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Optical Compressive Encryption via Deep Learning
Yi Qin , Yuhong Wan , Shujia Wan, Chao Liu, and Wei Liu

Abstract—The compression of the ciphertext of a cryptosystem is
desirable considering the dramatic increase in secure data transfer
via Internet. In this paper, we propose a simple and universal
scheme to compress and decompress the ciphertext of an optical
cryptosystem by the aid of deep learning (DL). For compression, the
ciphertext is first resized to a relatively small dimension by bilinear
interpolation and thereafter condensed by the JPEG2000 standard.
For decompression, a well-trained deep neural network (DNN) can
be employed to perfectly recover the original ciphertext, in spite
of the severe information loss suffered by the compressed file. In
contrast with JPEG2000 and JPEG, our proposal can achieve a far
smaller size of the compressed file (SCF) while offering comparable
decompression quality. In addition, the SCF can be further reduced
by compromising the quality of the recovered plaintext. It is also
shown that the compression procedure can provide an additional
security level, and this may offer new insight into the compressive
encryption in optical cryptosystems. Both simulation and experi-
mental results are presented to demonstrate the proposal.

Index Terms—Optical security, ciphertext compression, deep
learning.

I. INTRODUCTION

O
PTICAL security methods have received increasing in-

terest since the pioneering work of double random phase

encoding was reported by Javidi and Refregier in 1995 [1]. In

contrast to conventional methods, optical cryptosystems possess

the advantages of high-speed parallel-processing and multiple

freedoms [2]. Therefore, a variety of optical techniques, includ-

ing holography [3], joint transform correlator [4], interference

[5], diffraction [6], and single-pixel imaging [7], are exploited

to create optical cryptosystems. Among the existing optical

encryption schemes, the ones that encrypt the primary image into

phase-only masks (POMs) are quite attractive, as the decoded

image can be directly captured by the intensity sensitive devices

in such schemes [5], [8], [9]. In particular, a cascaded double

phase encryption (CDPE) scheme is worthy of noting due to its
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high security [9], and some variants of it were also reported and

studied recently [10], [11].

In addition to developing new optical cryptosystems, people

also make efforts to compress the ciphertext to facilitate its

transmission and storage [12]. This is especially true considering

the dramatic increase in data transfer via Internet. Multiplexing

and classical data compressing technique are two major ways for

ciphertext compression in optical cryptosystems. Multiplexing

is a powerful character that distinguishes optical encryption, as

it allows for merging multiple massages into one single package.

Till now, various multiplexing strategies have been developed.

For instance, Situ and Zhang proposed wavelength multiplexing

[13] and distance multiplexing [14] in the double random phase

encoding scheme, Rueda et. al. showed the feasibility of

lateral shift multiplexing [15] and key rotation multiplexing

[16] in the joint transform correlator encrypting architecture,

Barrera et. al. demonstrated the potential of multiplexing in

securing movies [17]. In these multiplexing strategies, multiple

ciphertexts associating with different plaintexts are directly

superposed to yield the synthetic ciphertext. Although confused,

the synthetic ciphertext still permits the approximately recovery

of each plaintext with its unique decryption keys. Besides, by

combining spectral multiplexing with some other means (e.

g. quantization), Alfalou and co-authors developed a series of

approaches for simultaneous compression and encryption of

multiple images [18]–[20].

In contrast to multiplexing, direct processing of the cipher-

text with classical compression techniques seems to be more

straightforward. However, literatures on such topic are rela-

tively rare, since the ciphertext always has a noisy appearance

and thus makes the lossless compression method no longer

effective [12]. Of course, lossy compression technique, such

as quantization, can effectively reduce the volume of the ci-

phertext; however, this will result in obvious degradation in

the reconstructed image [21]. In the traditional sense, the lossy

compression always means the permanent loss of information.

Fortunately, the emergence of deep learning (DL) brings the

chance for coping with such issues. For example, Dong et. al.

showed that the compression artifact of a natural image could

be well repaired by a deep convolutional network [22], Jiao

et. al. compressed a phase-only hologram with JPEG standard

and recovered it via DL [23]. Also by DL, Shimobaba et. al.

presented a dynamic-range compression scheme for phase-only

holograms and attained a satisfied compression ratio [24]. Zhang

et. al. reported a new scheme for image compression and encryp-

tion, and they demonstrated that the degraded image caused by

ghost-imaging transmission can be substantially improved by

DL [25]. In particular, because the optical ciphertext is of more
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Fig. 1. Schematic of the decryption setup for CDPE.

randomness than natural image or hologram, the compression

of it becomes extremely difficult. To our best knowledge, the

only literature on such topic is contributed by Li et. al. [26],

who compressed the ciphertext image into the one-dimensional

signal and reconstructed it with DL. However, their compression

approach is based on the complex optical setup that includes

expensive optical elements (e. g. DMD), and therefore may

not be applicable in some scenarios. In this paper, we present

herein a novel compression and decompression scheme for

optical ciphertext that employs a deep neural network (DNN).

In our scheme, the bilinear interpolation and JPEG2000 work

collaboratively to compress the ciphertext, while a novel DNN

is employed to perform lossless decompression. The proposed

scheme is simple and universal, and we take the CDPE system as

an example to demonstrate it. It is shown that the performance of

the proposal surpasses the excellent compression standards such

as JPEG2000 and JPEG by a large margin. Both simulations and

experimental results are presented to support the proposal.

II. PRINCIPLE

A. The Cascaded Double Phase Encryption (CDPE)

The schematic of the decryption setup for CDPE is depicted

in Fig. 1. It consists mainly of two cascaded POMs: the key mask

(KM) and the ciphertext mask (CM). The values of the KM are

fixed and are distributed randomly within [0, 2π]. The CM is

generated by using an iterative algorithm detailed below and it

varies with the plaintext. When the CM (i. e. input plane) is illu-

minated by the parallel coherent light, the plaintext hidden in it

will be reconstructed at the output plane. The recovered plaintext

can be directly recorded by an intensity-sensitive device such as

CCD camera. For the convenience of the subsequent discussion,

(ξ, η), (µ, ν), and (x, y) are used to denote the coordinates of

the input plane, key plane, and output plane, respectively.

In order to encrypt the plaintext into the two POMs, an

iterative algorithm simulating the reciprocal propagation of the

wavefront between the input plane and the output plane should be

utilized. To begin with, a random-valued matrix CM (1)(ξ, η) is

generated to initialize the CM. The nth,n = 1, 2, 3 . . . iteration

starts from propagating CM (n)(ξ, η) forward to the output

plane, where a complex amplitude of O(n)(x, y) is obtained.

Afterwards, a type of amplitude constraint is performed on

O(n)(x, y) by substituting its amplitude with the target image

(i. e. plaintext). The updated O(n)(x, y) is then propagated

back to the input plane to yield the complex amplitude of

I(n)(ξ, η). Then we impose another type of amplitude constraint

on I(n)(ξ, η) (i. e. replacing its amplitude by a special matrix

whose elements all equal 1). The renewed I(n)(ξ, η) has the pure

phase form and it serves as CM (n+1)(ξ, η) in the next iteration.

The block diagram for illustrating the iterative algorithm is

shown in Fig. 2, where FrT[·] and FrT−1[·]denote respectively

the forward and back Fresnel diffraction in the free space, the

symbols ⊗ and ∗ represent respectively the multiplication and

conjugation operation. The iteration will be terminated when

the correlation coefficient between the amplitude of O(n)(x, y)
and the plaintext exceeds some predefined value. Assuming K

iterations have proceeded before the termination, CM (K)(ξ, η)
is saved as the final value of the CM.

B. The Proposal

The proposed scheme is outlined in Fig. 3. The compression

of the CM involves two steps [Fig. 3(a)]. The first step reduces

the size of the CM from N ×N to M ×M (M < N ) by

bilinear interpolation, and the second step further compress it

with the JPEG2000 standard. It is worth noting that JPEG2000

can substantially condense an image in volume without changing

its dimensions. Fig. 3(b) shows the decompression principle: a

well-trained DNN can be utilized to directly predict the original

CM from the compressed one.

Fig. 4 shows the details of the network that we devised. It

inherits the basic framework of the U-net [27]. The size of the

network input/output is 64×64. The arrow with a certain color

denotes a unique type of operation, as indicated by the legend.

Each blue block represents a multi-channel feature map, and

the number of channels and the x-y size are annotated at the

top and lower edges of it, respectively. We use the residual

block (See details in [28]) rather than the common convolution

for extracting the feature throughout the network. The max

pooling with 2×2 filters (2×2 Max pooling) and transposed

convolution with 3×3 filters (3×3 Up-conv) work respectively

as the layer downsampling and upsampling layer. The skip and

concatenation bridge the contracting path and the expanding

path for better convergence of the network. Every involved

convolution operation has an identical kernel size of 3×3 pixels

and is followed by the batch normalization (BN) and a rectified

linear unit (Relu).

C. Data Preparation

The data generation is performed on the platform of Matlab

R2011a. To yield the CMs, the Chinese characters with different

fonts are used as the target images (i. e. plaintexts). The number

of pixels of the target image and that of the CM are both set

to 64×64 ( =N ×N ). The parameters for calculation are

that the illumination wavelength is 532.8nm, the pixel pitch is

6.4um, and the axial distances d1 and d2 both take the value of

250mm. It should be stressed that all the subsequent numerical

simulations also follow such settings of parameter. The gen-

erated CMs are further compressed by the proposed “Bilinear

interpolation+JPEG2000” approach. The compressed CMs are

with the size of 20×20 ( =M ×M ), and they will be resized

to 64×64 to match the network input before training/predicting.
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Fig. 2. The block diagram of the iterative algorithm used to yield the CM.

Fig. 3. Outline of the proposed scheme.

Several examples of the target images, as well as the correspond-

ing CMs and compressed CMs, are depicted in Fig. 5. To train the

DNN, we generate totally 100000 pairs of CMs and compressed

CMs as the dataset, of which 95% are used as the training set

and 5% as the testing set.

D. Training

Our DNN is constituted based on the Keras framework that

uses Python 3.6. The training is carried out on a PC with the

configuration of Intel core i7-8700 CPU and 32 GB RAM. The

NVIDIA GeForce GTX 1070Ti GPU is enabled to accelerate

the calculation. The mean absolute error (MAE) between the

predicted CM and the primary CM is chosen as the loss function.

In addition, we use optimizer Adam with a learning rate of

0.0002 and a batch size of 32. The training lasts for about 40

hours.

III. RESULTS AND DISCUSSION

A. Experimental Arrangements

The experimental arrangements are prepared according to

the schematic illustrated in Fig. 1. In principle, two phase

modulation elements, such as spatial light modulator (SLM),

should collaborate to complete the decryption. However, con-

sidering the difficulty in aligning them, only the propagation

from the key plane to the output plane is optically realized,

while that from the input plane to the key plane is calculated

digitally. Moreover, as the currently available SLM is incapable

of modulating the amplitude and phase simultaneously, we trans-

late the complex amplitude behind the KM into a phase-only

wavefront (POW) by discarding the amplitude information. This

approximation is reasonable due to the importance of phase

information [29], but it will inevitably cause degradation of the

reconstruction. The proposed optical setup is shown in Fig. 6.

The coherent light from the laser (λ = 532.8nm) is focused

by the objective lens (OL), filtered by the spatial filter (SF),

and then collimated by L1 (f = 150mm). The parallel wave

passes through the polarizer (P) and the beam splitter and then

illuminates the SLM. The reconstructed plaintext is imaged on

the CCD through L2 (f = 150mm). The SLM (JD955B, Jasper

Display Corp) used for displaying the POW is with 1920×1080

pixel count and 6.4um×6.4um pixel pitch, and the CCD camera

(GigE Vision TL, Daheng imaging) is with 1920×1080 pixel

count and 6.4um×6.4um pixel pitch. Besides, since the POW is

also with a size of 64×64, it will be extended to 1920×1080 via

zero-padding to fit the SLM.

B. Feasibility of the Proposal

We will introduce several indexes to ensure a comprehensive

evaluation for each compression method. The first index we

prefer is the correlation coefficient (CC), as it can evaluate the

quality of a recovered image by comparing it with the primary

one from the statistical perspective. The CC is defined as

CC =
E {[|f − E (f)|] [|fr − E (fr)|]}

√

E
{

[f − E (f)]2
}

E
{

[fr − E (fr)]
2
}

, (1)

where E[ ] stands for the mathematical expectation, f denotes

the primary image, fr denotes the recovered image with de-

graded quality. The value of CC ranges from 0 to 1, and the

larger the value the better the quality of the recovered image.

The second index we introduce is the peak signal to noise ratio
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Fig. 4. The structure of the proposed DNN.

Fig. 5. Several examples of the target images (top row), the corresponding
CMs (middle row), and the compressed CMs with our method (bottom row).

(PSNR). Assuming both f and fr have the size of J ×K and are

of 8-bit depth, the PSNR for fr can be mathematically expressed

by

PSNR = 10 · log10

(

2552

1
JK

∑∑

‖f − fr‖
2

)

, (2)

where ‖‖ denotes the L2 norm. Another index is the size of

the compressed file (SCF), as it points out the absolute memory

space the file occupies in the computer.

To verify the feasibility of our method, one CM is randomly

selected from the validation set for test. Fig. 7(a) shows the orig-

inal CM (Ground truth, GT), and its size in BMP format (5174

bytes) is regarded as the original file size. The decompressed

CM from the BMP file is completely identical to the GT because

BMP is a lossless coding format. The recovered plaintext from

the original CM in simulation [Fig. 7(e)] or experiment [Fig. 7(i)]

is also taken as the GT for the calculation of the CC/PSNR

values. Fig. 7(b) shows the decompressed CM by use of our

Fig. 6. The experimental setup for approximately reconstruction of the plain-
text. OL, objective lens; SF, spatial filter; L1, L2: lens; P, polarizer; BS, beam
splitter; SLM, spatial light modulator; CCD, charge-coupled device.

proposal. As can be seen, it highly resembles the GT (CC =
0.9859/ PSNR = 26.20dB); meanwhile, the SCF for it reaches

to a surprisingly small value of 273 bytes. In the following

discussions, we will compare the proposal with two outstanding

modern compression standards: JPEG and JPEG2000. First of

all, we give an evaluation of the three methods in the case that the

decompressed CM with each of them is comparable in quality.

To do this, we enforce the CC values of the decompressed CMs

using JPEG2000 and JPEG to approach sufficiently to 0.9859

through adjusting the parameters of the IMWRITE function in

Matlab (i. e. “CompressionRatio” for JPEG2000 and “quality”

for JPEG), and we show the corresponding decompressed CMs

in Figs. 7(c) and 7(d), respectively. The SCF for each method

is annotated above the decompressed CM. It is seen that, yield-

ing the CMs comparable in quality, the SCFs for JPEG2000

and JPEG are 1867 bytes and 2382 bytes, which are ∼7 and

∼9 times the volume of that for our proposal. Fig.s 7(e)-7(h)
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Fig. 7. The comparison of our method with JPEG and JPEG2000 when the decompressed CMs are comparable in quality.

show the numerically reconstructed plaintexts with these de-

compressed CMs. Interestingly, the reconstructed image with

the proposal (CC = 0.9875/PSNR = 35.87dB) exceeds those

with JPEG2000 (CC = 0.9750/PSNR = 32.56dB) and JPEG2

(CC = 0.9732/PSNR = 32.30dB). Similar conclusions can also

be drawn from the experimental results shown in Figs. 7(i)-7(l).

Secondly, it is also significant to compare the three approaches

in the case that the compressed CMs are identical in file size.

Unfortunately, neither JPEG nor JPEG2000 allows continuous

adjustment of the SCF. Hence, the SCF for either is set to the

value which is closest to that for our method (i. e. 273 bytes).

The SCF for JPEG is finally reduced to 856 bytes, because

this is the minimum that JPEG can offer with the current CM

(by setting the “quality” parameter to 0). With this SCF, the

decompressed CM [Fig. 8(d)] differs from the GT obviously, and

the recovered plaintexts obtained by both simulation [Fig. 8(h)]

and experiment [Fig. 8(l)]] are extremely blurry. The eligi-

ble SCF for JPEG2000 is identified to be 315 bytes, and the

corresponding decompressed CM [Fig. 8(c)] becomes totally

different from the GT. The corresponding recovered plaintext

with either simulation [Fig. 8(g)] or experiment [Fig. 8(k)] has

a noise appearance and is thoroughly unrecognizable. It can be

judged that the proposal has surpassed the compression limit

that JPEG and JPEG2000 can achieve.

Fig. 9 shows in more detail the relationship between the SCF

and the quality indexes of the decrypted image. It should be

pointed out that, for a certain plaintext, the SCF obtained by

TABLE I
THE ROLES THAT STEP 1 AND STEP 2 PLAY DURING THE COMPRESSION

using our method is fixed (∼270 bytes). This is because all

the parameters for compression are constant during the gen-

eration of the dataset, which is employed to train the DNN.

As a result, only when a compressed file is yielded with such

parameters, can it be recognized by the DNN and successfully

recovered. By comparison, both JPEG and JPEG2000 permit

the adjustment of the SCF, and they produces gradually de-

graded decrypted results as the SCF declines. In this regard,

JPEG and JPEG2000 can furnish the compression with more

flexibility. It should be pointed out that the proposal is also

potentially able to provide such flexibility, provided that variable

compression parameters are adopted to produce the training

data. However, this will give rise to dramatic expanding of the

dataset; what is more, the network architecture, together with

the relative parameters, may need to be modified to ensure the

convergence.

As mentioned in Section II-B, the proposed compression

comprises of two steps. Table I shows the roles that they play

during the compression. As can be seen, the first step compresses

the ciphertext from its original size (i. e. 5174 bytes) to 1440
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Fig. 8. The comparison of our method with JPEG and JPEG2000 when the compressed CMs are comparable in SCF.

Fig. 9. The relationship between the SCF and the quality indexes of the
decrypted image. (a) CC; (b) PSNR.

TABLE II
THE COMPARISON OF THE COMPRESSION AND DECOMPRESSION TIME OF THE

THREE METHODS

bytes, and the second step further reduces this value to 273 bytes.

By comparison, if the first step is removed from the compression

process (i. e. M=N ), the SCF of the ciphertext will be finally

2076 bytes. Hence, both steps are indispensable for adequate

compression.

We also compared the compression and decompression time

of the three methods. It should be kept in mind that the

DNN predicting is conducted on Python 3.6, while all the

other related programs are carried out on MATLABR2011a.

Approximately, the compression/decompression time of JPEG

and JPEG2000 is acquired by calculating the running time

of IMWRITE/IMREAD function. Because the proposed com-

pression consists of bilinear interpolation and JPEG2000, the

compression time of the proposal should be a sum of that to

execute each of them. Likewise, the decompression time of the

proposal comprises of those spent on JPEG2000 decompression

and DNN predicting. The test results are summarized in Table II.

It is seen that the compression time of our proposal is comparable
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Fig. 10. The dependence of SCF and validation loss on the value of M.

with its counterparts; however, the decompression time of our

method, of which the predicting time accounts for ∼90%, is

much longer.

The current SCF of our approach has been shown to be far

superior to that of JPEG or JPEG2000, while it is expected to

be further reduced in some application scenarios. A reasonable

way to achieve this goal is to decrease the value of M, as the

file size of an image in any format inherently relates to its

dimensions. However, an excessively small M will lead to severe

information loss of the compressed CM and thus confuse its

“feature”. Consequently, the training of the DNN may become

rather difficult or even failed. Thus, it is necessary to figure

out how the value of M affects the SCF, the DNN model, as

well as the decrypted plaintext. Reducing the value of M from

20 to 10 with an interval of 2 and using the same CM set as

that in Section II-C, we produce six groups of compressed CMs

that represent different degrees of compression. Six models are

obtained by training the DNN with these data sets individually,

and the training parameter settings follow those specified in

Section II-D. For comparison, these models are used to predict

the same CM shown in Fig. 7(a). The predicted CMs are further

decrypted numerically and experimentally to recover the plain-

texts. Partial results are illustrated in Fig. 10. As can be seen,

the SCF dwindles with the decrease of M at first and achieves

a minimum of 175KB at M = 14. In other words, the SCF no

longer changes even if M takes more small values (i. e. 12,

10). This phenomenon is likely to be caused by the encoding

rule of JPEG2000. Meanwhile, the validation loss increases as

the value of M descends, indicating the gradually deterioration

of the DNN model. It can be concluded that, to some extent,

the SCF can be reduced by compromising the performance of

the DNN model (i. e. the quality of the decompressed CM as

well as the recovered plaintext), but there is a lower limit for

it due to the encoding role of JPEG2000. Fig. 10 also shows

that the DNN model with M = 16 ensures a good recovered

image while that with M = 14 causes a totally unrecognizable

one. Therefore, the minimum of the acceptable values of M

is 16 in the current research, corresponding to a SCF of 207

bytes.

Fig. 11. The dependence of the decrypted image on the eavesdropping ratio.

C. Security Analysis

The security of the CDPE scheme itself has been sufficiently

investigated in [9]–[11], so we will focus on the security en-

hancement contributed by the compression procedure. Accord-

ing to the Kerckhoffs’ assumption [30], the attacker has the

total knowledge of the cryptosystem except the secret keys. To

break the proposed scheme, the attacker should firstly transform

the eavesdropped ciphertext (M ×M ) into its original size

(N ×N ). However, such issue is essentially ill-posed, since

the bilinear interpolation results in irreversible information loss.

Consequently, the currently available cryptoanalysis, such as

ciphertext-only attack and known-plaintext attack [30], will fail

to crack the proposed scheme. In other words, the attacker

has to utilize the brute-force attack to acquire the DNN. Let

P represent the set of the parameters (weights and biases)

that composes the DNN. We investigate the dependence of

the decrypted image on the eavesdropping ratio (ER) of P

and show it in Fig. 11. As is observed, the decrypted im-

age renders no meaningful information of the plaintext even

though the ER reaches to 99.9%; that is, a small amount of

incorrect parameters of the DNN can lead to entire failure of

the decryption. Furthermore, a perfect reconstruction of the

original image requires the knowledge of more than 99.995%

of the whole parameters. It can be concluded that the proposed

scheme guarantees itself high security, as the DNN has a total

of ∼50000000 parameters that will exhaust the unauthorized

intruder.

IV. CONCLUSION

To summarize, we have reported a DL-based scheme for

compression and decompression of the ciphertext of an optical

cryptosystem. The compression is accomplished by the cooper-

ation of bilinear interpolation and JPEG2000 standard, and the

decompression is implemented by a DNN. Yielding the lossless

decompression of the same ciphertext, our method attains a far

smaller SCF than JPEG and JPEG2000. In particular, the pro-

posal surpasses the compression limit that JPEG or JPEG2000
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can achieve. Moreover, the SCF can be further reduced by

compromising the quality of the recovered plaintext. Compared

with JPEG and JPEG2000, our method takes comparable com-

pression time but relatively longer decompression time. It is also

demonstrated that the compression can immensely reinforce the

security of the CDPE scheme, and this may offer new insight

into the compressive encryption in optical cryptosystems.
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