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Since their discovery in 1986, the high-temperature copper-oxide
superconductors have been a central object of study in
condensed-matter physics. Their highly unusual properties are
widely (although not universally) believed to be a consequence
of electron–electron interactions that are so strong that the
traditional paradigms of condensed-matter physics do not apply:
instead, entirely new concepts and techniques are required to
describe the physics. In particular, the superconductivity is
obtained by adding carriers to insulating ‘parent compounds’.
These parent compounds have been identified1 as ‘Mott’
insulators, in which the lack of conduction arises from
anomalously strong electron–electron repulsion. The unusual
properties of Mott insulators are widely2 believed to be
responsible for the high-temperature superconductivity. Here,
we present a comparison of new theoretical calculations
and published3–8 optical conductivity measurements, which
challenges this belief. The analysis indicates that the correlation
strength in the cuprates is not as strong as previously believed,
in particular that the materials are not properly regarded
as Mott insulators. Rather, antiferromagnetism seems to
be necessary to obtain the insulating state. By implication,
antiferromagnetism is essential to the properties of the doped
metallic and superconducting state as well.

The prototypical ‘parent compound’ is La2CuO4, in which
the lattice structure and electron counting is such that there
is an odd number of electrons per formula unit. Thus, in the
absence of further symmetry breaking, conventional band theory
would predict that the material is a good metal. La2CuO4 is
however not metallic; it is an insulator with a gap determined
by optical spectroscopy to be approximately 1.8 eV (refs 3,4).
From one perspective, the insulating behaviour is not surprising.
At temperature T = 0, La2CuO4 has two-sublattice Néel order,
so that the magnetic unit cell contains two formula units and
thus an even number of electrons, compatible with the observed
insulating behaviour. However, the consensus has been that the
antiferromagnetic order is irrelevant. Instead, the materials have
been identified1,2 as ‘Mott insulators’. (Although the cuprates are
properly regarded as ‘charge-transfer’ and not ‘Mott’ insulators
in the sense of ref. 9, we believe this issue is not relevant here:
the high-energy-scale physics and chemistry of transition metal

(Cu) and ligand (O) ions produces one band of electrons, with
an effective interaction strength U which we aim to determine.
In particular, optical data show that the nearest bands (arising
mainly from the non-bonding oxygen orbitals) are 5–6 eV removed
in energy, with only a weak absorption tail extending down to the
energies of relevance here. The issue is discussed in more detail
in the Supplementary Information.) In a Mott or charge-transfer
insulator, the electron–electron interactions are so strong that a
density of one electron per unit cell implies a ‘jammed’ situation:
no electron can move without creating an energetically expensive
doubly occupied site. Removing or adding electrons creates ‘holes’
or doubly occupied sites, whose motion is not blocked by the
jamming effect but is strongly affected by the non-trivial Mott
insulating background in which it moves2.

Important experimental evidence bearing on the question
of the nature of the insulating state comes from the optical
(frequency-dependent) conductivity, σ(ω): the linear response
function connecting a frequency-dependent, transverse electric
field E to the current j it induces. At frequencies less than the
interband threshold, the measured conductivity is dominated by
processes in which an electron moves from one unit cell to another.
In a Mott insulator, such conductivity processes are suppressed by
the blocking effect of onsite repulsion10, so that the expected low-
frequency spectral weight (integrated optical absorbtion strength)
is small. Here, we show that in the high-Tc materials the measured
low-energy spectral weight is too large to be compatible with the
Mott (blocking) interpretation of the physics of the cuprates.

The electronic structure of the cuprates is such that one band
(per CuO2 unit) crosses the chemical potential; all other bands
are full or empty and may to first approximation be neglected.
Electrons moving in the relevant band are subject to an interaction
whose most important component is a repulsion disfavouring
configurations in which two electrons occupy the same site at
the same time. This physics may be expressed mathematically
through the ‘Hubbard’ model of a band of electrons subject to local
correlations. Although the Hubbard model is not a fully accurate
description of the physics of high-temperature superconductors, it
contains the essence of the blocking effect and is generally accepted2

as the basic picture on which a more refined description should
be based. (Preliminary studies of charge-transfer models presented
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Figure 1 Optical conductivity of Hubbard model. Calculated as described in the main text at dopings x= 1− n and interaction strength U indicated. a,b, Optical
conductivity. Insets: Optical integral. For x= 0, both paramagnetic (PM) and antiferromagnetic (AF) phase calculations are shown; for x > 0, only paramagnetic phase results
are given. If the band theory value W= 3 eV is used then the frequency scale is electronvolts.

in the Supplementary Information are in agreement with this
conclusion.) We write the model in a mixed momentum (k) space
position (i) space representation as

H =

∑
k,σ

εkc
†
k,σ ckσ +U

∑
i

n̂i,↑n̂i,↓. (1)

Here, c†
kσ ckσ creates (annihilates) an electron of spin σ in

momentum state k, U is the effective ‘blocking’ interaction, n̂i,σ

is the density operator for electrons of spin σ on site i and εk is the
dispersion given by local density band calculations. Small variations
among different calculations exist, but all agree within a few per
cent on the values of the parameters important for this study, which
are the bandwidth W ≈ 3 eV and the ‘kinetic energy’ K ≈ 0.4 eV.
(For definiteness, we use the εk derived from the ‘downfolding’
parametrization of ref. 11.)

At a density of one electron per cell the ground state of H ,
equation (1), is believed to be a paramagnetic metal at small U
(roughly U < 1 eV) and an antiferromagnetic insulator at larger
U , with a small range of antiferromagnetic metal in between. The
key question is whether the antiferromagnetic order is essential to
the insulating nature of the ground state. To determine this we
turn to the single-site dynamical mean-field approximation12. In
this approximation, spatial correlations between fluctuations are
neglected but temporal fluctuations on a given site are included
exactly. If long-ranged antiferromagnetic order is not included
in the calculation, we find at carrier concentration n = 1 and
temperature T = 0 a critical value Uc2 ≈ 1.45W separating a
small U metallic phase from a large U insulating phase. The
band theory estimate W ≈ 3 eV implies Uc2 ≈ 4.4 eV. This large
U phase is identified as a Mott insulator because an energy gap
exists at the chemical potential in the absence of any intersite
magnetic correlations.

We calculated the optical conductivity implied by equation (1),
representing the electric field by a vector potential A, using
the minimal coupling k → k − A and standard linear response
theory and multiplying the calculated result (a dimensionless
conductance per CuO2 plane) by the conductance quantum e2/h̄
and dividing by a typical interplane distance d = 6 Å. Figure 1a,b
shows the calculated conductivity at several carrier densities for
a U slightly greater than Uc2 and a U slightly less than Uc2.
Consider the x= 0 results, representative of the parent compounds

of the high-Tc materials. The U > Uc2 calculation reveals Mott
insulating behaviour: even if magnetic order is neglected, the
result is insulating (gap in the conductivity spectrum). Adding
antiferromagnetism increases the gap and produces structure at
the gap edge. On the other hand, the U < Uc2 calculation reveals
metallic behaviour (no gap) in the absence of antiferromagnetism,
whereas the antiferromagnetic calculation reveals a large gap.

To interpret the results we note that in models such as
equation (1) the optical conductivity obeys a ‘restricted f-sum
rule’10,13. Defining

K (Ω ) =

(
Vcell

a2

)∫ Ω

0

2dω

π

σ(ω)

σQ

, (2)

we have

K (∞) =

∑
k,σ

nk,σ

∂2εk

∂k2x
. (3)

Here σQ = e2/h̄ is the conductance quantum, Vcell is the volume
of the unit cell, a is the in-plane lattice constant and nk,σ is the
probability that the state of momentum k and spin σ is occupied.
Note that σ(ω) in equation (2) refers to the real (dissipative)
conductivity calculated from equation (1); in physical terms, it
corresponds to that contribution to the measured conductivity
arising from transitions within the band of states described by
equation (1). In a real material, interband transitions not described
by equation (1) also contribute to the conductivity; these make up
the difference between equation (3) and the familiar f-sum rule∫

∞

0
dωσ(ω) =πne2/2m.
If U = 0, nk,σ is the usual Fermi–Dirac distribution,

corresponding to filling up only the lowest-lying states in
the band. Evaluation of equation (3) for this case yields
K=Kband ≈0.4 eV, essentially independent of carrier concentration
for the dopings relevant to high-temperature superconductivity. In
this non-interacting case, the electrons are not scattered: they are
freely accelerated by an applied electric field so the conductivity
is just a delta function of strength πK at ω = 0. Increasing the
interaction causes electron–electron scattering which shifts the
spectral weight from ω = 0 to higher frequencies. Increasing the
interaction also tends to localize the electrons, leading to an n(k)
more uniformly distributed over the band and thus reducing the
magnitude of the integral in equation (3), that is, decreasing the
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Figure 2 Measured optical conductivity of La2− xCuxCuO4 reproduced from
ref. 4. The solid vertical line at frequency ω = 0.8 eV indicates cutoff frequencies
used for spectral weight analysis.

total spectral weight. However, adding holes allows carrier motion,
thus increasing the spectral weight and shifting it back towards
ω = 0. These effects can be seen in the insets of Fig. 1, which plot
the conductivity integral, equation (2) obtained from the calculated
conductivities shown in the main panels of the figure.

We now compare the calculation to measurements of the
conductivity, of which a representative example4 is shown in
Fig. 2. These data were taken in 1991; subsequent improvements
especially in sample quality have sharpened the bandgap seen
in the conductivity of the x = 0 sample, so that the onset
of absorbtion begins at ω ≈ 1.8 eV, but have not changed the
material features, in particular the spectral weights in the different
frequency regimes. Use of the band theory estimate W ≈ 3 eV
would imply the bandgap is approximately 0.6W , consistent with
the result of the antiferromagnetic-phase U < Uc2 calculation but
inconsistent with the antiferromagnetic-phase U > Uc2 result. The
antiferromagnetic U > Uc2 calculation can be made consistent
with the observed bandgap by reducing the energy scales by
25%, implying in particular a bandwidth W ∗

≈ 2.25 eV instead of
the W ≈ 3 eV found in band theory calculations. However, even
if this renormalization is made, the magnitude of the observed
conductivity is inconsistent with the U > Uc2 hypothesis, as will
now be shown.

The measured spectral weight in the range ω < 3 eV for the
insulating compound corresponds to K (3 eV) = 0.2 eV or about
50% of the non-interacting value. It is likely that not all of the
spectral weight observed in the range below 3 eV is due to the
optical transitions of interest. Interband transitions to irrelevant
bands may contribute. To obtain an upper bound on possible
interband contributions, we note that as doping increases, the
calculated conductivity shifts strongly to lower frequencies (as
may be seen in Fig. 1). We therefore use the measured x = 0.34
data in the range ω > 1 eV as an estimate of the interband
contribution to the conductivity. We have integrated the difference
between the conductivity measured in the x = 0 sample and
that measured in the x = 0.34 sample over the range ω < 3 eV,
obtaining Kexp(Ω = 3 eV) ≈ 0.2Kband ≈ 0.1 eV. This estimate is

U = 0.85Uc2
U = 0.9Uc2
U = 1.02Uc2
LSCO (ref. 5)
NCCO (ref. 6)
YBCO (ref. 7)
BSCCO (ref. 8)
PCCO (C. Homes, unpublished)
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Figure 3 Comparison of measured and calculated optical spectral weight. Filled
symbols: spectral weight obtained by integrating experimental conductivity up to
0.8 eV from references given. Open symbols: theoretically calculated spectral
weight, integrated up to W/4. For U= 0.85Uc2 and U= 0.9Uc2, the band-theory
estimate W= 3 eV is used to convert the calculation to physical units; for
U= 1.02Uc2, the value W= 2.25 eV which reproduces the insulating gap is used.

quite consistent with the results shown in Fig. 1b, inset. However,
the U > Uc2 calculation yields substantially less spectral weight in
the low-frequency regime. Combining the band theory estimate
W ≈ 3 eV with the data in Fig. 1a, inset yields K (3 eV) ≈ 0.03 eV,
far less than the measured 0.1 eV. If we use instead the renormalized
W ∗

= 2.25 eV which reproduces the value of the gap, then
3 eV≈ 4W ∗/3. The total spectral weight integrated up to this point
is 0.13K (U = 0) and because the theoretical K (U = 0) ∼ W this
implies an integrated weight of about 0.05 eV, still much smaller
than what is observed.

Now La2CuO4 is observed to remain insulating at temperatures
above its Néel temperature ≈340K, so long-ranged order is
not essential to the insulating behaviour. However, the Néel
temperature is strongly suppressed by low-dimensional fluctuation
effects and is a poor measure of the strength of the magnetic
correlations, which are found to remain significant up to the highest
measured temperatures14 (T ≈ 1,000K). Recent cluster dynamical
mean-field calculations (K. Haule et al., private communication;
E. Gull, P. Werner, M. Troyer and A. Millis, manuscript in
preparation) produce insulating behaviour over wide temperature
ranges without long-ranged order, even in the intermediate
coupling regime, provided that near-neighbour spin correlations
are strong enough.

Next, we turn to the doping dependence of the conductivity.
The filled symbols in Fig. 3 show the optical spectral weight
for several cuprate materials, integrated up to 0.8 eV, about 0.45
of the insulating gap. The value is chosen because available
evidence indicates that the conductivity at ω < 1 eV is essentially
uncontaminated by interband transitions, whereas at higher
frequencies, the situation is less clear15. It can be seen that the
measured spectral weight in the midgap region scales linearly with
doping, but with a non-vanishing intercept. The open symbols
show the results of the theoretical calculations for a U slightly
greater than Uc2 and for two U values less than Uc2. For the
U > Uc2 calculation, we have used the scale W ∗

= 2.25 eV to
convert the theoretical results to physical units. We see that for
U > Uc2 the calculated spectral weight is qualitatively inconsistent
with the data16, because it vanishes as doping tends to zero.
However, we note that in the qualitative comparison, the decisive
feature is the behaviour at x < 0.1 where the uncertainties in
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the data are largest. Further experimental examination of this
frequency regime would be desirable. The U > Uc2 results are
also smaller in magnitude than the experimentally determined
values. On the other hand, the results for U = 0.9Uc2 give a
magnitude and doping dependence that is reasonably consistent
with the measured values at non-vanishing dopings. The x > 0
calculations are carried out within single-site dynamical mean-
field theory in the paramagnetic phase. This method does not take
into account the effects of near-neighbour magnetic correlations,
which are likely to be present even in the absence of true long-
ranged order and which will suppress the spectral weight in the
low-frequency regime. We suggest that a model with a U ≈ 0.85Uc2

and with a proper treatment of antiferromagnetic correlations will
lead to a doping dependence of the spectral weight that is consistent
with experiment.

This paper draws conclusions on the basis of the comparison of
a one-bandmodel to data. At sufficiently high energies, other bands
and other states in the dmultiplet will become important. Although
the Supplementary Information presents evidence that the effects
of other bands appear only at energies higher than those relevant
for our conclusions, the issue clearly warrants a more thorough
examination, and our conclusions should be regarded as tentative
until this examination is carried out. Our findings suggest that
a re-examination of theoretical approaches to high-temperature
superconductivity would be worthwhile. Much work has been
based on the ‘t–J’ model2, which is derived on the assumption
that the correlation-induced blocking effect is fundamental, with
antiferromagnetism providing a next correction and which has
been widely accepted because it provides a natural explanation of
the striking doping dependence of physical properties. Determining
whether the observed doping dependence of the low-energy
physics can be understood within the intermediate-coupling,
strong antiferromagnetic correlations picture implied by the optical
data, is an important challenge for future work.

METHODS

Theoretical results were obtained using the single-site dynamical mean-field
method. The equations were solved by two methods: continuous-time quantum
Monte Carlo17 (CT-QMC) plus maximum entropy analytical continuation18

and T = 0 exact diagonalization19,20. The CT-QMC results presented here
are all obtained at the very low temperature T = W/800 except for the two
antiferromagnetic cases, where higher temperatures T =W/40 (U = 0.85Uc2)
and T = W/56 (U = 1.02Uc2) were needed to stabilize the analytical
continuation. In all cases, the temperatures were low compared with the
relevant scales in the problem; the results may be taken as representative of
T = 0 except for a slight broadening of the above-gap peak in the U = 0.85Uc2

antiferromagnetic results. The two methods, which have independent sources
of error, produce results which agreed at the 5% level. Representative results are
shown in Supplementary Information, Fig. S1, which presents conductivities
calculated by the two methods, and integrals over various frequency regimes.

The calculational results shown used a semicircular density of states
with bandwidth adjusted to match the tight-binding band theory values.

Unfortunately, the T = 0 exact diagonalization method has not yet produced
a stable solution for the tight-binding density of states, and although the
CT-QMC method has produced stable imaginary-time solutions, we have
not succeeded in obtaining a reasonable analytical continuation for the
tight-binding density of states. Imaginary-time CT-QMC calculations were
used to verify that the critical value for the Mott transition and the total kinetic
energy obtained for the tight-binding density of states agreed to within a few
per cent of the values obtained for the semicircular one if the bandwidths
were matched.
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