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Abstract

Removing non-uniform blurring caused by camera shake

has been troublesome for its high computational cost. To

accelerate the non-uniform deblurring process, this paper

analyzes the efficiency bottleneck of the non-uniform de-

blurring algorithms and proposes to implement the time-

consuming and repeatedly required module, i.e. non-

uniform convolution, by optical computing. Specifically,

the non-uniform convolution is simulated by an off-the-

shelf projector together with a camera mounted on a pro-

grammable motion platform. Benefiting from the high speed

and parallelism of optical computation, our system is able

to accelerate most existing non-uniform camera shake re-

moving algorithms extensively. We develop a prototype sys-

tem which can fast compute non-uniform convolution for the

blurring image of planar scene caused by 3D rotation. By

incorporating it into an iterative deblurring framework, the

effectiveness of proposed system is verified.

1. Introduction

Image blur caused by camera shake is a common degra-

dation and key issue in computational photography. Per-

spective geometry tells that camera shake blur may be inten-

sively varying in spatial domain. However, due to the high

complexity and computational cost of non-uniform blurring

models, for a long time studies on camera shake removal

formulate camera shake blur with uniform convolution and

propose many deblurring methods[17, 5, 18, 3, 25].

With the progress of image deblurring, researchers re-

focus their attentions on non-uniform blur model but suf-

fer severely from the high computational cost. Although

patch-wise based deblurring [9] can be used to solve the

non-uniform deblurring problem efficiently, the approxima-

tion accuracy is limited for the intensively varying blurry

cases. In spite of the recent progress in non-uniform de-

blurring, the low computation efficiency is still a limitation

for the application of existing algorithms.

Most existing deblurring algorithms iteratively calculate
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Figure 1. The diagram of our optical computing system for fast

non-uniform convolution.

blurred image from recent estimation of sharp image and

camera motion, and then correct the sharp image and cam-

era motion according to residual between calculated blurred

image and captured one. For non-uniform deblurring al-

gorithms, the blurring process is time-consuming because

it need to be computed in pixel-wise and performed many

times during the deblurring process. However, there is no

accurate acceleration methods for this operation so far. This

dilemma motivates us to explore acceleration approaches by

resorting to assistance from hardware.

Optical computing is well studied in optics and many

often-used mathematical operations can be accelerated by

delicate optical systems[14, 1]. However, there is no ex-

isting optical computing system for the non-uniform con-

volution, which is a crucial module needs acceleration. In-

tuitively, the time-consuming pixel wise convolution cor-

responds to a spatially varying image blur process. This

motivates us to build a new imaging system to physically

simulate an imaging process (as shown in Fig. 1) that cor-

responds to the convolution exactly, and thus alleviate the

computing process. In other words, we simulate the non-

uniform computation directly instead of computing it pixel

by pixel or approximating by patch-based methods. Specif-

ically, we project the sharp image onto a planar screen

as a synthetic scene and simulate the blurring process by

imaging the screen using a shaken camera driven by a pro-

grammable motion platform. Based on this system, we
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build an optical computing framework incorporating above

simulation into widely used deblurring iterations for non-

uniform camera shake removal under constant depth as-

sumption, which is widely used in the existing non-uniform

deblurring algorithms [23, 24, 7, 22, 21, 12, 9, 10] except

for [19] and [26].

To the best of our knowledge, this paper is the first at-

tempt to address the efficiency issue in non-uniform de-

blurring by optical computing. The main contributions of

this paper are: (1) build an optical computation framework

for fast non-uniform deblurring; (2) accelerate the non-

uniform convolution operation in non-uniform deblurring

algorithms by a motion platform based system; (3) imple-

ment the prototype of optical system for non-uniform con-

volution and verify its effectiveness by incorporating it into

non-uniform Richardson-Lucy algorithm [22].

2. Related Works

Non-uniform deblurring. Recently, studies on non-

uniform blur are gaining momentum, and the existing meth-

ods are roughly categorized as pixel-wised or patch-wised.

Pixel-wise methods. Tai et al. [22, 21] extend

Richardson-Lucy (RL) algorithm for non-uniform deblur,

and estimate the 6-D projective motion from user interac-

tions. Differently, Joshi et al. [12] measures the 6-D mo-

tion using inertial senors and compute the latent sharp im-

age with sparse image prior. Blind estimation of 6-D blur

kernel is often computationally cost, so Whyte et al. [23]

simplify 6-D camera motion to 3-D rotations and solve it by

extending the uniform algorithm by Fergus et al. [5]. Gupta

et al. [7] propose the 2-D translation and 1-D rotation blur

model to approximate the camera motion, and solve it with

a RANSAC-based framework. However, non-uniformity

requires to compute convolution in pixel-wise manner and

pursue optimum blur kernel by exhaustive searching, so the

above approaches all suffer from the high computational

cost and this inspires our studies on optical computing.

Patch-based methods. To compute the time-consuming

non-uniform convolution fast, an Efficient Filter Flow

(EFF)[9] based method is proposed for acceleration. Al-

though EFF based methods can greatly reduce the running

time, it may lead to some artifacts in the cases with inten-

sively varying blur, since the assumption of slow variance

on blur kernels is violated in such cases. Our approach is

largely different from and advantages over patch based ap-

proximation, since the acceleration is not obtained at the

expense of accuracy.

Optical computation. Optical computation tries to per-

form computation with photon movement using lens, mod-

ulators, detectors and any other optic elements. Researchers

make use of the high speed and parallelism of light transport

in last decades and have made great progress, we refer the

readers to [14, 1] for a survey of this field.

The earlier works[8, 4, 2, 11, 6, 15] in optical comput-

ing basically focused on general purpose computing, such

as matrix multiplication, Fourier transformation, matrix de-

composition, etc. However, with the rapid development of

digital computer, the advantages of optical computing in

aspect of speed are greatly weakened. However, it is still

promising to design specific optical computing systems for

concrete tasks, which need intensive non-general calcula-

tions without acceleration implementations. For example,

O’Toole et al. [16] use a projector-camera system to per-

form light transport computing, Lefebvreet al. [13] and Yu

et al. [27] apply optical computing for pattern recognition.

Non-uniform deblurring algorithms are highly time-

consuming with some non-general operations. They bear

the property of parallelism but cannot be implemented di-

rectly with current optical computing systems. Naturally,

some elegant designs are necessary for such task specific

computations, here we design and implement the system,

then validate it with a series of experiments.

3. Computational Intensive Calculations in

Non-uniform Deblurring

Targeting for an optical computing system for fast non-

uniform deblurring, here we firstly analyze the common

time-consuming calculations in existing algorithms. Many

non-uniform deblurring algorithms are based on specific

motion blur models, e.g. 3-D rotation model[23], 2-D trans-

lation and 1-D rotation model[7], perspective projection

model(6-D)[22, 21, 12]. Based on these models, most ex-

isting algorithms optimize latent sharp image L and blur

kernel (or motion path) K by minimizing following energy:

E(L,K) = ||B̂(L,K)−B||2 + λ1J1(L) + λ2J2(K),
(1)

where B̂ is the blurring function for generating a blurry im-

age from latent sharp image L and motion K (in our sce-

nario, K is a 3D array denoting 3D motion), B is the ob-

served blurry image. For convenient to mathmatical repre-

sentation, L, K and B are denoted by column vectors in the

following. J1(·) and J2(·) respectively regularize the esti-

mated sharp image and kernels to reduce the ill-posedness,

with λ1, λ2 being weighting factors.

According to the concrete form of J1(·) and J2(·), the

objective functions can be convex or non-convex. For

the former case, traditional algorithms like gradient-based

method can be applied, such as steepest-descent, Conju-

gate Gradient(CG) or closed form solution (in frequency

domain and inapplicable for non-uniform deblurring). For

non-convex case, with terms favoring sparse high-frequency

components in recovered images or forcing the camera

motion trajectory to be sparse, the optimization is much

more complicated. For non-convex optimization, the IRLS
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[20] algorithm convexifies the objective into summation of

weighted least square terms which can be solved by CG

and is widely used for deblurring due to its effectiveness.

In summary, almost all the existing non-uniform deblurring

algorithms, either convex or non-convex, take gradient of

energy E in each iteration. However, the non-uniformity

makes this operation computationally intensive and become

the efficiency bottleneck of most non-uniform algorithms.

For non-uniform deblurring, the prior terms J1(·) and

J2(·) in Eq. 1 are still uniform, so their gradients calcula-

tion can be accelerated easily. On the contrary, the data term

||B̂(L,K)−B||2 is non-uniform and its derivative manipu-

lations ∂E
∂L

and ∂E
∂K

need to be calculated pixel by pixel, and

thus is calculation demanding.

∂E
∂L

for optimizing latent image L. For analysis conve-

nience, we rewrite Eq. 1 as

E(L,K) = ||HL−B||2 + λ1J1(L) + λ2J2(K)

H =
∑
θ∈Θ

Kθ ·Wθ,

∂E

∂L
= 2HT

HL− 2HT
B+ λ1

∂J1
∂L

(2)

where H is the blurring matrix determined by camera mo-

tion and the blur model. Specifically, Θ denotes the dis-

cretized high-dimensional motion parameter space and each

θ corresponds to a camera pose (described by N -tuple for

a N -degree-of-freedom blur model) during exposure; Kθ

denotes the weight reflecting the time elapse that camera

spends at pose θ; Wθ is the warping matrix mapping the

reference view to the view corresponding to camera pose θ.

For computing ∂E
∂L

, HT
HL and H

T
B are the key ma-

nipulations. Here H is the sparse blurring matrix for non-

uniform convolution.HL can be calculated by exactly sim-

ulating the blurring process, i.e. calculate all the views

along the motion path and integrate them with correspond-

ing weights. Similarly, HT (HL) and H
T
B should be com-

puted by doing the blurring procedure with inverse motion

path, see [22] for details.

In addition, it is worth noting that the convolution of

residuals which contains negative values need to be com-

puted in many deblurring methods. However, the negative

values cannot be modeled by physical imaging process. To

address this problem, we normalize the input to make the

dynamic range from 0 to 255, and remap them back after

optical computing.

∂E
∂K

for optimizing non-uniform blur kernel K. We re-

form Eq. 1 with matrix representation as

E(L,K) = ||AK−B||2 + λ1J1(L) + λ2J2(K)

A = [Wθ
1L W

θ
2L · · ·Wθ

nL]

∂E

∂K
= 2AT (AK−B) + λ2

∂J2
∂K

(3)

Here θ1 · · · θn is the camera poses traversing the motion pa-

rameter space and W
θi is the warping matrix corresponding

to pose θi. To minimize Eq. 3, matrix A needs to be calcu-

lated many times. Warping images is quite slow even with

GPU acceleration. Therefore, to derive the non-uniform

motion blur kernel, a series of image warping are performed

which are highly time-consuming.

The above analysis tells that non-uniform convolution

and warping image sequence are common calculations and

efficiency bottlenecks respectively in computing ∂E′

∂L
and

∂E′

∂K
, where E′ is the first term of E. Fortunately, by a deli-

cately designed optical computing system, both of them can

be accelerated by a simple snapshot. Therefore, we replace

these two operations with optical computing for accelera-

tion, as blocked in Alg. 1.
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4. Optical Computing System

We design an optical computing system for accelerating

the above two computationally intensive calculations: a mo-

tion platform based projector-camera module system.
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Figure 2. Diagram of our high-dimensional motion platform

based projector-camera system.

4.1. High-Dimensional Motion Platform Based
Projector-Camera System

Different from the common used projector-camera sys-

tem, our camera is mounted on a motion platform. Thus the

camera is able to move along a given trajectory or fixed at a

certain pose following users’ requirement. The diagram of

the basic system is shown in Fig. 2(a).

Assuming the light transport function from projector to

screen be Tp(·), an input image L is projected onto the

screen to form Tp(L). Similarly, assuming the light trans-

port function from screen to the camera is Tc(·), we ob-

tain an output image from the camera as Tc(Tp(L)). As the

platform moves, the light transport function of camera Tc(·)
changes correspondingly, and generate the captured image

T θ
c (Tp(L)) at camera pose θ. Under assumption of a pin

hole camera model, Tp(·) and T θ
c (·) are both linear trans-

formations which can be represented by transport matrices.

For convenience, we denote them as Tp and T θ
c respectively.

If the motion platform moves during exposure, the re-

sulting captured image can be represented by

B =

∫
t∈τ

T θt
c TpLdt (4)

where B is the captured blurry image, θt is the camera po-

sition at time t and {θt : t ∈ τ} compose the whole camera

motion trajectory, with τ being the exposure time range.

To facilitate the analysis, we define an origin position of

the motion platform as θ0, and then the view T θt
c TpL cap-

tured at position θt can be decomposed as T ∆θt
c (T θ0

c TpL)
with ∆θt = θt − θ0, and T ∆θ

c is just the warping matrix

W
θ in Eq. 2. In other words, the latent sharp version of

the captured blurry image is the view captured at the ori-

gin position, and the blurry image is the integration of a

sequence of views captured along a relative motion trajec-

tory {∆θt}. Mathematically, if the whole transport matrix

of our optical system at origin position T θ0
c Tp is an iden-

tity matrix, i.e. the image captured at origin position θ0 is

exactly the same as the input image of projector, our high-

dimensional motion platform projector-camera system can

simulate the physical blurring process by directly moving

the camera along the relative motion path {∆θt}.

Theoretically, T θ0
c Tp = I indicates that the projector-

camera should be exactly the inversion of each other in op-

tics, and optical computing systems need precise calibra-

tion to ensure the accuracy. However, it is often hard to

find the mutually inverse projector/camera pair practically

due to several reasons: (i) most commonly used projectors

and cameras are of totally different optical parameters; (ii)

the precise alignment between optical centers of camera and

projector lenses is difficult; (iii) considering the non-linear

transformations(e.g. gamma correction), the transport ma-

trix based linear model may not be accurate enough in the

real cases. Therefore, in implementation we add a cali-

bration process—both geometric and photometric—to cope

with the errors beyond the adopted linear model. Leaving

the calibration process details in the latter experiment sec-

tion, we first give the optical computation process of time-

consuming module using our calibrated system.

Calculating warping image sequence. The compu-

ataiton of warping image sequcence is quite simple and

straightforward for our optical computing system. Practi-

cally, for a specific view pose θi, the snapshot by projecting

L and capturing with pose θi is exactly the desired warping

image W
θiL.

Calculating spatially varying convolution. For our opti-

cal computing system, the blurring manipulation caused by

camera shake can also be computed simply by reproducing

the real procedure of generating a blurry image. For a given

high-dimensional camera trajectory, we can capture the de-

sired blurry image exactly by driving the motion platform

along the given trajectory in a properly set exposure time

with velocity correponding to the elapse of poses along the

path.

Practically, the camera trajectory is not often available,

and the non-uniform blur kernel is commonly represented

by a density function of a high-dimensional cube. However,

due to the physical constraint, the non-zero element should

be continuous and sparse. Therefore, it can be represented

by a high-dimensional connected-graph, and each traversal

path of this connected-graph can be used as the camera tra-

jectory here.

5. Implementation and Experiment Results

This section demonstrates our prototype optical comput-

ing system, and then shows its performance in performing

predefined non-uniform blurring and restoring blurry im-

ages after incorporated into a deconvolution framework.

The whole system is shown in Fig. 3. For simplicity, we

use a 3-axis rotating platform and adopt 3-D rotational blur

926934934940
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Figure 3. The prototype of proposed high-dimensional motion

platform based projector-camera system.

model correspondingly. This rotating platform is able to

burden about 40kg load (camera in our scenario) and moves

to an orientation with any pitch, yaw and roll angle. The

maximum moving velocity is 200◦/s and of rotating ac-

celeration is 200◦/s2, which are sufficient for our proto-

type system to validate the proposed approach. The cam-

era mounted on the platform is a Point Grey FL2-08S2C.

Both the platform and camera are driven by a control soft-

ware through RS-232 COM and IEEE 1394 respectively.

We adopt software synchronization to ensure exact match-

ing between the camera’s exposure time and the given plat-

form’s motion trajectory.

5.1. System calibration

The hybrid system should be calibrated in terms of geo-

metric distortion, intensity response curve and other distor-

tions. Ideally, we should calibrate the projector and camera

independently. For simplicity and efficiency, we treat the

projector-camera system as a black box and the experiments

show that our simple calibration method is accurate enough

to prevent the computing process suffering from distortions.

Geometric calibration. Since the projector and camera

cannot be exactly complementary (with same optical path),

we need a careful calibration to ensure exact correspon-

dence between the input image and captured image. One

straightforward method is to calibrate all the parameters of

the projector-camera system with a series of calibration pat-

terns. However, this method is complex and may suffer

from the unmodeled distortions. Fortunately, we only need

the geometric correspondence between the input and output

image, and can just use a coordinate map to represent the

correspondence instead of an explicit geometric model. In

implementation, we provide a chessboard pattern to the pro-

jector and capture the projected result with the camera. By

corners matching, the correspondence between input and

output images is determined. Since the coordinate corre-

(a) (b)

(c) (d)

Figure 4. Result of geometric calibration. (a) original chessboard

pattern. (b) captured pattern. (c) warping vectors from landmarks

for interpolation. (d) pattern after geometric calibration.

(a) (b)

Figure 5. Result of dark corner correction. (a) and (b) are re-

spectively the ratio image before and after calibration.

spondence vary smoothly, we can largely reduce computa-

tion time by interpolating corresponding map from several

corners points. Fig. 4 gives an example of our geometric

calibration, with Fig. 4(a) being the original calibration pat-

tern, Fig. 4(b) being the captured version by our projector-

camera system with the motion platform fixed at the origin

position, and Fig. 4(c)(d) respectively presenting the map-

ping vectors at several landmarks for interpolation and the

calibrated pattern.

Dark corner correction. As known, both projector and

camera suffer from the dark corner effects and the effect is

more significant in such hybrid systems. To offset the dark

corner, we project an constant-intensity grey image (inten-

sity is set 128 to prevent saturation) to the screen, and com-

pute the ratio image between the geometrically calibrated

output image and the original input one. Fig. 5 (a) and (b)

respectively show the captured grey image and the geomet-

rically calibrated ratio image, which can be used to remove

the dark corner effect.

Intensity response calibration. Because the response

curve of neither projector nor camera is ideally linear due

927935935941
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Figure 6. Intensity response calibration. (a) original intensity

step pattern. (b) captured pattern. (c) pattern after geometric cali-

bration and dark corner correction. (d) intensity response curve.

to some internal transformations like gamma correction, the

intensity response of the whole system varies nonlinearly

with intensity and need to be calibrated.

There are several contributing factors (e.g. response

curve of projector, reflection properties of screen, response

curve of camera etc.) for the nonlinearity, we prefer a black-

box model here. We first project an intensity gradation map

onto the screen, correct the geometric distortion and dark

corner effect of the output image, and then compute the re-

sponse of each intensity level by averaging all the pixels at

this level (remove the marginal ones). Fig. 6 gives an ex-

ample of intensity response calibration, (a) gives the origi-

nal intensity step pattern, (b) shows the captured image and

(c) is the calibrated version of (b) with geometric and dark

corner correction, (d) demonstrates the calibrated intensity

response curve derived by our intensity step map.

In addition, considering that the color channels of com-

mon RGB camera and projector are coupled with each other

and decoupling them will increase the complexity of our

system, we just calibrate grey scale images in our prototype

system and process each channel separately.

5.2. Experiment results on prototype validation

Accuracy of PSF. To verify the accuracy of our high-

dimensional motion platform based projector-camera sys-

tem, we project a point grid onto the screen and capture the

deterioration result (i.e., the PSF) by a randomly generated

camera shake, by setting the camera exposure synchronized

with the motion procedure.

Comparing the synthetic blurred result (with camera in-

trinsics and trajectory known) in Fig. 7(a) and the im-

age captured by our high-dimensional motion platform

(a) (b)

Figure 7. Testing on PSF accuracy using a point grid pattern.

(a) synthetic result according to projective geometry. (b) blurred

point grid pattern by our prototype optical computing system.

projector-camera system in Fig. 7 (b), we can see extremely

high similarity. Apparently, our system gives promising ap-

proximation and thus is of sufficient accuracy for perform-

ing the blurring manipulation optically.

Accuracy of non-uniform blur simulation. A sharp im-

age is projected to the screen, as shown in Fig. 9(a), with

whose ground truth blurry version under a given camera

shake shown in Fig. 9(b). Then the blurry image optically

computed by our system are captured under the given mo-

tion trajectory, as shown in Fig. 9(d). For clearer compar-

ison, we display in Fig. 9(c) the the absolute residual map

between (b) and (d). The small residue validates the accu-

racy of our optical computing system. The residual errors

are mainly caused by two factors: the dead/saturation area

of response curve (shown in Fig. 6(d)) and the distortion not

modeled in synthesizing ground truth blurry image, such as

radial distortion, tangential distortion etc.

Fast non-blind deblurring with our system. We incor-

porate our system into the framework of non-blind non-

uniform motion deblurring for acceleration. For simplic-

ity, we adopt non-uniform version of RL[17, 22] deblur-

ring algorithm in this experiment. Introducing our high-

dimensional motion platform projector-camera system, we

can replace the pixel-wise non-uniform convolution in each

iteration with two snapshots, and thus the running time can

be largely reduced. Neglecting the mechanical limitation of

the system, it only takes a little longer than 1/15 second for

one iteration with using a 30fps digital camera. In compari-

son, the pixel-based methods are order of magnitude slower

than our system even with GPU acceleration, and patch-

based methods implemented on GPU are also much slower

than ours, especially in case of large image size.

Fig. 10(a)(e) show the blurry image and true sharp image

respectively. The estimated sharp images and residual maps

at iteration 1, 10, 20 are shown sequentially in Fig. 10(b-d)

and (f-h). The increasing sharpness and decreasing residue

both validate that our system can be incorporated into de-

blurring framework easily to raise the efficiency without in-

troducing large artifacts.
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Figure 8. Effect of noise. We synthetically added noise to com-

puted blurred images to simulate noise contaminated optical com-

puting process and gives the PSNR of the result after 40 iterations.

6. Analysis and Discussions

The paper demonstrates an optical computing sys-

tem which significantly accelerates the conventional non-

uniform motion deblurring. The framework is fast, of high

accuracy and also with flexible extensions worth studying

in the future.

Effect of noise. The proposed optical computing system

will introduce noise inevitably. To test the influences of

imaging noise during the blur computing process, we add

some shot noise, which follows Poisson-Gaussian distribu-

tion with variation σ2 = αI + β, to image I in the corre-

sponding step of RL algorithm and test the final deblurring

performance. Fig. 8 shows that RL algorithm converges

consistently without increased iterations at higher noise lev-

els, and the PSNR of deblurred images slightly decreases as

the noise level increases. Therefore, we recommend low

ISO settings of the camera to reduce the noise effect. In ad-

dition, the prior constraints on the latent sharp image, which

are widely used in deblurring algorithm are also helpful to

suppress the noise.

Benefits and limitations. Benefited from the fast light

transport and the parallelism of imaging system, optical

computing systems can do specific operations very fast.

Specifically to our system, each CCD unit acts as an individ-

ual computing unit and each snapshot can achieve parallel

processing of Mega- or even Giga- pixels, thus the proposed

optical computing system provides a feasible and promising

solution to fast non-uniform motion delburring.

So far our prototype is mainly limited in three aspects:

high cost of the motion platform, limited frame rate of cam-

era and assumption of depth independence to the blur pat-

terns. (i) In our implementation, we adopt a high end ro-

tating platform with large angular velocity, accelerations,

payload and very high precision (0.001◦), we can also use a

high end 6-D platform for arbitrary motion. However, both

above platforms are too costly for consumer imaging sys-

tems. Considering the small weight and size of consumer

cameras, the moment of inertia of the camera used in our

(a) (b)

(c) (d)

Figure 9. Result of spatially varying blurring. (a) a sharp image.

(b) synthetic blurry image from projective geometry. (d) result of

our optical computing system (c) residual between (b) and (d).

system can be much smaller than the platform limitation.

At a rough estimation, around 1/40 the upper bound of the

adopted platform is sufficient. Therefore,we can choose a

low load motion platform, so that the motion velocity can

be improved to shorten the running time further. (ii) As

for camera’s frame rate, in our experiment the Point Grey

Flea2 08S2C camera can achieve 30fps with resolution of

1024×768 pixels, so that our system can finish at most 30

times of blurring manipulations or frame-wise inner product

manipulations within 1s. The computation can be further

accelerated by using a higher frame-rate camera and projec-

tor. (iii) With a planar screen, our system cannot simulate

depth dependent blurring, hence depth specific decomposi-

tion and more snapshots are necessary in such cases.

Promising extensions. The optical computation frame-

work can be applied not only to camera shake removal, but

also the out-of-focus blur. Instead of using a motion plat-

form, a camera with programmable focal length can simu-

late the defocus blur at any focal settings.
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