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ince intravascular ultrasound (IVUS) was introduced in 
the early 1990 s,1,2 it has been used not only as an ad-
junctive device to percutaneous coronary interventions 

(PCI), but also as a research tool to evaluate vessel structure 
in detail. Although IVUS has helped broaden our understand-
ing of coronary artery structure, its limited spatial resolution 
does not allow for the assessment of microstructures, which is 
important for identification of vulnerable plaques. Optical 
coherence tomography (OCT) is analogous to ultrasound, ex-
cept that it generates images by measuring the echo time delay 
and magnitude of backscattered light instead of sound.3 OCT 
was developed by Huang et al at the Massachusetts Institute of 
Technology and demonstrated for ex vivo imaging of the ret-
ina and atherosclerotic plaque in 1991.3 A related concept to 
OCT was also independently proposed by Tanno et al in Japan 
in 1991.4 OCT enables “optical biopsy”, imaging tissue struc-
ture and pathology in situ and in real time. It has become a 
standard imaging modality in clinical ophthalmology, where 
it is used for the diagnosis of retinal disease, assessing disease 
progression and response to therapy.5 The possibility of using 
OCT intravascularly was first suggested in 1996 by Brezinski 
et al in an ex vivo imaging study that demonstrated the ability 
of OCT to resolve the thin intimal cap layers that are associ-
ated with unstable plaques.6 A prototype OCT imaging cath-
eter using fiber optics was developed and demonstrated for 
imaging vascular structure ex vivo,7 as well as for in vivo en-

doscopic imaging in animals.8 In 1998 we established the first 
cardiac OCT research group at the Massachusetts General 
Hospital (MGH) to explore the clinical applications of OCT. 
In this review we will summarize the steps taken to bring this 
technology from bench to bedside over the past 15 years.

Ex Vivo Validation Studies
First, we performed ex vivo validation studies of OCT images 
in comparison with histological assessment of autopsy speci-
mens. OCT images correlated with histology in 357 athero-
sclerotic arterial segments from 90 cadavers. From these data, 
we established the OCT definitions of fibrous, fibrocalcific, 
and lipid-rich plaques (Figure 1). We also demonstrated a high 
sensitivity and specificity of these criteria (90–98%) and high 
reproducibility between 2 observers.9 In addition to plaque 
characterization, different types of intraluminal thrombus (red 
thrombus and white thrombus) were reported.10 In a series of 
ex vivo studies, we reported that macrophage accumulation 
could be visualized by OCT.11 Pathologically, infiltration and 
accumulation of foamy macrophages is an essential process in 
the development of vulnerable plaques.12 Although it is impos-
sible for IVUS to visualize macrophages (20–30 μm), OCT can 
identify accumulated macrophages as bright spots with hetero-
geneous signal intensity. Normalized standard deviation (NSD) 
calculated from the OCT signal intensity within the fibrous cap 
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Since its invention in the late 1990 s, intravascular optical coherence tomography (OCT) has been rapidly adopted 
in clinical research and, more recently, in clinical practice. Given its unprecedented resolution and high image con-
trast, OCT has been used to visualize plaque characteristics and to evaluate the vascular response to percutaneous 
coronary intervention. In particular, OCT is becoming the standard modality to evaluate in vivo plaque vulnerability, 
including the presence of lipid content, thin fibrous cap, or macrophage accumulation. Furthermore, OCT findings 
after stent implantation, such as strut apposition, neointimal hyperplasia, strut coverage, and neoatherosclerosis, 
are used as surrogate markers of the vascular response. New applications for OCT are being explored, such as 
transplant vasculopathy or non-coronary vascular imaging. Although OCT has contributed to cardiovascular research 
by providing a better understanding of the pathophysiology of coronary artery disease, data linking the images and 
clinical outcomes are lacking. Prospective data are needed to prove that the use of OCT improves patient outcomes, 
which is the ultimate goal of any clinical diagnostic tool.    (Circ J  2013; 77: 1933 – 1940)
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cellent correlation between OCT and histologically measured 
fibrous cap thickness (r=0.90) in 35 lipid-rich plaques collected 
from 102 coronary segments in 38 human cadavers.13 OCT is 
the only histologically validated modality that can measure 
fibrous cap thickness, and has become the standard in vivo 
imaging modality for identifying TCFA. 

First-in-Man Study
Based on the promising data from the experimental studies, 
our group at MGH performed a first-in-man study in 2002 to 
evaluate the feasibility of using OCT to visualize plaque com-

correlated closely with the percent area of CD68+ cells deter-
mined by histology.11 Although the potential quantification of 
macrophages by OCT raised significant interest, these findings 
were based on data obtained with a prototype OCT device and 
need to be verified with current commercial OCT instruments.

One of the most important capabilities of intracoronary OCT 
is the measurement of fibrous cap thickness and identification 
of thin cap fibroatheroma (TCFA). Pathologically, TCFA is 
defined as a plaque with advanced atherosclerosis showing a 
large necrotic core and a thin fibrous cap overlying inflamma-
tory cell infiltration, which has been recognized as a hallmark 
of vulnerable plaque.12 An ex vivo study demonstrated an ex-

Figure 1.    Plaque characterization by optical coherence tomography. Fibrous plaque is characterized by homogeneous, signal-
rich region (Left). Fibrocalcific plaques are identified by well-delineated, signal-poor regions with sharp borders (arrows, Middle). 
Lipid is characterized by signal-poor region with diffuse borders (arrows, Right).

Figure 2.    Proto-type optical coherence to-
mography (OCT) system (Upper left) and 
catheter (Upper right) used for the first human 
study. OCT could differentiate fibrous plaque 
(Lower left) and ruptured plaque (Lower 
right).
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combined with the limited image acquisition speed, meant that 
limited locations in the coronary arteries could be imaged. 
Increasing the OCT imaging speed was important for clini-
cally practical intravascular imaging. 

The first-generation OCT technology was based on “time 
domain” detection of optical echoes. In time domain detection, 
near-infrared light is focused onto the tissue and the echo time 
delay of the backscattered light is measured using an interfer-
ometer with a mechanically scanned reference path. Echoes of 
light are measured sequentially, 1 at a time, as the reference 
path is scanned. However, detection methods that operate in 
the “Fourier domain” enabled dramatic improvements in sen-
sitivity and imaging speed. These methods are also known as 
“swept source OCT” or “optical frequency-domain imaging 
(OFDI)”. Fourier domain detection operates by using an inter-
ferometer with a frequency swept laser.16,17 Echoes of light 
from the tissue are interfered with by light from a stationary 
reference path and the echo delay generates an interferometer 
output with a frequency that is proportional to the echo delay. 
Fourier domain detection encodes spatial position as in fre-
quency, somewhat analogous to MRI, and it has the advantage 
that it measures all of the echoes simultaneously, resulting in 
a dramatic improvement in sensitivity and imaging speed. The 
sensitivity and speed advantages were independently high-
lighted by 3 different research groups in 2003.18–20 These ad-
vances enabled OCT imaging speeds to be increased by more 
than 10-fold, making intravascular imaging clinically practical. 

Technology Translation and  
Commercial Development

In parallel to research advances, translation and commercial 
development are important in order to enable widespread ac-
cess to new technology by the clinical community. LightLab 
Imaging, Inc (Westford, MA, USA) was founded in 1998 as an 
MIT startup in a joint venture with Carl Zeiss Meditec. Light-
Lab was acquired by Goodman Ltd in 2002 and later sold to 
St. Jude Medical in 2011. LightLab introduced the M2 imag-
ing system in Europe in 2002. This first-generation OCT in-

ponents in the coronary arteries of living humans.14 The OCT 
instrument was a prototype developed at MGH and the OCT 
catheter was a modified 3.2F IVUS catheter (Figure 2). A 
single-mode optical fiber was inserted through the IVUS core 
and the distal end had a miniature gradient index lens and a 
micro prism to focus the OCT optical beam. Because of the 
limited image acquisition rate with this prototype OCT system, 
8–10 ml of saline was intermittently flushed through the guid-
ing catheter to clear the blood and obtain images of the arterial 
wall. In total, 17 lesions from 10 patients were imaged by both 
IVUS and OCT. That study demonstrated the potentially supe-
rior diagnostic ability of OCT over IVUS for the detection of 
various plaque components.14

In a subsequent study, we analyzed the culprit lesions of 
ST-elevation myocardial infarction (STEMI), non-ST-eleva-
tion acute coronary syndrome (NSTE-ACS), and stable angina 
pectoris (SAP) with OCT.15 Of the 69 patients enrolled in the 
study, sufficient image quality was obtained in 57 (20 STEMI, 
20 NSTE-ACS, and 17 SAP). TCFA, defined as a plaque with 
>90 degrees of lipid and <65 μm of fibrous cap thickness by 
OCT, was more frequently observed in STEMI and NSTE-
ACS patients than in SAP patients (72%, 50%, and 20%, re-
spectively, P=0.012); moreover, the fibrous cap was thinner in 
STEMI and NSTE-ACS than in SAP patients (47.0 μm, 
53.8 μm, and 102.6 μm, respectively, P=0.034). This was the 
first in vivo study to demonstrate significant differences in 
plaque characteristics depending on the clinical presentation. 
In this first-in-man study, we confirmed the safety and feasi-
bility of intracoronary OCT. 

Advances in Imaging Speed
The first-in-man studies demonstrated the ability of OCT to 
visualize clinically relevant intravascular pathology, but the 
early OCT technology had limiting imaging speed. Because 
blood attenuates light by optical scattering, proximal occlu-
sion, saline or contrast agent flushing was required in order to 
dilute the hematocrit during imaging. The resulting ischemia 
and limitations on the volumes of injected saline or contrast, 

Figure 3.    Comparison of intravascular ultrasound (IVUS) and optical coherence tomography (OCT). Matched images of IVUS 
(Left) and OCT (Right) of the culprit lesion in a patient with ST-elevation myocardial infarction. OCT clearly visualizes white throm-
bus (T) attached to the surface of a lipid-rich plaque with cavity (C), which can not be delineated by IVUS. 
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sity, estimated by the NSD of the OCT signal, is significantly 
higher in ACS patients compared with SAP patients.21 Expan-
sive remodeling is known to be associated with ACS.12,28,29 In 
our OCT and IVUS study,30 TCFA was more frequently ob-
served in lesions with positive remodeling than in those with 
intermediate or negative remodeling (80%, 38.5%, and 5.6%, 
respectively, P<0.001). Moreover, the involved lipid quadrants 
correlated with a remodeling index as determined by IVUS. 
Intraplaque neovascularization, which is considered to be a 
driver of plaque instability, is visualized by OCT as a vesicu-
lar structure within the plaque, and also referred to as micro-
channels, microvessels, or intimal vasculature. Neovascular-
ization visualized with OCT has been associated with a thin 
fibrous cap,31 poor responsiveness to statin therapy,32 and 
plaque progression,33 thus supporting concepts derived from 
pathology. OCT is a unique in vivo imaging modality that 
enables visualization of the fibrous cap of atheromatous plaque. 
With the use of OCT, the morphology of fibrous cap disrup-
tion has been studied. Tanaka et al reported that shoulder-type 
rupture was more frequently observed in patients developing 
ACS on exertion than in those developing it at rest.22 More-
over, plaque rupture was more frequent in STEMI patients 
than in NSTE-ACS (70% vs. 47%, P=0.033), and cap disrup-
tion tended to be directed against the coronary flow in STEMI 
patients.25 Fibrous cap thickness is one of the most critical 
determinants of plaque rupture susceptibility.12 The widely 
accepted cut-off point for rupture-prone plaque, 65 μm, was 
obtained from a pathological study34 in which the thinnest fi-
brous cap thickness was measured in 41 ruptured plaques 
causing sudden cardiac death (95th percentile value, 65 μm). 

strument used time domain detection and operated with 15 
frames per second (200 axial scans per frame) using saline 
flushing and occlusion. The M3 system improved imaging 
speeds to 20 frames/s (240 axial scans/frame) and was intro-
duced in Japan in 2007. The C7XR TM system used Fourier do-
main detection to achieve imaging speeds of 100 frames/s (500 
axial scans/frame) and was introduced in 2010. This was a 
10-fold increase in imaging speed, which enabled higher frame 
rates for improved pull-back speeds and arterial coverage, as 
well as increased axial scan density for improved image qual-
ity. These high imaging speeds enabled occlusion-free imaging 
using contrast agent injection to dilute hematocrit. The most 
recent generation of OCT systems (IlumienTM and Illumien 
OptisTM OCT Intravascular Imaging Systems, St. Jude Medi-
cal, St. Paul, MN, USA) provides integrated FFR and OCT 
with a fast pull-back speed (20–36 mm/s) and longer pull-back 
length (50–75 mm), which does not require vessel occlusion. 
These improvements in imaging speeds and system perfor-
mance promise to enable a wide range of clinical studies 

In Vivo Plaque Characterization
OCT has contributed to clarifying the pathophysiology of 
coronary atherosclerosis, which has been challenging for other 
in vivo imaging modalities because of either limited image 
resolution or poor image contrast (Figure 3). By maximizing 
the advantages of OCT, plaque characteristics relevant to ACS 
have been extensively explored.21–25 Macrophage accumula-
tion is thought to weaken the fibrous cap overlying the ne-
crotic core and lead to plaque rupture.26,27 Macrophage den-

Figure 4.    Definition of plaque erosion and calcified nodules according to optical coherence tomography (OCT). Definite erosion 
is defined as a lesion with thrombus that allows for visualization of the entire underlying intact plaque. Probable erosion is defined 
if the lesion has an irregular surface in the absence of thrombus or if the intraluminal thrombus does not allow for clear visualization 
of underlying plaque, and superficial lipid and substantial calcification can be ruled out. A calcified nodule is defined as a lesion 
with a disrupted fibrous cap overlying protruding nodular calcium showing attached thrombus, superficial calcium, and substan-
tial calcification in the proximal and distal adjacent regions.
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studies are warranted for this possible new paradigm.

Complications in PCI
OCT is much more sensitive than IVUS to detect mechanical 
complications caused by stent placement onto the vessel wall, 
such as tissue protrusion, dissection at the edge, and incomplete 
stent apposition.46,47 Several single-center studies have been 
published regarding stent complications detected by OCT.47–50 
Tissue protrusion, which includes prolapsed tissue components 
and intrastent thrombus, is detectable by OCT in the majority 
of cases, ranging from 40% to 95% depending on the under-
lying plaque type and clinical presentation.46,49,50 Stent edge 
dissection is also detected frequently, its incidence varying 
according to plaque type at the stent edge and clinical char-
acteristics.48,51 Moreover, the amount of lipid at the proximal 
stent edge has been associated with periprocedural cardiac 
marker elevation.52 Although OCT can not image through the 
optically opaque stent struts, strut apposition can be assessed 
by determining metal and polymer thickness relative to the 
lumen.53 Incomplete apposition is also common immediately 
after stenting, with its incidence varying from 10% to 60% ac-
cording to underlying plaque characteristics.46,50 Previous stud-
ies using serial OCT examinations47,54 have reported that most 
edge dissections and intramural protrusions have resolved at 
the 6–8-month follow-up OCT examination.41,48 Dissolution of 
incomplete stent apposition depends on the distance between 
the strut and lumen.54 Guagliumi et al demonstrated the asso-
ciation of malapposition and uncovered struts with late stent 
thrombosis.55 By retrospectively comparing the OCT findings 
of 18 stents with late thrombosis and 36 matched cases, they 
found that malapposed and uncovered struts were more fre-
quently observed in cases of late thrombosis. In recent years, 
OCT has been used in a number of studies assessing the cover-
age and apposition of stents as surrogate markers of the vascu-
lar response to stent implantation.56–58 Nevertheless, no pro-
spective data assessing the clinical effect of these minor 
complications have been reported. Given the low incidence of 
adverse events after contemporary PCI, data from many pro-
spective cases will be needed to achieve statistically signifi-
cant results for the clinical implications of these minor com-
plications. 

Neointimal Hyperplasia and  
Neoatherosclerosis Inside the Stents

OCT has been used to evaluate the tissue characteristics of 
neointimal hyperplasia in addition to the extent and amount of 
neointima.59,60 In general, neointimal tissue is categorized ac-
cording to its appearance into homogeneous, heterogeneous, 
and layered patterns as visualized by OCT.59 It has been re-
ported that the homogenous pattern represents tissue rich in 
smooth muscle cells, and the heterogeneous or layered pattern 
represents extracellular matrix, such as proteoglycans, in the 
low-signal regions.61,62 Recently, pathological and OCT stud-
ies have shed light on the development of advanced athero-
sclerosis within neointima after stenting, which has been 
termed “neoatherosclerosis”.63,64 Takano et al reported the 
development of lipid-laden neointima more frequently in the 
late phase (>5 years) as compared with the early phase (<1 
year) after bare metal stent (BMS) implantation;63 theirs was 
the first description of neoatherosclerosis by OCT. Disruption 
of the fibrous cap and thrombus formation associated with 
neoatherosclerosis has been reported,63,65 suggesting a poten-
tial mechanism of late stent thrombosis. Neoatherosclerosis 

In an in vivo OCT study comparing ruptured plaque with non-
ruptured lipid-rich plaque, a fibrous cap thickness <80 μm at 
its thinnest point was the threshold for ruptured plaque, which 
is consistent with expected tissue shrinkage ranging from 10% 
to 20% during histopathologic processing.35,36. In addition to 
the culprit lesions, nonculprit lesions of ACS have also been 
studied by OCT. Nonculprit lesions of ACS show more fea-
tures of vulnerability, including greater lipid amount, thinner 
fibrous cap thickness, and more neovascularization close to 
the lumen compared with the non-target lesions of SAP.37 
These results suggest that ACS is a systemic, pan-vascular 
disease rather than a focal phenomenon of the coronary arter-
ies. Moreover, plaque characterization by OCT has been used 
in other clinical settings such as diabetes mellitus and chronic 
kidney disease.38,39

Pathogenesis of ACS
As just described, one of the greatest advantages of OCT is the 
ability to obtain precise plaque characterization, including as-
sessment of microstructures such as fibrous cap, macrophage 
accumulation, and neovascularization. As these findings are 
relevant to plaque instability, OCT may be the ideal modality 
for assessing the pathophysiology of ACS.40 Although ruptured 
plaque has been recognized as the primary cause of ACS, pre-
vious pathological studies demonstrated that other causes, such 
as plaque erosion and calcified nodules, account for approxi-
mately 20% of sudden cardiac deaths and 25–40% of acute 
coronary thromboses.12,41,42 Recently, more attention has been 
paid to these potential mechanisms of ACS. Pathologically, 
plaque erosion is defined as thrombus formation on the surface 
of a plaque with denudation of the endothelial layer,12 and a 
calcified nodule is defined as a heavily calcified plaque with 
loss or dysfunction of the endothelium, resulting in loss of the 
fibrous cap over the nodular calcium.12 Some OCT studies at-
tempted to define the features of plaque erosions used the same 
definition as pathology43 or simply defined plaque erosion as 
thrombus formation with an intact fibrous cap. However, the 
limitations of OCT resolution and penetration do not allow for 
the visualization of endothelial cells (<10 μm) or for the detec-
tion of the fibrous cap behind a massive thrombus.44 Therefore, 
we proposed an OCT definition of plaque erosion and calcified 
nodules in collaboration with pathologists. Our definition clas-
sifies the culprit lesions of ACS into plaque rupture, calcified 
nodules, definite erosion, probable erosion, and an unclassified 
(other) group (Figure 4).45 With this definition, we analyzed a 
total of 126 ACS culprit lesions with OCT and found that 55 
(44%) showed plaque rupture, 39 (23%) had OCT-identified 
erosion (23 definite erosions and 16 probable erosions), and 10 
(8%) had OCT-defined calcified nodules. Patients with erosion 
were younger and more frequently experienced NSTE-ACS 
rather than STEMI. These data were identical to those from 
pathology, suggesting that patients with OCT-defined erosion 
may closely resemble patients with pathologically-defined ero-
sion. Given the different mechanisms and different patient 
backgrounds leading to ACS, it is important to consider differ-
ent therapeutic strategies for these patients. The current thera-
peutic strategy for ACS patients, especially for those with 
STEMI, was designed under the premise that coronary throm-
bosis occurred subsequent to plaque rupture. However, if we 
could identify the cases of ACS caused by erosion or calcified 
nodules, we might be able to treat them with antithrombotic 
therapy instead of stenting, because those lesions theoretically 
have less occlusive plaque underneath the thrombus and thus 
could be dissolved with antithrombotic agents. Prospective 
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used in both the clinical setting and clinical research for the 
past 15 years. Based on its high-resolution imaging perfor-
mance and with the rapid development of the technology, OCT 
has contributed to our understanding of the in vivo patho-
physiology of coronary artery disease and has aided in evaluat-
ing outcomes after stent implantation. Although some studies 
demonstrated its usefulness for the prediction of short-term 
outcomes after PCI,80–82 there is as yet currently no convincing 
data showing that the use of OCT imaging improves clinical 
outcomes. Given that it is an invasive technique, it is difficult 
to conduct a large-scale, long-term, randomized controlled 
trial that would provide outcome-based evidence demonstrat-
ing the clinical efficacy of OCT imaging. To address this chal-
lenge, we created the MGH OCT Registry in 2009, which is a 
multicenter registry of patients undergoing OCT imaging of 
coronary arteries for any clinical indication. Currently, 20 sites 
across 6 countries (United States 5, Japan 4, Korea 5, Australia 
2, China 2, and Singapore) participate in the Registry, which 
targets 3,000 cases with clinical follow-up of 5 years. We be-
lieve that the accumulated data in this Registry may be able to 
answer many of the unsolved questions, including the ultimate 
utility of OCT in the clinical setting.

Conclusions
OCT has been used for both clinical and research uses in car-
diology for the past 15 years. With its unprecedented ability to 
visualize the detailed structure of the arterial wall, OCT has 
helped us to understand in vivo vascular biology. A larger, 
prospective study is warranted to definitely elucidate the clin-
ical role of OCT. 
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