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Abstract 

Optical coherence tomography (OCT) is a non-invasive medical imaging technology that is 

playing an increasing role in the routine assessment and management of patients with 

neuro-ophthalmic conditions.  Its ability to characterise the optic nerve head, peripapillary 

retinal nerve fibre layer and cellular layers of the macula including the ganglion cell layer 

enables qualitative and quantitative assessment of optic nerve disease.   In this review, we 

discuss technical features of OCT and OCT-based imaging techniques in the neuro-

ophthalmic context, potential pitfalls to be aware of, and specific applications in more 

common neuro-ophthalmic conditions including demyelinating, inflammatory, ischaemic 

and compressive optic neuropathies, optic disc drusen and raised intracranial pressure.  We 

also review emerging applications of OCT angiography within neuro-ophthalmology.  

 

 

Introduction 

Optical coherence tomography (OCT), a quick and reproducible imaging technique using low 

coherence interferometry to produce cross-sectional images of the retina and optic nerve 

head (ONH), has become one of the most valuable tools employed in the assessment of 

ophthalmic patients.  Alongside advances in technology, its application in the field of neuro-

ophthalmology specifically continues to expand.   

 

OCT allows non-invasive visualisation of the anatomy of the most anterior part of the visual 

pathway, from retina to lamina cribrosa.  Lesions involving the pre-laminar area can be 

assessed with spectral domain (SD-OCT) and enhanced depth imaging OCT (EDI-OCT) of the 

ONH.  Beyond this, afferent visual pathway lesions involving the optic nerve, chiasm or 
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tracts can lead to visible axonal loss caused by direct retrograde axonal degeneration. OCT 

imaging can capture and quantify axonal loss through measurements of retinal nerve fibre 

layer (RNFL) thickness, and neuronal damage through measurements of ganglion cell layer 

(GCL) or combined ganglion cell layer-inner plexiform layer (GCIPL) thickness.   The strict 

anatomical structure of the retina and maintenance of retinoscopic organisation with the 

afferent visual pathway (1), as described in table 1, increases the utility of OCT in evaluating 

central nervous system pathology. 

 

In this review, we discuss the imaging parameters useful in the assessment of neuro-

ophthalmic conditions, pitfalls to be aware of, and describe specific neuro-ophthalmic 

conditions where OCT imaging can help with diagnosis, management and follow-up. 

 

 

Imaging the optic nerve head (ONH) and peripapillary retinal nerve fibre layer (pRNFL) 

thickness 

 

OCT imaging of the ONH can be undertaken in two or three dimensions (2D or B-scan and 

3D or volume scan).  The OCT software can construct an ONH topographical map (figure 1) 

which can be used to quantify parameters such as ONH diameter, depth and diameter of the 

central cup, and thickness of the neuroretinal rim.  Qualitative assessments can also be 

made of structural abnormalities such as optic nerve pits, tumours, optic disc drusen (ODD) 

and choroidal neovascularisation (CNV).  EDI-OCT is beneficial for analysing the deeper 

structure of the ONH up to the level of the lamina cribrosa.   
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The peripapillary retinal nerve fibre (pRNFL) thickness is a measure that can be used to 

quantify axonal integrity in pathological processes involving the optic nerve. Technical 

details are outlined in table 2.  Figure 2 shows an example of a pRNFL report.  Normal global 

average pRNFL thickness is approximately 105µm with an estimated physiological loss due 

to aging of about 0.017% per year from age 18 years onwards, equating to a 10- to 20-µm 

loss over a period of 60years (2).  

 

Imaging the macula and macular ganglion cell-inner plexiform layer (mGCIPL) thickness 

 

Aside from detailed visualisation of macular structure, macular OCT scans offer the 

possibility to conduct manual and automated segmentation analysis of macular ganglion 

cells layer (mGCL) and inner plexiform layer (mIPL) densities. Technical details are outlined 

in table 2.  Figure 3 shows an example of a mGCL thickness map report.  Both mGCL and 

combined mGCIPL thickness values have revolutionised the evaluation of optic 

neuropathies. 

 

Pitfalls to be aware of in OCT assessment 

 

As with any technology, there are limitations, pitfalls and potential errors that must be 

considered, especially when using derived measurements in clinical decision-making. 

Foremost, different OCT machines have different measurement protocols and so patients 

must be reviewed on the same machine using the same scanning protocol for accurate 

longitudinal comparisons to be made.  Secondly, all OCT measurements are compared to a 

normative database.  Often these normative databases are made up of Caucasian middle-
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aged subjects, and as such this must be considered when evaluating measurements from a 

patient not in this demographic, for example a child or a patient of different ethnicity.   

 

Interpretation of automated OCT measurements need to take into account potential 

artefacts.  The centre of the fovea on OCT may differ from the retinal locus of fixation (3,4) 

and deviations of 60 ± 50μm between fixation and the centre of the foveal avascular zone 

can occur (5). For correct analysis, accurate placing of the measurement area should be 

checked and amended manually if necessary  (6). 

 

OCT segmentation software algorithm automatically detects the pRNFL and mGCIPL. In 

some cases, particularly in eyes with ocular pathology or in scans of poor image quality, the 

software can fail. Again, manual correction should be done to improve the accuracy and 

reproducibility of the measurements (6).  This may not be possible with severe retinal 

pathology. The introduction of eye tracking and retest software has improved 

reproducibility of RNFL measurements (7).    

 

Repeatability of automated segmentation measurements has been demonstrated to vary 

across different OCT devices and depends on the specific scan protocol and algorithm 

software updates (8).  As described earlier, patients should be monitored consistently using 

similar OCT methodologies. The presence of ocular disorders and poor visual acuity may 

result in fixation errors and induce measurements that appear variable over time (9).  

Likewise, assessment of retinal thickness should be limited to the area encircling the 

parafoveal macular rim (10).   
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The importance of distinguishing artefacts from true pathological changes cannot be 

understated, not only to ensure optimum patient care but also to avoid invasive and costly 

investigations. 

 

Neuro-ophthalmic conditions 

 

Multiple Sclerosis (MS) and demyelinating optic neuritis (MSON) 

The earliest use of OCT in neuro-ophthalmology was in 1999 where Parisi and colleagues 

reported pRNFL thinning on OCT in MS patients with previous MSON (11).  In the acute 

phase of MSON, ONH swelling due to axoplasmic flow stasis in the inflamed optic nerve may 

be demonstrated on OCT and the elevated pRNFL measurements used to objectively 

quantify the swelling (12).  pRNFL thickening may also be seen in MSON where there is no 

clinically evident ONH swelling, and this may be useful in detecting optic neuritis flares in 

clinic (13).  Typically, 3 months after the acute episode of MSON, pRNFL atrophy develops 

which again can be quantified using OCT measurements demonstrating pRNFL thinning, 

most evidently in the temporal pRNFL region (14). 

 

Due to the potentially elevated pRNFL measurements initially, followed by thinning some 

weeks to months later, it can be challenging to rely on pRNFL thickness to track structural 

changes in axonal integrity.  Furthermore, there is an OCT floor effect, whereby mean pRNFL 

values do not generally reduce below 30µm regardless of extent of optic nerve injury, 

making it difficult to detect appreciable change in severe optic atrophy or recurrent optic 

neuritis (15).  OCT-mGCL or mGCIPL volume and thickness analysis has been shown to be a 

more sensitive and reliable measure of retrobulbar neuroaxonal injury.  mGCIPL thinning 
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occurs earlier in the time course of acute ON (after about 2 weeks), even whilst the RNFL 

remains oedematous, thus providing an early indication of retinal ganglion cell dropout and 

possible permanent visual dysfunction (16).  Whilst lower pRNFL values have been shown to 

correlate with reduced visual acuity, contrast sensitivity, visual field mean sensitivity and 

colour vision mean testing scores (17,18), mGCIPL thickness correlates better with these 

measures of visual dysfunction, as well as quality of life measures, disability and MRI 

findings (19,20).  Overall OCT is helpful for prognostication after MS related relapses.   

 

MS patients can experience substantial subclinical disease activity, and even in the absence 

of clinical MSON events, can develop progressive pRNFL and mGCIPL thinning (21,22).  A 

meta-analysis comparing 1,667 MSON eyes and 4,109 MS non-ON eyes to 1,697 eyes from 

healthy control subjects found significant pRNFL and mGCIPL thinning in both MSON eyes 

(mean difference -20um and -16um respectively) and MS non-ON eyes (mean difference -

7um and -6um respectively) relative to control eyes (23).  Without additional MRI or 

electrodiagnostic data, the meta-analysis cannot conclude whether the finding in the MS 

non-ON eyes is a manifestation of a primary neurodegenerative component of MS, or 

whether it is due to retrograde transsynaptic degeneration from pathology of the posterior 

visual pathway. These data come from smaller sized, multimodal cohort studies and case 

reports (24).  However, the finding does suggest that OCT could be used in the 

measurement of disease activity in MS, potentially reducing the need for frequent MRIs. 

This is further supported by the fact that reduced pRNFL and mGCIPL values have been 

shown to correlate with other surrogate markers used to monitor disease activity such as 

MRI-measured brain atrophy (25,26), spinal cord lesions (27) and neurological disability 
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scores (25,26,28-30). Figure 4 demonstrates findings in an MS patient with post-chiasmal 

demyelination with mGCL density measurements mirroring the visual field defect. 

 

Microcystic macular changes detected on retinal OCT has been a recent area of interest 

since first reported in patients with demyelinating optic neuropathy in 2012 by Gelfand and 

colleagues (31).  Small hyporeflective spaces within the inner nuclear layer (INL) in the 

parafoveal region of the fovea are characteristic, with sparing of the fovea itself, which 

would otherwise be involved in vascular leakage. Microcystic macular changes and 

thickening of the INL have been shown to be associated with disease activity and worse 

disability in MS (32).  However, microcystic macular change is not unique to MS and can be 

observed across a variety of optic neuropathies, including non-inflammatory aetiologies 

such as compressive optic neuropathy (33). With several studies showing no corresponding 

dye leakage on fluorescein angiography (34,35), it is likely that these changes are due to 

retrograde axonal degeneration and that loss of retinal Muller cell function plays a role in 

microcyst formation (36).  The literature uses the terms ‘microcystic changes’, ‘retrograde 

maculopathy’, ‘microcystic macular oedema (MMO)’, and microcystic macular edema 

(MME). None of these terms distinguish transient from permanent changes. Terminology 

and understanding of this novel observation is still evolving. 

 

Neuromyelitis Optica Spectrum Disorder (NMOSD) 

Whilst pRNFL and mGCIPL thinning is typical in optic neuritis generally, the degree and 

pattern of loss may help with differentiating underlying aetiology. It has been shown that 

ON related to NMOSD leads to more pronounced thinning of the pRNFL and mGCIPL than in 

MSON (37,38).  The distribution of pRNFL thinning also differs, with NMO-ON preferentially 
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involving the inferior and superior quadrants, versus the temporal quadrant which is more 

typically affected in MS (37).  Patients with NMOSD do not seem to suffer the progressive 

pRNFL atrophy that occurs in MS independent of ON episodes (39), as described earlier, 

with damage appearing to be attack-related, although some studies have shown the mGCIPL 

to undergo progressive thinning (40).  This seems to be specific for aquaporin4 IgG positive 

NMOSD, whereas myelin-oligodendrocyte-glycoprotein (MOG) IgG positive NMSOD patients 

demonstrate a more similar pattern to MS patients (41).  The reason for this is not clear, and 

certainly the time course in NMO-ON and MOG-ON is less well understood than in MSON, 

with the relationship between severity of atrophy observed and loss of visual function also 

being less well correlated.  Microcystic macular change is also seen more frequently in 

NMOSD patients (20-26%) than in MS patients (1-5%) (37,42), and INL measurements are 

thicker in NMSOD versus MS patients (43,44). This may be a reflection of the severity of 

optic neuropathy and the resultant retrograde degeneration. Figure 5 demonstrates 

progressive pRNFL and mGCL thinning in a patient with NMO after right eye optic neuritis. 

 

 

 

Optic disc drusen (ODD) 

ODD are acellular intracellular and extracellular deposits located in the optic nerve that may 

become calcified over time.  Whilst superficial ODD can be detected on clinical examination, 

distinguishing buried optic disc drusen from optic disc swelling remains a clinical challenge. 

Ancillary tests including fundus autofluorescence, computer tomography, fluorescein 

angiography and B-scan ultrasonography are used to help distinguish between the two.  

These do have their limitations, however.  B-scan ultrasonography, for example, whilst 
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traditionally viewed as the ‘gold-standard’ test for detection of buried ODD, is unable to 

detect non-calcified drusen or peripapillary hyperreflective ovoid mass-like structures 

(PHOMS) (45).  Resolution is relatively poor, making it difficult to monitor drusen 

progression (45). Furthermore, B-scan ultrasonography does not give information regarding 

the neuroaxonal integrity of optic nerve and retinal structures, and as such does not allow 

prognostication with regards to visual outcomes in patients with ODD (46). 

 

OCT, specifically EDI-OCT, has earnt its place as not only a useful complement but as a 

potential competitor as the gold-standard for diagnosis and analysis of ODD.   Prior to 

mainstream use of EDI technology, there was much variability in the literature with regards 

to ODD morphology on OCT.  Early studies focussed on RNFL thickness differences between 

ODD and disc oedema (47, 48), but this was found to be unreliable (49).  Other OCT features 

described in the literature included ODD appearing as highly reflective round sub-retinal 

structures with well-defined margins displacing the adjacent tissue (47), and a ‘lazy V’ 

pattern or ‘lumpy bumpy’ internal contour of the subretinal hyporeflective space helping to 

distinguish between ODD and papilloedema (50,51).  However, the hyporeflective space was 

actually an imaging artefact and a by-product of poor-penetrance inherent to early 

generations of OCT (45). 

 

The improved penetrance afforded by EDI-OCT technology now enables quantification of 

drusen size, delineation of drusen borders and assessment of the integrity of adjacent 

retinal structures.   The Optic Disc Drusen Studies Consortium have published guidelines for 

the assessment of ODD (52).  They define ODD as hyporeflective structures always located 

above the lamina cribrosa, with a full or partial hyperreflective margin, often most 
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prominent superiorly (figure 6).  Blood vessels, which appear as elongated tube-like 

structures, are distinguished from ODD as they lack the hyperreflective signal around them. 

ODD are often seen as conglomerates of smaller ODD with internal reflectivity within the 

signal-poor core. Hyperreflective horizontal lines might represent early ODD but should not 

be diagnosed as ODD.   

 

EDI-OCT has been shown to have significantly higher ODD detection rate than B-scan 

ultrasonography (53).  Furthermore, the size and type of ODD classified by EDI-OCT have 

been shown to correlate with visual field defects. Specifically, confluent ODD have been 

associated with worse mean deviation scores on visual fields testing (54).  Some studies 

have suggested that EDI-OCT ODD volumes correlate with structural optic nerve head 

damage and functional deficits among patients (55).  The capability of EDI-OCT to quantify 

ODD volume, and additional ability of OCT to measure neuroaxonal changes in the retina, 

will enable the monitoring of ODD progression and potentially provide guidance with 

regards to risk factors for vision loss in ODD patients.  

 

Peripapillary hyper-reflective ovoid structures (PHOMS) 

Peripapillary hyper-reflective ovoid mass-like structures (PHOMS) were originally described 

in patients with ODD (47-49) and were thought to represent precursors or variants of ODD 

(54). However, as explained by the Optic Disc Drusen Studies Consortium, PHOMS, unlike 

ODD, are hyperreflective without a sharp outer margin or hyporeflective core (52) (figure 7).  

They are neither visible on fundus autofluorescence nor on B-scan ultrasonography, and 

they can be found on OCT in patients with papilloedema without ODD (52). They are 

thought to represent disruption of retinal layers caused by local axoplasmic build-up (45), 
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with the histopathology of papilledema suggesting that PHOMS might correspond to the 

lateral bulging of distended axons into the peripapillary retina (52). Of note, PHOMS can 

also be seen in crowded discs, or “pseudo-papilloedema” and therefore are not useful as a 

distinguishing feature for papilloedema.  

 

Idiopathic intracranial hypertension and papilloedema 

Idiopathic intracranial hypertension is a condition of unknown aetiology, typically associated 

with obesity, that can lead to headaches, optic disc swelling and, in some cases, permanent 

visual loss (56).  OCT allows accurate and objective monitoring of this condition, not only 

with respect to the degree of optic disc swelling present, but also with quantification of 

resultant optic neuropathy.   

 

The OCT pRNFL measurements can be used to serially monitor the degree of optic disc 

swelling present over consecutive visits (figure 8), which is a far more reliable and sensitive 

method of evaluating change than comparisons of clinician-assessed Frisén grades (57, 58).  

Furthermore, whilst reduction in disc swelling and pRNFL thickness may be a result of 

treatment success or general improvement, it may also be a result of worsening axonal loss 

from disease progression. OCT mGCIPL thickness measurements play a critical role here for 

distinguishing between these two entities. Reduction in pRNFL thickness with preserved 

mGCIPL thickness indicates treatment success with preservation of the neuroaxonal 

structure, whereas reduction in both indices indicates worsening optic neuropathy and 

treatment failure or fulminant IIH. 
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EDI-OCT may demonstrate PHOMS in papilloedema.  EDI-OCT also enables visualisation of 

Bruch’s membrane, and peripapillary deformations of Bruch’s membrane surrounding the 

neural canal due to a differential pressure between the retrobulbar optic nerve and vitreous 

cavity can also be useful in the diagnosis and management of patients with intracranial 

hypertension.  In raised intracranial pressure, there can be an upward deflection of Bruch’s 

membrane towards the vitreous (59, 60) (figure 9), and after treatment there can be 

normalisation to a downward deflection of the Bruch’s membrane complex (59, 61).  There 

is anecdotal evidence that this can be seen straight after lumbar-puncture induced lowering 

of intracranial pressure, much sooner than fundal appearances of papilloedema, and indeed 

even OCT pRNFL thickness changes (62,63).  

 

OCT is also helpful in differentiating between vision loss in papilloedema due to optic 

neuropathy, or due to retinopathy such as subretinal macular fluid or choroidal folds.  

Decreased vision due to the latter two are generally more benign and reversible, and 

treatment may not need to be as aggressive as is the case in optic neuropathy (64). 

 

Lastly, functional overlay is not uncommon in patients with IIH.  OCT analysis of mGCIPL 

thickness as an objective marker of established optic neuropathy provides additional insight, 

along with the results of other tests such as kinetic perimetry and visual evoked potentials, 

as to whether functional overlay may play a role in explaining poor visual function. 

 

Anterior ischaemic optic neuropathies (AION) 

OCT plays a similar role in the assessment of ischaemic optic neuropathies as it does in 

assessment of optic neuritis.  Acutely, optic disc swelling can be diagnosed and quantified 
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using pRNFL thickness measurements. Within 2 months, 80% of patients subsequently show 

pRNFL thinning, with progressive thinning and thus optic disc atrophy occurring between 

months 2 and 4, with stability typically reached at month 6 (65-67).  As with optic neuritis, 

thinning of the mGCIPL has been shown to occur much earlier than pRNFL thinning.  It can 

occur as early as 2.2 days after onset of symptoms, and thinning of the mGCIPL density has 

been shown to be present in 62.5% of eyes at presentation (68).  Longitudinal assessment of 

the mGCIPL layer offers a reliable and objective tool in monitoring of these patients (figure 

10).  Furthermore, the pattern of mGCIPL loss often indicates the degree and pattern of 

visual field loss (69-71), which in non-arteritic ischaemic optic neuropathy (NA-AION) is 

often altitudinal.  

 

OCT can also be used to distinguish between a chronic branch retinal artery occlusion and 

NA-AION.  Whilst both can cause an altitudinal visual field defect and corresponding pallor 

of the optic nerve in the post-acute phase, retinal artery occlusions will cause thinning of 

the entire inner retina including the INL, whereas in NA-AION the thinning will be limited to 

the pRNFL and mGCIPL.  As retinal artery occlusions require a thromboembolic work-up and 

NA-AION do not, it is important to clinically distinguish between the two.  In clinical practice 

it is helpful to compare the visual field with the macular OCT. The anatomical defect seen in 

the mGCIPL thickness should match the functional deficit depicted in the visual field. 

 

Compressive optic neuropathies 

Compression of the anterior visual pathway most commonly occurs at the level of the optic 

chiasm, for example by pituitary lesions, but compression of the optic nerve can also occur 

elsewhere, for example by meningiomas or in the orbit by the enlarged muscles of thyroid 
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eye disease. OCT plays a role, not only in diagnosis and monitoring of compression, but also 

in prediction of visual outcomes after decompression surgery. 

 

Compression causing optic nerve damage can be detected on OCT earlier than may be 

visible on fundoscopy. Both pRNFL and mGCIPL thinning can be detected and quantified on 

OCT imaging, with mGCIPL analysis being particularly sensitive for detecting compressive 

optic neuropathy.  Not only may mGCIPL thinning occur earlier than pRNFL thinning (72), 

but in some studies it has also been shown to occur before standard automated perimetry 

changes (73, 74). A hemianopia on perimetry can present as a hemi-macular atrophy 

on the OCT. 

 

The pattern of pRNFL and mGCIPL loss may be helpful in detecting some compressive optic 

neuropathies. In pre-chiasmatic unilateral optic nerve compression, asymmetry in pRNFL 

and mGCIPL thickness between eyes gives a clue to the location of the compression.  Lesions 

compressing the optic chiasm superiorly or inferiorly predominantly compress the 

decussating nasal fibres, resulting in retrograde RNFL loss on the nasal and temporal sides of 

the optic disc. This can be identified clinically as bow tie or band optic atrophy (75, 76).  

Whilst multiple studies have shown patients with band atrophy to have pRNFL loss in all 4 

quadrants around the optic disc, not just the horizontal band (77-81), there is greater 

proportional thinning nasally and temporally in patients with bitemporal hemianopia from 

chiasmal compression (78) (figure 11).  The pattern of mGCIPL loss is more consistent, with 

binasal thinning occurring typically in chiasmal compression (73,82).  Homonymous mGCIPL 

thinning is seen in optic tract and lateral geniculate nucleus injuries, not only from 

compressive lesions but also from vascular ischaemia or demyelination (83).   Post-
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geniculate lesions can also lead to homonymous mGCIPL thinning through trans-synaptic 

retrograde degeneration, but this OCT pattern does not occur acutely and may take over a 

year to develop (84). 

 

OCT can be helpful in differentiating compressive optic neuropathies from normotensive 

glaucoma. In glaucoma, pRNFL thinning tends to be vertical and the mGCIPL thinning tends 

to respect the horizontal meridian (82), distinct from that seen in chiasmal compressive 

lesions.   

 

OCT may potentially play a role in monitoring and management decisions in paediatric 

intrinsic optic pathway gliomas, which are typically managed conservatively with treatment 

initiated on documented visual decline.  However, reliably measuring visual function using 

visual acuity and visual fields in young children can be difficult, and optic nerve glioma size 

on MRI is poorly predictive of visual function (85).  OCT pRNFL thinning has been shown to 

be sensitive and specific for vision loss in this group of patients (86), although this finding 

has been challenged (87). Further research is needed to fully support the use of longitudinal 

OCT assessments to aid therapeutic decision-making.  

 

OCT is helpful in assessing visual dysfunction and predicting post-surgical visual outcomes in 

compressive optic neuropathies.  Both pre-operative pRNFL thickness (62, 88) and mGCIPL 

thickness (74, 89, 90) should be considered, and one parameter is not necessarily superior 

to the other as prediction of visual outcomes is multifactorial, depending also on lesion 

location, duration and severity of compression (46).  Both have been shown to correlate 
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with visual field loss and visual outcomes post-surgical decompression, with lower chance of 

complete visual recovery when there is greater pRNFL and mGCIPL thinning.   

 

 

Optical coherence tomography angiography (OCTA) in neuro-ophthalmology 

 

OCT technology continues to improve and evolve, and the availability of optical coherence 

tomography angiography (OCTA) is one such advancement.  OCTA provides non-invasive 

imaging of the perfused vascular network of the neurosensory retina and optic nerve head.  

Technical details are outlined in table 3.  

 

In neuro-ophthalmology, OCTA assessment of the peripapillary radial capillary network, a 

layer not visible on traditional fluorescein angiography (91), can be useful. Peripapillary 

radial vessels are located in the RNFL, superficial to the inner retinal plexus. These vessels 

are susceptible to fluctuations in intraocular pressure and their density has been shown to 

correlate with RNFL thickness (92). For instance, in glaucomatous optic neuropathy, reduced 

perfusion, reduced vessel density and pre-laminar blood flow of the optic nerve head 

correlate with pRNFL, mGCIPL, visual field mean deviation, and visual field index (93). 

Reduced peripapillary radial capillary network perfusion has been demonstrated in 

demyelinating optic neuritis (94) and ischaemic optic neuropathies (95). The difficulty here 

is that OCTA is not reliable in a swollen disc. Moreover, partial reperfusion of peripapillary 

vascular flow has been linked to visual acuity improvement in NA-AION (96).  The 

association of absent focal perfusion alongside superficial peripapillary capillary dilation has 

been advanced as a potential diagnostic sign for arteritic AION (97). In established cases of 
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Leber hereditary optic neuropathy and autosomal dominant optic atrophy, reduction in 

peripapillary perfusion is consistently observed (98,99). 

 

 

Conclusion  

OCT imaging has revolutionised neuro-ophthalmic practice and with ever advancing 

technology the scope for further applications will continue to expand.  We have described 

its application in the diagnosis, monitoring and prognostication of a number of more 

common neuro-ophthalmic conditions, including demyelinating, inflammatory, ischaemic 

and compressive optic neuropathies, optic disc drusen and raised intracranial pressure.  This 

list is not exhaustive, and there are a multitude of other neuro-ophthalmic conditions that 

also benefit from the capabilities that OCT imaging affords with respect to diagnosis and 

management.  The use of computer-generated information, however, must always be 

reviewed for potential inaccuracies or artefacts, correctly and critically interpreted, and 

integrated into the clinical context.  This is an exciting area in both neuro-ophthalmic 

research and clinical practice, and as OCT technology continues to improve, it will 

undoubtedly enhance our understanding of the pathophysiology of neuro-ophthalmic 

diseases in the future. 
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Table 1: Anatomy of the anterior visual pathway 

 

Light energy reaching retina is converted by photoreceptors into an electrochemical sig-

nal 

Signal is relayed to retinal ganglion cells via bipolar, horizontal and amacrine cells 

Axons of ganglion cells travel in retinal nerve fibre layer (RNFL) and converge at optic 

nerve head (ONH): 

- Foveal ganglion cell axons travel to temporal aspect of optic nerve in papillomacu-

lar bundle (caeco-central projections) 

- Temporal ganglion cell axons form arcuate bundles that travel above and below 

the fovea, crossing the horizontal meridian in a small delta area behind the fove-

ola, finally entering the superotemporal and inferotemporal aspects of the optic 

nerve 

- Nasal ganglion cell axons enter the nasal portion of the optic nerve 

Retinal ganglion cell axons travel posteriorly through the lamina cribrosa where they be-

come myelinated and are called the optic nerve 

Distal to proximal rearrangement of positions of the ganglion cells axons occurs in the 

first section of the optic nerve: 

- Macular ganglion cell axons move to the optic nerve centre 

- Peripheral temporal fibres become positioned more temporally, both superior and 

inferior to the macular fibres 

- Nasal fibres remain in the nasal past of the optic nerve 

The two optic nerves reach the optic chiasm, typically located 10 mm above the pituitary 

gland, in the sella turcica within the sphenoid bone 

Decussation of axons from the optic nerves takes place in the chiasm 

Each optic tract contains axons from the ipsilateral temporal retina and the contralateral 

nasal retina 

Fibres synapse in the ipsilateral lateral geniculate nucleus (LGN) 
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Table 2: Technical details of OCT parameters used in the assessment of neuro-ophthalmic 

patients 

 

Peripapillary retinal nerve fibre (pRNFL) 

thickness analysis 

Macular ganglion cell (mGCL) /inner plexi-

form layer (mIPL) thickness analysis 

Circular cross-sectional retina scan ob-

tained at diameter of 3.4-3.5mm, centred 

around the optic nerve head (ONH) 

Retinal layer segmentation required – dif-

ferent OCT manufacturers use different 

methods. 

Spectralis SD-OCT (Heidelberg Engineering, 

Heidelberg, Germany): average pRNFL 

thickness displayed in four quadrants. Tem-

poral, superior, nasal and inferior and sec-

toral thicknesses are measured at each of 

the 12 clock-hours or in 16 equal sectors 

Spectralis SD-OCT: offers possibility of con-

ducting automated segmentation of perifo-

veal volumetric macular scans, (usually 49 

B-scans 30 microns apart, 1024 A scans). 

Separately segments mGCL and mIPL.  

Cirrus HD-OCT (Carl Zeiss Meditec, Jena, 

Germany): deviation map generated where 

RNFL measurements are compared at each 

pixel with age-matched normative data-

base, and location under lower 95% of nor-

mal range highlighted. Quantitative optic 

nerve head parameters are provided in the 

centre panel of the scan report 

Cirrus HD-OCT:  acquires an ellipse centred 

on the fovea with a vertical radius of 2 mm 

and horizontal radius of 2.4 mm, providing 

a combined measurement of mGCL and 

mIPL.  

Other devices display the RNFL thickness as 

colour-coded thickness maps of the entire 

peripapillary region (useful in the assess-

ment of small, localised areas of thinning 

outside the sampling location) 

RTVue OCT (Optovue, Fremont, US) cap-

tures a 7 mm2 area centred 1 mm temporal 

to the fovea. Ganglion cell complex (GCC) 

measurements can be made (RNFL + GCL + 

IPL). 
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Table 3: Technical details of optical coherence tomography angiography (OCTA) 

 

OCTA generates motion-contrast images, that arise due to variable backscattering of light 

from the vascular and neurosensory tissue in the retina 

Scans are performed at the same location and temporal changes are measured, permit-

ting the differentiation of moving particles from static tissue. In the retina, movement is 

largely generated by red blood cells 

Motion detection can be gathered by amplitude decorrelation or phase variance 

Amplitude decorrelation detects differences in amplitude between two different OCT B-

scans 

Phase relies on emitted light wave properties and the variation of phase derived from the 

interception with moving objects 

After Fourier transform, the OCT signal contains amplitude (intensity) and phase infor-

mation 

Two averaging methods are then applied to reduce background noise from normal eye 

movements, namely the split spectrum amplitude decorrelation technique and volume 

averaging 

The images, with a size between 3 mm2 to 12 mm2, provide information from the superfi-

cial retinal plexus (including the superficial radial peripapillary capillaries and inner vascu-

lar plexus within the ganglion cell layer), the deep retinal plexus, the outer retina, and the 

choriocapillaris 
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Figure 1: 

Horizontal spectral-domain optical coherence tomography (SD-OCT) B-scan images of the 

optic nerve head (ONH) in a healthy 33 year old female referred for assessment of non-

pathological retinal pigmentary changes. The diameter of the optic disc is defined as the 

distance between the edges of the retinal pigment epithelium (RPE).  The perpendicular 

orientation of the retinal nerve fibre layer (RNFL) is lost as the nerve fibres blend with the 

optic nerve head.  Abbreviations: BM = Bruch’s membrane; EZ = ellipsoid zone; ELM = 

external limiting membrane; ILM = internal limiting membrane; CC = choriocapillaris; OS = 

outer segment; IS = inner segment; ONL = outer nuclear layer; OPL = outer plexiform layer; 

INL = inner nuclear layer; IPL = inner plexiform layer; GCL = ganglion cell layer. 
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Figure 2: 

Spectral-domain optical coherence tomography (SD-OCT) peripapillary retinal nerve fibre 

layer (pRNFL) report in a healthy asymptomatic 27 year old female.  The RNFL thickness falls 

within normal range in all segments (TMP = temporal; SUP = superior; NAS = nasal; INF = 

inferior). 

 

 

RNFL Single Exam Report OU
SPECTRALIS® Tracking Laser Tomography
Diagnosis: --- Comment: ---

Software Version: 6.15.7 www.HeidelbergEngineering.com RNFL Single Exam Report OU

Notes:

Date: 26/10/2020 Signature:

OS

200 µm200 µm

-3.2°-3.2°

IR 30° ART [HS]

ILMILM

RNFLRNFL

200 µm200 µm

OCT ART (100) Q: 22 [HS]

TMP SUP NAS INF TMP

R
N

FL Thickness (12.0°) [µm
]

300

240

180

120

60

0

Position [°]

31527022518013590450

T
97

N
71

S
151

I
136

G
114
(98)

T
97

(77)

TS
168

(137)

TI
171

(146)

N
71

(72)

NS
134

(102)

NI
101

(107)

Classification OS

Within Normal Limits

OD

200 µm200 µm

-10.0°-10.0°

IR 30° ART [HS]

ILMILM

RNFLRNFL

200 µm200 µm

OCT ART (100) Q: 28 [HS]

TMP SUP NAS INF TMP

R
N

FL
 T

hi
ck

ne
ss

 (1
2.

0°
) [

µm
]

300

240

180

120

60

0

Position [°]

31527022518013590450

T
101

N
73

S
155

I
129

G
115
(98)

T
101
(77)

TS
177

(137)

TI
163

(146)

N
73

(72)

NS
133

(102)

NI
96

(107)

Classification OD

Within Normal Limits

Asymmetry
OD - OS

T
4

N
2

S
4

I
-6

G
1

T
4

TS
9

TI
-7

N
2

NS
-1

NI
-5

—————— OD —————— OS

TMP SUP NAS INF TMP

R
N

FL
 T

hi
ck

ne
ss

 (1
2.

0°
) [

µm
]

300

240

180

120

60

0

Position [°]

31527022518013590450

Within Normal Limits (>5%)

Borderline (<5%)

Outside Normal Limits (<1%)

Reference database: European Descent (2009) Heidelberg, Software Version: 6.15. 7



 24 

Figure 3:  

Spectral-domain optical coherence tomography (SD-OCT) thickness map report of the right 

eye showing macular ganglion cell layer (mGCL) density and thickness analysis (1, 2.22m 

3.45 mm volume scan) after segmentation in a healthy asymptomatic 27 year old female. 
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Figure 4: 

A 36 year old male with relapsing-remitting multiple sclerosis (MS) presented with visual 

complaints and was found to have a right inferior incongruous visual field defect. The 

spectral-domain optical coherence tomography (SD-OCT) macular ganglion cell layer (mGCL) 

analysis shows a corresponding pattern of left hemi-retinal loss.  This is indicative of left-

sided post-chiasmal demyelination (left optic tract or radiation), with MRI images confirming 

left optic radiation volume loss. 
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Figure 5 

A 44 year old female with sero-negative neuromyelitis optica (NMO) presented with right 

eye optic neuritis. The spectral-domain optical coherence tomography (SD-OCT) imaging 

demonstrates progressive thinning of the peripapillary retinal nerve fibre layer (pRNFL) and 

macular ganglion cell layer (mGCL) after presentation, shown here at 3 weeks and 3 months 

post episode. 
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Figure 6 

Optic disc drusen (ODD) visible on fundus autofluorescence (A) with corresponding 

morphology demonstrated on enhanced depth imaging spectral-domain optical coherence 

tomography (EDI SD-OCT) (B).  ODD are seen as signal-poor structures with a partial 

hyperreflective margin.  
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Figure 7 

Enhanced depth imaging spectral-domain optical coherence tomography (EDI SD-OCT) 

shows a peripapillary hyper-reflective ovoid mass structure (PHOMS) in a 37 year old who 

also has optic disc drusen (ODD). 
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Figure 8 

A 23 year old female presented with headaches and was found to have bilateral optic disc 

swelling, and after investigation was diagnosed with idiopathic intracranial hypertension 

(IIH). Spectral domain optical coherence tomography (SD-OCT) imaging demonstrates 

bilateral perpipapillary retinal nerve fibre layer (pRNFL) thickening at presentation (A). There 

was improvement in symptoms and pRNFL thickening after commencement of 

acetazolamide and weight loss strategies at 4 months after diagnosis (B). 
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Figure 9 

A 47 year old male presented with headaches and was found to have bilateral optic disc 

swelling , after investigation deemed secondary to raised intracranial pressure. Enhanced 

depth imaging spectral-domain optical coherence tomography (EDI SD-OCT) demonstrates 

upward deflection of Bruch’s membrane (arrows). 
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Figure 10 

A 70 year old female presented with headache and reduced vision in the right eye. She was 

diagnosed with right arteritic anterior ischaemic optic neuropathy (A-AION) due to giant cell 

arteritis (GCA).  Spectral domain optical coherence tomography (SD-OCT) imaging 

demonstrates progressive thinning of the macular ganglion cell layer (mGCL) from onset, 

shown here at 3 weeks and 8 weeks post presentation.  
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Figure 11 

Spectral-domain optical coherence tomography (SD-OCT) peripapillary retinal nerve fibre 

layer (pRNFL) report in a 64 year old male with bilateral established optic neuropathy 

secondary to a pituitary adenoma causing compression of the optic chiasm. 
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