresponding recovered image in the turbulence free situation for reference. c–f The experimental results

for the cross-spectral density of the illuminating beam and the corresponding recovered images in the

presence of thermally induced turbulence with the temperature T of the hot graphitic plate being 100 °C,

150 °C, 200 °C, and 250 °C, respectively. The scale bars are shown in panel (f)

proposed coherence-based encryption system is performed only in a very short optical

path, it can, however, be extended to a long-distance optical image transmission system

with the aid of the coherence phase modulation (Liu et al.: Robust far-field imaging by

spatial coherence engineering, unpublished).
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