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iv Abstract

Abstract

An advanced novel Monte Carlo simulation model of the detection process

of an optical coherence tomography (OCT) system is presented. For the

first time it is shown analytically that the applicability of the incoherent

Monte Carlo approach to model the heterodyne detection process of an

OCT system is firmly justified. This is obtained by calculating the hetero-

dyne mixing of the reference and sample beams in a plane conjugate to the

discontinuity in the sample probed by the system. Using this approach, a

novel expression for the OCT signal is derived, which only depends upon

the intensity distribution of the light from the sample and the reference

beam. To adequately estimate the intensity distributions, a novel method

of modeling a focused Gaussian beam using Monte Carlo simulation is de-

veloped. This method is then combined with the derived expression for

the OCT signal into a new Monte Carlo model of the OCT signal. The

OCT signal from a scattering medium are obtained for several beam and

sample geometries using the new Monte Carlo model, and when comparing

to results of an analytical model based on the extended Huygens-Fresnel

principle excellent agreement is obtained. With the greater flexibility of

Monte Carlo simulations, this new model is demonstrated to be excellent

as a numerical phantom, i.e., as a substitute for otherwise difficult experi-

ments. Finally, a new model of the signal-to-noise ratio (SNR) of an OCT

system with optical amplification of the light reflected from the sample is

derived, and discussed. Using this model, the conclusion is reached that

an optical amplifier will enable substantial improvement of the SNR for

OCT systems dominated by receiver noise. Receiver noise is of practical

concern because of the (often) limited irradiance of suitable optical sources

for OCT, and high insertion loss of the fast optical delay-line scanners that

are necessary for fast imaging. Correspondingly, an increase in penetration

depth of about 30-100% is demonstrated for OCT imaging in skin based

on results obtained with the new Monte Carlo model. Accordingly, the two

new models are demonstrated as valuable tools for future development and

optimization of OCT systems to extend the applications of the system in

biomedicine.



Dansk abstrakt v

Dansk abstrakt

En ny avanceret Monte Carlo simulerings model af detektions processen i et

optisk kohærensen tomografi (eng. OCT) system bliver præsenteret. For

første gang vises det analytisk, at den inkohærente Monte Carlo metode

kan anvendes til at modellere den heterodyne detektions proces i et OCT

system. Dette opnås ved at beregne den heterodyne blanding af lyset fra

objektet og referencen i det konjugerede plane til diskontinuiteten i objek-

tet. Ved hjælp af denne metode udledes et nyt udtryk for OCT signalet, der

kun afhænger af intensitetsfordelingen af lyset fra hhv. referencen og objek-

tet. En ny metode til at simulere fokuserede Gaussiske stråler ved hjælp af

Monte Carlo simulering er udviklet, for at kunne estimere disse intensitets-

fordelinger korrekt. Denne metode er så kombineret med det nye analytiske

udtryk i en Monte Carlo model af OCT signalet. OCT signal er modelleret

for en række forskellige stråle- og objektgeometrier, og disse resultater er

i god overensstemmelse med resultater fra en analytisk model baseret på

det såkaldte udvidede Huygens-Fresnel princip. Med Monte Carlo meto-

dens store fleksibilitet er den nye model velegnet som et numerisk fantom,

dvs. som erstatning for ellers komplicerede eksperimenter, hvilket demon-

streres i flere eksempler. Endelig er en ny model af signal-støj-forholdet

for et OCT system med optisk forstærkning af lyset fra objektet udlet og

diskuteret. En hovedkonklusion af denne model er, at signal-støj-forholdet

kan forbedres væsentligt ved hjælp af optisk forstærkning, i systemer hvor

støjen er domineret af den elektriske støj i detektor systemet. Elektrisk støj

kan være vigtig for OCT, hvor styrken af gode lyskilder ofte er begrænset,

og hvor der er et ganske betragteligt tab i de hurtige reference skannere,

der er nødvendige for at opnå høje billedhastigheder. Det øgede signal-støj-

forhold resulterer i en øget indtrængningsdybde for OCT systemet på ca.

30-100% i hud beregnet ved hjælp af den nye Monte Carlo model. De to

nye modeller har dermed demonstreret deres værdi som praktiske værktøjer

til den fremtidige udvikling og optimering af OCT systemer nødvendig, for

at kunne udvide anvendelserne indenfor biomedicinsk optik.
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Chapter 1

Introduction

Through the last decade, optical coherence tomography [1] (OCT) has re-

ceived increased attention. This technique is viewed by many as a promis-

ing technique for a plethora of applications, especially within the area

of biomedical optics [2]. OCT is an imaging technique which can ob-

tain high-resolution cross-sectional tomographic images of microstructures

within transparent and semi-transparent media with micrometer resolution.

Such media may be biological tissue, polymer materials, paints etc.

OCT is an extension of optical low-coherence reflectometry (OLCR)

[3, 4], which is a one-dimensional ranging technique applied to investiga-

tions of fiber-based or integrated waveguide devices (see e.g. Refs. [5—8]).

The OLCR technique was transferred to the field of biomedical optics for

ranging of the retina [9, 10] and other eye structures [9—11]. Then, by

adding transverse scanning of the probe beam relative to the sample, D.

Huang et al. [1] extended this technique to the two- or three-dimensional

tomographic imaging modality OCT. An OCT image is a compilation of

one-dimensional ranging scans, which provide a map of the reflectivity of

the sample.

A schematic of an OCT system similar to the original OCT system [1]

is shown in Fig. 1.1. The system is a fiber-optic Michelson interferometer

where the light from a broadband light source1 is coupled into a fiber-optic

50/50 coupler, which splits the light into the sample and reference arms.

1Broadband is in this context usually several tens of nm optical bandwidth.

1
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Figure 1.1: Schematic of an OCT system similar to the original system [1]. Solid
lines are fiber-optic connections, whereas dotted lines are electrical connections.

The light exiting the sample arm is focused into the sample, and retrore-

flected light is collected back into the fiber. This light is then combined,

at the detector, with the light reflected by the scanning reference mirror.

A longitudinal scan is performed by scanning the position of the reference

mirror and recording the interference signal. Individual reflections are dis-

tinguishable because interference only occurs when the difference in optical

path length between the two arms is within the coherence length of the light

source. The electrical signal obtained during the reference scan is ampli-

fied, bandpass filtered, demodulated, and finally stored on a computer in

digital form. The image data is then displayed by assigning a color or tone

of gray to each reflection according to the measured signal strength.

The signal from a single reflection in the sample is given by the inter-

ference term at the detector, which is proportional to [12—14]

i (τ) ∝ Re [F {S (ν)}] cos (2πνcτ) , (1.1)

where i (τ) is the signal current as a function of the optical time delay, τ ,

νc is the center frequency of the source, and F {S (ν)} is the Fourier trans-

form of the spectrum of the light source with argument τ . Here it has

been used that the interference term is an autocorrelation of the emitted

source spectrum. From Eq.1.1 it follows that the shape and width of the
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source spectrum are important properties for OCT. Firstly, a wide source

spectrum will result in a narrow autocorrelation and therefore yield a high

axial resolution of the system. Secondly, if the Fourier transform of the

source spectrum results in sidelobes, such effects may be difficult to distin-

guish from a signal due to a different reflection site. A Gaussian spectrum

is an example of an ideal spectral shape. If such a source has a full-width-

half-maximum (FWHM) bandwidth, ∆λ, and a center wavelength λc, the

coherence length, lc, or axial resolution (in free space) is given by [2,14—16]

lc =
2 ln 2

π

λ2c
∆λ

. (1.2)

Another, very similar, definition of the coherence length is sometimes used

[13,17], but will not be discussed further here.

The light source of the first OCT system was a superluminescent diode

with a coherence length of 17µm and a center wavelength of 830 nm [1].

Light sources in the near-infrared region are suitable for biological appli-

cations because of the reduced tissue absorption in this region. Superlu-

minescent diodes are well-established as light sources for OCT because of

their relative high irradiance, smooth and wide spectrum combined with a

relatively low cost [18]. However, the coherence length of superlumines-

cent diodes, which is typically 10-20µm, is insufficient to image individual

tissue cells and cell nuclei. Such resolution has been identified as impor-

tant for applications such as identification of malignant melanoma (skin

cancer) [19]. Several other types of light sources have been applied to

OCT [18]. Only a Ti:sapphire femtosecond laser has been demonstrated

capable of producing the 1µm resolution required to accurately image sub-

cellular structures [20,21], although a Cr4+:fosferite femtosecond laser has

been shown to come close (lc ∼ 6µm) [22]. However the current cost and

complexity solid-state laser makes their use impractical outside of a research

setting [18]. Please refer to Refs. [16] and [18] for a comprehensive review

of light sources for OCT. It is important to note that in a recent market

study, where several leading scientists within the field where interviewed,

lack of suitable high irradiance light sources were identified as a significant

barrier for OCT technology [23].
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In the original OCT system [1] reference scanning was performed using

a stepper motor. Since then several scanning techniques have been em-

ployed in order to obtain (near) real-time imaging, because fast imaging

is crucial in providing the clinician with flexible operation during in situ

measurements [24]. It is also essential in avoiding image artifacts due to

unavoidable movement in clinical measurements due to e.g. beating of the

heart, involuntary muscular jittering, and micro movements in the eye [25].

Moreover, applications in sensitive areas, such as endoscopic investigations

near the heart call for a fast collection of as much data as possible. The

fastest reported optical delay-line scanner is based on a high-speed air tur-

bine rotating a glass cube [25]. This scanner has a scan-speed of 176

m/s with a scan depth of 2 mm and a repetition rate of 28.5kHz, but the

technique is still too unstable for practical use in OCT [26]. The present

state-of-the-art OCT systems use a Fourier-domain rapid-scan optical de-

lay line [27, 28], which, in these systems, obtain a scan depth of several

millimeters with a repetition rate of a few kilohertz [14, 24, 29—31]. An

important implication of fast scanning is the necessary increase in detec-

tion bandwidth Be. As the signal-to-noise ratio (SNR) of an OCT system

is inversely proportional to the detection bandwidth, an increase in scan-

ning speed will reduce the SNR of the system. An additional decrease in

SNR is also expected because fast detector systems are likely to contribute

with more noise [32]. Accordingly, an increase in scanning speed must be

countered by an effort to increase the SNR in order to maintain image pen-

etration depth and contrast. For a reference scanner, which simply changes

the path length of the light2, the center frequency, νc, and the necessary

electrical bandwidth, Be, are given by [33]

νc = 2v/λc, (1.3)

Be = 2v∆λ/λ2c , (1.4)

2The center frequency of the beat signal can be controlled to some extent using the
Fourier-domain rapid-scan optical delay line system. Therefore a relatively low center
frequency may be maintained while still scanning fast. However, the center frequency
varies through a scan and therefore a larger electrical bandwidth must be used, which
reduces the SNR [26].
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where v is the speed of the of the path length change. If, as an example, the

reference is to scan 3mm at 100kHz with λc at 1300nm and ∆λ is 100 nm,

then νc becomes 460MHz and whereas Be is 36MHz. For comparison,

in a conventional OCT system using a translation stage, Be is only a few

kilohertz [17], and a system with a Fourier-domain rapid-scan optical delay

line was reported to have a Be of 2.6MHz with 4kHz repetition rate. How-

ever, development of the field is toward yet faster scanning techniques [26].

For a thorough review of optical delay-line scanners in OCT, the reader is

referred to Ref. [26].

The analysis of the SNR is important to enable the design of yet more

effective systems with deeper penetration capabilities, as well as better con-

trast. Besides increasing the irradiance of the light source, which is not

always possible, innovative designs of the interferometer may also provide

a better SNR [31, 34—36]. Using balanced detection makes it possible to

suppress intensity noise, which can be a significant source of noise caused

by the large spectral width of the light source [37]. The benefits of bal-

anced detection was recently discussed in a comparative analysis of bal-

anced versus unbalanced detection systems [32]. Intensity and beat noise,

as well as receiver noise, was included in this SNR analysis of OCT sys-

tems, whereas all previous analyses has assumed the system to be shot-noise

limited [15,38—40].

The lights interaction with the scattering sample, and how it there-

after results in a viable signal, is essential to the obtained resolution and

SNR. This process has been investigated by several researchers [41—46].

However, not until an analytical model based on the so-called extended

Huygens-Fresnel principle [47], published by Thrane et al. [48], has it been

possible to include the effect of both single-scattered, and multiple-scattered

light simultaneously. Accordingly, this model offers a far more complete

description of the process of obtaining an OCT signal. In describing the

light propagation in the sample, Thrane et al. [48] used the results of an

earlier analytical model of Gaussian beam propagation through scattering

media [49]. With this description, it is therefore also possible to investi-

gate the properties of the focal spot inside the sample, which is essential

for knowledge of the transverse resolution of the system.
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The number of applications of OCT in medicine and other fields is

vast [2]. However, commercially only a system for clinical examinations in

ophthalmology exist (Zeiss-Humphrey Systems, Dublin, CA, USA). Sev-

eral thousand patients have been examined using this system for noninva-

sive imaging of the anterior eye, crystalline lens, and retina. Imaging of

highly scattering tissues is a topic of considerable interest, and several new

companies have been established to develop systems in this area. The com-

pany Lightlab Imaging3, is developing systems for endoscopic examination

in cardiology and the gastrointestinal tract, whereas Isis-Optronics4 aims

its research primarily towards applications in dermatology (see Ref. [2] for

a review of these applications). Imaging of non-transparent tissues is gen-

erally a difficult problem, primarily due to strong scattering, and the effect

of multiple scattering on the OCT signal is not yet completely understood.

However, the analytical model discussed above has significantly added to

this understanding [48]. The preferred spectral region for imaging in highly

scattering tissues is near 1.3 µm, where the effect of scattering is reduced

compared to wavelengths in the visible, and the absorption (mainly due to

water) is low compared to even longer wavelengths. Using light in the 1.3

µm region research has demonstrated imaging up to 2-3mm into the sam-

ple, depending on the tissue type [14,50]. The reader may find a thorough

review of the biomedical applications in Refs. [2,50].

1.1 Scope of the thesis

The scope of this thesis is the analysis of OCT systems to aid improvement

of the signal-to-noise ratio (SNR) and promote understanding of the detec-

tion of signals from highly scattering media such as dense tissue. This is

accomplished by presenting two new models: An advanced Monte Carlo

model of the OCT signal [51] and a detailed analytical noise model including

optical amplification of the reflected light from the sample [52].

The motivation to develop a method of modeling OCT systems with a

Monte Carlo model is that Monte Carlo simulations are well accepted as a

3LightLab Imaging, LCC. Westford, MA, USA: www.lightlabimaging.com
4 Isis Optronics GMBH, Mannheim, Germany. www.isis-optronics.de
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substitute for experiments, i.e., as a numerical phantom. With the inherent

flexibility of the Monte Carlo simulation method, such a model may then be

used as a supplement to the analytical model of OCT systems based on the

extended Huygens-Fresnel principle discussed above [48]. The analytical

model presented in Ref. [48] model will be referred to as the analytical

OCT model in this thesis. The new Monte Carlo model may be applied

to estimate the signal from sample structures, which are cumbersome to

describe analytically or for which one or more of the assumptions of the

analytical model fail. Finally, it may also be applied to corroborate the

applicability of the analytical OCT model to sample structures, which are

difficult to construct as phantoms in the laboratory. An important aspect

of this thesis is thus to demonstrate the applicability of the incoherent

Monte Carlo method to model the heterodyne detection process in an OCT

system.

One potential method to enable faster scanning and deeper penetration

depth of future OCT systems is to apply an optical amplifier to amplify the

reflected light from the sample. However, to determine whether an optical

amplifier will improve the SNR of practical OCT systems, a model must be

constructed including all relevant parameters. Such a model must also, as

a novelty, explicitly include the system constraints of detector saturation

and a safety limit on the irradiation of the sample. The explicit inclusion

of such limits in in general noise analysis not confined to the shot-noise

limit is new to OCT analysis. Therefore, this new noise model may also be

relevant for optimizing conventional OCT system. With the discussion of

the importance and implications of faster scanning in the previous section,

it is especially interesting to analyze the impact of optical amplification

on fast scanning systems. The resulting model may then be applied by a

systems designer to determine if, and how much, an optical amplifier will

improve the SNR of a given system, and how to optimize this improvement.

The new Monte Carlo model of the OCT signal may then be applied to

quantify the increase in penetration depth for a specific application due to

the expected increase in the SNR.
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1.2 Organization of the thesis

In chapter 2 the applicability of incoherent Monte Carlo simulation method,

in its most common usage, to model the heterodyne OCT signal from bio-

logical tissue is proven mathematically [51]. This is obtained by calculating

the heterodyne mixing of the reference and sample beams in a plane con-

jugate to the discontinuity in the sample probed by the system. Using this

approach, a novel expression for the OCT signal is derived, which only de-

pends upon the intensity distribution of the light from the sample and the

reference beam. This is a main result of this thesis that is essential to

the validity of the presented Monte Carlo model of the OCT signal. To

estimate the OCT signal using this result, a new method of modeling the

propagation of a Gaussian beam using Monte Carlo simulation is required.

In chapter 3, the new method of modeling the propagation of a fo-

cused Gaussian beam using Monte Carlo simulation is presented [51, 53],

and validated by obtaining excellent agreement with results obtained using

a previously published analytical model [49]. Because intensity distribu-

tions of focused beams in random media are important to OCT (transverse

resolution) and several other applications, the use of this new method as a

numerical phantom is demonstrated.

In chapter 4, the results of the two previous chapters are combined to

obtain a Monte Carlo model of the heterodyne detection process in an OCT

system [51]. The mathematical results of chapter 2 are used to derive a

so-called detection scheme, which is used to determine whether a single

energy packet, simulated using the Monte Carlo simulation, contributes to

the OCT signal. The new Monte Carlo model shows excellent agreement

with results obtained using an analytical model based on the extended

Huygens-Fresnel principle [48] for sample geometries where this model has

been validated experimentally [17,48]. Finally, the applicability of the new

Monte Carlo model of the OCT signal is demonstrated through examples.

In chapter 5, the applicability of an optical amplifier to improve the

SNR of an OCT system is analyzed theoretically, and a new noise model

of the system is presented [52]. First, the SNR of a conventional OCT

system without optical amplification is analyzed, and it is found that, al-
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though often inferred in the field, the shot-noise limit is only applicable in

special cases. Using this analysis, and a theoretical model of an optical

amplifier, it is identified when an optical amplifier will improve the SNR

of an OCT system. Depending on the system and application, the optical

power constraints of detector saturation and/or a safety limit on the irra-

diation of the sample may be important. Such constraints are therefore,

as a novelty, considered explicitly in the model. From the complete model

it is then possible to determine the applicability of optical amplification in

a specific system, and to optimize the improvement.

The main part of chapter 6 is devoted to the quantification of the im-

provement obtained by using optical amplification in the fast scanning OCT

systems discussed in section 1. This quantification is carried out for sev-

eral cases of practical interest with resulting significant improvement of the

SNR. It is then demonstrated how improvement in penetration depth, cor-

responding to an improvement of the SNR, may be quantified by applying

the derived Monte Carlo model of the OCT signal. In the final section of

chapter 6, the impact of an optical amplifier on the coherence of the am-

plified light and the resulting OCT signal is briefly discussed using results

from a preliminary experiment.

Finally, it should be noted that during the research that led to this

thesis, a similar SNR model has been derived for a special type of OCT

systems, where the wavelength of a narrow band light source is scanned [54].

Such systems are not yet researched widely although the technique shows

great promise. Due to the close similarity to the presented noise model of

systems with a broadband light source, this analysis is not included in this

thesis. The work is filed as a patent [55].



Chapter 2

Applicability of Monte Carlo

simulation to OCT

In this chapter, the applicability of the incoherent Monte Carlo simulation

method to model the heterodyne detection process in an optical coherence

tomography (OCT) system [1] is proven mathematically [51]. This is ac-

complished by deriving an analytical expression for the signal depending

only on the intensity of the light, and demonstrating that this expression is

identical to that of an analytical model [48] based on the extended Huygens-

Fresnel principle [49].

2.1 Introduction

Monte Carlo simulation [56] is a general technique, which has been applied

to a wide variety of modeling efforts from nuclear fission to stock market

analysis (see e.g. Refs. [57] and [58]). The name Monte Carlo refers to

the gambling, i.e., stochastic, nature of the approach where a stochastic

number generator is used to determine the specific outcome of a single

realization of a random variable or collection of random variables [59, 60].

The expected value of the random variable is then determined by averaging

over many such trials. For light propagation in random media, Monte Carlo

simulation using a computer is equivalent to finding numerical solutions to

the equation of radiative transfer [61] by tracing independent energy packets

10
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each carrying a fraction of the total light energy [62, 63]. The scientific

contributions to the field of Monte Carlo simulation of light propagation

in tissue is vast. However, the most important landmarks may be listed as

follows: Wilson et al. [63] were the first to apply the technique to laser light

propagation in tissue. Flock et al. [64] demonstrated excellent agreement

with experiments, whereas Prahl et al. [65] included anisotropic scattering

and internal reflection in the random medium. Wang et al. [66] applied

this work to develop a public domain computer code, MCML1, capable of

modeling light propagation in multiple layered slab geometries.

Monte Carlo simulation is simple and intuitive in nature, but in spite

of this simplicity very few limitations upon the propagation geometries

that can be modeled exists. Furthermore, with the recent advent of rel-

atively cheap and powerful computers, the extensive computational power

often required is no longer an obstacle. This, combined with a relatively

high confidence in the results obtained using Monte Carlo simulation (see

e.g. [64,67—78]) has made the approach widely accepted as a numerical al-

ternative to experiments, i.e., a numerical phantom. This may be seen

from the publication of Monte Carlo simulations applied to a wide variety

of applications for either validation and testing of a modeling approach (see

e.g. [78—84]) or investigations into light-tissue effects and optimization of

methods (see e.g. [82,83,85—88]).

With the demonstrated performance of Monte Carlo simulation in gen-

eral, the motivation for developing a method of modeling OCT systems

with Monte Carlo simulation is to obtain a flexible model which may be

applied to complex sample structures with well-controlled properties. Such

a model may then serve as a supplement, and numerical phantom, to the

analytical model of an OCT system recently published by Thrane et al. [48].

As discussed in the main introduction, this analytical model is based upon

the so-called extended Huygens-Fresnel principle and is, in this thesis, re-

ferred to as the analytical OCT model. While this model renders fast

results and direct understanding of parameter dependencies, it is limited to

1Presently, the original ANSI C source code for the program MCML
may be downloaded from Oregon Medical Laser Center at the web page:
http://omlc.ogi.edu/software/mc/
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propagation geometries which conform to the assumptions of highly forward

scattering and which may be described by the ABCD matrix formalism.

The model was validated on a simple single-layered tissue phantom consist-

ing of latex spheres in aqueous suspension [48], but with the incorporation

of the ABCD matrix formalism modeling of the OCT signal from more

complex structures is possible. However, a validation of the model on such

structures requires complex tissue phantoms with well-controlled properties

which are, at best, difficult to produce. As the Monte Carlo simulation

method is well-established for modeling light propagation through multiple

layers [66,67, 81,86], a Monte Carlo model may be used as a reference for

complex sample geometries if it can be shown to perform well for the simple

sample geometries for which the analytical model is validated experimen-

tally. The Monte Carlo model may also be used to model the signal from

sample geometries which are cumbersome to describe analytically, or do not

strictly conform to the assumptions of the analytical OCT model. These

assumptions are reviewed in the next section.

2.1.1 Essentials of Monte Carlo simulation and photon pack-

ets: A review

To discuss the applicability of the Monte Carlo simulation method to mod-

eling the detection process in an OCT system, the fundamentals of the

commonly used approach to Monte Carlo simulation of light propagation

in tissue are briefly reviewed (a more complete tutorial may be found in

Ref. [89]): The simulation of each energy packet start by a launch, after

which the packet follows a straight line until interaction with the sample

medium. Due to the localization of the energy packet a decision must be

taken for each distributed possibility the packet encounters, for example

whether to be reflected or refracted by a surface of a refractive index mis-

match. This is implemented by considering each set of possible outcome

to a probability distribution, and then using a computer generated pseudo

random number to decide which that is taken. The energy packet is traced

through a random medium by determining the path length to the next in-

teraction using a probability distribution related to the mean-free path in
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the medium Lf = 1/ (µs + µa), where µs
is the scattering coefficient and µ

a

is the absorption coefficient [61, 90]. Likewise, the direction of an energy

packet after a scattering event is found using a probability distribution re-

lated to the so-called phase function2 [91] or scattering function, p (θ,ϕ, g),

where θ is the polar angle and ϕ the azimuthal angle to the direction of

incidence upon the scatterer and g is the asymmetry parameter [90]. Ac-

cordingly, an energy packet experiences a continuously changing medium,

and therefore an ensemble averaging over the random medium is obtained

automatically by simulating many packets.3 With each interaction, a frac-

tion of the energy of the energy packet is absorbed and the trace of a packet

ends when its energy falls below a set threshold or escapes the sample. If

the sample is multilayered, the path between two interactions may be in-

tersected by a layer interface which must be considered [66].

The energy packets discussed above are often referred to as photon

packets or simply photons and this is adopted here. However, it should

be emphasized that no underlying wave equation are guiding or governing

these photons. Accordingly, any attempt to relate these to real quantum

mechanical photons should be done with great care as argued in a recent

comment by Tycho and Jørgensen [92] to a suggested approach of including

diffraction effects into Monte Carlo simulations [93]. AMonte Carlo photon

packet represent a fraction of the total light energy and for some, especially

continuous wave, applications it may be useful to think of the path travelled

by a photon as one possible path in which a fraction of the power flows.

A collection of photon packets may then be perceived as constituting an

intensity distribution due to an underlying field and it can, accordingly,

seem tempting to infer behavior known to apply to fields upon photon

packets. Consider, as an example, that one wishes to determine whether

the photon packets are able to enter an optical fiber. It can then seem

2The name "phase function" is not related to the phase of the light. The name takes
its origin from astronomy where it refers to the phases of the moon [91].

3 It should be noted that there exists a different approach to Monte Carlo simulation
than the one described here. In this approach, a realization of the random medium
is constructed according to the bulk parameters, and then a large number of photon
packets are traced through this realization. However, this approach is disadvantageous
for modeling light propagation in tissue, because many realizations of the medium must
be simulated to obtain an ensemble average for a given set of bulk parameters.
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intuitive to restrict the access of photons impinging on the fiber-end to

those which fall within the numerical aperture of the fiber. However, such

an angular restriction may not be correct, because the individual photon

packet do not carry information of the entire field and its phase distribution.

It is therefore not possible to determine whether a portion of the energy

carried by a photon packet will enter the fiber due to a mode match between

the fiber mode and the field underlying the collective intensity distribution

of the photon packets. This discussion will be given further consideration

in chapter 4.

2.1.2 Monte Carlo simulation of heterodyne detection in

OCT

With the above discussion in mind, it may seem futile to investigate if

Monte Carlo simulation is applicable to estimate an OCT signal, which

is the result of heterodyne mixing, and thus depends upon the coherence

properties of the light. However, the problem may be reformulated to

investigate wether or not the effect of the lack of coherence information

in a Monte Carlo simulation may by circumvented, or at least minimized.

In section 2.2, the extended Huygens-Fresnel principle is used to derive an

expression for the OCT signal depending only on the intensity of the light.

This is obtained by calculating the mixing of the reference and sample

beams in the plane conjugate to the discontinuity in the sample probed

by the system. The result is surprising, because the expression for the

signal given in Ref. [48] depends on the coherence properties of the light.

However, it is shown that the formula used for calculating the OCT signal

in this plane is mathematically identical to the result presented in Ref. [48].

These results are valid for the, from a biomedical point of view, important

case of a signal due to a diffusely reflecting discontinuity embedded in a

scattering sample. As a novelty, this proves the viability of Monte Carlo

simulation to model the OCT technique, because it is shown that only

intensity, and not field and phase, is necessary for this special case.

An important assumption of the analytical OCT model is that scatter-

ing in the sample is assumed to be forward directed. With this assumption,
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the relative time delay of the light, received from a single discontinuity plane

in the sample, is assumed to be negligible compared to the coherence length

of the light source [48]. At the same time, it is assumed that the coher-

ence length of the light source is short enough that signal power from all

other reflections may be neglected. This is equivalent to assuming that

the coherence properties of the light source has no influence on the signal

as long as the reference arm is matched to the diffuse discontinuity within

the sample. This is a justified approximation for highly forward scattering

tissues [94]. However, it does render the method unsuitable to investigate

the effect of scattering on the axial resolution of an OCT system in general,

because the coherence gate due to the limited coherence length of the light

source (see section 1) is not incorporated explicitly. Others have suggested

to use Monte Carlo simulation and the total optical path length travelled by

a photon packet to determine the influence of the coherence gate [43,45,46].

While this could be a valid approach, it clear from the previous discussion

of photon packets and coherence that, how intuitively correct it may seem,

this may not be the case. However, no efforts have been published to es-

tablish the meaning of a photon packet in such a temporal mixing of fields,

so future work is required to establish such a relation. It is the intention

that the Monte Carlo model of the OCT signal presented in this thesis may

be instrumental in such studies.

2.2 Analytical analysis of the OCT system

In this section, the considered system geometry is presented, and details

of the analytical OCT model are described. The description of the an-

alytical OCT model is important to the following analysis, because the

intend of the new Monte Carlo model presented in this thesis is to model

the same physics. In section 2.2.1, it is proven that the sample field is

delta-correlated in the conjugate plane to the discontinuity reflecting the

sample beam. In section 2.2.2, a new suggested way of calculating the

OCT signal using the intensity distributions of the sample and reference

beams is proven to be mathematically identical to the expression obtained

in the analytical OCT model [48]. This essentially proves the viability of
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Monte Carlo simulations in this context as discussed in section 2.1.2.

System geometry

Consider a generic OCT system as shown in Fig. 1.1 consisting of a fiber-

optic Michelson interferometer with identical optics in the sample and ref-

erence arms. The sample arm focuses the light on a discontinuity within a

scattering sample where a fraction of the light is reflected to be collected by

the interferometer. The reference arm directs the light towards a mirror

positioned such that the optical path length of the reference arm is matched

to the discontinuity in the sample. Due to the short coherence length of

the light source, only light from the specific discontinuity within the sample

contributes to the OCT signal. The optics of the sample arm is shown in

Fig. 2.1. The optical fiber end of the sample arm of the Michelson inter-

ferometer is positioned in the p-plane. The fiber emits the sample beam,

which impinges on the collimating lens L1. The focusing lens L2 is posi-

tioned in the r-plane where the light distribution is a Gaussian beam with

an intensity 1/e-width, w0. The beam is focused by L2 upon a diffusely

reflecting discontinuity coinciding with the q-plane at the depth zf inside

a scattering sample a distance d from L2. The sample is taken to be a

infinite slab in the transverse direction. The light reflected by the disconti-

nuity propagates back out through the sample, through lenses L2 and L1 to

the optical fiber, where it is collected by the interferometer. Throughout

this thesis, the space immediately to the right of L2 is generally described

by the coordinate set (q, z), where z is the longitudinal coordinate along

the optical axis, and q is a transverse vector. The length of a vector q

is generally written as q. The quantities n0 and n1 are refractive indices

of the surroundings and sample, respectively. The lenses in L1 and L2

have a focal length f and are taken to be identical, perfect and infinite in

radius. This means that the q- and p-planes are conjugate planes with a

magnification of unity.
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Figure 2.1: The sample arm setup of the OCT system. The lenses L1 and L2 are

considered to be identical, perfect, and have infinite radius. The setup is essentially

a 4F system.

analytical OCT model

As discussed in the introduction to this thesis, the OCT signal is produced

by the mixing of the reference field, received from the reference mirror, and

the sample field, received from the sample, on the photodetector of the

OCT system. Due to the symmetry of the system one may calculate the

mixing of the two fields in the r-plane, and it is therefore sufficient only to

consider a propagation geometry corresponding to the section enclosed by

a dashed line in Fig. 2.1 [48]. The mean square of the signal current i (t)

may be written as [47]

〈

i2 (t)
〉

= 2α2 |g (τ)|2Re
[
∫∫

ΓR (r1, r2)ΓS (r1, r2) d
2r1d

2r2

]

≡ Ψr

〈

i2
0
(t)

〉

(2.1)

where ΓR (r1, r2) = UR (r1)U
∗

R (r2) is the cross correlation of the scalar

reference field, ΓS (r1, r2) = 〈US (r1)U
∗

S (r2)〉 is the cross correlation of the

sample field, α is a proportionality constant and r1 and r2 are vectors in

the r-plane (see Fig. 2.1). Throughout this thesis it is understood that

spatial integrals are to be performed over the entire plane in question. The

quantity Ψr is the so-called heterodyne efficiency factor, which quantifies

the reduction in signal due to scattering, and i0 (t) is the OCT signal current

in the absence of scattering. The mean square of the signal in the absence of
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scattering,
〈

i2
0
(t)

〉

, is relatively easily obtained [48], and the main objective

of developing a Monte Carlo model is, therefore, to estimate Ψr. The angle

brackets 〈〉 in Eq.(2.1) denotes an ensemble averaging over the statistical

properties of the scattering medium and the discontinuity. The function

g (τ) is the normalized temporal coherence function of the field, where τ is

the time difference of propagation between the two fields when they reach

the detector. It is important to note that the results of Ref. [48] limits

the investigation to the paraxial regime. For OCT systems, however, the

paraxial approximation is a valid assumption, since most OCT set-ups do

not utilize a hard focus due to the difficulties of translating the focal region

along with the position of the reference mirror [95]. In addition, most tissues

are highly forward scattering in the near-infrared regime in which most

OCT systems operate [96]. Due to the assumption of forward scattering,

the temporal distortion of the sample field is assumed negligible relative to

the coherence time of the light source and thus g (τ) is independent of r1

and r2 [94]. Because the optical path lengths of the reference and sample

beams are assumed matched g (τ) = 1.

It has been shown that the heterodyne efficiency factor from Eq.(2.1),

may be calculated from [97]

Ψr =

∫

|K (r)|2 |ΓPT (r)|2 d2r
∫

|K (r)|2 d2r
, (2.2)

where K (r) is the overlap integral of the unscattered field in the r-plane,

and ΓPT (r) the mutual coherence function is the mutual coherence function

of a spherical wave in the r-plane from a point source in the q-plane [47].

These functions are defined in appendix A. Equation (2.2) is used in

the following proof, and to obtain numerical results of the analytical OCT

model in chapter 4.

Coherence properties

The OCT signal depends upon the lateral cross correlation of the light from

the scattering sample, as indicated by Eq.(2.1). In Ref. [48] it is found that

the lateral coherence length in the r-plane, ρ0, of the sample field for a



Section 2.2 Analytical analysis of the OCT system 19

single scattering layer in front of the discontinuity is given by

ρ0 =

√

3

µszf

λc
πθrms

(1 + n1d/zf) , (2.3)

where θrms = arccos (g) is the mean scattering angle. With a non-zero

lateral coherence length, ρ0, it is given from Eq.(2.1) that the OCT signal

depends upon the spatial coherence properties of the field from the sample.

As discussed in section 2.1, a Monte Carlo simulation does not describe

the spatial coherence properties of light and thus a direct simulation of

Eq.(2.1) is not possible. However, it is noted that because it is assumed

that the discontinuity is diffusely reflecting the lateral coherence will be

zero immediately after reflection, i.e., delta-correlated [13, 98]. Therefore,

the motivation for envisioning the system geometry, considered in Ref. [48],

as part of a 4F setup is to obtain the p-plane as a conjugate plane to the

q-plane (see Fig. 2.1). With the conjugate relation, the lateral coherence

length of the sample field in the p-plane, US (p), will also be zero in the

absence of scattering. However, as it will shown in the following section, the

sample field is delta-correlated in p-plane even in the presence of scattering,

so that the cross correlation in this plane may be written as

ΓS (p1,p2) = 〈US (p1)U
∗

S (p2)〉 = δ (p1 − p2) 〈IS (p)〉 . (2.4)

Accordingly, if the heterodyne efficiency factor Ψp, and therefore also the

OCT signal, may be calculated in the p-plane similarly to the calculation

in the r-plane in Eq.(2.1), then

Ψp =

〈

i2 (t)
〉

〈

i2
0
(t)

〉 =
Re

[∫∫

ΓR (p1,p2)ΓS (p1,p2) d
2p1d

2p2
]

Re
[∫∫

ΓR (p1,p2) ΓS0 (p1,p2)d
2p1d

2p2
] (2.5)

=

∫

IR (p) 〈IS (p)〉d2p
∫

IR (p) 〈IS,0 (p)〉d2p
,

where IR and IS,0 are the intensities of the reference beam and the sample

beam in the absence of scattering, respectively.

The objective of the following analysis is thus to prove that the het-

erodyne efficiency factor, Ψp, calculated in the p-plane is mathematically
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identical to the correct heterodyne efficiency factor, Ψr, calculated in the

r-plane, so

Ψp =

∫

IR (p) 〈IS (p)〉 d2p
∫

IR (p) 〈IS,0 (p)〉d2p
= Ψr, (2.6)

This is the important result of this chapter that demonstrates the inco-

herent Monte Carlo simulation method may be applied to obtain Ψr and

the OCT signal. It should be noted that no loss of generality has occurred

in assuming a 4F setup or that the optics of the reference and sample arms

are identical.

2.2.1 Delta-correlation of sample field in conjugate plane

To prove that the sample field is delta correlated in the p-plane in the

presence of scattering, it must be shown that the cross-correlation of the

sample field is given by

ΓS (p1,p2) = 〈US (p1)U
∗

S (p2)〉 = δ (p1 − p2) 〈IS (p)〉 , (2.7)

where p is a vector in the p-plane and IS (p) is the intensity of the sample

field, US (p), which is back reflected by the diffusely reflecting discontinuity

in the sample.

To outline the proof: The field US (p) in the p-plane is determined

by propagating a field, Uq (q), from the reflecting discontinuity in the q-

plane (refer to Fig. 2.1). This is accomplished by first calculating US (p)

by propagating a field from the r-plane, Ur (r), and then finding Ur (r)

by propagating Uq (q) from the q-plane. Noting that the field impinging

on the sample is a Gaussian beam focused in the q-plane, Uq (q) is found

using a previously published result for a Gaussian beam propagating in

scattering media [49] (see appendix A). Finally, the mutual coherence

function is calculated. Because the final objective of the analysis is to prove

Eq.(2.6) and find the ratio, Ψp, any multiplicative constant not related to

the properties of the scattering medium are omitted in the following.

Using the Huygens-Fresnel principle [49], the sample field in the p-plane,

US (p), from propagating a field in the r-plane immediately to the right of
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the focusing lens L2, Ur (r), is given by

US (p) =

∫

Ur (r)Gr−p (r,p)d
2r, (2.8)

where Gr−p (r,p) is the Huygens-Fresnel Green’s function for propagation

from the r-plane to the p-plane. For a general ABCD matrix system this

Green’s function is given by [49]

G0 (r,p) = − k

2πB
exp

[

− ik

2B

(

Ar2 − 2r · p+Dp2
)

]

(2.9)

where A, B, and D are the matrix elements, k is the wave number, i =
√
−1

and the notation r denotes the length of the vector r. For the propagation

from the r-plane to the p-plane A = −1, B = f and D = −1. Using the

extended Huygens-Fresnel principle [49,99], the field at the r-plane, Ur (r),

propagated from the field impinging upon the discontinuity in the q-plane,

Uq (q), is found as

Ur (r) =

∫

η (q)Uq (q)Gf (q, r) exp [iϕ (q, r)] d2q (2.10)

where Gf is the Huygens-Fresnel Green’s function for propagating the op-

tical distance f given by Eq.(2.9) with the matrix elements A = 1, B = f ,

and D = 1. The function ϕ (q, r) is the stochastic phase, due to the

scattering medium, added to the phase of a spherical wave propagating

from q-plane to r-plane, and η (q) is a complex reflection coefficient of the

discontinuity.

Using Eqs.(2.8)-(2.10) the cross-correlation of the field US (p) is given

by

ΓS (p1,p2) = 〈US (p1)U
∗

S (p2)〉 (2.11)

=

∫∫∫∫

Gf (q, r)G
∗

f (q´, r´)Gr−p (r,p1)G
∗

r−p (r´,p2)

×
〈

Uq (q)U
∗

q (q´)
〉

〈η (q) η (q´)〉
× 〈exp [iϕ (q, r)− iϕ (q´, r´)]〉d2rd2r´d2qd2q´
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where primed variables are related to U∗

S , and it has been assumed that

the scattering medium and the properties of the diffusely reflecting discon-

tinuity are independent. It has also been used that the phase distortion

due to forward propagation in the scattering medium may be assumed to

be statistically independent of that added to the reflected field [17], so

〈

Uq (q)U
∗

q (q´) exp [iϕ (q, r)− iϕ (q´, r´)]
〉

(2.12)

=
〈

Uq (q)U
∗

q (q´)
〉

〈exp [iϕ (q, r)− iϕ (q´, r´)]〉 .

This assumption is automatically fulfilled in a Monte Carlo simulation be-

cause, as discussed in section 2.1, a simulated photon packet experiences a

continuously changing medium.

Because the discontinuity is diffusely reflecting 〈η (q) η (q´)〉 = const.×
δ (q− q´) [47], where δ (q) is the two-dimensional Dirac’s delta function.

Using this, Eq.(2.11) becomes

ΓS (p1,p2) =

∫∫∫

Gf (q, r)G
∗

f (q´, r´)Gr−p (r,p1) (2.13)

×G∗

r−p (r´,p2) 〈Iq (q)〉ΓPT (r− r´)d2rd2r´d2q

where ΓPT (r− r´) = 〈exp [iϕ (q, r)− iϕ (q, ŕ)]〉 is the mutual coherence

function of a spherical wave in the r-plane from a point source in the q-

plane [47] (see appendix A), and Iq (q) is the intensity of the field Uq (q).

The average intensity in the q-plane, 〈Iq (q)〉, has previously been found

for the same propagation geometry [49] (see appendix A) as

〈I (q)〉 =
(

k

2πB

)

2 ∫

K (ρ̃) exp

(

ik

B
ρ̃ · q

)

ΓPT (ρ̃)d2ρ̃, (2.14)

where ρ̃=r̃-̃r´ is difference vector of the vectors r̃ and r̃´ in the r-plane,

and K (ρ̃) is the overlap integral of the unscattered field in the r-plane.

Now, invoking sum and difference coordinates defined as

R=
1

2
(r+r´) and ρ = r−r´, (2.15)

and performing the q-integration and the ρ̃ -integration originating from
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Eq.(2.14), Eq.(2.13) yields

ΓS (p1,p2) = (2.16)
∫∫

exp

{

− ik

2f

[

p22 − p21 − ρ · (p1 + p2) + 2R · (p1 − p2)
]

}

×|ΓPT (ρ)|2K (−ρ)d2ρd2R.

Here the well known relation

∫

exp [im · (u+ v)] dm= (2π)2 δ (u+ v) (2.17)

has been used. Carrying out the R-integration then yields

ΓS (p1,p2) = δ (p1 − p2) (2.18)

×
∫

exp

{

− ik

2f

[

p2
2
− p2
1
− ρ · (p1 + p2)

]

}

×|ΓPT (ρ)|2K (−ρ)d2ρ.

From Eq.(2.18) it is concluded that the sample field, US , is delta-correlated

in the p-plane, thus proving Eq.(2.7).

2.2.2 Heterodyne efficiency factor

The objective of this section is to prove the identity in Eq.(2.6):

Ψp =

〈

i2 (t)
〉

〈

i2
0
(t)

〉 =

∫

IR (p) 〈IS (p)〉 d2p
∫

IR (p) 〈IS,0 (p)〉d2p
= Ψr. (2.19)

To find the intensity of the sample field 〈IS (p)〉 Eq.(2.16) is considered for

the case p1 =p2 =p, so

ΓS (p,p) = 〈IS (p)〉 = AL2

∫

exp

(

−ik

f
ρ·p

)

|ΓPT (ρ)|2K (−ρ)d2ρ,

(2.20)

where AL2 is the area of the focusing lens L2. The implications of this

finite area are discussed below. Now, to find the numerator of Eq.(2.19), it

is noted that the reference beam is an unperturbed focused Gaussian beam
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in the p-plane, which may be calculated using Eq.(2.14) with ΓPT (ρ)=1,

A = 1 and B = f . Inserting this, as well as Eq.(2.20), into the numerator

of Eq.(2.19), it is found that

〈

i2 (t)
〉

∝ AL2

∫∫

exp

(

−ik

f
ρ·p

)

|ΓPT (ρ)|2 (2.21)

×K (−ρ) IR (p) d2p

= AL2

∫

|ΓPT (ρ)|2 |K (ρ)|2 d2ρ.

To find 〈IS,0 (p)〉 it is noted that the mutual coherence function, ΓPT (ρ),

is unity in the absence of scattering, and using Eqs. (2.19) and (2.21), Ψp

is found as

Ψp =

∫

|ΓPT (ρ)|2 |K (ρ)|2 d2ρ
∫

|K (ρ)|2 d2ρ
. (2.22)

Finally, noting that the ρ−integration is performed over the r-plane and

comparing with Eq.(2.2) it is seen that

Ψp = Ψr, (2.23)

which concludes the proof of Eq.(2.6). This demonstrates that calculating

Ψp according to Eq.(2.22) is mathematically identical to calculating the

known expression for the heterodyne efficiency factor, Ψr, according to the

analytical OCT model [48].

It is noted that there exists a mathematical ambiguity in obtaining a

delta function in Eq.(2.18), and obtaining a finite area of the focusing lens

in Eq.(2.20). Firstly, this area is irrelevant for the heterodyne efficiency

factor and no assumption of a finite lens area is made in the derivation

of Eq.(2.6) [97]. Secondly, a finite radius of the focusing lens would have

yielded an Airy function in RA (p1 − p2) instead of a delta function in

Eq.(2.18), where RA is the radius of aperture. So, if the aperture is large,

the sample field will be essentially delta-correlated in the p-plane; thus,

with little physical difference to Eq.(2.18). It should also be noted that the

identity proven in Eq.(2.22) is strictly only valid within the approximations

of the extended Huygens-Fresnel principle, and thus also only within the

paraxial regime. However, for sample with scattering that is not highly
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forward directed, the sample field is expected to be distorted to a higher

degree. Accordingly, coherence effects are expected to be of even less

importance, and therefore the assumption of delta-correlation of the field

from the sample in the p-plane should at least be a good first approximation.

With the proof of Eq.(2.6), it has now been proven that the heterodyne

efficiency factor of the OCT system, and therefore the signal, may be cal-

culated from the intensity distributions of the reference and sample fields

in the p-plane. Accordingly, the requirement for coherence information is

relaxed, rendering Monte Carlo simulation applicable.

2.3 Summary

The basic functionality of Monte Carlo simulation for modeling of light

propagation in tissue-like random media were introduced and discussed.

Special attention was given to the difficulty in interpreting photon packets

in field related phenomena, because Monte Carlo simulation is a simula-

tion of incoherent energy transport. The considered system geometry was

introduced, and the importance of the spatial coherence for the OCT sig-

nal was identified. It was then proven that by calculating the mixing of

the reference and sample beams in the conjugate plane to the discontinuity

probed by the system, the OCT signal,
〈

i2 (t)
〉

, may be calculated from the

intensity distributions of the respective beams, as indicated by Eq.(2.6):

Ψp =

〈

i2 (t)
〉

〈

i2
0
(t)

〉 =

∫

IR (p) 〈IS (p)〉 d2p
∫

IR (p) 〈IS,0 (p)〉 d2p
.

Here
〈

i2
0
(t)

〉

is the signal in the absence of scattering, IR is the intensity

at the reference beam, and IS, IS,0 are the intensity of the sample beam

with and without scattering, respectively. The quantity Ψ is the important

heterodyne efficiency factor that quantifies the reduction in signal due to

scattering, and the subscript p signifies that it is calculated in the p-plane.

Because the signal in the absence of scattering,
〈

i2
0
(t)

〉

, is relatively easily

obtained, estimation of Ψ is the main focus of developing the new Monte

Carlo model of the OCT signal in the following chapters. The derived
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expression for Ψ proves the viability of applying Monte Carlo simulation

to an OCT system, because the requirement of coherence information in

calculating the heterodyne mixing resulting in the signal is relaxed. This

is the first time it has been proven mathematically that Monte Carlo simu-

lation is applicable to model a physical quantity which inherently depends

on spatial coherence.

Note that the new expression for Ψ is strictly only valid within the

paraxial regime. However, samples exhibiting more isotropic scattering

are expected to distort the sample field to a higher degree. Accordingly,

coherence in the light from the sample is expected to be of even less im-

portance than for samples with highly forward scattering. Therefore, the

assumption of delta-correlation of the sample field in the p-plane should at

least be a good first approximation.



Chapter 3

Monte Carlo modeling of

Gaussian beams for OCT

In this chapter, a new method of modeling focused Gaussian beams using

Monte Carlo simulation will be derived and validated by comparison to an

analytical model [51, 53]. The development of the method is motivated

by the requirement for accurate intensity distribution to calculate the het-

erodyne efficiency factor using the new expression derived in chapter 2.

However, the method seperate applications as a numerical phantom which

is discussed and exemplified.

3.1 Introduction

In chapter 2 it was shown that the OCT signal may be calculated from

the intensity distribution of the light reflected from the sample, and an

expression for the heterodyne efficiency factor, Ψ, was derived. The ini-

tial beam impinging on the sample was assumed to be a focused Gaussian

beam. Therefore, a suitable method of modeling the propagation of such a

beam using Monte Carlo simulations must be found in order to estimate Ψ.

The considered propagation geometry corresponds to the part of Fig. 2.1

inside the dashed box; shown here, for convenience, as Fig. 3.1. Due to

the general nature of the considered propagation geometry, a Monte Carlo

simulation method may also be a useful tool for other applications, such as

27
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Figure 3.1: The modeled beam geometry.

laser ablation [100], requiring detailed knowledge of the intensity distribu-

tion of a focused Gaussian beam within a scattering medium.

Monte Carlo simulations have previously been applied to model the

focusing of light beams in tissue. The motivations have been to study the

distribution of absorbed power for photodynamic therapy (PDT) [101,102],

the performance of confocal microscopy [103—105], the efficiency of 1- and

2-photon excitation microscopy [106, 107], OCT [45], and the distribution

within turbid media in general [102,108,109]. In the absence of scattering,

the focusing behavior of the beam is simply determined from the initial

coordinates and propagation angles of the photons being launched. By car-

rying out Monte Carlo simulations one may then determine the distortion

caused by scattering and other structures. Previously, two different ways

of modeling the focusing have been employed:

1. Geometric-focus method: The initial position of the photon

launch is found stochastically according to the initial intensity distri-

bution and the photon packets are simply directed towards the geo-

metric focus of the beam [45,53,102,105,108,110,111]. This method

is referred to as the geometric-focus method in the following.

2. Spot-focus method: After the initial position has been found as

in the geometric-focus method, the photon packets are then directed

towards a random position within an area in the focal plane of the

beam [103,104,106,109]. The position within the chosen spot in the
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focal plane may be chosen according to different probability distri-

butions. This method is referred to as the spot-focus method in the

following.

To adequately model actual OCT systems, the chosen focus method

must be valid for a soft as well as a hard focus. The geometric-focus method

is obviously only a good approximation to a Gaussian beam for a very hard

focus but even then, the infinite photon density of the unscattered photons

at the geometric focus may pose a problem. Accordingly, the geometric-

focus method is not suitable for the present purpose. While a suitable

intensity distribution can be approximated with the spot-focus method,

the drawback of this method for the present purpose lies in the stochastic

nature of the photon paths. If, as discussed in section 2.1, the path

lengths of the received photon packets are to be used to study the effect

of scattering on the axial resolution of an OCT system, it is crucial that

any stochastic spread in path lengths are caused by the interaction with

the sample alone. Therefore, it is concluded that both the geometric- and

spot-focus methods are unsuitable for modeling of OCT systems.

In section 3.2, a new method of launching photon packets using the

hyperbolic nature of a Gaussian beam is derived. This method, in combi-

nation with Monte Carlo simulation, is in the following referred to as the

hyperboloid-method. Furthermore, it is demonstrated that the full three-

dimensional spatial intensity distribution of a Gaussian beam is obtained

in free-space by launching photon packets. In section 3.3 a set of spe-

cific beam geometries and samples are selected. Intensity distributions for

these propagation geometries are then obtained using the new hyperboloid

method and an analytical expression [49] previously given as Eq.(2.14).

This analytical model is in the following referred to as the analytical inten-

sity model. The excellent agreement between the two methods are taken to

validate the hyperboloid method for modeling Gaussian beam propagation

in single-layered highly forward scattering samples. Finally, in section 3.4

the usefulness and performance of the hyperboloid method is demonstrated.

An important result of this demonstration is that the performance is inde-

pendent of choice of scattering function, which extends the method to most
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realistic tissue models.

It should be noted that the derived methods in this thesis are imple-

mented into the well known MCML computer code [66], which is then used

to model the photon packet propagation through the scattering sample.

3.2 Photon packet launching algorithm

3.2.1 The hyperboloid method

Consider a Gaussian beam propagating along the z-axis from the r-plane

towards the sample in the propagation geometry shown in Fig. 3.1. When

the refractive indices of the sample and the surroundings are matched and

no scattering occurs, the beam will be focused in the q-plane specified by

zf = f − d. The 1/e-radius, w, of the intensity as a function of z is then

given by [112]

w2 (z) = w2f

[

1 +
(z − zf)

2

(2z0)
2

]

, (3.1)

where wf is the 1/e-radius in the focal plane and z0 is the Rayleigh range.

The quantities z0 and wf are related through the relation w2f = λz0/ (2π).

It is noted that Eq.(3.1) describes a parabola in z and w with a minimum at

z = zf. With w (z) = |q| = q as distance to the z-axis, Eq.(3.1) describes

a hyperboloid with one sheet in (q,z)-space immediately to the right of L2

(see Fig. 3.1). It is well known that a hyperboloid with one sheet may be

constructed from one of two sets of straight lines. This is demonstrated by

applying the restriction qy (z) = wf to Eq.(3.1) yielding:

qx (z) = ±
wf

2z0
(z − zf) , (3.2)

where q= (qx, qy). Each of these two lines may then be rotated around the

z-axis to construct the hyperboloid with one sheet described by Eq.(3.1).

Now, consider a Monte Carlo photon being launched along a line be-

longing to the hyperboloid with one sheet given by

w2photon (z) = C2w2f

[

1 +
(z − zf)

2

(2z0)
2

]

, (3.3)
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whereC is a constant. By changing this constant, the distance, w2photon (−d),

from the optical axis at launch in the r-plane is controlled. It is noted that

in the absence of scattering, a propagating photon will maintain its position

in any transverse plane when measured relative to the intensity distribu-

tion. Hence, if a photon is launched from the r-plane with the radius from

the optical axis w0, this photon will also be in the 1/e-intensity radius for

all values of z as it propagates.

3.2.2 Launch of photon packets

When modeling the propagation geometry in Fig. 3.1, the photons are

launched from the r-plane. In the MCML computer code [66] used to

model the Monte Carlo photon propagation, each photon packet is initially

assigned an equal amount of energy represented by a weight value, and the

number of photon packets launched per area is then related to the given in-

tensity distribution. For a Gaussian beam of with 1/e intensity width, w0,

the probability p(r) of finding a photon packet in the infinitesimal radial

interval dr at radius r in the r-plane, is then given by

p (r) =

(

2

w2
0

)

exp

(

−
r2

w2
0

)

qdq (3.4)

where the factor 2/w2
0
is a normalization factor. By following the method

outlined by Prahl et al. [65] of sampling a physical quantity using a computer-

generated pseudo random variable ξ evenly distributed between 0 and 1,

relation between ξ and r may be obtained

r = w0
√

ln (1/ξ) = w (−d)
√

ln (1/ξ) (3.5)

where it has been used that the photon is launched in the r-plane for which

z = −d (see Fig. 3.1).

By launching photon packets at the stochastically drawn positions ac-

cording to Eq.(3.5) and subsequently propagating them along a hyperboloid

with one sheet given by Eq.(3.3) where C =
√

ln (1/ξ), the expected trans-

verse intensity distribution of Gaussian beam with a 1/e-width given by

Eq.(3.1) is obtained for all values of z > −d. Thus, the intended full-
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featured intensity distribution of a Gaussian beam is obtained in the space

immediately to the right of the lens L2. Due to the cylindrical symmetry of

the considered geometry, it is sufficient only to sample the variable r, saving

considerable computation time. As stated earlier, the method of modeling

the propagation of a Gaussian beam using the proposed launching scheme

in a Monte Carlo simulation is referred to as the hyperboloid method.

A comparison of the three focusing models discussed above is shown

in Fig. 3.2. In all three cases photons are launched from the top towards

the bottom from points equidistantly positioned on a circle with centre on

the optical axis. The straight lines are the photon trajectories followed in

the absence of scattering. In Fig. 3.2a, the photons are launched using

the geometric-focus method and the infinite photon density at the focus

is observed. In Fig. 3.2b, the photons are launched using the spot-focus

method, and the effect of the disordered photon trajectories may be seen

in the shape and radius of the photon positions at the bottom of the box.

Finally, in Fig. 3.2c, the photons are launched along a hyperboloid with one

sheet producing a beam with a well-defined radius in every transverse plane

including the focal plane. In order to obtain the full intensity distribution

of a Gaussian beam concentric hyperboloids with different dimensions must

be simulated as explained above. The transverse intensity distribution of

a simulated beam propagating in free space launched from the r-plane is

shown in Fig. 3.3 for d = 0 and z = 0, z = f/2, and z = f , respectively.

The corresponding intensity distributions obtained by using Eq.(3.1), and

the analytical expression for the intensity [112]

I (q) =
w2
0

w2 (z)
exp

(

−
q2

w2 (z)

)

(3.6)

are also shown in Fig. 3.3. An excellent agreement is observed between the

results obtained with the hyperboloid method and the analytical form both

for the transverse and the axial distributions.

At this point, a few comments on the focusing method are relevant. The

finite spot-size at the focal plane of a Gaussian beam is essentially due to

the wave-nature of light, but as discussed above a Monte Carlo simulation
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Figure 3.2: Demonstration of three methods to launch photons in a Monte Carlo
simulation in order to model a focused beam. a) The photons are launched toward
the geometrical focus. b) The photons are launched towards a random position
within a spot in the focal plane. The size of this spot is the same as in c). c) The
photons are launched along a hyperboloid with one sheet.

method of the type used here does not simulate the coherence properties of

light. Instead, the result of the diffraction is being used as prior knowledge

when launching the photon packets. Accordingly, one must remember that

any disturbance of the light, e.g. due to scattering, is still modeled as an

incoherent interaction. Furthermore, when considering the light beam as

made up of a bundle of rays, the ray direction represent the directions of

the energy and thus the local directions of Poynting’s vector. With respect

to the novel hyperboloid method, it is noted that for each point there are

two possible ray directions to choose from (see Eq.(3.2)). Considering

these two possibilities equally likely, the average ray direction at a certain

position is given as the vectorial sum of the two line directions, and the

resulting direction is equivalent to the direction of Poynting’s vector for the

respective Gaussian beam.
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Figure 3.3: Transverse intensity distributions for a beam with f = 16mm, w0 =
0.125mm and d = 0. The curves are normalized to one for (q, z)=(0, 0). Symbols
represent theoretical data and line plots are simulations using the hyperboloid
method. � and solid curve: z = 0 (in this case coincident of the r-plane). � and
dotted curve: z = f/2. � and dash-dot line: z = f .

3.3 Numerical validation of focusing method

3.3.1 Propagation geometries for numerical comparisons

A series of propagation geometries have been selected for numerical com-

parison of the analytical intensity model (Eq.(2.14)) and the hyperboloid

method. These geometries are selected such that the two models are com-

pared for different degrees of focusing and different distances between the

lens L2 and the sample. The geometries are listed in Table 3.1 and are

referred to as propagation geometry 1 through 5. The same geometries

will be used for comparing the results of the new Monte Carlo model of the

OCT signal and the analytical OCT model in the next chapter.

For all propagation geometries, the mean refractive index of the sample

and the surroundings are assumed to be matched such that n0 = n1 = 1.

The motivation for this choice is to avoid a distortion due to a Snell’s

law refraction at the interface, which will be difficult to separate from the

effect of scattering. Such a distortion of the beam is not contained in

the paraxial (sin θ ≈ θ) analytical intensity model based on the extended
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Propagation geometry f [mm] d [mm] w0 [mm] w0/f
1 16.0 15.5 0.125 0.008
2 8.0 7.5 0.4 0.05
3 4.0 3.0 1.0 0.25
4 0.5 0.0 0.125 0.25
5 16.0 15.0 4.0 0.25

Table 3.1: Propagtion geometries chosen for numerical investigations

Huygens-Fresnel principle. However, as discussed in Ref. [108] this is only

a severe distortion for very tightly focused beams.

In the following, the wavelength of the light is chosen to be 814nm,

which is one relevant wavelength for OCT [17]. The sample is assumed

to exhibit scattering described by a Gaussian scattering function given by

(see e.g. chapter 13 in Ref. [61])

p (θ, g) = cn exp

(

−
1− cos θ

1− g

)

≈ cn exp

(

−
θ2

θ2
rms

)

, θ ≪ 1 (3.7)

where cn is a normalization constant, θrms = arccos (g), and the approxi-

mative expression is for small angles. The motivation for this choice, is to

enable comparison to an analytical model of the propagation of Gaussian

beams in random media [49], which applied the Gaussian scattering func-

tion. Although not yet published [113], this model may also be applied

to scattering media described by the Henyey-Greenstein scattering func-

tion [114], which is commonly employed to describe biological media. This

is discussed in further detail in section 3.4.3, where a comparison between

the hyperboloid method and the analytical model is made for a sample

described by the Henyey-Greenstein scattering function.

Most tissues exhibit scattering with g > 0.9 in the near infrared, and

increasing with increased wavelength [115], but examples do exist where

g < 0.9, such as g ≈ 0.86 for skin at 800 nm [96]. Similarly, it is noted µ
s
is

usually in the range of 5mm−1 to 40mm−1 depending on the density of the

specific tissue, and generally decreasing with increased wavelength [96,115].

The numerical results obtained in the following are performed for various

values of µ
s
within the above range, and for two values of the asymmetry
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parameter, g: Very highly forward scattering (g = 0.99) and highly for-

ward scattering (g = 0.92). These values are chosen so comparisons can

be made for a geometry where the paraxial approximation is well satisfied

and for a geometry, which is somewhat closer to the limit of the parax-

ial approximation of 30◦(g = 0.87). This is an interesting comparison,

because the analytical intensity model [49] was derived using the paraxial

extended Huygens-Fresnel principle. Accordingly, it is expected that the

best agreement will be found for g = 0.99. However, it should be noted

that the analytical OCT model (but not the analytical intensity model)

has been validated by achieving excellent comparison, although with some

fitting, with experimental data for g = 0.92 [17,48].

3.3.2 Numerical comparison with the analytical intensity

model

To investigate the performance of the proposed hyperboloid method to

model a focused Gaussian beam the analytical intensity model [49] is used

as a reference.

In order to validate the novel hyperboloid method, a parameter investi-

gation is conducted for propagation geometry 1 and 2 in Table 3.1. In both

of these cases, the intensity distribution are obtained in the focal plane

for g = 0.99 and g = 0.92, and three different values of the scattering co-

efficient: µ
s
= 5mm−1, 15mm−1, and 30mm−1. The results obtained for

propagation geometry 1 are shown in Fig. 3.4, whereas the results for prop-

agation geometry 2 are shown in Fig. 3.5. The results of each model have

been normalized with the intensity value obtained on the optical axis for

g = 0.99 and µ
s
= 5mm−1, so that the parameter dependency on changes

in g and µ
s
of each method may be observed.

As expected, the best agreement between the analytical intensity model

and the hyperboloid method is obtained when g = 0.99, because the case

is best approximated in the paraxial approximation. The magnitude of

each curve obtained using the hyperboloid method, relative to the case

where g = 0.99 and µ
s
= 5mm−1, follows the prediction by the analytical

intensity model. As a physical curiosity, it is noted that the most confined
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Figure 3.4: Transverse intensity distributions in the focal plane for propagation
geometry 1 (zf = 0.5mm) estimated by the analytical intensity model and the hy-
perboloid method, respectively. a) and b) show the distributions for g = 0.92 and
g = 0.99, respectively. Symbols indicate results of the analytical model whereas
plots represent the results of the hyperboloid method. The distributions are nor-
malized according to the value obtained with (q, z, g, µ

s
)=(0, 0, 0.99, 5mm−1). �

and dotted line: µs=5mm−1. � and solid line: µs=15mm−1. � and dashed line:
µs=30mm−1.

focus, as measured in the focal plane, is obtained in the case of the more

isotropic scattering medium (g = 0.92). This is due to the fact that the

scattered light in this case is being scattered further away from the optical

axis than for the case with the more forward scattering medium, i.e. g =

0.99. From the presented curves it is seen that the deviation between the

results of the two methods is increasing as a function of distance to the

axis. This effect may be caused by the lack of coherence information in

the scattered light in the hyperboloid method, and/or the fact that light

(multiple) scattered far away from the optical axis is less well described

by the paraxial approximation of the analytical intensity model. Since

little spatial coherence is expected in the multiple scattered light, it is

hypothesized that the latter effect is dominant. However, this can only be

confirmed by experiments.

To investigate the performance of the proposed hyperboloid method for

estimating the axial intensity distribution, propagation geometry 1 and 2

are simulated and compared with the analytical intensity model. Figure
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Figure 3.5: Transverse intensity distributions in the focal plane for propagation
geometry 2 (zf = 0.5mm) estimated by the analytical intensity model and the hy-
perboloid method, respectively. a) and b) show the distributions for g = 0.92 and
g = 0.99, respectively. Symbols indicate results of the analytical model whereas
plots represent the results of the hyperboloid method. The distributions are nor-
malized according to the value obtained with (q, z, g, µ

s
)=(0, 0, 0.99, 5mm−1). �

and dotted line: µs=5mm−1. � and solid line: µs=15mm−1. � and dashed line:
µ
s
=30mm−1.

3.6a shows the intensity on axis in a sample medium with g = 0.92 and

µs = 15mm−1 for propagation geometry 1 and 2, whereas Fig. 3.6b shows

the same geometries for g = 0.99. Excellent overall agreement between the

simulations and theory is observed.

To also investigate the performance for a more transversely confined

beam a final propagation geometry is considered. Accordingly, a beam

geometry with a relatively hard focus is selected (propagation geometry 3

in Table 3.1 with zf = 1mm) and a sample with a scattering coefficient

of µs = 10mm−1and g=0.92 is chosen so that a considerable distortion

of the focus due to scattering is obtained. The beam width on the sur-

face of the sample is w(0) = 0.25mm, and in the absence of scattering the

beam width in the focal plane is wf = w(f − d) = 0.5µm. For such a

beam, the geometric-focus method may be seen to be a good approxima-

tion. Therefore, to investigate the difference in the results obtained by

using the two focusing methods, the intensity distribution is also obtained

using the geometric-focus method. Figures 3.7a and 3.7b shows the axial
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Figure 3.6: Axial intensity distribution for propagation geometry 1 and 2 with
µ
s
= 15mm−1. � and dotted line is the distribution for propagation geometry 1

obtained using the analytical intensity model and the new hyperboloid method,
respectively. � and solid line is the distribution for geometry 2 obtained using
the analytic intensity model and the hyperboloid method, respectively. a) is for
g = 0.92 and b) is for g = 0.99.

distribution estimated by the geometric-focus and the hyperboloid meth-

ods, respectively. Results obtained with the analytical intensity model

are also plotted as a reference (solid curve). Figures 3.7c and 3.7d show a

detailed plot of the focal region of Figs. 3.7a and 3.7b, respectively. The sim-

ulation has been performed twice with the same number of photon packets

(50×109) using each method for two sizes of discretization grid: ∆z = 4µm,

∆q = 0.5nm and ∆z = 2µm, ∆q = 0.25nm. The effect of changing grid

size can be observed in Fig. 3.7c and 3.7d. The dotted curves are the results

of using the larger grid size whereas the dashed curves are the results of

using the smaller grid size. The solid curve in Fig. 3.7d is the result found

by the analytical intensity model. The resulting intensity distributions

have all been normalized to unity at (q, z) = (0, 0). For the large grid

size, the geometric-focus method overestimates the peak height relative to

the analytical expression by a factor of 21 (dotted line, Fig. 3.7c), whereas

the hyperboloid method underestimates the peak height by a factor of 0.55

(dotted line, Fig. 3.7d). It is seen that when the resolution is increased, the

peak height estimated by the geometric-focus method increases even fur-
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ther to a factor of 57 (dashed line, Fig. 3.7c), whereas the new hyperboloid

method approaches the result of the analytical model to within a factor

of 0.89 (dashed line, Fig. 3.7d). The poor result of the geometric-focus

method is due to the infinite photon density of the unscattered photons

in the focal plane. This demonstrates that for this method the intensity

distribution will not converge as the resolution is increased. In Fig. 3.8,

the transverse intensity distribution in the focal plane estimated by the

geometric-focus method (dashed), the hyperboloid method (dotted) and

the analytical expression (solid) are plotted, respectively. From Figs. 3.7c

and 3.8, it is concluded that the geometric-focus method is an inappropriate

method for estimating the detailed intensity distribution close to the focus.

However, from Figs. 3.7d and 3.8 the hyperboloid method is demonstrated

to perform well for a (relatively) highly focused beam.

The above results demonstrates that the novel hyperboloid method is

in agreement with the analytical intensity model for a soft as well as a hard

focus. Hence, the hyperboloid method for simulating focused Gaussian

beams will be well suited to estimate the intensity distribution to obtain

the heterodyne efficiency factor of the OCT signal given in Eq.(2.6).

3.4 Examples of the hyperboloid method as a nu-

merical phantom

In this section, the capabilities of hyperboloid method as a numerical phan-

tom are exemplified. As a numerical phantom, the method may be used

to obtain intensity distributions difficult to obtain through experiments or

investigate the performance of the analytical intensity model. This may be

relevant for studies of the transverse resolution of an OCT system, but also

for applications such as photodynamic therapy [101], laser ablation [100] or

two-photon microscopy [116].

3.4.1 Wide-angle scattering

The extended Huygens-Fresnel principle is, strictly speaking, not valid out-

side the paraxial regime, which limits the considered type of scattering of
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Figure 3.7: The axial intensity distribution of geometry 3 (zf = 1.0mm) in Table
3.1. Solid curves are obtained with the analytical intensity model. Dashed
and dotted curves are obtained with Monte Carlo simulations with the smaller
and larger grid, respectively (see text). All distributions have been normalized to
unity for (q, z) = (0, 0). a) and c) show results of the geometric focus method,
whereas b) and d) results of the hyperboloid method.
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Figure 3.8: Transverse intensity distribution in the focal plane of propagtion
geometry 3. Results obtained with geometric-focus method (dashed), hyperboloid
method (dotted) and the analytic intensity model (solid) are shown. The Monte
Carlo simulations are carried out with the small grid.

the sample to forward scattering i.e. g � 0.87 [117]. However, the general

Monte Carlo simulation method of modeling light-tissue interaction is not

limited to paraxial scattering [63]. When moving from the near-infrared

regime to shorter wavelengths most tissues exhibit scattering which is more

isotropic [96,115]. An example of an application that uses a shorter wave-

length is the use of a frequency doubled Nd:YAG at 532nm focused into the

skin (dermis) to treat port wine stains [118]. The asymmetry parameter of

the light scattering exhibited by human dermis at 532nm is g ≈ 0.775 [118].

It is expected that the proposed hyperboloid method is more accurate the

more isotropic the scattering is, because an isotropic scattering imposes a

greater distortion of the light. This implies that diffraction effects due to

the scattered light, which is not included in the model, are less likely to

be of any significance. Since, obtaining detailed information about the in-

tensity distribution within the sample may be very time-consuming using a

Monte Carlo approach, and it is therefore interesting to investigate whether

the analytical intensity model can be used as a first approximation. For

this investigation, the simulations and calculations similar to those lead-

ing to Figs. 3.4, 3.5 and 3.6 has been performed, but with g = 0.775 and

λ = 532nm. Figures 3.9 and 3.10 show the results of these calculations.

The transverse intensity graphs are performed for µ
s
= 5mm−1, 15mm−1,
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Figure 3.9: Intensity distributions for a sample with wide-angle scattering (see
text) in propagation geometry 1. Symbols indicate results of the analytical model
whereas plots represent the result of the hyperboloid method. The distributions
are normalized according to the value obtained with (q, z, µs)=(0, 0, 5mm−1). �

and dotted line: µ
s
=5mm−1. � and solid line µ

s
=15mm−1. � and dashed line:

µs=30mm−1. a) Transverse intensity distributions (zf = 0.5mm) with g = 0.775.

b) Axial distribution for µs=15mm−1.

30mm−1 and normalized with the intensity value at q = 0 and µ
s
= 5mm−1.

The longitudinal distribution is obtained for µ
s
= 15mm−1 and normalized

for z = 0. From Figs. 3.9 and 3.10, it is clear that, for this case, the analyt-

ical intensity model agrees well with the hyperboloid method both axially

and transversely, and that the relative peak power for different values of

µ
s
are also well predicted. For low values of the optical depth, µ

s
z, this

portion of the intensity distribution is dominated by the unscattered light

and thus good agreement is not surprising, but even for higher values of

the scattering coefficient the two models agree surprisingly well. For large

values of q and z, some deviation is observed especially for propagation ge-

ometry 1. The fine overall agreement suggests that the analytical intensity

model, at least as a first approximation, could be used to calculate intensity

distributions outside the paraxial regime as well.
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Figure 3.10: Intensity distributions for a sample with wide-angle scattering (see
text) in propagation geometry 2. Symbols indicate results of the analytical model
whereas plots represent the result of the hyperboloid method. The distributions
are normalized according to the value obtained with (q, z, µs)=(0, 0, 5mm−1). �

and dotted line: µ
s
=5mm−1. � and solid line µ

s
=15mm−1. � and dashed line:

µs=30mm−1. a) Transverse intensity distributions (zf = 0.5mm) with g = 0.775.

b) Axial distribution for µs=15mm−1.

3.4.2 Multiple layers

Through the incorporation of the ABCD matrix formalism in the extended

Huygens-Fresnel theory [49,119] (see Eq.(A.1) in appendix A), it is straight-

forward to model the focusing geometry (Fig. 3.1) applied to a multi-layered

sample. In order to validate such a model, laboratory experiments on multi-

layered phantoms with well-controlled optical parameters and thickness of

each layer is called for. Such Multi-layered structures are at best difficult

to manufacture, however, simulation of such structures using Monte Carlo

simulations is well established (see e.g., Refs. [66, 67, 81, 86]). With the

proven performance of the present method of modeling a Gaussian beam,

it is therefore interesting to compare the hyperboloid method with the an-

alytical intensity model.

As an example, the beam specified as propagation geometry 2 in Table

3.1 is simulated. The beam is focused into a sample consisting of two

layers. As in the previous examples, the refractive indices of the sample

and the surroundings are matched. The first layer is 0.15mm thick and
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Figure 3.11: Intensity distribution in a two-layer sample (see text). Symbols
indicate results of the analytical model whereas plots represent the results of the
hyperboloid method. The distributions are normalized according to the value
obtained with (q, z, µ

s2
)=(0, 0, 5mm−1). � and dotted line: µ

s2
=5mm−1. �

and solid line: µ
s2
=15mm−1. � and dashed line: µ

s2
=30mm−1. a) Transverse

intensity distributions. b) Axial distribution for µ
s2
=15mm−1.

has a constant scattering coefficient of µ
s1 = 20mm−1 and asymmetry

factor g1 = 0.99. The second scattering layer is taken to have infinite

thickness with g2 = 0.92 and a scattering coefficient µ
s2. In Fig. 3.11a the

transverse intensity distributions in the focal plane are plotted for µ
s2 =

5mm−1, 15mm−1 and 30mm−1 obtained with the analytical intensity model

and the hyperboloid, respectively. Figure 3.11b shows the axial intensity

distribution on the optical axis for µ
s2 = 15mm−1. Excellent agreement is

observed between the Monte Carlo simulations and the analytical intensity

model, which corroborates that the both the analytical intensity model and

the hyperboloid method are applicable to multilayered structures.

3.4.3 Choice of scattering function

For the numerical results obtained so far it has been assumed that the scat-

tering of the sample is described by a Gaussian scattering function [61].

This choice is motivated by the fact this is the scattering function imple-

mented in the analytical OCT model by Ref. [48]. However, it is clear

that for a specific application the scattering function should be chosen in
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accordance with the medium to be investigated. The Henyey-Greenstein

scattering function [114] is widely accepted as a good approximation of

the scattering process in most tissues [96, 120]. Accordingly, most pub-

lished Monte Carlo models of light propagation in tissue applies the Henyey-

Greenstein scattering function [78—88]. This is also the case for the MCML

computer code [66], which is used in this thesis in a modified form to carry

out the photon packet propagation. However, other scattering functions,

such as the Gaussian used above, are easily implemented in this code. It

has also been shown [113] that the Henyey-Greenstein scattering function

may be used with the extended Huygens-Fresnel principle. The Gaussian

and Henyey-Greenstein scattering functions are given by:

• Gaussian scattering function [61]:

p (θ, g) = cn exp

(

−

1− cos θ

1− g

)

(3.8)

• Henyey-Greenstein scattering function [114]:

p (θ, g) =
1− g2

2 (1 + g2 − 2g cos θ)
(3.9)

The quantity cn is a normalization constant.

The expressions given here follows the notation of Ref. [66], where the

scattering function is written as a probability density of the deflection angle

θ, so that
∫

π

0
p (θ, g) sin θdθ = 1. Figures 3.12a and 3.12b shows a plot

of the Henyey-Greenstein and the Gaussian scattering functions for three

different values of g, respectively. It is noted that the Henyey-Greenstein

scattering function is considerably more forward peaked (θ ≈ 0) than the

Gaussian scattering function, but that the likelihood of a large deflection

angle (θ > π/6) is considerably larger although still relatively minute.

To demonstrate that the performance of the hyperboloid method is

independent of the choice of scattering function, a beam described as prop-

agation geometry 2 in Table 3.1, has been simulated for a sample with scat-

tering described by the Henyey-Greenstein scattering function and g = 0.92,

and µ
s
= 5mm−1, 15mm−1, and 30mm−1, respectively. Figure 3.13a shows
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Figure 3.12: Probalilty density of the deflection angle θ as described by the
Henyey-Greenstein scattering function (a) and the Gaussian scattering function
(b). The asymmetry factor is g = 0.75 (solid), g = 0.9 (dash), and g = 0.95

(dash-dot).

the transverse intensity distribution in the focal plane for each of the sim-

ulated scattering coefficients and Fig. 3.13b shows the longitudinal on-axis

intensity distribution for µ
s
= 15mm−1. The observed excellent overall

agreement (even though g = 0.92) is general for the other propagation

geometries as well (curves not shown), and thus, the scattering function

suitable for the application at hand may therefore be chosen without loss

of performance.

3.5 Summary

In this chapter previously published methods of simulating focused beam

using Monte Carlo simulation [45, 102—106, 108—110] were discussed and

found unsuitable for modeling the sample beam of the OCT system consid-

ered in this thesis. A novel approach based on hyperboloids was derived

from the analytical expression of the intensity distribution of a Gaussian

beam in free-space. This method was implemented into the MCML com-

puter code [66], and numerical results of this method were compared to a

previously published analytical model [49] based on the extended Huygens-

Fresnel principle [47]. Excellent agreement was obtained for a wide range of

parameters relevant to tissue in the near-infrared. The use of the proposed
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Figure 3.13: Intensity distribution in a sample described by the Henyey-
Greenstein scattering function (see text). Symbols indicate results of the ana-
lytical intensity model whereas curves represent the results of the hyperboloid
method. The distributions are normalized according to the value obtained with
(q, z, µ

s2
)=(0, 0, 5mm−1): � and dotted: µ

s2
=5mm−1. � and solid line:

µ
s2
=15mm−1. � and dashed line: µ

s2
=30mm−1. a) Transverse intensity dis-

tributions for geometry 2. b) Axial distribution for µ
s2
=15mm−1.

model as a numerical phantom was then illustrated through examples. As

expected, excellent agreement was observed between the models when ap-

plied to modeling the propagation of a Gaussian beam through a two-layer

sample. Surprisingly good agreement between the models was observed

when applied to a wide-angle scattering sample. For such a sample, the

paraxial approximation, and therefore also the analytical intensity model,

is, strictly speaking, not valid. Finally, the good overall performance of

the hyperboloid method was shown to be independent upon the choice of

scattering function. This demonstrated that the hyperboloid method is

not confined to samples with a specific scattering function.

With the established performance of the hyperboloid method, it is con-

cluded that the proposed method is suitable for modeling the intensity

distribution required for simulating the OCT signal according to Eq.(2.6).

As an added benefit the ability of hyperboloid methods to estimate both

transverse and axial confinement of a Gaussian beam may be a useful tool

in applications such as photodynamic therapy [101], laser ablation [100]



Section 3.5 Summary 49

or two-photon microscopy [116] where accurate intensity distributions are

crucial.



Chapter 4

Monte Carlo modeling of the

OCT signal

In this chapter, a new Monte Carlo model of the OCT signal [51] is derived

and validated by comparison to the analytical OCT model. The perfor-

mance and usefulness of the new model as a numerical phantom is then

exemplified.

4.1 Introduction

In chapter 2, it was found that the heterodyne efficiency factor, and there-

fore also the OCT signal, may be calculated from the intensity distributions

of the sample and reference beams. In the present system these beams are

considered to be focused Gaussian beams, and in chapter 3 a new method

of modeling the propagation of Gaussian beams through random media was

derived and validated. The topic of this chapter is to combine these results

to obtain a new Monte Carlo model of the heterodyne detection process in

an OCT system [51]. As previously discussed, the intended purpose of the

new model is that it shall function as a numerical phantom and supplement

to the analytical OCT model [48]. The performance of the model as such is

therefore thoroughly tested through various examples. The optical setup

of the sample is, as described in section 2.2, a 4F setup as indicated in

Fig. 2.1, which for convenience is repeated here as Fig. 4.1.

50
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Figure 4.1: The sample arm setup of the OCT system. The lenses L1 and L2 are
considered to be identical, perfect, and have infinite radius. The setup is essentially
a 4F system.

Previously published attempts to model similar systems using Monte

Carlo simulation have interpreted the heterodyne mixing as a rejection pro-

cess in which the detected photon packets must conform to a set of criteria,

on position and/or angle, in order to contribute to the signal. Here, a set

of detection criteria is referred to as a detection scheme. Schmitt et al. [103]

first combined geometric focusing with a detection scheme for a 4F setup

to investigate confocal microscopy, and later Schmitt and Ben-Letaief [104]

suggested a modification in order to reduce the simulation time. Recently,

Blanca and Saloma [106] have dealt with the heterodyne detection process

in the case of fluorescence confocal imaging, and Pan et al. [43] investi-

gated low-coherence reflectometry using Monte Carlo simulations. They

considered a collimated beam and used the path length distribution of the

received photons to estimate the OCT signal according to the temporal

coherence length of the light source. However, it is important to note

that, as discussed in section 2.1, this method of considering the temporal

coherence has not yet been thoroughly validated. The detected photons

were furthermore discriminated with a criterion on the position and angle

related to the numerical aperture of the receiving lens. Smithies et al. [45]

employed a similar approach, but here the beam was focused toward the

geometric focus and the Monte Carlo modelling was performed in full 3D

to enable modeling of OCT imaging with oblique incidence of the focused

beam. The approach to OCT modeling used by Yao and Wang [46] differed
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from the previous two by using a fiber in contact with the tissue as the

receiver. They used the constraint that in order for a photon to contribute

to the signal, it should hit the fiber while having experienced a path length,

which would fall within the coherence gate of the OCT system. Further-

more, the angle between the incoming direction and the optical axis should

be less than a maximum allowable angle specified by the antenna theorem

for heterodyne receivers [121].

It is important to note that the previously published detection schemes

[43, 45, 46, 103, 104, 106] are all found by inspecting the optical setup, and

little is discussed about the role of a single photon packet and how it should

be interpreted to add to the heterodyne process. This subject was discussed

in briefly section 2.1 and it will be given further consideration in section

4.3.1. Generally, one must be careful when applying angular constraints,

which are derived from considerations related to field distributions, such

as including an acceptance angle of a fiber mode or optical system. Such

constraints may not apply to Monte Carlo photon packets, which are simple

energy packets that cannot individually be said to represent a field, and,

unlike real photons, are not guided by an underlying wave equation (for a

discussion of this subject, see Ref. [92]).

As opposed to the previously published detection criteria, the detection

scheme for the present approach is obtained from an analytical expression

derived in chapter 2 (see Eq.(2.6)). This, and the description of the mod-

eling approach, is the topic of section 4.2. In section 4.3, the new Monte

Carlo model is then validated using the analytical OCT model as a refer-

ence for samples where it has previously been experimentally validated [48]

. In section 4.3.1, it is demonstrated how an angular detection criterion,

similar to those of the above mentioned methods, which may intuitively

seem valid renders incorrect results. However, the sound foundation of the

present approach, combined with the general flexibility of the Monte Carlo

simulation method, renders it suitable for use as a numerical phantom and

a supplement to the analytical OCT model [48]. Finally, in section 4.4,

this use of the model is tested and exemplified. Here it is demonstrated,

as for the hyperboloid method derived in chapter 3, that the performance

of the model is independent of the choice of scattering function. This is
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an important result because it extends the applicability of the modeling

approach to most realistic tissue models.

4.2 Derivation of the Monte Carlo model

In section 2.2 it was found that the heterodyne efficiency factor, Ψ, of the

OCT signal may be found using the only the intensity distributions of the

sample and reference fields in the p-plane (see Fig. 4.1):

Ψ =

〈

i2 (t)
〉

〈

i2
0
(t)

〉 =

∫

IR (p) 〈IS (p)〉 d
2
p

∫

IR (p) 〈IS,0 (p)〉d2p
, (4.1)

where it is important to note that 〈〉 denotes an ensemble averaging over

the scattering medium and diffusely reflecting discontinuity. Accordingly,

this averaging must also be performed in the new Monte Carlo model.

As discussed in section 2.1, a simulated photon packet experiences a

continuously changing medium, because the distance to the next scattering

event, and resulting scattering angle, are independent of the past of the

photon. Therefore an ensemble averaging over the stochastic sample in

Eq.(4.1) is performed simply by simulation of many photon packets.

In order to obtain an ensemble averaging of the diffusely reflecting

discontinuity, each reflected photon must experience a new realization of

the discontinuity. This is obtained by considering the reflection angle as

stochastic variable independent of position in the discontinuity plane. The

macroscopic intensity distribution of the reflected light, Ir, is that of a

Lambertian emitter [117],and hence

Ir (θr) = IT cos (θr) , (4.2)

where IT is the total reflected intensity and θr is the polar angle. Using

the same method for linking a random number with a physical variable, as

used in obtaining Eq.(3.5), yields

θr = arcsin (ξ) (4.3)
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ϕr = 2πζ, (4.4)

where ϕr is the azimuthal angle of the reflected photon and ξ and ζ are

random numbers uniformly distributed between 0 and 1.

Accordingly, the proposed method of simulating the OCT signal is per-

formed as follows: The photon packet is launched from the focusing lens L2

in the r-plane (see Fig. 4.1) using the shape of the incident Gaussian beam,

and the new hyperboloid method described in chapter 3. The interac-

tion with specular surfaces, such as the sample surface and the propagation

through the scattering medium, is performed using the MCML computer

code [66]. When a photon packet is reflected off the diffusely reflecting

discontinuity, Eqs.(4.3) and (4.4) are used to determine the direction of the

photon after reflection. As a photon exits the sample after interaction with

the discontinuity, its position and angle are used to calculate its position in

the p-plane after propagation through the 4F system. To evaluate Eq.(4.1)

numerically consider that them´th photon packet exiting the medium, con-

tributes to intensity at the point pm in the p-plane by the amount

IS,m =
wm

∆p2
, (4.5)

where the quantity wm is the energy, or weight, carried by the photon

packet and ∆p2 is a differential area around pm. Using this and Eq.(4.1),

the Monte Carlo estimated heterodyne efficiency factor ΨMC is then given

by

ΨMC =

M
∑

m

IR (pm) · IS,m ·∆p2

〈

i2
0
(t)

〉 =

M
∑

m

IR (pm)wm

〈

i2
0
(t)

〉 (4.6)

where IR (pm) is the intensity distribution of the reference beam in the

p-plane, and it is noted that the reference beam has a Gaussian intensity

distribution of width wf in the p-plane. The signal in the absence of

scattering,
〈

i2
0
(t)

〉

, may be either simulated or calculated. The latter is

straightforward, because with the conjugate relationship between the p-

and q-plane, the intensity distribution of the sample beam will be identical

to that of the reference beam in the absence of scattering.

Equation (4.6) states the important detection scheme of our new method:
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a photon must hit the p-plane within the extent of the reference beam to

contribute to the OCT signal. It can seem counter-intuitive that photon

packets contribute to the desired signal without penalty regardless of angle

of incidence upon the fiber in the p-plane. However, as it will demonstrated

in section 4.3.1, the inclusion of an angular criterion related to the angular

extent of the reference beam, or equivalently the numerical aperture of the

fiber, yields incorrect results.

4.3 Numerical validation

The heterodyne efficiency factor has been obtained with the new Monte

Carlo model of the OCT signal, and calculated using the analytical OCT

model [48] for several propagation geometries. These geometries, specifying

the beam to the right of the focusing lens as well as the distance to the

sample, are denoted as propagation geometry 1, 2, 4, and 5 in Table 3.1

(geometry 3 is not used here, due to the close resemblance to number 4

and 5). It should be noted that in the analytical OCT model, as well as

in the Monte Carlo model, it is assumed that the sample beam is focused

on the diffusely reflection discontinuity in the sample. In Fig. 4.2, Ψ is

plotted as a function of the scattering coefficient µs and zf = 0.5mm

for propagation geometry 1, 2, 4 and zf=1.0mm for geometry 5. Two

cases of the asymmetry parameter [90] g = 0.99 and g = 0.92 have been

investigated. The motivation for choosing these two values of g is described

in section 3.3.1. For reference, the case of single back-scattering at the q-

plane has been included. In this case, only photons that are not scattered

propagating to and from the discontinuity are assumed to contribute to the

signal, i.e., Ψsingle = exp (−2µsz).

Three important observations may be made from Fig. 4.2. Firstly,

fine agreement between the new Monte Carlo model and the analytical

OCT model is obtained for the four tested propagation geometries. Thus,

these plots are considered as validation of the new Monte Carlo model.

Secondly, it is clear that the OCT signal for large optical depths is a result

of multiple scattering effects, in agreement with Ref. [48]. This is seen by

comparing the single scattering curve to the results of the Monte Carlo and
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Figure 4.2: Heterodyne efficiency factors estimated using the extended Huygens-
Fresnel method and the present Monte Carlo method for two cases of the anisotropy
parameter g. a), b), c), and d) shows the estimated values for geometries 1,2, 4, and
5, respectively. In all cases zf = 0.5mm except for geometry 5 where zf = 1.0mm.
Analytical results: g = 0.99 (solid) and g = 0.92 (dotted). Monte Carlo results:
g = 0.99 (dash-dot and �) and g = 0.92 (dash and �). Single scattering is showed
as a thin dot-dot-dash curve.
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analytical OCT model. Finally, an important result of Ref. [48] was the

inclusion of the so-called shower curtain effect [47]. It is an effect caused

by multiple scattering, and thus plays an important role in calculating the

OCT signal as the optical depth increases. Omitting this effect leads to

an underestimation of the OCT signal of several orders of magnitude [48].

Due to the fine agreement between the analytical OCT model (where the

shower-curtain effect is automatically included) and the new Monte Carlo

model of the OCT signal, the important result that the Monte Carlo model

inherently takes this effect into account is obtained.

For cases where the approximation of the analytical OCT model is well

satisfied, the observed deviation between the analytical OCT model and the

Monte Carlo model is attributed to coherence effects in the intensity distri-

bution of the sample field. Apparently, from Fig. 4.2, the lack of coherence

information leads to an under-estimation of Ψ. The heterodyne efficiency

factor is by definition unity in the absence of scattering. As scattering is

increased deviation between the two models is expected since coherence ef-

fects due to scattered light is not described by in the propagation of the light

in the Monte Carlo model. For large optical depths, µsz, the importance

of such coherence effects is expected to decrease. At the same time, the

portion of multiple scattered light that is outside the paraxial regime, and

thus poorly described by the analytical model, is expected to increase. To

investigate the relative deviation of the two modeling methods, the ratio

ΨAO/ΨMC is plotted, where ΨAO is the heterodyne efficiency factor ob-

tained with the analytical OCT model. In order to show the deviation as

a function of the effective distortion of the coherence, this ratio is plotted as

a function of the transport reduced optical depth, str, of the discontinuity

given by

str = µszf (1− g) . (4.7)

The relative difference between the analytical OCT model and the Monte

Carlo method behaves, qualitatively, identical as a function of str indepen-

dent of geometry and g. This is illustrated in Fig. 4.3 for propagation geom-

etry 1, 2, and 4, respectively. The difference between the two approaches

increases as a function of str , but less steeply for increased scattering. This
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Figure 4.3: The relative difference between the results of the extended Huygens-
Fresnel model and the Monte Carlo approach that were depicted in Fig. 4.2.
Geometry 1 and g=0.99: The symbol � and a solid curve. Geometry 1 (g=0.92):
The symbol � and a dash-dot-dot curve. Geometry 2 (g=0.92): The symbol �
and a dashed curve. Geometry 4 (g=0.92): The symbol � and a dotted curve.

is attributed to the lack of coherence effects in the Monte Carlo model and

the paraxiality of the analytical model as discussed above. The first effect

is expected to be dominant for small values of str, whereas the latter is

dominant for large values of str. The relative importance of each effect

has yet to be determined. The more abrupt behavior of the curve for ge-

ometry 4 is attributed to a higher numerical uncertainty in the case, cause

by a more tightly focus beam. According to the new detection scheme,

this implies that fewer photons will contribute to the signal resulting in

an increased variance. This effect is also, to some degree, observed for

propagation geometries 3 and 4 in Fig. 4.2.

In summary, due to the fine agreement between the results of the ana-

lytical OCT model and Monte Carlo simulations demonstrated in Figs. 4.2

and 4.3, it is concluded that the proposed novel Monte Carlo model of

the OCT signal is a viable method of simulating the heterodyne efficiency

factor of an OCT signal.
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4.3.1 An example of an incorrect angular criterion

In sections 2.1 and 4.1 it was emphasized that caution must be taken when

interpreting the role of a photon packet in phenomena that depends on

coherence effects, such a heterodyne mixing. This is especially important

when choosing a suitable detection scheme for a receiver system such as 4F

setup studied here. In order to elaborate on this discussion, an example

of an angular criterion that intuitively might seem to be in play when

inspecting the optical setup is considered. This criterion is similar to

criteria used in previously published methods of heterodyne detection (see

section 4.1).

According to the antenna theorem [121], a field impinging on the fiber

end must be incident within a certain angle to contribute to the signal

through the heterodyne mixing with the reference field. This might lead

one to think that the photon packets must fulfill a corresponding criterion.

An equivalent criterion is that a photon must be incident within the numer-

ical aperture of the optical fiber in order to contribute to the OCT signal.

This criterion can also be realized by inserting an aperture, the size of the

diameter of the reference beam, centered between the two lenses L1 and

L2. Due to the Fourier transform relationship between this plane and the

p-plane [122], such an aperture would serve to discriminate the ray compo-

nents that represent local spatial frequency components unable to match

the reference beam. In Fig. 4.4, the results of adding such a criterion to the

new detection scheme introduced above is shown for propagation geometry

2 and compared to the result of the analytical OCT model. Examination

of Fig. 4.4 shows that the qualitative shape of the bottom curve is similar

to the correct one, but that this detection criterion estimates the signal to

be more than an order of magnitude below the correct level for larger val-

ues of µ
s
. This clearly demonstrates that great care must be taken when

determining the detection scheme. The primary reason that the intuitive

interpretation of applying such angular constraints do not hold is that the

Monte Carlo simulations method only considers incoherent energy trans-

port, and each of the above constraints are derived by tacitly assigning

field properties to the individual photon packet. As an example, consider
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Figure 4.4: Heterodyne efficiency factors estimated by the extended Huygens-
Fresnel method and a Monte Carlo method including an angular criterion for
geometry 2 (zf=0.5mm), respectively. The dashed curve is the results of the ex-
tended Huygens-Fresnel method whereas the symbol � and the solid curve are the
result of the present Monte Carlo method.

again the argument of applying the antenna theorem [121] to determine

whether an individual photon packet causes a heterodyne mixing with the

reference field. This argument tacitly assumes that the individual photon

packet is a representative of a field with a finite extend (often a plane wave),

depending on the specific formulation of the theorem. However, this is in-

consistent with the method of propagating the photon packets through the

random medium where each scattering event is completely localized, and

no underlying wave equation is guiding the propagation. This discussion

if further elaborated in Ref. [92].

4.4 The new Monte Carlo model as a numerical

phantom

In this section, the capabilities of the new Monte Carlo model as a numerical

phantom are exemplified and discussed. With the flexibility of the Monte

Carlo simulation method, the new model may be applied to model sample

structures, which are cumbersome to describe analytically and/or for which

one or more of the assumptions of the analytical model fail. Furthermore, it

may also be applied to corroborate the applicability of the analytical OCT
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model to sample structures, which are difficult to construct with suitable

accuracy as phantoms in the laboratory.

4.4.1 Wide-angle scattering

As discussed in section 3.4.1, the extended Huygens-Fresnel principle is,

strictly speaking, not valid outside the paraxial regime, which limits the

scattering in the sample that may be described to forward scattering i.e.

g � 0.87 [117]. Although most tissues exhibit forward scattering in the

near-infrared regime [96, 115, 123], in which most OCT systems operate,

applications may exist for which this assumption is not valid. The analysis

in section 2.2 was based on the extended Huygens-Fresnel principle. The

analysis proved that the field reflected from the discontinuity in the sam-

ple is delta correlated in the p-plane (see Fig. 2.1 or 4.1), and this result is

therefore also limited to the paraxial approximation. The delta-correlation

leads to the result that the OCT signal may be calculated based on the in-

tensities of the light from the sample and the reference. However, the field

from the sample should be even less correlated for a sample with a more

isotropic scattering. Accordingly, it is expected that the present Monte

Carlo model of the OCT signal should perform quite well even outside the

paraxial approximation. In this context it is important to note that the

general Monte Carlo method of modeling light propagation is not limited

to the paraxial regime [63]. Since, obtaining the OCT signal may be very

time-consuming using Monte Carlo simulations, it is therefore interesting

to investigate whether the analytical OCT model can be used as a first

approximation for wide-angle scattering. As an example of such an inves-

tigation, the heterodyne efficiency factor has been obtained for propagation

geometry 2 as in Fig. 4.2b but now with g = 0.775. The results are shown

in Fig. 4.5 and although some deviation between the analytical OCT model

and the Monte Carlo model is observed, the deviation is not significantly

larger than observed in section 4.3. With the above mentioned assumption

that the new Monte Carlo model of the OCT signal performs well out-

side the paraxial regime, this agreement could suggest that the analytical

OCT model performs well, at least to a first approximation, for wide-angle
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Figure 4.5: The heterodyne efficiency factor for a sample with wide-angle scat-
tering (see text), otherwise specified by geometry 2 (zf=0.5mm). The solid curve
is the results of the extended Huygens-Fresnel method model whereas the symbol
� and the dotted curve is the result of the Monte Carlo method.

scattering as well.

4.4.2 Multiple layers

It is straightforward to extend the analytical OCT model to a multi-layered

samples (see appendix A of Ref. [48]). In order to validate the analytical

OCT model for this case, laboratory experiments on multi-layered tissue

phantoms with well-controlled optical parameters are necessary, which may

be difficult to obtain. However, conventional Monte Carlo simulation of

such structures is well established [66, 67, 81, 86]. This, combined with

the above demonstrated performance of the new Monte Carlo model for a

single layer, leads to the expectation that this model is suitable to model the

OCT signal from muli-layered samples as well. It is therefore interesting to

compare results of the Monte Carlo model and the analytical OCT model

for this case.

As an example, consider a sample consisting of two layers. The beam

and distance to the sample is specified as propagation geometry 2 in Table

3.1, and, as in the previous examples, the indices of the sample and the

surroundings are matched (see section 3.3.1). The first layer of the sample

is 0.15mm thick, and has a constant scattering coefficient of µ
s1 = 20mm−1
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Figure 4.6: The heterodyne efficiency factor as a function of the scattering coef-
ficient µs2 of the second layer in a two-layered sample (see text). The geometry is
otherwise specified by geometry 2 (zf=0.5mm). The dashed curve is the results of
the extended Huygens-Fresnel method whereas the symbol � and the solid curve
is the result of the new Monte Carlo method.

and asymmetry factor g1 = 0.99. The second layer is assumed to have

infinite thickness with g2 = 0.92 and a scattering coefficient µ
s2. In Fig. 4.6,

the heterodyne efficiency factor is plotted as a function of µ
s2. For this

example, Ψ is defined as the OCT signal relative to the OCT for µ
s2 = 0.

Excellent agreement is observed between the Monte Carlo simulations and

the analytical model, which corroborates that both the analytical OCT

model and the novel Monte Carlo model are applicable to multilayered

structures.

4.4.3 Choice of scattering function

The properties of the sample dictates the type of scattering function that

must be applied in a model. In the previous sections, the modeling of

OCT signals have been performed for media with a Gaussian scattering

function [61]. As discussed in section 3.4.3, the Henyey-Greenstein scat-

tering function [114] more often used as a description of the scattering

process in most tissues [96, 120]. It is therefore important that the new

Monte Carlo model of the OCT signal is valid for the Henyey-Greenstein

scattering function. The analysis of chapter 2 is independent of the choice

of scattering function, and the performance of the hyperboloid method of
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Figure 4.7: The heterodyne efficiency factor for a sample described by a Henyey-
Greenstein scattering function, otherwise specified by geometry 2 (zf=0.5mm).
Analytical results: g = 0.99 (solid) and g = 0.92 (dotted). Monte Carlo results:
g = 0.99 (dash-dot and �) and g = 0.92 (dash and �).

modeling focused Gaussian beams derived in chapter 3 was also shown to

be independent of the scattering function (see section 3.4.3). Accord-

ingly, good performance of the proposed Monte Carlo model of the OCT

signal is expected. To demonstrate that this is the case, the calculation

and simulations performed to obtain Fig. 4.2c have been repeated with a

Henyey-Greenstein scattering function. The Henyey-Greenstein scattering

function is implemented into the analytical OCT model using the results

of Ref. [113], and is shown in Fig. 4.7. The agreement is seen to be even

better than for the Gaussian scattering function used in Fig. 4.2c. The

fine agreement is also obtained between the analytical OCT model and

the Monte Carlo simulations for the Henyey-Greenstein scattering function

for the other geometries of Table 3.1 (curves not shown). Accordingly,

it is concluded that the new Monte Carlo model also performs well for

the Henyey-Greenstein scattering function. This is an important result,

because it increases the versatility of the method to include most current

tissue models.
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4.4.4 The OCT signal as a function of depth

The numerical results for the heterodyne efficiency factor were given as a

function of the scattering coefficient for constant z. For some applications

it may be instrumental to plot the heterodyne efficiency factor as a function

of z for constant scattering coefficient. An example of such an application

is the estimation of the maximum probing depth of an OCT system with

a given signal to noise ratio [17, 124]. In the chapter 6, such a curve will

be used to estimate the increase in probing depth obtained by inserting an

optical amplifier in an OCT system. As an example, Fig. 4.8a shows the

heterodyne efficiency factor as a function of depth z in a sample with a

scattering coefficient µs = 15mm−1 and an asymmetry factor of g = 0.99

and 0.92, respectively. The applied beam is described by propagation

geometry 1 given in Table 3.1 except that the distance, d, between the lens

and the sample is not constant, but given by d = f − z, to ensure that the

beam is focused on the discontinuity. The results were estimated using

both the analytical OCT model, and the new Monte Carlo model, and

the relative difference is plotted in Fig. 4.8b where the maximum difference

for g = 0.92 and z = 1mm is a factor 2.9. With the same arguments

as for Fig. 4.3, ΨEHF/ΨMC is expected to reach a maximum after which

it decreases for increasing depth z, due to the reduced coherence of light

reflected deep within in the sample. This behavior is suggested in Fig. 4.8b,

where the maximum is only reached for g = 0.92 within the depicted range,

because of the higher str(z) in this case (see Eq. (4.7)). The fine comparison

between the two models is taken to demonstrate the applicability of the

Monte Carlo model for this application as well.

4.4.5 The absolute OCT signal

For some applications it may be desirable to obtain the absolute signal

power,
〈

i2 (t)
〉

, as opposed to the relative heterodyne efficiency factor, Ψ.

The heterodyne efficiency factor was defined as (see Eq.(2.1))

〈

i2 (t)
〉

≡ Ψ
〈

i2
0
(t)
〉

, (4.8)
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Figure 4.8: a) The heterodyne efficiency factor as a function of z for beam
geometry 1, but with d = f − z. Analytical results: g = 0.99 (solid) and g = 0.92

(dotted). Monte Carlo results: g = 0.99 (dash and �) and g = 0.92 (dash-dot
and �). b) is the relative difference between the models for g = 0.99 (solid) and
g = 0.92 (dotted)

where
〈

i2
0
(t)

〉

is the signal in absence of scattering. It may be shown [48]

that the signal in the absence of scattering can be written as

〈

i20 (t)
〉

= α2PSPRRd

4w2
0

f2
(4.9)

where Rd is the reflection coefficient of the probed discontinuity, α is the

responsivity of the detector, and PS and PR are the incident power of the

sample and reference beams, respectively. Any loss of power in the trans-

mission from the respective arms of the system to the detector can be

included in PS and PR . From Eqs.(4.8) and (4.9) it may be seen that if

the optical power from the reference power, PR, and the mean square of

the of the OCT signal,
〈

i2 (t)
〉

, are known, it is straightforward to find the

optical power, PS, impinging on the detector of the OCT system due to the

discontinuity. This property will be used in the next chapter to estimate

the optical noise contribution due to the reflection from the surface of the

sample.
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4.5 Summary

In this chapter the results of chapter 2 and chapter 3 was used to derive

a Monte Carlo model of the OCT signal. This model employs the novel

hyperboloid method of modeling a focused beam (see chapter 3) and the

heterodyne efficiency factor estimated using simulation is given by Eq.(4.6)

ΨMC =

M
∑

m

IR (pm)wm

〈

i2
0
(t)

〉 ,

where IR (p) is the intensity of the focused Gaussian reference beam in the

p-plane (see Fig. 4.1), and wm and pm is the weight and axial distance of

the m’th photon packet exiting the sample and impinging on the p-plane,

respectively. Equation (4.6) reveals the important detection scheme of

our new method: a photon must hit the p-plane within the extent of the

reference beam to contribute to the OCT signal. This is the first time a

detection scheme for Monte Carlo simulations has been derived analytically.

Numerical results of the model was compared to result of the analytical

OCT model [48] for a single layered sample for which this model has been

verified experimentally [17,48]. This was done for a wide set of parameters

and excellent agreement between the two modeling methods in all cases.

This demonstrated that the novel Monte Carlo model is applicable to model

the OCT technique. Another important conclusion of this comparison

was that the inclusion of the so-called shower-curtain effect is inherently

considered in the new Monte Carlo model.

Several examples of the use of the proposed Monte Carlo model of the

OCT signal as a numerical phantom were given, which demonstrated the

flexibility of the model and its potential as a powerful tool in further re-

search within the field. As expected, excellent agreement was obtained

between the methods when applied to estimating the OCT signal from a

two-layer sample. A surprisingly good agreement between the models was

observed for the OCT signal from a wide-angle scattering sample. For such

a sample the paraxial approximation, and therefore also the analytical OCT

model, is, strictly speaking, not valid. Even though the derivation of the
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Monte Carlo model utilized the extended Huygens-Fresnel principle, it was

argued that the Monte Carlo model should perform well even for samples

with wide-angle scattering. Finally, it was demonstrated that good perfor-

mance of the new Monte Carlo model is independent of choice of scattering

function, which is crucial since extends the applicability of the model to

most realistic tissue models.



Chapter 5

Optical amplification in

OCT: Theoretical analysis

In this chapter, the applicability of an optical amplifier to improve the

signal-to-noise ratio (SNR) of an OCT system is analyzed theoretically,

and a new model is presented [52]. An increase in SNR will enable deeper

penetration depth into the sample, improve contrast, and allow faster scan-

ning. The scope of this work is thus to identify the cases in which an

optical amplifier is beneficial, and to supply design expressions with which

the improvement of the SNR may be quantified and optimized for a specific

system.

5.1 Introduction

As discussed in chapter 1, there are several ways to improve the signal-to-

noise ratio (SNR) of an OCT system. In this chapter, the applicability of

using an optical amplifier for this purpose will be investigated analytically.

As with any type of amplifier, an optical amplifier amplifies the incoming

power and adds noise. Since incoming noise is amplified as well as the

desired signal, the SNR of the optical signal is decreased at the output of the

amplifier. It is therefore clear that an optical amplifier is an advantage only

when noise contributions added after the amplifier will otherwise dominate

the system. In an OCT system, such noise is electrical noise added from

69
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the, often rather involved, receiver system.

Generally speaking there are two types of optical amplifiers: Fabry-

Perot amplifiers and travelling wave amplifiers. Both types use an excited

medium and stimulated emission to obtain optical gain, and in that respect

they are similar to light sources such as lasers, superluminescent diodes, etc.

In the Fabry-Perot amplifier the end-facets of the amplifier are reflective,

and therefore an effective use of the gain medium may be obtained for the

resonant modes within this cavity (see e.g. Ref. [125]). In a travelling

wave amplifier, the light passes the gain medium only once, enabling am-

plification of a broader bandwidth. Because the light source, and therefore

the signal to be amplified, is broadband, the travelling wave amplifier is

the preferred type for an OCT system. Since detailed amplifier analysis is

outside the scope of this thesis, the results of a simple, but fully sufficient,

two-level atomic model is adopted to describe the noise characteristics of an

amplifier [126—128]. This amplifier model may be used for all three types

of amplifiers presently relevant to OCT: Semiconductor amplifiers, doped-

fiber amplifiers, and Raman fiber-amplifiers [128, 129]. Good reviews of

the properties of these devices may be found in Refs. [128,130].

With the strong demand for increased bandwidth for optical commu-

nications, research in optical amplifiers at new wavelengths and with im-

proved characteristics is still ongoing [131, 132]. The majority of innova-

tion has been in amplification of the 1300nm and 1550 nm optical bands,

where the fiber-loss is at its minimum. However, optical gain is obtainable

in fractions of a band larger than 600nm-1900 nm for all three amplifier

types [128, 130, 133], and this band includes the wavelengths relevant to

OCT. Hence, the probability that a suitable optical amplifier will be avail-

able for a specific OCT application is high, and this probability is expected

to increase significantly in the near future.

The present analysis is somewhat similar to the analysis of applying

an optical amplifier as a preamplifier in a coherent communication sys-

tem [126,130,133]. The main difference is that in a communication system,

the desired signal to be amplified is highly coherent, whereas the desired

signal in an OCT system has the properties of the wide band low-coherent

light source. The general conclusion of the analysis of a coherent com-
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munication system is that an optical amplifier is rarely an advantage as

a pre-amplifier, since shot-noise limit may, at least in theory, be obtained

by increasing the power of the reference light [126, 133]. However, for

OCT systems there are three reasons why this approach may not be pos-

sible: Firstly, as discussed in chapter 1, the irradiance of a suitable light

source is likely to be limited to low values [23]. Secondly, the reference

scanner may have a significant insertion loss further increasing the required

source power. This is particularly a problem in the important class of

fast scanning systems discussed in chapter 1. In the present state-of-the

art fast scanning systems a Fourier-domain rapid-scan optical delay line is

used [14,24,31], which has a typical insertion loss in the excess of 90% [134].

Finally, the receiver noise itself may be substantial when all components of

the electrical system are included as well as any coupling of electrical noise

from a clinical environment. For a fast scanning system, a suitable receiver

is generally more noisy and sensitive to external noise contributions due to

the necessary reduction in response time [32,130]. This is further discussed

in chapter 6, where the obtainable improvement in SNR from inserting an

optical amplifier is quantified for several examples of fast scanning OCT

systems.

Until recently, all theoretical models considering the SNR of OCT sys-

tems were limited to considering optical shot-noise as the dominating noise

contribution [15,38—40]. In January 2000 Podoleanu [32] published a com-

parative analysis of OCT systems with unbalanced and balanced detec-

tion, respectively. It was based on an extensive analysis of an optical

low-coherence reflectometry system (OLCR) published by Takada [37], and

included excess photon noise and receiver noise as significant sources of

noise. Excess photon noise is caused by beating between different Fourier

components of a broadband light source, and is a well known noise contri-

bution due to spontaneous noise emission of optical amplifiers applied in

communications systems [126,127].1

Because of the expected importance of excess photon noise, the analyt-

1 In the field of optical communication the terms "spontaneous-spontaneous" beat
noise and "signal-spontaneous" beat noise describes the noise due to the beating of the
spontaneous noise emission from an optical amplifier beating with itself and with the
signal, respectively [127, 130].
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ical noise model published by Takada [37] is adopted in this thesis. This

model is then, as a novelty, extended to include an optical amplifier. In

a realistic OCT system, detector saturation and a safety limitation on the

irradiation of the sample may be important to consider when inserting an

optical amplifier, and these restrictions are therefore included in this anal-

ysis. This is the first time optical power limitations have been included

explicitly in OCT noise analysis which is not confined to the shot-noise

limit. As an added benefit this model may also be applied to analyze con-

ventional OCT systems confined by such limitations. For each applicable

combination of these cases an design expression for the SNR is found, which

may be used to optimize the system under the given constraints. The ob-

tained SNR is then compared to the corresponding SNR for the optimized

OCT system without amplification. The motivation for only considering

optimized systems is that presently an optical amplifier is likely to be a

relatively expensive component. A systems designer will therefore explore

all options to improve the SNR by simple means, such as changing couplers,

etc., before inserting an optical amplifier.

The organization of this chapter is as follows: In section 5.2 the signal-

to-noise ratio of a conventional OCT system is derived in the cases of un-

balanced and balanced detection, following the work of Takada [37]. In

subsection 5.2.5, the assumption of shot-noise limit is given special con-

sideration, and it will be shown that, although often inferred in the field,

this assumption is only valid for special cases. In section 5.3, the two-

level atomic model of an optical amplifier [126—128] is introduced into the

expression for the noise of a conventional OCT system. Using this ex-

pression, it is found that the best performance from an optical amplifier

is obtained when it amplifies the light from the sample in an OCT system

with balanced detection, and the expression for the SNR for this configu-

ration is then derived. This expression may serve as a design expression

useful for optimizing a system. In section 5.4, an improvement factor is

defined as the ratio of the SNR of an OCT system with optical amplifi-

cation to the SNR of a conventional system. The improvement factor is

then analyzed to determine the conditions for which an optical amplifier

may improve the SNR of an optimized conventional system. This analysis
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is valid for the important case of limited irradiance of the light source, so

that power constraints of detector saturation and/or a safety limit on the

irradiation of the sample may be ignored. Finally, in section 5.5, design

expression are derived for systems with sufficient source power to impose

one or both power limitations. In each case it is determined if, and for

which conditions, an optical amplifier may improve the SNR.

5.2 SNR of a conventional OCT system

In this section, the different sources of noise in a conventional OCT sys-

tem, i.e. in this context without optical amplification, are identified, and

expressions for the SNR are derived. This analysis follows the analy-

sis of an OLCR system by Takada [37], which was later applied to OCT

systems by Poduleanu [32], and includes both balanced and unbalanced

detection. Readers familiar with such analysis may review the schematics

of the systems, Figs. (5.1) and (5.2), and skip to the expressions for the

SNR in Eqs.(5.12) and (5.13). Systems with unbalanced as well as bal-

anced detection is considered for two reasons: Firstly, to enable discussion

of the benefits of balanced and unbalanced detection, which is essential to

determining how to best insert an optical amplifier (see section 5.3 below).

Secondly, to enable the discussion of the shot-noise limit, often inferred in

the field, for both types of systems in section 5.2.5

The following analysis is initiated by finding the output current in each

system. Then, in section 5.2.2, the structure of the sample and sample

arm is described and the average signal power is derived. In section 5.2.3,

the source of noise due to the broadband optical power impinging on the

detector(s) are identified. In section 5.2.4 these results are combined to find

expressions for the SNR for the unbalanced and balanced systems, which,

combined with an amplifier model, are used in the rest of the chapter. As

an added benefit, the analysis of conventional OCT systems allows for the

discussion of the shot-noise limit for the two types of systems. This is the

topic of Section 5.2.5, where the important conclusion is reached that the

shot-noise limit is only applicable in special cases.
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5.2.1 The output current of unbalanced and balanced sys-

tems

Two types of general systems are considered: an unbalanced OCT system

and a balanced OCT system. In this context, balanced and unbalanced

OCT system refers to OCT systems with balanced and unbalanced detec-

tion, respectively. Figure 5.1 shows an example of a unbalanced system

whereas Fig. 5.2 show an example of a balanced system. In the balanced

system, the split ratio x/(1−x) of the first coupler from the light source has

been included as a design parameter. For brevity, the quantity x is simply

referred to as the split ratio. The optical circulator in Fig. 5.2 is inserted

so that substantially all the reflected power from the sample is transmit-

ted to the balanced detector. This relatively advanced system is used in

this analysis such that the improvement of the SNR by inserting an optical

amplifier is found relative to a state of the art system. The application of

an optical circulator in OCT systems was introduced by Rollins et al. [36].

However, the following analysis is not limited to this specific system design.

For comparison, the systems in this study are considered to have identical

light sources, identical optics in the sample arm, and are probing identical

samples. Subscripts u and b are used to designate quantities belonging to

the unbalanced and balanced systems, respectively. The subscript p may

be replaced by either u or b, and is used for quantities which are identical

to the balanced and unbalanced system, respectively.

Consider the unbalanced detector shown in Fig. 5.3 with the incident

fields Usam,u and Uref,u from the sample and reference arms, respectively.

The output current from the unbalanced detector, iu(t), is then obtained

from a square-law detection [112]

iu(t) = η
e

hν
|Usam,u (t) + Uref,u (t)|

2 (5.1)

= α {Isam,u(t) + Iref,u(t) + 2Re [Usam,u (t) · Uref,u (t)]} ,

where e is the electron charge, h Planck’s constant, ν the mean optical

frequency of the light source, η the quantum efficiency of the photodetec-

tors, and α = e/hν is the responsivity of the detector [112]. The quantities
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Figure 5.1: A OCT system with unbalanced detection. The light is inserted
into a fiber-optic 50/50 coupler, which guides the light into the reference- and
sample arms. The coupler then combines the reflected light from each arm to the
detector, which returns the output current iu (t) . The reference scanning system
is, without loss of generality, shown as a translateable mirror.
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Figure 5.2: A balanced OCT system. The light from the light source is inserted
into a fiber-optic coupler, with a split ratio of x/(1 − x), where x is a design
parameter. The coupler guides the respective portions of the light to the sample-
and reference arms. An optical circulator guides the light from the sample to the
detector system. The light from the reference arm follows a path to the detectors
different from the path of the light from the sample. In this setup this is obtained
using a translatable corner cube. The balanced detector setup is described in
further detail in Fig.5.4.
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Figure 5.3: The detector of the system in Fig.5.1 with the incoming fields Usam,u

and Uref,u from the sample- and reference arms, respectively.

Isam,u = |Usam,u|2 and Iref,u(t) = |Uref,u|2 are the intensities of the fields

Usam,u and Uref,u, respectively.

Similarly, consider the balanced detector shown in Fig. 5.4, with the

incident fields Usam,b and Uref,b from the sample and reference arm, re-

spectively. Assuming that the coupler used in the balanced detector is

symmetric, the field U1(t) and U2(t) incident on detector 1 and detector 2,

respectively, can be written as [136,137]

[

U1(t)

U2(t)

]

=

[

a beiϕ

beiϕ a

]

[

Usam,b

Uref,b

]

, (5.2)

where ϕ expresses a phase change due to the coupler, a and b are coupling

constants, and any common phase change to the two arms have, without

loss of generality, been ignored. If the coupler is assumed lossless, this

constraint will mean that a2 + b2 = 1 and ϕ = ±π/2 [136, 137]. For the

50/50 coupler used in a balanced detector, a = b = 1/
√
2. Thus, for the

balanced detector, the incident fields becomes

[

U1(t)

U2(t)

]

= 1/
√
2

[

1 eiπ/2

eiπ/2 1

]

[

Usam,b

Uref,b

]

. (5.3)

Using this, the photocurrents i1 (t) and i2 (t) from each of the respective

detectors, due to a square law detection of the incident light power, is

calculated as

[

i1(t)

i2(t)

]

=
1

2
α

[

Isam,b(t) + Iref,b(t)

Isam,b(t) + Iref,b(t)

]

(5.4)

+
1

2
α

[

e−iπ/2Usam,bU
∗

ref,b + eiπ/2U∗

sam,bUref,b

eiπ/2Usam,bU∗

ref,b
+ e−iπ/2U∗

sam,b
Uref,b

]

,
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Figure 5.4: A balanced detector setup, which consist of a 50/50 coupler, two
photodetectors and electronics to obtain the difference between the photocurrents
i1 (t) and i2 (t) from the detectors 1 and 2 respectively. The fields Usam,b and
Uref,b from the sample- and reference arms are incident on each arm of the detector
system. The coupler combines the fields, and splits the power of the combination
into U1 and U2 incident on the respective detector. Due to the phase change
of π introduced by the coupler (see text) the resulting output current ib (t) is
proportional to the beat term between Usam,b and Uref,b alone.

where ∗ is the complex conjugate. The electrical circuit of the balanced

detector setup returns the output current of the balanced detector, ib(t),

by subtracting the photocurrents of the two detectors, such that

ib(t) = i1(t)− i2(t) = 2αRe
[

eiπ/2U∗sam,bUref,b

]

= −2α Im
[

U∗sam,bUref,b

]

.

(5.5)

Comparing Eq.(5.5) to Eq.(5.1) the advantage of the balanced receiver is

clear: The balanced receiver discriminates the intensity terms which may

be significant sources of noise (see section 5.2.3 below).

5.2.2 Sample structure and signal power

Generally, the field from the sample arm of an OCT system will consist

of a sum of fields from different reflection sites within the sample, plus

reflections from the delivery optics, such as fiber collimators and lenses.

Now, consider the reflected field from the sample arm to consist of a sum

of fields, such that

Usam,p =
√

Tp

(

Ucoh +
∑

n

Uincoh,n

)

, (5.6)
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where p may be either u or b, and it has been used that the balanced and

unbalanced systems probes identical samples and have identical optics in

the sample arm. The coefficients Tu and Tb are coefficients for transmitting

the field from the sample arm to the detector in the unbalanced and bal-

anced system, respectively. For the systems shown in Fig. 5.1 and Fig. 5.2,

Tu = 1/2 and Tb = 1, respectively. The field Ucoh is the reflected field from

the sample, which has an optical path length matched with the reference

field and therefore contributes to the OCT signal. The term
∑

n Uincoh,n is

the sum of fields that have path length differences relative to the reference

that are longer than the coherence length of the light source. These fields

may therefore be taken to be incoherent with respect to the reference field.

The OCT signal for each of the systems is the photocurrent due to the mix-

ing between Ucoh and Uref, which is the only component that varies as the

reference is scanned. Using Eqs. (5.1), (5.5), (5.6), and following the nota-

tion and derivation of the mean square of the signal power by Takada [37],

the output current of the OCT signal is first given by

ip (t) = 2
√

〈Iref,p〉Tp 〈Icoh〉 cos (2πfct+ θp) , (5.7)

where θp is a phase constant, fc is the Doppler frequency due to the scanning

of the reference, 〈Icoh〉 =
〈

|Ucoh|2
〉

, and the brackets denotes an ensemble

average. Here it is assumed that the optical path lengths of the interferom-

eter are matched to the reflection Ucoh. The corresponding mean square

signal current is then given by [37]

〈

i2p
〉

= 2α2Tp 〈Iref,p〉 〈Icoh〉 . (5.8)

Here any reduction in signal due to polarization mismatch between the

reference and sample beams is neglected.

5.2.3 Sources of optical noise

To simplify the following, the reasonable assumption is made that the re-

ceived intensity from the sample is dominated by the fields incoherent with

respect to the reference, such that Isam,p(t) ≈ Tp |
∑

Uincoh,n|2. It has previ-
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ously been shown that the current noise spectral density for a low-coherence

interferometer, due to the received light,
〈

∆i2opt,u
〉

for the unbalanced sys-

tem is given by [37]

〈

∆i2opt,u
〉

= 2eα (〈Iref,u〉+ 〈Isam,u〉) +
α2

δν
(〈Iref,u〉+ 〈Isam,u〉)2 , (5.9)

where δν is the effective line width of the light source, and it is assumed

that the light is completely unpolarized, which is most commonly the

case in OCT [2]. The terms 2eα (〈Iref,p〉+ 〈Isam,p〉) represents the shot

noise, and the terms α2

δν (〈Iref,u〉+ 〈Isam,u〉)2 represents the excess photon

noise. The excess photon noise comprises of the intensity noise defined as
α2

δν

(

〈Iref,u〉2 + 〈Isam,u〉2
)

and the beat noise given by 2α2

δν 〈Im,u〉 〈Isam,u〉 [37],
and is caused by mixing of the different Fourier components of the spec-

trum of the light source. In the balanced system, the intensity noise is

suppressed , so the current noise spectral density due to the light in this

system is given by [37]

〈

∆i2opt,b
〉

= 2eα (〈Iref,b〉+ 〈Isam,b〉) + 2
α2

δν
〈Iref,b〉 〈Isam,b〉 . (5.10)

It should be noted that these expressions for the excess photon noise were

derived assuming a broadband light source [37], and are therefore not ap-

plicable to a system where the light source is a narrow band laser.

5.2.4 Signal-to-noise ratio

To find the SNR of the systems, all relevant source of noise must be in-

cluded. Besides the optical sources of noise found in the previous section,

an OCT system is also subject to a noise contribution from the electrical

receiver system. The importance of electrical noise contributions were

justified in the introduction of this chapter and will be given more consid-

eration in section 6.1.1. Here, it will suffice to note that since there are

several other contributions to the receiver noise than the noise from the

individual detector stage, the receiver noise in a balanced system is not

necessarily twice that of an unbalanced system. To simplify notation, the

sum of electrical noise sources are simple written as
〈

∆i2rec,u
〉

and
〈

∆i2rec,b

〉
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for the unbalanced and balanced systems, respectively. The total current

noise spectral density of each system,
〈

∆i2p
〉

, is then given by

〈

∆i2p
〉

=
〈

∆i2opt,p
〉

+
〈

∆i2rec,p
〉

. (5.11)

Using the signal power given by Eqs.(5.8), and the current noise spectral

density given by Eqs.(5.9), (5.10) and (5.11) the SNR of the system is now

obtained as:

Unbalanced system:

SNRu =

〈

i2s
〉

Be 〈∆i2u〉
(5.12)

=
α2

Be
Tu 〈Iref,u〉 〈Icoh〉 / [eα (〈Iref,u〉+ 〈Isam,u〉)

+
α2

2δν
(〈Iref,u〉+ 〈Isam,u〉)2 +

〈

∆i2rec,u
〉

/2]

Balanced system:

SNRb =
α2Tb 〈Iref,b〉 〈Icoh〉

Be

[

eα (〈Iref,b〉+ 〈Isam,b〉) + α2

δν 〈Iref,b〉 〈Isam,b〉+
〈

∆i2rec,b

〉

/2
] ,

(5.13)

where Be is the electrical bandwidth of the receiver system.

To summarize the notation, 〈Iref,u〉 , 〈Isam,u〉 , and Tu · 〈Icoh〉 are the in-

tensities impinging on the detector system from the reference arm, sample

arm, and the probed discontinuity in the unbalanced system, respectively.

Similarly for 〈Iref,b〉 , 〈Isam,b〉 , and Tb · 〈Icoh〉 in the balanced system. The

quantities Tu and Tb are transmission coefficients that describes any re-

duction in 〈Icoh〉 due to transmission from the sample arm to the detector

system. The quantity δν is the effective line width of the light source, e

the electron charge, α the responsivity of the detector(s), and
〈

∆i2rec,b

〉

the

current noise spectral density due to electrical noise in the receiver system.

Equations (5.12) and (5.13) are used in the following to determine the

optimum usage of an optical amplifier, and as a reference for the obtained

increase in performance. For this use it is instrumental to compare the
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two types of systems. From Eqs.(5.12) and (5.13) it can be seen that for

identical receiver noise, Tu = Tb, and identical power from the reference,

the balanced system will always yield a better SNR, because the setup

eliminates the intensity noise without reducing the signal power. How-

ever, if the noise is dominated by either the receiver noise or shot noise,

the advantage of a balanced system may be minute, or even lost due to

the added complexity of the system. As stated earlier, an extensive per-

formance comparison of balanced versus unbalanced detection for a wide

set of system parameters may be found in Ref. [32]. In this paper, the

added complexity of attenuating the reference in the unbalanced system,

as suggested by Ref. [34], was considered. A conclusion of the work was

that using an unbalanced system with suitable attenuation of the reference

light does not improve the performance compared to that of the balanced

system, unless conservation of optical power and/or receiver noise is better.

Based on Ref. [32] and the above derivation it may be concluded that if the

SNR of a balanced system is improved by inserting an optical amplifier,

this improvement can generally not be obtained by using an unbalanced

system instead.

5.2.5 The shot noise limit

In section 5.1 it was stated that the shot-noise limit is often assumed in the

analysis of OCT systems. It is therefore interesting to investigate in what

cases this assumption is valid.

Firstly, it is clear that in a shot-noise limited system, receiver noise is

negligible, which may be difficult to obtain. Secondly, for most practical

OCT systems, the power of the reference dominates the optical power to

the detector, so that 〈Iref,p〉 ≫ 〈Isam,p〉 . Applying these two assumptions

to Eqs.(5.12) and (5.13), it is seen that shot noise is dominant in an un-

balanced system only when 〈Iref,u〉 < 2eδν/α and in a balanced system

only when 〈Isam,b〉 < eδν/α. As an example, consider a good, but no

longer commercially available2, OCT light source based on a semiconduc-

2The light source was produced by the Canadian company AFC Technologies, which

was acquired by JDS Uniphase, Canada in September 1999. Since then, the focus of the

company has changed to optical amplifiers for communication.
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tor optical amplifier that has been used by several researchers [18,31,138].

Such a light source is currently in use in the Bio-optics Laboratory at Risø

National Laboratory, Denmark. The specifications of this source are a

center wavelength at 1300nm, 60 nm line width, and 20mW output power.

With these specifications, the optical noise is shot-noise dominated when

〈Iref,u〉 < 3µW and 〈Isam,b〉 < 1.5µW, respectively. Here, it has been used

that α ≈ 1.0A/W, which is a typical value for a InGaAs photodetector at

this wavelength [112,139].

For most unbalanced OCT systems, the power from the reference, 〈Iref,u〉 ,
will be well in excess of 3µW, so for such systems the optical noise will be

intensity-noise limited. It is then important to notice that both the sig-

nal power and the intensity noise is proportional to the power of the light

source squared (see Eqs. (5.8) and (5.9)). Accordingly, no increase of

the SNR can be obtained in an unbalanced OCT system by increasing the

source power, when the system is intensity noise limited.

From the requirement 〈Isam,b〉 < 1.5µW found above, the shot-noise

limit in a balanced system depends upon the structure of the sample arm.

Thus, consider the system shown in Fig. 5.2 for two cases of the incoherent

reflections from the sample arm: In the first case, the optics of the sample

arm includes a 4% reflection from an air/glass interface. This case is

likely unless steps are taken to reduce such reflections. With the light

source from above, a source irradiance of 20mW and x set to 50%, then

〈Isam,b〉 ≈ 50%× 4%× 20mW= 400µW, which is considerably more than

the limit of 1.5µW. Accordingly, in such a system the optical noise is beat

noise dominated. In the second case, the reflections from the optics of

sample arm are assumed negligible. In this case 〈Isam,b〉 will be dominated

by reflections from the sample, and most likely by the reflection from the

surface. To estimate the received power from the sample surface, consider

for a moment that the OCT system is probing the surface. If the surface of

the sample is assumed to be diffusely reflective, the OCT signal may then

be found from Eq.(4.9). To find the intensity of the reflected light from the
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surface, 〈Icoh〉 , as it is probed, Eq.(4.9) is compared to Eq.(5.8):

〈

i2b
〉

= 2α2Tb 〈Iref,b〉 〈Icoh〉 = α2TbPSPRRd
4w2

0

f2
, (5.14)

where Rd is the reflectivity of the surface, PR = 〈Iref,b〉 and TbPS is the

optical power incident upon the sample reduced by any power loss due

to transmission from the sample arm to the detector. For x = 50%,

TbPS = x×20mW=10mW (see Fig. 5.2). From Eq.(5.14), the light power

entering the fiber from the surface is given by 〈Icoh〉 = Rd
4w2
0

f2
× 5mW≈

Rd1.3µW<1.5µW, since Rd ≦ 1. Here the sample beam was chosen to

have a soft focus such as that applied in the OCT system designed by

Thrane et al. (w0/f = 0.008) [17]. Because the received power from

the surface is reduced as the sample beam is focused inside the sample

during imaging, this implies that the optical noise will be shot-noise limited

even for high reflectivities of the surface. However, it should be noted

that completely reducing reflections from the sample arm optics is, at best,

cumbersome, but the importance and benefit of reducing such reflections is

clear.

The main conclusion of the present discussion is that the shot-noise

limit is a valid limit for some special cases, but that the specific system

must be considered carefully to establish this. Accordingly, the reader is

cautioned not to assume shot-noise limited operation of an OCT system by

default.

5.3 SNR of an OCT system with optical amplifi-

cation

In this section, the two-level atomic model [126—128] of the noise properties

of an optical amplifier is presented. This model is then introduced into

the expressions for the noise derived in section 5.2.3, and it is found that

a balanced system with optical amplification of the light reflected from the

sample is the preferable setup. The expression for the SNR of this system

is then derived, which constitutes the design expression that may be used

in the process of optimizing a system.
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5.3.1 The amplifier model

To analyze the impact of an optical amplifier in an OCT system, a simple

two-level atomic model is adopted [126—128]. As discussed in the intro-

duction this model is, for the present purpose, applicable to most types of

optical amplifiers [128, 129]. Assuming small signal amplification, i.e., no

gain depletion, the output field, Uout, of an optical travelling wave amplifier

with gain G can be written as [126—128]

Uout (t) =
√
GUin (t) + UASE(t), (5.15)

where Uin (t) is the input field and UASE(t) is a field due to the noise added

by the amplifier. This noise is dominated by amplified spontaneous emis-

sion [128], often referred to as ASE , which is a broadband emission with

similar characteristics to the light source of an OCT system. In fact, one

suitable light source for OCT is based on the shaped spectrum of a semi-

conductor optical amplifier [18,31,138]. The intensity of UASE(t) is given

by

〈IASE〉 = 2nsp(G− 1)hνBo (5.16)

= (G− 1)sASE

whereBo is the optical bandwidth of the optical amplifier, sASE = 2nsphνBo,

and nsp is the inversion parameter, which depends on the amplifier at

hand [126, 127]. For an ideal amplifier nsp = 1. Fiber amplifiers have

been shown to come close to this limit, although a typical value is ap-

proximately 2 [128]. Semiconductor amplifiers have typical values above

2 depending on wavelength, and for Raman amplifiers, nsp ≃ 1, depending

on the temperature and the Stoke’s shift relative to the pump source (see

Ref. [128] for a more elaborate comparison). The factor 2 is included in

Eq.(5.16) corresponding to the fact that there are two polarization modes in

a single mode fiber, and most fiber-optic OCT systems employ single-mode

fibers.
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5.3.2 Application of an optical amplifier and the SNR

To find the optimum use of an optical amplifier, three possible uses must

be considered.

First, the amplifier may be used to amplify the reference light as well

as the signal in an unbalanced setup. However, this is disadvantageous

because the noise of the amplifier will contribute to the noise of the sys-

tem through intensity noise as well as through beating with the amplified

reference light.

Second, the amplifier may be inserted to amplify only the reference

light in a balanced setup. This is advantageous since the intensity noise

is suppressed, and the beat noise contribution would only be caused by

interaction with the weak sample light. However, because of the relatively

large reference power, the detectors and/or amplifier will generally saturate

at low gains.

Finally, the amplifier may be inserted to amplify the light from the

sample alone. If large unwanted reflections in the sample are reduced to

a minimum, higher gains may be possible depending on the noise charac-

teristics of the amplifier. Accordingly, this is considered to be the most

efficient use of the amplifier, and the analysis is thus limited to this case in

the following.

To find the SNR of a system with amplification of the light from the

sample, the current noise spectral density found in section 5.2.3 must be

modified using the amplifier model of section 5.3.1. A good amplifier for

OCT has a relatively flat gain and matching bandwidth to the light source,

so that the spectral shape of the input light is maintained. The broadband

ASE noise is assumed to have the same effective optical bandwidth as the

light source, i.e., Bo = δν. The spontaneous noise emission of the optical

amplifier, UASE, is incoherent relative to the light source, and therefore also

incoherent relative to the reference. The emission will therefore contribute

to the optical noise in the same manner as a field from the incoherent

reflections of the sample
∑

Uincoh,n. Using Eqs.(5.9), (5.10), and (5.15),

the current noise spectral densities for the unbalanced and balanced system
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are found to be

〈

∆i2opt,u
〉

= 2eα (〈Iref,u〉+G 〈Isam,u〉+ 〈IASE〉) (5.17)

+
α2

δν
(〈Iref,u〉+G 〈Isam,u〉+ 〈IASE〉)2 +

〈

∆i2rec,u
〉

,

and

〈

∆i2opt,b
〉

= 2eα (〈Iref,b〉+G 〈Isam,b〉+ 〈IASE〉) (5.18)

+2
α2

δν
〈Iref,b〉 (G 〈Isam,b〉+ 〈IASE〉) +

〈

∆i2rec,u
〉

,

respectively. Even for an amplifier with good noise characteristics, the

power of 〈IASE〉 may contribute considerably to the optical noise in an

unbalanced system, through the intensity noise term α2

δν 〈IASE〉2. It is thus

concluded that the best improvement of an OCT system from inserting

an optical amplifier is obtained for the balanced system, and therefore the

analysis is limited to this case in the following. Such a system may be

realized as shown in Fig. 5.5.

The signal power is found using Eqs.(5.8) and (5.15), and hence

〈

i2s
〉

= 2α2TbG 〈Iref,b〉 〈Icoh〉 , (5.19)

and the SNR of a balanced system with optical amplification of the light

from the sample arm, SNRamp, is then given as

SNRamp =
α2

Be
TbG 〈Iref,b〉 〈Icoh〉 / [eα (〈Iref,b〉+G 〈Isam,b〉 (5.20)

+ 〈IASE〉) +
α2

δν
〈Iref,b〉 (G 〈Isam,b〉+ 〈IASE〉) +

〈

∆i2rec,b
〉

/2].

This expression constitutes the new design expression for the optimum us-

age of an optical amplifier in an OCT system. However, this expression

may be simplified using that several of the intensity components originates

from the same light source with optical power 〈Is〉. These components may
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be written as

〈Iref,b〉 = TR 〈Is〉 (5.21)

Tb 〈Icoh〉 = TSRcoh 〈Is〉 (5.22)

〈Isam,b〉 = TSRincoh 〈Is〉 . (5.23)

HereRcoh and Rincoh are the effective reflection coefficients for the light that

is coherent and incoherent with respect to the reference, respectively. The

effective reflection coefficient is defined as the product of the reflectivity

of the specific reflection and any coupling loses to the fiber system. The

quantities TS and TR are the total transmission coefficient describing the

total power reduction due to transmission to and from the sample and

reference arm, respectively. For the system in Fig. 5.5, TS = x and TR =

RR(1−x), where RR describes any losses in the reference scanning system.

Inserting Eqs.(5.21), (5.22), and (5.23) into Eq.(5.20) yields

SNRamp =
α2

Be
GTRTSRcoh 〈Is〉2 / [eα 〈Is〉 (TR +GTSRincoh) (5.24)

+eα 〈IASE〉+
α2

δν
TR 〈Is〉 (GTSRincoh 〈Is〉+ 〈IASE〉)

+
〈

∆i2rec,b
〉

/2].

This is the design expression used in the following sections to determine

the impact of inserting an optical amplifier in an OCT system. However,

simply optimizing this expression with respect to, e.g., x and G, is only

sufficient when optical power constraints, such as detector saturation, is

not applicable. This is the case when the irradiance of the light source is

limited, which is often the case for suitable light sources for OCT [23] (see

chapter 1). The design expressions with optical power constraints are the

topic of section 5.5.

5.4 Advantage of an optical amplifier

In this section, the cases where an optical amplifier is an advantage are

identified using the expression for the SNR derived in the previous section.
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Figure 5.5: An OCT system with balanced detection and optical amplification.

Besides the insertion of an optical amplifier with gain G, the setup is identical to

the setup in Fig. 5.2

This is done by defining an improvement factor obtained by inserting the

amplifier, and investigating when this factor is greater than unity.

To investigate the advantage of inserting an optical amplifier, the SNR

is compared to the SNR of an optimized OCT system without amplifica-

tion with identical light sources, identical samples, and identical reference

scanning systems. In the present analysis, it is advantageous to write the

current noise spectral density of the systems (G = 1 without amplification)

as a sum of two terms:

〈

∆i2b
〉

=
〈

∆i2intr
〉

+ (G− 1)
〈

∆i2G
〉

, (5.25)

where
〈

∆i2intr
〉

is the intrinsic noise present in the system without optical

amplification, and
〈

∆i2G
〉

is the noise contribution from the amplifier. From

Eq.(5.24) these terms may be found as

〈

∆i2intr
〉

= eα 〈Is〉 (TR + TSRincoh) +
α2

δν
TR 〈Is〉

2 TSRincoh +
〈

∆i2rec,b
〉

/2,

(5.26)

and
〈

∆i2G
〉

=

(

eα+
α2

δν
TR 〈Is〉

)

(TSRincoh 〈Is〉+ sASE) , (5.27)
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where sASE = 2nsphνBo = 2nsphνδν. The SNR can then be written as

SNR =
α2GTRTSRcoh 〈Is〉

2

〈

∆i2intr
〉

+ (G− 1)
〈

∆i2G
〉 . (5.28)

To quantify the advantage of using an optical amplifier an improvement

factor, Q, is defined similarly to that in Ref. [32] as the ratio of the SNR

with amplification to that without amplification:

Q =
SNRamp(TS, TR)

SNRb (TS,0, TR,0)
(5.29)

=
G
〈

∆i2intr (TS,0, TR,0)
〉

〈

∆i2intr (TS, TR)
〉

+ (G− 1)
〈

∆i2G (TS, TR)
〉

TSTR
TS,0TR,0

where TS,0 and TR,0 are the transmission coefficient of the sample and ref-

erence arms of the system without optical amplification, respectively. The

individual noise components and the SNR of each system have been written

as a function of the transmission coefficients because the optimum choice

of transport coefficients for each system may not be identical. It is impor-

tant to note that the improvement factor is independent of the intensity

of the signal reflection as long as it is negligible compared to the intensity

from the reference. For large gains, the optical noise will be dominated by
〈

∆i2G
〉

, and the maximum improvement factor is then given by

Qmax =

〈

∆i2intr (TS,0, TR,0)
〉

〈

∆i2G (TS, TR)
〉

TSTR
TS,0TR,0

. (5.30)

The term "maximum" is, strictly speaking, only applicable when
〈

∆i2intr
〉

>
〈

∆i2G
〉

.

To find the cases when an optical amplifier will be an improvement, the

cases for Q > 1 must be found. It is first noted from Eq.(5.28) that if the

transmission coefficients for the system without optical amplification are

optimized for maximum SNRb, then

SNRb = SNRamp|G=1
=

α2Rcoh 〈Is〉
2 TS,0TR,0

〈

∆i2intr (TS,0, TR,0)
〉 ≥

α2Rcoh 〈Is〉
2 TSTR

〈

∆i2intr (TS, TR)
〉 .

(5.31)
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Secondly, it is noted that the improvement factor is an monotonic function

of G assuming all else is kept equal. Using Eqs.(5.29) and (5.31), the

important result is obtained that inserting an optical amplifier will be an

improvement if, and only if,

〈

∆i2intr (TS,0, TR,0)
〉

>
〈

∆i2G (TS, TR)
〉

⇐⇒ (5.32)

eα 〈Is〉TR,0 +
〈

∆i2rec,b
〉

/2 > eαsASE +
α2

δν
〈Is〉TRsASE.

Three conclusions can be made from this inequality. Firstly, an optical

amplifier cannot improve an OCT system that is beat noise limited, because

the beat-noise term, α2

δν
TR 〈Is〉

2 TSRincoh, appears on both sides of Eq.(5.32).

Secondly, if the system without amplification is dominated by shot noise, an

optical amplifier may be able to improve the SNR. However, this requires

that eTR,0 − TR2nsphν > 0, and if TR,0 ≈ TR this is not satisfied for the

wavelength ranges relevant to OCT even for nsp = 1. Finally, if the

system without optical amplification is limited by receiver noise, an optical

amplifier may be used to overcome this limit. Since eα ≪ α2

δν
〈Is〉TR for

most applications, Eq.5.32 yields

〈

∆i2rec,b
〉

> 2α22nsphν 〈Is〉TR − 2eα 〈Is〉TR,0 (5.33)

>

(

2
α2

δν
sASETR − 2eαTR0

)

〈Is〉

when the receiver noise dominates. This implies that the receiver noise

must be larger than the added beat noise per unit gain factor of the am-

plifier, 2α2

δν
sASE 〈Is〉TR, reduced by the amount of shot noise due to the

reference in order for optical amplification to be an advantage. It is also

noted that the necessary
〈

∆i2rec,b

〉

is reduced for limited source irradiance,

〈Is〉 , and/or a high insertion loss of the reference scanner (TR,0 << 1 and

TR << 1). From Eq.(5.33) it may seem tempting to reduce TR in order to

obtain an improvement for lower receiver noise. However, such a system

would no longer have an improved SNR relative to the optimized system

without amplification.

To summarize; in this section the important result was obtained that
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an optical amplifier will be an advantage when receiver noise dominates,

according to Eq.(5.33). As discussed in the introduction to this chapter,

receiver noise is especially likely to be of practical concern for OCT systems

designed for fast image acquisition. It is noteworthy that improvement is

independent of the electrical bandwidth of the receiver system, Be, (see

Eq.(5.29)) for constant receiver noise density. However, the absolute SNR

is inversely proportional to Be (see Eq.(5.13)) and therefore an increase in

bandwidth necessary to accommodate faster data acquisition and higher

resolution (see Eqs. (1.3) and (1.4)) reduces the SNR, all else being equal.

The analysis in this section is valid when the irradiance of the light source

is limited, so power constraints such as detector saturation and safety limits

may be ignored. The improvement and design expressions in such cases is

the topic of the next section.

5.5 Detector saturation and limited power to the

sample

As it will seen, the power constraints of detector saturation and an upper

limit on irradiation of the sample, are important design considerations in

OCT systems with optical amplification. To find the appropriate design

expressions for such systems, these constraints will be considered explicitly

in this section using the expression for the SNR derived above. For each

case, the improvement factor, Q, is investigated similarly to the analysis

in section 5.4 to determine if an improvement is possible from optical am-

plification. The explicit incorporation of power constraints is new within

detailed noise analysis of OCT systems. This model also applied for G=1,

and thus extends the capabilities of the analysis of conventional systems.

This is used when the system with optical amplification is compared to the

optimized conventional system to obtain the improvement factor.

In the following each power limitation will be considered separately

and in combination. First, in section 5.5.1, the irradiation of the sample

is limited while detector saturation is not a limiting factor. Second, in

section 5.5.2, the detector saturation limit is obtained, but there is no

limitation of the irradiation of the sample. The system is said to be
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Figure 5.6: Illustrative example of the SNR as a function of split ratio x. The

maximum SNR is found for the optimum split ratio xopt .

in the detector saturation limit, when the optical power incident on the

balanced detector system just saturates the detectors. Finally, in section

5.5.3, detector saturation is obtained, while the sample is irradiated by the

maximum optical power according to a safety limit. This case is especially

interesting, because a further increase in source power is not possible and

thus cannot be used to suppress receiver noise.

In the following, the split ratio x, signifying the fraction of the opti-

cal power transmitted to the sample (see Fig. 5.2), is an important design

parameter, and it is therefore illustrative first to consider the dependence

on x of the SNR. With x = 0 or x = 1 there is no signal, i.e., SNR=0.

Between these two extremities there is a single optimum SNR for the split

ratio xopt. Figure 5.6 shows an illustration of a typical curve for the

SNR as a function of x, where the optimum split ratio for this example

is obtained for xopt = 40%. The shape of this curve is specific to the

system configuration, but the qualitative shape is general. As it will be

seen in the following sections, power constraints may influence the avail-

able settings of the split ratio, and it is thus crucial to determine which

split ratio that yields the best SNR. To simplify the follow analysis, the

systems previously mentioned and shown in Fig. 5.2 and Fig. 5.5 are, with

little loss of generality, chosen to represent the system with and without

optical amplification, respectively.
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5.5.1 Safety limitation on the optical irradiation of the sam-

ple

Consider the first case where the irradiation of the sample is limited to an

intensity value 〈Isam,max〉 due to safety considerations, and detector satura-

tion is not a limiting factor. With sufficient source power, this restriction

will limit the fraction of the source power transmitted to the sample, and

thus the split ratio, x, to (see Figs. 5.2 or 5.5)

x ≦ 〈Isam,max〉 / 〈Is〉 . (5.34)

To find the optimum split ratio for the system, consider the qualitative

shape of the SNR as a function of x in Fig. 5.6. From this curve it is seen

that if xopt < 〈Isam,max〉 / 〈Is〉 , then xopt is the optimum choice of split ratio

for the particular system. In this case, the safety limit has no influence on

the settings of the system, and therefore the analysis of the SNR in section

5.4 still applies. If, on the other hand, xopt > 〈Isam,max〉 / 〈Is〉 then the split

ratio must be reduced from this value to accommodate the requirement of

Eq.(5.34). To obtain optimum performance in this case, a systems designer

will minimize the change of x from xopt and use

x = 〈Isam,max〉 / 〈Is〉 . (5.35)

By inserting this constraint into Eq. (5.24) the design expression for the

SNR of this case is obtained.

One may then proceed to find the improvement similarly to the analysis

of section 5.4. However, as the necessary shift from optimum x is inde-

pendent of the optical amplifier, the impact on the improvement factor is

expected to be minimal and the above conclusions from Eq.(5.32) are still

valid. Therefore, this case is not considered separately in the remainder of

this thesis.

5.5.2 Detector saturation limit

The topic of this section is to derive the design expression of a system

with optical amplification of the reflected light from the sample, when the
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detector saturation limit is obtained for x = xopt (or x > xopt as it will

be seen below). This may be from the irradiance of the light source alone

or in combination with the output of an optical amplifier. Furthermore,

it is assumed that no safety limitation on the irradiation of the sample is

inferred. The design expression is derived by first determining the best way

of accommodating the added optical power in the system when the gain, G,

is increased (G = 1 without an amplifier), and then combining this method

with the expression for the SNR in Eq. (5.24). It is then important to

determine the maximum gain setting of the optical amplifier. Finally, it is

important to establish whether an improvement may be obtained by further

increasing the gain when detector saturation is obtained, or by inserting an

optical amplifier into a system where the irradiance of the light source is

sufficient to saturate the detectors alone. This is not intuitively clear,

since the discussed adjustment to accommodate the added optical power

will reduce the SNR of the initial system, which must then be compensated

by the amplifier.

Design expression

The total optical power impinging on the balanced detector system is given

by

〈Idet,tot〉 = 〈Iref,u〉+G 〈Isam,b〉+ 〈IASE〉 (5.36)

= 〈Is〉 (TR +GTSRincoh) + sASE(G− 1),

where G = 1 in the system without an optical amplifier, and 〈Icoh〉 has

been assumed negligible relative to 〈Isam,b〉. With a finite detector satura-

tion power of the balanced detector system, 〈Idet,max〉, and using that the

transport coefficient for the considered system (see Fig. 5.5) are given by

TS = x and TR = RR(1− x), the restriction of detector saturation results

in the inequality

〈Idet,max〉 ≥ 〈Idet,tot〉 (5.37)

≥ 〈Is〉 [RR(1− x) +GxRincoh] + sASE(G− 1).
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If detector saturation is obtained, the system must be adjusted if the gain

is to be increased. From Eq.(5.37) it is then given that there two options:

A reduction in power of the light source, 〈Is〉, or an increase in x away

from optimum. An increase in x will guide a larger percentage of the

source power toward the sample. With its lower reflectivity relative to

the reference, such an increase will serve to "spill" the optical power, and

thereby reduce the total power impinging on the detectors. This argument

is valid when Rincoh < RR, which should be obtainable even when the

insertions loss of the reference scanner is high (RR << 1), if some effort

has been made to reduce undesired reflections in the sample arm.

To determine which of the above options that results in the minimum

reduction in SNR of the initial system, consider the signal power of the

system. From Eq.(5.8)

〈

i2s
〉

∝ 〈Icoh〉 〈Iref,b〉 . (5.38)

Now, consider the case where the power from the reference scanner 〈Iref,b〉 =

RR(1− x) 〈Is〉 is dominating the optical power impinging on the detectors,

which is the case for most conventional OCT systems. From this assump-

tion it is given that the necessary reduction in power from the reference as

the gain is increased, will be of approximately the same magnitude whether

it is reduced by an increase in x or a decrease in 〈Is〉. As a decrease in

source power, 〈Is〉 , will decrease the power from the reference as well as

from the sample, it is given that an increase in x is most advantageous

because it results in an increased power from the sample. If, on the other

hand, the power from the sample arm is a significant contribution to the

power incident on the detectors; reducing source power, and then increas-

ing the amplification of the sample light, will result in approximately the

same power from the sample to the detector, but with added amplifier noise.

Thus, if the system is completely saturated, then no adjustment of the split

ratio is possible to accommodate additional power, and increased gain is

not an advantage.

Having established that adjusting x is the best method to accommodate

the power added by increasing gain, the question is now how to determine
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the most advantageous split ratio to obtain the best SNR. From Eq.(5.37)

it is then found that

x ≥
sASE(G− 1) + 〈Is〉RR − 〈Idet,max〉

〈Is〉 (RR −GRincoh)
, (5.39)

where it has been assumed that G < RR/Rincoh (to be discussed below).

For the present case, it is assumed that detector saturation is obtained with

x ≥ xopt, because if x can be increased to xopt the SNR would be improved

(see Fig. 5.6), but the system would no longer be saturated. With x ≥ xopt

given, it may now be seen from Fig. 5.6 that the best split ratio for a given

amplifier gain, G, is the minimum value of x for which Eq.5.39 is maintained

so

x =
sASE(G− 1) + 〈Is〉RR − 〈Idet,max〉

〈Is〉 (RR −GRincoh)
. (5.40)

With the simple argument used to realize that x must be minimized, it

was assumed that the split ratio for optimum SNR, xopt, is approximately

independent of G. This assumption is correct when the system is receiver

noise dominated, since in this case the noise is independent of x while the

signal is proportional to GTSTR ∝ Gx(1− x). Accordingly, the maximum

SNR is obtained for maximum signal, i.e., xopt= 50%. However, it is noted

that from Eq.(5.24) it may be shown that the split ratio for optimum SNR,

xopt, will in general decrease for increased gain, which implies that the

argument leading to Eq. (5.40) is general (see Fig. 5.6). Finally, it is noted

that from Fig. 5.6 it may seem that increased gain will reduced the SNR due

to the necessary increase in split ratio. However, it should be noted that

Fig. 5.6 is plotted for constant G, and therefore any upward scaling of the

curve cannot be determined. The potential of improvement by inserting

an optical amplifier, or increasing the gain of an inserted optical amplifier,

is determined in the analysis of the improvement factor below.

The design expression for the present case is obtained by inserting

Eq.(5.40) into the expression for the SNR in Eq. (5.24) (not shown for

brevity). Quantitative analysis of this design expression is exemplified in

section 6.1.3 of the next chapter.
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Saturation gain

To find the maximum allowable gain of the amplifier it is noted that

to obtain Eq.(5.39) it was assumed that G < RR/Rincoh. If instead

G > RR/Rincoh, it may be seen from Eq.(5.37) that the power from the

sample (or amplifier output) is sufficient to require reduction in 〈Is〉 with

an increase in G. The system may then be said to be saturated, and with

the same arguments of system saturation above, it is realized that further

amplification of the light from the sample reduces SNR. The maximum

gain in the present case is then found as the maximum value for which

G < RR/Rincoh and G <
〈Idet,max〉+ sASE

〈Is〉Rincoh + sASE
, (5.41)

where the latter condition is obtained using Eq.(5.39) and that x < 1.

This gain value is denoted the saturation gain. It is noted that large

values ofRincoh will reduce the saturation gain, and therefore the obtainable

improvement using an optical amplifier. This point is emphasized in the

quantitative analysis of this case given in section 6.1.3.

Improvement

Finally, to determine whether inserting an optical amplifier, or increasing

the gain of an inserted optical amplifier, may render an improvement for a

system in the detector saturation limit, it is first noted that the SNR of the

initial OCT system is reduced by the necessary adjustment of x when the

gain is increased. In section 5.4 it was concluded that optical amplification

is only an advantage when the system is receiver noise dominated. With

the initial reduction of the SNR, it is then concluded that this is also true

in the present case.

If it is assumed that receiver noise dominates the noise contributions

in the system completely, and that the output from the amplifier is small

relative to the power from the reference, it may be shown by using the design

expression (Eqs. (5.24) and (5.40)) and Eq.(5.29) that the improvement
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factor can be approximated by

Q ≈
G [sASE(G− 1) + 〈Is〉RR]

G0 [sASE(G0 − 1) + 〈Is〉RR]
> 1 for G > G0, (5.42)

where G0 is the gain in the amplifier in the initial system, and it is noted

that G0 = 1 when the initial system is saturated by the irradiance of the

light source alone.

Equation (5.42) demonstrates that an optical amplifier may improve the

SNR under the given assumptions. The quantification of the obtainable

improvement, relieved of these assumptions, is the topic of section 6.1.3

in the next chapter. It should be noted that it cannot necessarily be

inferred from Eq.(5.42) than an insertion loss of the reference scanner, i.e.,

a reduction in RR, will result in an increased improvement. This is due to

the requirement of detector saturation limit for the present case, which will

require a corresponding increase in 〈Is〉 or G. However, if a higher gain

is possible, additional improvement may be obtained as it will be seen in

section 6.1.3.

The conclusion of the present analysis is that an optical amplifier will

be an advantage, even when detector saturation is obtainable from the ir-

radiance of the light source alone. It is also concluded that if detector

saturation is obtained in combination with an optical amplifier, increasing

gain may also be an advantage. However, in both cases the initial system

must be receiver noise dominated, and the power impinging on the detec-

tor from the sample must be negligible compared to the power from the

reference. Accordingly, undesired large reflections in the sample arm must

be reduced to a minimum.

5.5.3 Detector saturation and maximum irradiation of the

sample

The final case is the case of detector saturation combined with a limit on the

irradiation of the sample. As in the previous case, the topic of this section

is to determine the design expression specific to this case, the saturation

gain, and whether an improvement by inserting an optical amplifier, or
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increasing the gain of an inserted optical amplifier, may be obtained. The

present case is applicable when the power of the light source is sufficient to

irradiate the sample by the maximum optical power according to a safety

limit, while detector saturation is obtained. This is the maximum allowable

source power and thus the system may be said to be completely saturated.

However, in contrast to the previous case, the optical power from the sample

is not necessarily a significant contributor to the saturation of the detectors.

As in the previous case, the initial system must be adjusted in order to

accommodate the added optical power when increasing gain (G = 1 without

amplification). Because the split ratio is determined by the restriction that

the maximum power is sent to the sample, an increase in x is not possible.

Instead a reduction of the source power is necessary to accommodate the

power added from the increased gain of an optical amplifier.

Design expression

With the assumption of saturation, the maximum intensity, 〈Isam,max〉 , is

transmitted to the sample. Accordingly the split ratio is determined by

x = 〈Isam,max〉 / 〈Is〉 (5.43)

(see section 5.5.1). Using this, and the condition for detector saturation

from the previous section, Eq.(5.37), the maximum source power for the

system and therefore the best SNR is found as

〈Is〉 =
〈Idet,max〉 − sASE(G− 1) + 〈Isam,max〉 (RR −GRincoh)

RR
. (5.44)

Inserting Eq.(5.44) into the expression for the SNR in Eq. (5.24), yields the

design expression for the SNR for the present case (not shown for brevity).

Quantitative analysis of this design expression is exemplified in section 6.1.4

of the next chapter.
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Saturation gain

The saturation gain for the present case is reached when a negative source

power is required from Eq.(5.44). The saturation gain is then found as

G =
〈Idet,max〉+RR 〈Isam,max〉+ sASE

Rincoh 〈Isam,max〉+ sASE
. (5.45)

As in the previous case the reflectivity of the incoherent reflections is seen

to reduce the saturation gain, and must therefore be minimized to obtain

the optimum increase in SNR from inserting an optical amplifier.

Improvement

Finally, to investigate whether optical amplification is beneficial in the

present case, it is assumed that receiver noise completely dominates the

system, and that the light from incoherent reflections is small relative to

the detector saturation limit, 〈Idet,max〉 >> Rincoh 〈Isam,max〉. From the

design expression (Eqs. (5.24) and (5.45)) and Eq.(5.29) it may then be

shown that

Q ≈
G [〈Idet,max〉 − sASE(G− 1)−GRincoh 〈Isam,max〉]

G0 [〈Idet,max〉 − sASE(G0 − 1)−G0Rincoh 〈Isam,max〉]
> 1, G > G0

(5.46)

for moderate values of G and Rincoh. For the case where the initial system

is without amplification, the improvement is given by

Q ≈ G
[〈Idet,max〉 − sASE(G− 1)−GRincoh 〈Isam,max〉]

〈Idet,max〉
> 1. (5.47)

The quantification of the obtainable improvement, relieved of these as-

sumptions, is the topic of section 6.1.4 in the next chapter. From Eqs.(5.46)

and (5.47) it is seen that the improvement may be reduced for higher gain

values and/or large values of Rincoh. Accordingly, the improvement fac-

tor is expected to increase with increased gain to a maximum value, after

which it decreases again. However, all details of Eqs.(5.24) and (5.44) are

necessary to determine the optimum gain, and this is therefore best done

numerically.
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From Eqs.(5.46) and (5.47) it is concluded that improvement of the SNR

is obtainable for the present case when increasing optical gain. Either in

a system with an optical amplifier, or by inserting an optical amplifier into

a system where the irradiance of the light source is sufficient to obtain

saturation. This case is particularly important because source irradiation

cannot be increased to suppress receiver noise.

5.6 Summary

In this section, a new analytical noise model of an OCT system with an

optical amplifier inserted to amplify the reflected light from the sample was

presented. First, a detailed noise analysis of a conventional OCT system

was derived for a balanced, as well as an unbalanced detection system based

on a previously published model [37]. Because optical shot-noise limited

operation is often assumed in the literature, the applicability of this as-

sumption was given special attention. The somewhat surprising conclusion

of this analysis was that shot-noise limit is only obtained in special cases.

From the analysis of conventional OCT systems, it was concluded that it is

necessary to use a balanced detector system to obtain the best advantage

of an optical amplifier, and the best use of an amplifier is obtained when it

is inserted to amplify only the reflected light from the sample. To describe

the effect of an optical amplifier, a theoretical two-level atomic model was

introduced [126—128] and a new design expression for the SNR of a system

with optical amplification was derived. To quantify the improvement ob-

tained using an optical amplifier, an improvement factor was defined as the

ratio of the SNR with amplification to the SNR without amplification. The

new model of the SNR, and the improvement factor was accompanied by a

detailed analysis of the effects of detector saturation and/or a safety limit

on the irradiation of sample. The analysis of each applicable case of these

power constraints resulted in specific design expressions. When applica-

ble, the maximum gain factor of the optical amplifier was determined. The

explicit inclusion of power constraints is new to noise analysis of OCT sys-

tems, which are not necessarily shot-noise limited. Therefore, this analysis

also extends the capabilities of the analysis of conventional systems.
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The main conclusion of the analytical noise model was that an optical

amplifier will improve the SNR of a system that is receiver noise dominated.

This improvement may be obtained in spite of the above mentioned power

limitations. For several of the discussed cases, the sum of the reflections

from the sample arm incoherent with respect to the reference, Rincoh, turned

out to be an important parameter, which must be minimized to obtain

optimum SNR. The derived design expressions for the SNR may now serve

as a design model for future systems, and be applied to determine whether

an optical amplifier may be an advantage in a specific OCT system.



Chapter 6

Optical amplification in

OCT: Results and

implications

In this chapter, the improvement of SNR by inserting an optical amplifier in

an OCT system will be quantified for fast-scanning OCT systems using the

new model presented in the chapter 5. The effect of such an improvement

on the imaging penetration depth of the system is then exemplified for skin

using the results of chapter 4. Finally, as a novelty, the impact of an optical

amplifier on the coherence of the amplified light, and the resulting OCT

signal, is briefly discussed using the results of a preliminary experiment.

6.1 Quantitative analysis of a fast-scanning sys-

tem

In this section, the quantitative improvement of inserting an optical ampli-

fier to amplify the light reflected from the sample is investigated in a set

of specific cases of fast scanning OCT systems. The analysis is focused on

fast-scanning systems because of their practical importance (see chapter 1),

and because of the larger potential of SNR improvement by inserting an op-

tical amplifier in such systems (see section 5.1). The new model presented

103
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in the previous chapter included a relatively large set of parameters, each

with several values all relevant for practical OCT systems. In the following,

the analysis is divided into three important cases depending on the power

of the light source at hand, and the sample being probed. Case 1, where

the irradiance of the light source is limited, so that power limitations are

not a consideration; Case 2, where the power of the light source if sufficient

to saturate the detector system, and Case 3, where a constraint is added on

the optical power impinging on the sample due to safety considerations. In

all of these cases special attention is given to the important case of a high

insertion loss in the reference scanner, and the impact of a large undesired

reflection in the sample arm. As in the analytical analysis of chapter 5,

the improvement in SNR due to the amplifier is measured relative to an

optimized system without amplification for identical light sources, samples,

and reference scanners.

Besides the quantification of the impact of optical amplification, the

presented numerical examples are also included to aid the reader in getting

a qualitative understanding of the new noise model. The discussion of the

functionality of the improvement factor is, therefore, sometimes slightly

elaborated.

6.1.1 System parameters

In the following numerical examination of the improvement factor, the de-

sign expression relevant to each case is used. These expressions are given

by Eq.(5.24) in Case 1, Eqs.(5.40) in combination with Eq.(5.24) in Case 2,

and Eq.(5.44) in combination with Eq.(5.24) in Case 3. The OCT systems

in Fig. 5.2 and Fig. 5.5 are chosen as the system with and without optical

amplification, respectively. The following set of system parameters are
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common to the examples when nothing else is stated:

Rincoh =

{

3× 10−5, coated case

0.04, uncoated case

〈Idet,max〉 = 2mW, detector saturation power

α = 1.0A/W, detector responsivity at 1300nm.

λc = 1300nm

∆λ = 80nm (δν = 14.2THz)

TS = x, where x is set to the value for best SNR.

TR = RR × (1− x)

RR =

{

1.0, ideal reference scanner

0.1, 90% insertion loss

nsp = 2

The coated and uncoated case refers to the specifications of the accumulated

incoherent reflections in the sample arm of the system. The accumulated

incoherent reflections is the sum of light reflected in the sample arm, which

may be considered incoherent with respect to the light from the reference.

In the uncoated case, these reflections are dominated by a single undesired

air-to-glass interface in the optics related to the sample arm. In the coated

case, this reflection has been reduced, i.e., by coating or by angling of the

interface. The value of Rincoh is then an estimated value based on the sum

of the Rayleigh backscattering in the fiber (approximately 10−5 [32, 37]),

a diffusely reflecting surface of the sample with reflectivity of 0.05 (see

section 5.2.5), discontinuities within the sample and distributed backscat-

tering from the sample. The detector saturation power, 〈Idet,max〉, and

responsivity, α, are specifications of the New Focus 1611reciever discussed

below [139]. When loss in the reference arm is considered, the quantity

RR = 0.1 is used, corresponding to the 90% insertion loss of the Fourier-

domain rapid-scan optical delay line [26]. The quantities λc and∆λ are the

center wavelength and optical bandwidth of the light source, respectively.

Finally, δν and Bo are the matched optical linewidths of the broadband

light source and optical amplifier, respectively.
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Receiver noise

In chapter 5, it was concluded that the benefit of an optical amplifier is the

suppression of noise contributions from the electrical receiver noise system

relative to the optical noise. Accordingly, the receiver noise is an essen-

tial parameter for the following investigations. The front-end receiver,

i.e., photodiode and the first electrical amplifier, is especially important.

Firstly, any degradation of the SNR by the front-end cannot be reduced

by a subsequent electrical amplification. Secondly, the gain in the front-

end determines, to some degree, the vulnerability of the system to other

electrical noise sources. With low gain, any noise sources added to the

electrical system after the front-end, either from other electrical devices in

the system, or from environmental coupling, will be proportionally larger

compared to the signal. Estimating this noise is, at best, difficult when

the entire electrical system of filters, digital-to-analog converters, etc., are

included. Finally, any electrical field coupling into the electrical circuits

from a laboratory- or clinical environment must also be included. To-

gether, these contributions may be quite significant compared to the noise

of the photoreceiver itself. Therefore, a more descriptive term for the total

receiver noise could be electrical noise.

Because detailed analysis of the receiver front-end, is outside the scope

of this thesis, the specifications of the New Focus 1617 balanced detector

front-end are used throughout the cases of this section [139]. This de-

tector has been chosen because of its relatively wide bandwidth of 40 kHz

to 850MHz, which is considered to be suitable for fast scanning applica-

tions now and in the near future (see chapter 1). The saturation power

of this detector system is 1

2
〈Idet,max〉 =1mW incident on each detector,

and the minimum noise equivalent power (NEP) is 20pWHz−1/2. The

current noise spectral density due to optical shot noise corresponding to

maximum incident optical power is 2α × e × 2mW=6.4 × 10−22A2Hz−1,

whereas the current noise spectral density due to receiver noise is α2NEP2 =

4×10−22A2Hz−1. This implies that with maximum incident optical power,

the front-end will be either shot-noise limited or beat-noise limited. How-

ever, it is clear that with a small reduction in incident optical power, or with
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a small contribution to the electrical noise introduced after the front-end,

the electrical noise will dominate the noise of the system.

As discussed above, the gain of the receiver front-end is essential to

noise rejection of the electrical system. To accommodate a lower response

time in a faster detector, the gain of the receiver front-end must be re-

duced [130]. The 1617 detector has a conversion gain of 700V/A, which

is relatively low compared to 1.5 × 107V/A, which is the maximum con-

version gain of the slower (200 kHz) New Focus 2011 receiver [140]. The

increased noise sensitivity due to a low conversion gain is well illustrated by

an experiment in which the electrical noise was measured from a balanced

receiver setup comprising of two 2011 receivers and circuitry to obtain the

difference signal. The results and details of the experiment may be found

in Appendix B. The electrical noise added to the receiver noise is, in the

following, incorporated by considering three cases of the electrical noise
〈

∆i2rec,b

〉

: 1, 10 and 100 times the specified receiver noise of the 1617 bal-

anced receiver. These cases are denoted the low-, medium- and high-noise

case, respectively:

〈

∆i2rec,b
〉

=











4× 10−22A2Hz−1, low-noise case

4× 10−21A2Hz−1, medium-noise case

4× 10−20A2Hz−1, high-noise case

The remaining parameters, such as source power and gain of the ampli-

fier, are specified in the following examples.

6.1.2 Case 1: Low-irradiance light source

As discussed in chapter 1 and section 5.1, the power of a suitable OCT

light source is likely to be limited to low values. With limited irradiance

of the light source, it is assumed that power limitations, such as detector

saturation, can be ignored. However, for the discussion of the functionality

of the noise model, some graphs are extended into a regime where power

limitations are considered in subsequent sections. Accordingly, for high

values of the source power or amplifier gain the shown improvement should

not be considered physically obtainable, unless a detector with a high satu-
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ration power can be obtained. The present case was described analytically

in section 5.4, and the improvement factor was given as Eq.(5.29).

Improvement for lossless reference scanner; RR = 1

In Figs. 6.1a and 6.1b the improvement factor is plotted as function of source

power for the coated and uncoated case, respectively. The amplifier gain is

set to G = 20dB, and the improvement factor is plotted for the three cases

of receiver noise power. It is seen that there is a substantial improvement

over the optimized system without amplification for all three cases of the

receiver noise.

From the graphs it is seen that the best improvement is obtained in

the high noise case. This is expected, since the advantage of an optical

amplifier is the suppression of electrical noise relative to the optical noise

(see section 5.4). For all three cases of the electrical noise, it can be seen

that the improvement factor is decreasing for increased source power. This

corresponds to the optical noise increasing relative to the receiver noise, and

thereby reducing the impact of the amplifier. The effect of beat noise, due

to the incoherent reflections in the sample arm, is observed for modest and

high values of the source power where a significant power is reflected, see

section 5.2.3. The added optical noise reduces the impact of suppressing

the electrical noise, and therefore the improvement factor. The added

beat noise in the uncoated case also has the effect of masking the penalty

of inserting the amplifier, when the system is dominated by optical noise

due to higher values of the source power.

Improvement for high insertion loss in the reference scanner; R =

0.1

A loss in the reference arm increases the necessary power of the light source

for which the optical noise dominates. This is vital because the power of

the light source may be limited to a low value [23]. Since the split ratio,

x, is optimized for maximum SNR for the system for a given set of system

parameters, any loss in the reference arm is expected to act as a scaling

factor on the power of the light source. This effect can be seen in Fig. 6.2a
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Figure 6.1: Improvement factor as a function of source power for the low-noise
case (solid), medium-noise case (dash) and high-noise case (dot-dash). a) The
coated case. b) the uncoated case. The gain of the optical amplifier is 20dB.

where Fig. 6.1a has been replotted for a 90% insertion loss of the reference

scanner. As expected, the improvement factor for 〈Is〉 = 10mW in Fig. 6.2a

corresponds to the improvement factor for 〈Is〉 = 1mW in Fig. 6.1a. This

means that for a given source power, an optical amplifier will be more

advantageous with increased insertion loss of the reference system.

In Fig. 6.2b the improvement factor is plotted as a function of amplifier

gain for 〈Is〉 = 2mW. This plot is included to illustrate two important

functionalities: Firstly, this plot illustrates that the improvement factor is

a monotonic function of the gain, G, as discussed in section 5.4. Secondly,

Fig. 6.2b shows, as expected from Eq.(5.30), that a maximum improvement

factor is reached after which additional gain has no effect. This limit

corresponds to the electrical noise being completely dominated by optical

noise. However, it should be noted that for the New Focus 1611 receiver,

the amplifier noise alone saturates the detectors for G = 23.4dB. The

effects of saturation due to the amplifier are included in Case 2.

Improvement for limited source power and amplifier output

It was previously discussed that high demands on spectral width and shape

of the light source is likely render to the available optical source power

limited to a low value [23]. From Figs. 6.1 and 6.2 it was concluded that

an optical amplifier is especially advantageous for low levels of the source
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Figure 6.2: Improvement factor for a system with a 90% insertion loss of the
reference scanner in the coated case for the three cases of electrical noise: low-
noise case (solid), medium-noise case (dash) and high-noise case (dot-dash). a)
Improvement factor as a function of source power with a gain of 20 dB. b) The
improvement factor as a function of gain with 〈Is〉 = 10mW.

power. However, the stringent requirements of the light source will nat-

urally also apply to the amplifier rendering the total output power the

amplifier limited1. It is therefore considered likely that a while system de-

signer is unable to obtain a light source with sufficient irradiance, a suitable

amplifier may will be available instead.

Consider an example where a suitable light source with 150nm band-

width has been constructed together with a corresponding amplifier. Such

devices have, to the best of my knowledge, not yet been constructed. How-

ever, bandwidths of this order may be necessary for very high-resolution

applications, and it is considered likely that both devices will have a limited

output power. Both devices are taken to have a maximum output power

of 〈Is〉 =0.4mW. For such a low source power, the amplifier output will be

dominated by amplifier noise. The maximum obtainable gain may then be

found from the limitation of the output to (see Eq. (5.15))

G 〈Isam,b〉+ 〈IASE〉 = GTSRincoh 〈Is〉+ (G− 1)sASE (6.1)

≈ (G− 1)2nsphνδν = 〈Is〉 ⇔

1 If this was not the case, it is likely that the technology used to construct the amplifer,

is just as well used to construct a suitable broadband light source.
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Figure 6.3: Improvement factor for a system with low optical power of the light
source and amplifier for the three cases of electrical noise: low-noise case (solid),
medium-noise case (dash) and high-noise case (dot-dash). a) Improvement factor
as a function of insertion loss of the reference scanner. b) The SNR of the system
in the uncoated case relative to the system in the coated case.

G =
〈Is〉

sASE
+ 1 ≈ 14dB,

where sASE = 2nsphνδν, and it is noted that the bandwidth of the optical

amplifier is assumed to match the light source.

The improvement factor obtained by inserting the amplifier to amplify

the light reflected from the sample is plotted in Fig. 6.3a as a function of

the insertion loss of the reference system for the coated case. Compared to

results given in Figs. 6.1 and 6.2, the improvement is reduced substantially

for the medium- and high noise cases due to the reduction of the amplifier

gain. However, the obtainable improvement is still substantial for all three

cases of the electrical noise. With the modest source power, the added

beat noise due to the specular reflection in the uncoated case, is expected

to have little influence. This is demonstrated in Fig. 6.3b, where the ratio

of the SNR with optical amplification in the coated case to the SNR in

uncoated case is plotted.

In summary; The examples of this subsection illustrated the important

result that a substantial improvement is obtainable for all three cases of

the electrical noise, especially for the important case of low source power

and high insertion loss of the reference scanner. This was also observed

for the important case, where a wideband light source and amplifier, both



112 Optical amplification in OCT: Results and implications Chapter 6

with a limited output power, were considered. Reduction of the specular

reflection has a modest effect in this regime, whereas it is clearly seen for

higher values of the source power. For the low-noise case, the amplifier was,

as expected, seen to be a disadvantage for higher values of source power.

6.1.3 Case 2: High-irradiance light source

In this section, the power of the light source is sufficient to obtain detector

saturation limit, and it is assumed that there is no safety limitation on the

power impinging on the sample. Accordingly, the examples of this section

is related to the theoretical discussion of section 5.5.2. In the saturation

limit, the optical noise power will be slightly larger than the receiver noise

from the balanced receiver front-end alone. It is then clear that an optical

amplifier will not be an advantage in the low-noise case. This case is,

therefore, not considered here. The improvement factors in this case are

obtained by optimizing the SNR using the design expressions (Eqs.(5.40) in

combination with Eq.(5.24)) with and without amplification, respectively.

Optimum source power in a conventional OCT system

Consider an OCT system without amplification that is operated in the sat-

uration limit with the optimum splitting ratio of the first coupler from the

light source. Similarly to the discussion of section 5.5.2, an increase in the

power of the light source must then be accompanied by an adjustment of

the splitting ratio, sending more light towards the sample. This will serve

to "spill" the power because of the low reflectivity of the sample relative

to the reference. Accordingly, the total optical power impinging on the

detectors is kept constant. Since adjusting the split ratio away from opti-

mum will reduce the SNR for constant source power, it may be interesting

to investigate whether such an increase in source power is advantageous.

This is studied in Fig. 6.4 for an example with a lossless reference scanner.

In Fig. 6.4a the split ratio, x, is plotted as a function of 〈Is〉. With an opti-

mum split ratio of 50%, detector saturation is obtained when 〈Is〉 ≈ 4mW,

after which the split ratio is increased. In Fig. 6.4b the SNR of the system

is plotted as function of source power relative to the SNR for 〈Is〉 = 4mW.
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From this graph it can be seen that increasing the source power, and adjust-

ing the split ratio accordingly, is an advantage in the coated case. This is

expected in this case, because with the low accumulated incoherent reflec-

tivity of the sample arm the added power from the sample arm impinging

on the detector is small relative to the power from the reference. The

power to reference arm is therefore kept approximately constant, while the

power to the sample is increase with increased source power. However, in

the uncoated case, the obtainable improvement is modest because the sys-

tem quickly reaches the beat noise limit. At approximately 〈Is〉 = 50mW

the system saturates in the uncoated case when all the optical power must

be sent to the sample resulting in a diminishing SNR. Accordingly, the

conclusion of this investigation is that increasing the optical power of the

light source beyond the saturation limit is an advantage, at least in the

coated case. It is important to note that the advantage of increasing the

source power is a feature of the circulator used in the example system. If,

instead, the first coupler from the light source was used to transmit the

reflected sample light to the balanced detector, the sample transmission

coefficient would be Ts = x(1−x). The factor (1−x) will limit the obtain-

able SNR considerably, as seen in Fig. 6.5 where Fig. 6.4 is replotted with

Ts = x(1−x). Accordingly, very little can be gained with additional source

power in such a system once detector saturation limit has been obtained.

However, it can be shown that the obtainable improvement using an optical

amplifier is comparable to that obtainable in the system with a circulator

(curves not shown).

Improvement for lossless reference scanner; RR = 1

When an optical amplifier is inserted into a system operating in the detector

saturation limit, the additional optical power added by the amplifier must

be compensated by a corresponding adjustment in split ratio. This was

discussed theoretically in section 5.5.2. Figures 6.6a and 6.6b shows the

improvement factor for inserting an optical amplifier into a system with

a lossless reference scanner and 〈Is〉 = 4mW and 15mW, respectively.

From these graphs it is seen that, depending on the case, a substantial
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Figure 6.4: Demonstration of the advantage of increased source power in a con-
ventional OCT system with an optical circulator. a) The split ratio x as a function
of source power for the coated case (solid) and uncoated case (dash). b) The im-
provement factor relative to 〈Is〉 = 4mW as a function of source power for the
coated case (solid) and uncoated case (dash).
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Figure 6.5: Demonstration of the limited advantage of increased source power in
a conventional OCT system, where the coupler is reused to transport the sample
light to the balanced detector. a) The split ratio x as a function of source power
for the coated case (solid) and uncoated case (dash). b) The improvement factor
relative to 〈I

s
〉 = 4mW as a function of source power for the coated case (solid)

and uncoated case (dash).
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Figure 6.6: Improvement factor for inserting an optical amplifier (nsp = 2) in a
system where the detectors are just saturated. The electrical noise is considered
in medium-noise case (coated case: solid ; uncoated case: dash) and the high-
noise case (coated case: dot-dash ; uncoated case: dot). a) 〈I

s
〉 = 4mW. b)

〈Is〉 = 15mW

improvement from inserting the amplifier may be obtained.

As expected from section 5.5.2, the improvement factor increases with

the gain of the amplifier until the system is saturated at the saturation

gain (see section 5.5.2). The saturation gain is found, using Eq.(5.41) and

〈Is〉 = 4mW, to 23.58dB and 10.76 dB in the coated and uncoated case,

respectively. The saturation gain is relatively modest in the uncoated case,

because of the large specular reflection (see Eq.(5.41)). When comparing

Figs. 6.6a and 6.6b, a weak dependence on the source power is observed in

the coated case, where the obtainable improvement decreases with increas-

ing source power. In the uncoated case, the extra source power results

in a reduced saturation gain, as well as a considerable reduction of the

improvement factor. This clearly illustrates the importance of reducing

the specular reflections of the sample arm for this case. The obtainable

improvement factor is, as expected, higher in the high noise case because

in this case the added noise due to the optical amplifier is insignificant

compared to the electrical noise.

Improvement with an ideal amplifier

The output power of the optical amplifier is, to some degree, dominated

by ASE noise. This noise power influences the improvement factor (see
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Figure 6.7: Improvement factor for inserting an ideal optical amplifier (nsp =
1) in a system where the detectors are just saturated. The electrical noise is
considered in medium-noise case (coated case: solid ; uncoated case: dash) and
the high-noise case (coated case: dot-dash ; uncoated case: dot). a) 〈I

s
〉 = 4mW.

b) 〈Is〉 = 15mW

Eq.(5.42)), saturation gain and the necessary offset from optimum splitting

ratio (see Eqs.(5.41) and (5.40)). It is therefore interesting to investigate

the effect of inserting an ideal amplifier with nsp = 1. Amplifiers with char-

acteristics close to this limit has been obtained for doped-fiber or Raman

amplifiers [128].

The effect of the reduced amplifier noise can be seen in Fig. 6.7, where

there is a significant increase of the improvement factor and saturation gain

for the coated cases. In the uncoated case, the added beat noise masks the

reduction in amplifier noise, and therefore little increase in the improve-

ment factor is observed, which is expected from Eq.(5.42). Comparing the

uncoated cases plotted in Figs. 6.6 and 6.7, it is seen that the saturation

gain is unchanged by the reduction of amplifier noise. This is due to power

from the specular reflection dominating the amplifier output, and, there-

fore, also the saturation gain. Figures 6.6 and 6.7 clearly illustrates the

importance of reducing undesired reflections in the sample arm.

Improvement for high insertion loss in the reference scanner ;

R = 0.1

Finally, consider the important case of a lossy reference scanner. As the

split ratio is adjusted to saturation limit; it is expected that the power loss
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will result in simple scaling of 〈Is〉 compared to the lossless case. However,

the extra power of the light source is expected to reduce the improvement

factor to some degree by adding optical noise from the sample arm and

reducing the saturation gain, especially in the uncoated case (see Eqs.(5.42)

and (5.41)). This is illustrated in Fig. 6.8 where the improvement factor

is plotted for an insertion loss of 90% of the reference scanner and 〈Is〉 =

40mW and 〈Is〉 = 150mW, respectively. For 〈Is〉 = 150mW it can be

seen that the improvement factor for the coated case is reduced compared

to Fig. 6.7b, whereas little difference is observed between Figs. 6.7a and

6.8a. The reduced saturation gain in the uncoated case is observed in

Fig. 6.8a, whereas the detector is saturated even before insertion of the

optical amplifier for 〈Is〉 = 150mW (4%× 150mW=6mW). However, this

example illustrated the important result that with the expected scaling

of the source power, an insertion loss of the reference scanner yields an

increase in the improvement factor for constant source power.

In this context it is important to note that suitable broadband light

sources with 〈Is〉 = 40mWare very difficult to obtain [23], and that 150mW

is not currently realistic unless the more cumbersome and expensive femto—

second laser are used [18]. Approximately 40mW is the minimum source

power for which the detector saturation limit may be obtained unless am-

plifier noise is substantial. Accordingly, Case 1 is likely to be the case

relevant for systems with a high insertion loss in the reference scanner.

In summary; The examples of this subsection illustrated the important

result that a substantial improvement may be obtained to a system in

detector saturation limit, for the two relevant cases of the electrical noise.

As expected, the best improvement was observed for moderate source power

and high insertion loss of the reference scanner. However, for high insertion

loss; Case 1, rather than the present case, is applicable unless very high

irradiance of the light source can be obtained. Case 1 is therefore likely to

be the case relevant for fast scanning OCT systems, due to the high insertion

loss of suitable optical delay lines [26,134]. The specular reflection of the

uncoated case was observed to reduce the improvement factor, as well as

the saturation gain, significantly. This strongly emphasizes the importance



118 Optical amplification in OCT: Results and implications Chapter 6

0 5 10 15 20 25

Gain @dBD

1

2

5

10

20

50
Im

p
ro

v
e

m
e

n
t

fa
c
to

r

aL

0 5 10 15 20

Gain @dBD

1

2

5

10

20

50

Im
p

ro
v
e

m
e

n
t

fa
c
to

r

bL

Figure 6.8: Improvement factor for inserting an ideal optical amplifier (nsp = 1)
in a system where the detectors are just saturated and the reference scanner has a
90% insertion loss. The electrical noise is considered in medium-noise case (coated
case: solid ; uncoated case: dash) and the high-noise case (coated case: dot-dash
; uncoated case: dot). a) 〈Is〉 = 40mW. b) 〈Is〉 = 150mW

of reducing the specular reflections of the sample arm. Finally, the effect of

inserting an ideal amplifier was investigated and shown to give a significant

increase in the improvement factor compared to the more noisy amplifier

otherwise used. This improvement was only observed in the coated case

emphasizing the importance of reducing specular reflections once more.

6.1.4 Case 3: High-irradiance light source and enforced sa-

fety limit

In this case, the irradiance of the light source is sufficient to saturate the

detector system, while the sample is irradiated with the maximum intensity

according to safety considerations. In this case, a system designer will no

longer have the option of increasing the split ratio and "spill" the optical

power. This case is then particularly important because an increase in

source power to improve the SNR is then not possible. As discussed in

section 5.5.3, the added optical power by inserting an optical amplifier

must be followed by a reduction in source power. This reduction is given

by Eq.(5.44) which, in combination with Eq.(5.24), is the design expression

for this case.
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Improvement for lossless reference scanner; RR = 1

In the following example, the optical amplifier is inserted into a saturated

system with a limited irradiation of the sample of 1mW. This value is

chosen rather arbitrarily but has been mentioned as a relevant limit for eye

safety for a specific OCT system operating at 800 nm [32].2 As it turns

out, the specific limit has little effect on the improvement factor because

the amplifier is assumed to be inserted into a saturated system. However,

in the uncoated case, added power in the sample arm will increase the

optical noise and therefore reduce the improvement factor (see Eq.(5.47)).

An increase in the limitation of the power to the sample also increases the

necessary source power to obtain system saturation.

In Figs. 6.9a and 6.9b the improvement factor is plotted as a function

of gain for a system with a lossless reference scanner and nsp = 2 and

nsp = 1, respectively. A substantial improvement very similar to Case 2 is

observed, but with a reduction caused by the restriction of the split ratio.

From section 5.5.3 it is expected that the improvement factor increases

with increased gain to a maximum value, after which it decrease. This is

confirmed by the plots in Figs. 6.9a and 6.9b. As in Case 2, the specular

reflection of the uncoated case reduces the improvement factor and the

saturation gain significantly. Reducing the amplifier noise has the opposite

effect, and increases the improvement factor and the saturation gain (see

Eqs.(5.45) and (5.47)). In Fig. 6.10 the effect of a reduced limit on the

power to the sample of 0.1mW is shown. As expected from the discussion

above, only the improvement factor in the uncoated case is affected by this

change.

Improvement for high reference scanner insertion loss; R = 0.1

Finally, consider the case of a lossy reference scanner. As the initial system

is assumed saturated, the absolute values of the light from the sample and

the reference will be identical to the case of a lossless reference system.

Accordingly, there is no change in the improvement factor of such a system

2For a cw sources, the specific safety limit will depend on the degree of focusing of
the sample beam, exposure duration (i.e. sample scanning speed), and wavelength of the
light [141].
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Figure 6.9: Improvement factor for inserting an optical amplifier in a system
where the maximum power to the sample is 1mW and the system is just satu-
rated. The electrical noise is considered in medium-noise case (coated case: solid
; uncoated case: dash) and the high-noise case (coated case: dot-dash ; uncoated
case: dot). a) nsp = 2. b) nsp = 1.

compared to a system with a lossless reference system. However, the

required power of the light source to obtain saturation increases, which may

render Case 1 relevant, if the source power is limited to a low value. As an

example, consider source power requirement for the coated case: With a

lossless reference system and a maximum allowable power to the sample of

1mW, the saturation power of the system is approximately 3mW (1mW

to the sample arm and approximately 2mW to the reference), whereas the

saturation power is 21mW for an insertion loss of 90%.

In summary; The examples of this subsection illustrated the important

result that a saturated OCT system with maximum power to the sample

and detectors will be improved by an optical amplifier. This is a par-

ticularly important case, because an increase in source power to improve

the SNR is impossible. This improvement is, in the coated case, approxi-

mately independent of the specific limitations of the power to the sample.

An insertion loss of the reference scanner does not change the obtainable

improvement, but increases the necessary source power in order to obtain

the assumed system saturation.
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Figure 6.10: Improvement factor for inserting an optical amplifier in a system
where the maximum power to the sample is 0.1mW and the system is just satu-
rated. The electrical noise is considered in medium-noise case (coated case: solid
; uncoated case: dash) and the high-noise case (coated case: dot-dash ; uncoated
case: dot). a) nsp = 2. b) nsp = 1

6.2 Increased penetration depth

It may be shown [17,40] that if the noise of a system is independent of the

light from the probed reflection, 〈Icoh〉, the SNR may be found as

SNR = ΨSNR0, (6.2)

where SNR0 is the signal-to-noise ratio in the absence of scattering. The

quantity Ψ is the heterodyne efficiency factor which was estimated using

the new Monte Carlo model of the OCT signal presented in chapter 4. To

investigate the increased penetration depth corresponding to an increase in

SNR for a realistic application, the heterodyne efficiency factor has been

obtained for a skin model using the new Monte Carlo model. The results

are plotted as a function of depth z in Fig. 6.11. The reported penetration

depth of an OCT system imaging skin is about 1.5mm at 1300nm [19].

The parameters for the skin model were obtained from the recent work of

Troy et al. [142], where 22 human skin samples were measured in vitro us-

ing a double integrating sphere setup. Unfortunately, parameters were not

measured for the individual layers of the skin, but presented as bulk param-

eters. From the compilation of data by Gemert et al. [96], which extends

to λ = 800nm, it is expected that there is little variation in the scattering
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between epidermis and dermis (the two main layers of the skin) and ap-

proximately a factor of 10 higher absorption coefficient in the epidermis at

longer wavelengths. Here, it is then assumed that the ratio of the absorp-

tion coefficient is maintained at 1300nm and that the value of absorption

coefficient is dominated by the value for the thicker dermis. Furthermore,

the usual very thin stratum corneum is ignored in this context. The skin in

then simulated as a two-layer model with a 200µm thick epidermis on top

of a infinitely thick dermis, where the thickness of the epidermis is obtained

from an OCT image by Ref. [19]. A scattering coefficient of µs = 14mm−1

is assumed common for the epidermis and dermis, whereas the absorption

is taken to be µa = 1mm−1 and µa = 0.1mm−1, respectively. The asym-

metry parameter is g = 0.9 for both layers. The values for scattering and

absorption coefficients are typical values from Ref. [142] and asymmetry

factor, g, was taken from Roggan et al. [123] and the refractive index was

set to 1.37 (water) [143].

If a system has a given maximum penetration depth, this will correspond

to a minimum heterodyne efficiency factor, Ψmin. An increase in SNR

will correspond to a new minimum heterodyne efficiency factor given by

Ψ = Ψmin/Q. Be inspection of Fig. 6.11 it is seen that an increase SNR by a

factor of 3 will increase the penetration depth from 1.5mm to 1.9mm and an

increase by a factor of 10 yields an increase to 2.4mm. Improvement factors

in this order of magnitude was shown for several cases in the preceding

sections. Accordingly, an optical amplifier will provide a significant increase

in penetration depth when applicable. It is clear that the increase will

depend on the specific sample parameters, as well as the initial penetration

depth, because of the decreased curve slope for larger depths. Similarly,

an optical amplifier may be used to compensate for the reduction in SNR

caused by a necessary increase in electrical bandwidth to facilitate faster

scanning and/or higher resolution (see the discussion of the improvement

factor in section 5.4). This example clearly demonstrates the practical

importance that an optical amplifier may have to the use of OCT systems

in biomedicine.
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Figure 6.11: The Heterodyne efficiency factor as a function of z for a skin model
(see text) obtained using Monte Carlo simulation. The sample beam is described
by case 2 of table 3.1.

6.3 The amplified OCT signal: a preliminary mea-

surement

Until now little has been discussed about the influence of an optical ampli-

fier on the coherence of the broadband input and thus resulting shape of

the OCT signal. It is clear that a wavelength dependent gain factor will

serve to distort the signal, but phase distortion may also play an important

role. In this section, the issue of signal shape after amplification will be

discussed by studying a preliminary experiment. In this experiment, two

erbium-doped-fiber amplifiers with an optical 3 dB bandwidth of 4 nm at

1535 nm were used. The spontaneous emission of the first amplifier is used

as the light source, whereas the second amplifier is used to amplify the light

from the sample. The gain profile of the amplifiers is not shaped and is

therefore relatively far from the ideal Gaussian shape of the light source

and a square shape for the amplifier. This, combined with a narrow band-

width, renders these amplifiers irrelevant for OCT applied in biomedicine.

However, erbium-doped fiber amplifiers have been used as light sources in

optical low-coherence reflectometry systems applied to optical device test-

ing [37, 144]. Figures 6.12a and 6.12b shows the envelope of the OCT

signal without and with amplification of the sample light, respectively. A

small distortion, as well as a broadening of the signal shape, can be seen
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in the signal with amplification relative to no signal amplification. The

3 dB FWHM width of the signal with amplification is approximately twice

that of the signal without amplification (0.38mm versus 0.18mm). Ac-

cordingly, the resolution obtainable with the system is reduced a factor 2

by insertion of the optical amplifier. However, this reduction is not taken

to be a general result, but is expected to depend on the amplifiers ability

to amplify all wavelengths of the light source equally. Accordingly, the

broadening will depend on the properties of the amplifier relative to the

light source. That it is possible to obtain any signal is not surprising,

because investigations of an erbium-doped amplifier using a low-coherent

reflectometer has been published [6]. However, to the best of my knowl-

edge, this is the first time the coherence properties, i.e., signal shape, of an

amplified broadband signal has been investigated. More experimental and

theoretical work is necessary to establish the relationship between amplifier

properties and signal shape.

The present experiment demonstrates that the overall shape of the OCT

signal can be expected to be conserved when an optical amplifier is used to

amplify the light from the sample. However, broadening of the signal and

a corresponding reduction in resolution is, to some degree, to be expected

depending on the properties of the amplifier relative to the light source. It

is then up to the specific application whether a (perhaps) small reduction

in resolution is tolerable to obtain an increased penetration depth through

optical amplification.

6.4 Summary

In this chapter the improvement of the SNR by inserting an optical amplifier

in an OCT system was quantified for fast-scanning OCT systems using the

new model presented in chapter 5.

In chapter 5 it was shown that the benefit of an optical amplifier is

suppression of the electrical noise of the system. Therefore, special at-

tention was given to estimate this parameter for the quantitative analysis.

With a commercially available balanced detector front-end, it was shown

that optical shot-noise limit may be obtained if the detector is just sat-
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Figure 6.12: OCT signal obtained experimentally in an interferometer with bal-
anced detection. a) Envelope of the OCT signal obtained when an erbium-doped-
fiber amplifer is used as light source. b) Envelope of the OCT signal obtained when
an identical erbium-doped-fiber amplifer is inserted into the system to amplify the
light from the sample arm.

urated. The specific front-end was chosen because of its relatively large

bandwidth, so that it may be used in fast scanning OCT systems. This

bandwidth is accompanied by a necessary reduction in the electrical gain

of the front-end, which in turn renders the system more sensitive to other

sources of electrical noise. Therefore, three cases of the total electric noise,

i.e., 1, 10, and 100 times the specified receiver noise of the front-end, were

investigated. The improvement factor was then investigated for three case

of the irradiance of the light source relevant to practical OCT: Case 1,

where the irradiance of the light source is limited; Case 2, where the power

of the light source if sufficient to saturate the detector system, and Case 3

where a safety limit on the power impinging on the sample also must be

considered. Substantial improvement of the SNR of a state-of-the-art bal-

anced OCT system with an optical circulator, was demonstrated using the

theoretical model. Improvement were then shown for all three cases of the

electrical noise for the important case of a limited power of the light source.

The source power is likely to be limited to low values for high resolution

applications, where a very wideband light source is required with smooth

spectral properties. A reference scanner, with a high insertion loss such

as the Fourier-domain rapid-scan optical delay line [14,24,31], will signifi-

cantly increase the power of the light source required to overcome electrical
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noise. However, if the source power is sufficient to obtain detector satu-

ration, improvements were shown to be possible for an electrical noise of

10, and 100 times the receiver noise. These improvements were shown to

be possible even when the maximum allowable power was incident on the

sample. This is a particularly important case, because increasing source

power to overcome electrical noise is not possible.

The increased penetration depth due to an increase in SNR was dis-

cussed using the Monte Carlo model of the OCT signal presented in chapter

4. Considering the application of OCT to imaging of human skin, it was

found that a substantial increase in penetration depth of about 30-100% will

be obtained by inserting an optical amplifier when applicable. Similarly,

an optical amplifier may be used to compensate for the reduction in SNR

caused by a necessary increase in electrical bandwidth to facilitate faster

scanning and/or higher resolution (see the introduction to this chapter).

Finally, the effect of amplification on the shape of the OCT signal was, as

a novelty, investigated through a preliminary laboratory experiment. This

experiment demonstrated that the general shape of the OCT signal can be

expected to be conserved; however, accompanied with a minor reduction in

resolution depending on the properties of the amplifier.



Chapter 7

Conclusion

Two new models of optical coherence tomography (OCT) have been devel-

oped. The first model is a Monte Carlo model of the OCT signal, and the

second is an analytical model of the signal-to-noise ratio of a system with

optical amplification of the reflected light from the sample.

There were three steps to the derivation of the Monte Carlo model :

Firstly, it was proven analytically that by calculating the mixing of the

reference and sample beams in the conjugate plane to the probed disconti-

nuity in the sample, the OCT signal may be calculated from the intensity

distributions of the respective beams alone. This proved the viability of ap-

plying the incoherent Monte Carlo simulation method to an OCT system,

because the requirement of coherence information is relaxed. This novel

result is one of the main conclusions of this thesis.

Secondly, a new method of simulating focused Gaussian beams was

derived and discussed. With this method the correct three-dimensional

intensity distribution of a Gaussian beam in free space was achieved, and

excellent performance for modeling beam propagation in scattering media

was demonstrated. Furthermore, the novel focusing method was shown to

be free of the discrepancies of previously published approaches, and this

was obtained without increasing the simulation time relative to previous

methods. Accordingly, the new method of modeling beam propagation

using Monte Carlo simulation may also be valuable as a numerical phantom

in its own.
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Thirdly, the new expression for the OCT signal was used to derive a

so-called detection scheme, which was used to determine the contribution

of a single energy packet to the OCT signal. The new detection scheme

in combination with the new focusing method constituted the new Monte

Carlo model of the OCT signal. The new Monte Carlo model was validated

by achieving excellent agreement with results obtained using an analytical

model of OCT based on the extended Huygens-Fresenel principle for sam-

ple geometries where this model has been validated experimentally. It was

demonstrated that the good performance of the model is independent of

choice of scattering function, which is crucial because it extends the appli-

cability of the present method to most tissues. Accordingly, it is concluded

that the new Monte Carlo model of the OCT signal will perform as a pow-

erful numerical phantom, which may serve as an excellent supplement to

the wave equation based analytical OCT model. The Monte Carlo model

is thus preferred when the analytical OCT model is either not applicable,

too cumbersome to use because of complicated propagation geometries, or

when corroborating validity should otherwise be obtained from difficult ex-

periments.

A second analytical model of the signal-to-noise ratio (SNR) was de-

rived to investigate the applicability of optical amplification in OCT. This

model was obtained by extending the model of a conventional system to

incorporate an optical amplifier. An important result of this analysis was

that, although often inferred in the field, the shot-noise limit is only appli-

cable to conventional OCT systems in special cases. Using the new model

it was found that an optical amplifier will improve the SNR of a system

dominated by receiver noise. Receiver noise, or electrical noise, was iden-

tified as being of practical concern, especially because of the often limited

irradiance of available optical sources for OCT. It was found that this is

emphasized in the important class of fast-scanning systems where receiver

noise is likely to be increased, and high insertion loss of the reference scan-

ner reduces the optical power impinging on the detector. To enable use of

the model as an aid in system design, the important practical constraints of

detector saturation and a safety limit on the irradiation of the sample were,
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as a novelty included explicitly, and design expressions for these cases were

given. These design expressions are also applicable to systems without

optical amplification, and therefore extends the capabilities of the analysis

of conventional systems.

Considerable improvement of the SNR was shown for a number of cases

of fast scanning systems of practical interest, where the best improvement

was obtained when undesired reflections from the optics of the sample arm

were reduced to a minimum. Two of the cases were of particular interest.

The first case was when the power of the light source was limited, so that

receiver noise could not be suppressed by increasing the optical power in the

interferometer. This was found particularly critical with high insertion loss

of the delay-line scanner in the reference arm. The second case was when

the maximum optical power was irradiating the sample, while the limit

of detector system was just obtained. In this case the irradiance of the

light source could not be increased to suppress receiver noise. Significant

improvement in the order of a factor 2-40 of the SNR was demonstrated in

each of these cases depending on receiver noise and irradiance of the light

source.

It was then demonstrated how an improvement in penetration depth,

corresponding to an improvement of the SNR, is quantified using the new

Monte Carlo model of the signal. This example demonstrated that an

increased penetration of 30% to a 100% can be expected in skin with an

improvement of the SNR of a factor of 3 and 10, respectively. Similarly,

an optical amplifier may be used to compensate for the reduction in SNR

caused by a necessary increase in electrical bandwidth to facilitate faster

scanning and/or higher resolution.

Finally, the effect of amplification on the shape of the OCT signal was

investigated through a preliminary laboratory experiment. This experiment

demonstrated that the general shape of the OCT signal can be expected to

be conserved; however, accompanied with a minor reduction in resolution

depending on the properties of the amplifier. Accordingly, it is concluded

that using an optical amplifier in OCT will have a significant positive impact

on system performance in several practical cases, especially for fast scanning

systems of the future.
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With the demonstrated practical applicability of both presented models,

it is concluded that the two new models will pose as valuable tools in future

development and optimization of OCT systems resulting extend imaging

capabilities within biomedicine.

7.1 Outlook

With the flexibility of the general Monte Carlo simulation method, the new

Monte Carlo model of the OCT signal poses as a powerful tool for numer-

ical investigations of OCT systems and beam focusing in tissue. Further

use of the Monte Carlo model may entail an examination of the effect of

backscattering, and methods to include this property in a model based on

the extended Huygens-Fresnel principle may be validated. It would also

be interesting to study the feasibility of obtaining the optical parameters

of single as well as a multiple layered samples from the OCT signal. Fi-

nally, it should be noted that the path-length distribution of photon packets

contributing to the OCT signal is easily obtained from the simulations. Us-

ing this, it might be possible to investigate the influence of the coherence

length of the light source on the signal. Such an investigation would fur-

ther promote the understanding of the effect of multiple scattering on axial

resolution.

With the new noise model, significant improvement from optical ampli-

fication was demonstrated theoretically. It is clear that this should be in-

vestigated in practice. In this implementation, the results of the new model

will determine whether an (perhaps expensive) amplifier will improve this

particular system. Furthermore, the model should aid the choice of the

split ratio(s) of the coupler(s), and determine to what extent work should

be done to reduce undesired reflections in the system. Such considerations

are crucial to demonstrate better than state-of-the art performance. An-

other aspect is the effect of the amplifier on the coherence properties of the

amplified signal. This should receive further attention to more accurately

establish what amplifier design parameters are important for OCT. Such

an understanding may also be of interest to other fields, such as optical

communications and remote sensing.



Appendix A

Important results of the

extended Huygens-Fresnel

principle

The intensity distribution of a Gaussian beam propagating through a scat-

tering sample medium as shown in Fig.A.1 may be written as [49]:

〈I (q)〉 =

(

k

2πB

)

2 ∫

K (ρ) exp

(

ik

B
ρ · q

)

ΓPT (ρ)d2ρ. (A.1)

Here K is the overlap integral of the unscattered field, U0, given by

K (ρ) =

∫

exp

(

−
ikA

B
ρ ·R

)

U0 (R+ ρ/2)U∗0 (R− ρ/2) d2R, (A.2)

where r and r´ are coordinates in the r-plane (see Fig.A.1), R and ρ are

sum and difference coordinates given by

R=
1

2
(r+r´) and ρ = r−r´ (A.3)

and A and B are matrix elements in the ABCD ray matrix for propagation

from the r-plane to the q-plane within the sample (see Fig.A.1). Notice,

that the q-plane in this case can be any transverse plane within the sample

and that each integral are over the entire coordinate plane. The function
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 z 
zf 0 -d 
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Figure A.1: The modeled geometry.

ΓPT is the mutual coherence function of a spherical wave in the r-plane

from a point source in the q-plane, which may be expressed by [47]

ΓPT (r− r´) = 〈exp [iϕ (r,q)− iϕ (r´,q)]〉 (A.4)

= exp {−µsz [1− bϕ (|r− r´|)]}

where the function ϕ (r,q) is the stochastic phase added to the phase of

a spherical wave propagating from r to q due to the scattering medium.

The function bϕ is the phase correlation function, and Ref. [17] showed that

in the focal plane of a Gaussian beam in a single layered medium with a

Gaussian phase function the phase correlation function is given by

bϕ (x) =

√

π

2 (1− g)

n1f

kxz
erf

(

√

1− g

2

kxz

f

)

(A.5)

where erf () is the error function and n1 is the refractive index of the sample.

For such a propagation geometry A = 1 and B = f and it is found that

K (ρ) = PS exp

(

−
ρ2

4w2
0

)

(A.6)

where PS is the power of the incident sample beam, w0 is the initial 1/e-

width of this beam and ρ denotes the length of the vector ρ.

The heterodyne efficiency factor, which describes the degradation of

the OCT signal due to scattering, may, for the propagation geometry in
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question, be shown to be given by [97]

Ψr =

∫

|K (ρ)|2 |ΓPT (ρ)|2 d2ρ
∫

|K (ρ)|2 d2ρ
. (A.7)



Appendix B

Measured current noise

density versus receiver gain

In section 6.1, the importance of the conversion gain of the front-end re-

ceiver was discussed. It was argued that due to a necessary reduction in

conversion gain for receivers for fast scanning OCT, such systems are more

sensitive to external noise sources. To illustrate this fact, an experiment

has been performed where the influence of the conversion gain of a bal-

anced detector setup on the current noise spectral density due to electric

noise was investigated. The conversion gain is the conversion factor of

the input optical power to the output voltage, here calculated assuming a

responsitivity of unity. The experiment was performed in the Bio-Optics

Lab. at Risø National Laboratory, Denmark.

The setup consisted of two NewFocus 2011 batterty operated pho-

toreceivers with integrated adjustable filters and adjustable conversion gain.

Using short SMA cables, these were connected to a battery operated sub-

traction circuit designed by Finn Petersern, Risø National Laboratory.

This subtraction circuit was shielded in a standard electronics box, and

efforts were made to avoid ground-loops in the entire setup. The power

spectral density of the output of the subtraction circuit was measured using

a LeCroy 9304CM Digital Oscilloscope. The instrument noise of the oscil-

loscope was subtracted by measuring the noise floor of a 50Ω reference, and

subtracting the theoretical value for the thermal noise in a resistor [130].
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Conv. Gain/V W−1 Noise Power/dBm Hz−1 NEP/WHz−1/2

0.5× 103 −105.487 1.88× 10−9

0.5× 104 −105.465 1.88× 10−10

0.5× 105 −105.437 2.18× 10−12

0.5× 106 −105.051 1.97× 10−12

0.5× 107 −103.342 0.24× 10−12

Table B.1: Measured noise power from a simple balanced receiver consisting of

two New Focus 2011 receivers.

The power spectral density was obtained averaging 500 Fourier spectra

spanning from DC to 125kHz using the ocilloscope. The bandpass filters

of the receiver front-ends were set to 100Hz-30kHz, and the frequency span

used to obtain the average value of the noise floor were 2kHz-10kHz. The

measured data for various values of the conversion of the receiver are given

in Table B.1. The total NEP for the system, i.e. both detectors, is calcu-

lated using the conversion gain setting as indicated in the table, and that

the measured power spectral density (in dBm/Hz) is given as the power

dissipated in a 50Ω resistor.

There is a significant constant noise contribution observed in the

measurements, which is assumed to be caused by a rather large environ-

mental electrical radiation at the laboratory facilities. From Table B.1

it is seen that for a low conversion gain of the receivers, the constant

noise contribution has a significant influence on the NEP of the receiver

(NEP=1.88× 10−9WHz−1/2), whereas this influence is reduced for higher

gains. In fact, the specifications of a single 2011 receiver reports a typical

NEP of 1pWHz−1/2 and a minimum NEP of 0.5pWHz−1/2 (reported at

highest gain setting) [140], so for noise measurements with a conversion

gain larger than 0.5 × 105 the system yields results close to the expected

performance.

With the measured data the increased sensitivty of a detector setup

with reduced conversion gain is well illustrated. However, because of a

relatively open design of the system, it may be extra sensitive to any ra-

diation from the sorrounding environment. Furthermore, a drawback to

the setup is that the bandpass filtering occurs after the subtraction circuit.

Therefore, these figures should not be considered typical, but merely an
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example of the noise sensitivity resulting from a reduced conversion gain of

the receiver front-end.



Appendix C

List of symbols

C.1 Chapters 1 through 4

Symbol Description Unit

∗ Asterix denotes the complex conjugate.

α Detector responsivity. A/W

ΓR (·) , ΓS (·) Mutual coherence functions of the reference and

sample fields, respectively.

W/m2

ΓPT (·) The mutual coherence function of a spherical wave

in the r-plane from a point source in the q-plane.

W/m2

δ (·) Dirac’s delta function. 1

ζ, ξ Pseudo random number evenly distributed between

0 and 1.

1

η (q) Complex reflection coefficient on the discontinuity. 1

θ Polar angle. rad

θr Reflection angle of the diffuse reflector. rad

θrms Root mean square of the scattering angle of the

discrete scatterers in the sample.

rad

∆λ Optical bandwidth of the light source. m

λ0 Center wavelength of the light source. m

µa Absorption coefficient of the sample. m−1

µs Scattering coefficient of the sample. m−1

νc Center frequency of the light source. Hz
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Symbol Description Unit

ρ, ρ̃ Difference vector of the vectors r and r´, and r̃

and r̃´, respectively.

m

ρ0 Lateral field correlation length. m

τ Time difference of propagation between the refer-

ence and sample fields.

s

ϕ Azimuthal angle. rad

ϕr Azimuthal reflection angle of the diffuse reflector. rad

ϕ (q, r) random phase added to the field due to scattering. 1

Ψ,Ψr,Ψp Heterodyne efficiency factor. The reduction in sig-

nal due to scattering and absorption. A subscript

designates the plane where the mixing of sample

and reference fields is calculated.

1

ΨEHF Heterodyne efficiency factor calculated using the

extended Huygens-Fresnel principle.

1

ΨMC Heterodyne efficiency factor calculated using

Monte Carlo simulation.

1

A,B,D Matrix components in an ABCD matrix.

AL2 The area of lens L2. m2

Be The bandwidth of the electrical receiver circuit. Hz

C Constant related to the launch position of a photon. 1

cn Normalization constant. 1

d Distance between focusing lens and the sample. m

f Focal length. m

fc Center frequency of the light source. Hz

F {·} Fourier Transform. 1

g Scattering asymmetry parameter, g=cos (θrms) . 1

g (τ) Temporal coherence function. 1

G0 Huygens-Fresnel Green’s function for a general

ABCD matrix.

1

Gf Huygens-Fresnel Green’s function for propagating

the distance f.

1

Gr−p (r,p) Huygens-Fresnel Green’s function for propagation

of a spherical wave from point r in the r-plane to

point p in the p-plane.

1

i Imaginary unit. 1
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Symbol Description Unit

i (t) Signal current. A

i0 (t) Signal current in the absence of random medium in

front of the diffusely reflecting discontinuity.

A

IS,m Intensity contribution from the m’th photon

packet.

W/m2

IR (·),IS (·) Intensity of the reference and sample fields. W/m2

IS,0 (·) Intensity of the sample field in the absence of scat-

tering and absorption.

W/m2

Iq (·) The intensity of the field Uq (q) . W/m2

k Wave number 2π
λc
. m−1

K (·) The overlap integral of the unscattered field in the

r-plane.

W

lc Coherence length of the light source. m

Lf Mean free path in the scattering medium. m

n0, n1 Refractive index of the sample and surroundings. 1

p (θ,ϕ, g) Scattering function or phase function of the sample. 1

p(r) Probability density of finding a photon packet in

the radius r at launch.

1

p=(px, py) Transverse vector in the p-plane. m

PR, PS Optical power of the reference and sample beams,

respectively.

W

∆p2 Differential area in which a photon packet con-

tributes with intensity.

m2

q The lenght of the vector q. m

q=(qx, qy) Transverse vector in the region to the right of the

focusing lens. Often inside the sample.

m

r Vector in the r-plane. m

r Length of the vector r. m

R Sum vector of the vectors r and r´. m

Rd Reflectance of the diffuse reflector. 1

str Transport reduced optical depth of the discontinu-

ity.

m

S (ν) Spectrum of the light source. W/Hz

Ur (r) Reflected sample field in the r-plane. V/m
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Symbol Description Unit

Uq (q) Field impinging upon the discontinuity in the q-

plane.

V/m

US (·) , UR (·) Sample and reference field, respectively. V/m

v Speed of path length change. m/s

wm Weight or energy carried by them’th photon packet J

w0, wf 1/e-width of the beam at the focusing lens (p-plane)

and focus, respectively.

m

w (z) 1/e-width of the beam at the focusing lens as a

function of axial distance.

m

wphoton (z) Axial distance of an unscattered photon packet. m

z Position relative to the optical axis. m

z0 Rayleigh range of the focused Gaussian beam. m

zf Position of the focal plane relative to the optical

axis.

m

∆z, ∆q Grid sizes used to score photon packets in the

Monte Carlo simulation.

m

C.2 Chapters 5 and 6

Note: Symbols with subscript b and u refers to quantities related to a

balanced and unbalanced setup, respectively. With a subscript, p, the

quantity may be taken to be either from the balanced or unbalanced setup

depending on the context.

Symbol Description Unit

∗ An asterix denotes the complex conjugate.

α Detector responsivity. A/W

η Detector quantum efficiency. 1

θ Phase constant describing the phase of the beat

signal.

1

λc Center wavelength. m

∆λ Wavelength band of the light source. m

ν The optical center frequency of the light source. Hz

δν Optical bandwidth of the light source. Hz
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Symbol Description Unit

ϕ Phase delay. 1

a, b Coupling constants. 1

Be Bandwidth of the receiver system. Hz

Bo Bandwidth of the optical amplifier. Hz

e The electron charge=1.60217733× 10−19. C

fc Center frequency of the beat signal. Hz

G Gain factor of the optical amplifier. 1

G0 Initial gain when investigating possible improve-

ment due to increased gain.

1

h Planck’s constant = 6.6260755× 10−34. J s

i The imaginary unit. 1

i (t) Signal current. A

i1 (t), i2 (t) Detector current output due to the fields U1(t) and

U2(t), respectively.

A

〈

i2s
〉

Mean square signal power. A2/Hz
〈

∆i2
〉

Total mean square noise power. A2/Hz
〈

∆i2intr
〉

Total mean square noise power in the system with-

out optical amplification.

A2/Hz

〈

∆i2G
〉

Added mean square noise power due to insertion of

an optical amplifier.

A2/Hz

〈

∆i2rec
〉

Mean square noise power due to electrical compo-

nents or coupling in the system.

A2/Hz

〈

∆i2opt
〉

Mean square noise power due to light. A2/Hz

IASE Accumulated intensity of UASE(t). W

Icoh Accumulated intensity of the field coherent with

the reference field.

W

Idet,max Maximum power impinging on the detector before

saturation or non-linearity in response.

W

Idet,tot Total power impinging on the detector system. W

Is Power of the light source. W

Isam,max Maximum allowable power towards the sample. W

Isam (t) , Iref (t) Accumulated intensities of the fields Usam and

Uref,respectively.

W

nsp Inversion parameter of the optical amplifier. 1
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Symbol Description Unit

Q Improvement factor for insertion of an amplifier. 1

Qmax Maximum possible improvement factor. 1

Rincoh Reflection coefficient expressing the accumulated

reflections that are incoherent with the reference

field.

1

Rcoh Reflection coefficient for the reflection coherent

with the reference field.

1

RR Coefficient describing insertion loss of the reference

scanner.

1

Re (·) , Im (·) Real and imaginary part, respectively. 1

sASE Amplifier noise per gain factor above unity. W/Hz

SNRamp Signal to noise ratio of the system with optical am-

plification.

1

SNRb,SNRu Signal-to-noise ratio. 1

t Time. s

T Transport coefficient describing the power loss due

to the path from the sample arm to the detector.

1

TR Transport coefficient relating the power of the light

source to the received power from the reference.

1

TS Transport coefficient relating the power of the light

source to the received power from the sample.

1

TR,0, TS,0 Transport coefficients for the system without opti-

cal amplification.

1

Usam (t) , Uref (t) Fields propagating toward the detector from the

sample and reference arms, respectively.

V/m

U1(t),U2(t) Fields incident on detector 1 and 2 in the balanced

detector setup.

V/m

UASE(t) Output field of the optical amplifier due to ampli-

fied spontaneous emission (ASE).

V/m

Ucoh (t) Field that is coherent with the reference field. V/m

Uin (t) Input field to the optical amplifier. V/m
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Symbol Description Unit

Uincoh,n (t) n’th field component that is incoherent with the

reference field.

V/m

x Split ration of the first splitter in the interferometer

or fraction of the light guided towards the sample.

1

xopt Optimum splitting ratio given that no constraints

are applicable.

1
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