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Abstract. The band structure and the optical conductivity of an ABA (Bernal-type)

stacked graphene trilayer are calculated. It is shown that, under appropriate doping,

a strong resonant peak develops in the optical conductivity, located at the frequency

corresponding to approximately 1.4 times the interlayer hopping energy and caused by

the ”nesting” of two nearly parabolic bands in the electronic spectrum. The intensity

of this resonant absorption can be controlled by adjusting the gate voltage. The effect

is robust with respect to increasing temperature.
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1. Introduction

Since the isolation of monolayer graphene almost a decade ago [1], there has been a high

interest in the low energy transport and optical properties of not only the monolayer [2, 3]

but also a few layer graphene systems. [4, 5, 6, 7, 8] These properties are determined

by the electronic band structure near the K point. The undoped monolayer graphene

(MLG) is characterized by the universal optical conductivity, σ0 = e2/(4~). This implies

that the transmittance depends solely on the fine structure constant and originates the

quantized visible opacity of suspended monolayer graphene [10, 9]. As far as doped

graphene is concerned, there are several effects that arise in the optical properties,

related to the restrictions introduced on the interband transitions by the state filling

and also to the onset of intraband transitions [11]. The latter correspond to plasmons

and give rise to the interesting and promising field of graphene plasmonics [3, 12].

Graphene multilayers offer a new ingredient to the interesting physics and potential

applications. The relatively weak interlayer coupling, on the one hand, implies that they

should inherit some properties of the parent material [4], on the other hand, it introduces

a new energy scale, of the order of few tenths of the electron-volt, that should yield some

new properties. It has been shown [13] that there is also a universal optical conductivity

in a undoped N -layer graphene, equal to σ0N = Nσ0, that is reached in undoped

graphene in the low frequency limit. At the same time, the optical response of doped

bilayer graphene reveals intense strongly doping-dependent features in the mid-infrared

(around 0.4 eV) [5, 6]. The origin of these experimentally observed features has been

considered theoretically in these works and also, in more detail, in Ref. [14], where the

band structure and the optical conductivity of bilayer graphene were calculated. Some

novel plasmonic effects in Bernal-stacked bilayer graphene were predicted in the recent

work [15]. As the number of layers increases beyond N = 2, the band structure and

the optical conductivity become dependent not only on N but also upon the stacking

arrangement. There are three distinct planar projections of the honeycomb lattice

(usually denoted A, B and C) and, consequently, 2N−2 distinct N−layer sequences [13].

In particular, the stacking of three layers in a graphene trilayer can be either ABA

(also called Bernal-type) and ABC (rhombohedral) [16]. These two different stacking

arrangements lead to strikingly different electronic band strucures [17]. For instance, it

was found that undoped graphene ABC trilayer shows many-body correlations with an

energy gap, while the Bernal-type stacking (taking place in graphite) does not lead to

a gap [18]. Non-Bernal stacked multiple graphene layers have attracted a considerable

attention related to the prospect of further enhancement of capabilities of graphene-

based optoelectronic devices, in particular, THz and IR photodiodes [19]. The optical

conductivity of ABC trilayers has been considered in a number of works [20, 21, 22], in

particular, the effect of doping has been analysed [22]. Even though trilayer graphene

contains, on average, regions of ABC and ABA stacking in an 15:85 ratio [23], apparently

the optoelectronic properties of the latter attracted less attention and we are aware of

only one work [24] devoted to this topic. This is notwithstanding the possibility of using
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far-infrared (FIR) spectroscopy, along with the common Raman scattering technique [25]

in order to distinguish different trilayer graphene species [23, 24].

Therefore, the main purpose of this article is to analyse the spectral characteristics

of the optical conductivity of intrinsic and doped ABA stacked trilayers. The mirror-

symmetric Bernal stacking is the most common in graphene multilayers that can be

exfoliated from natural graphite since it shares its crystalline structure [7]. Intuitively,

one can expect that the electrons in ABA trilayers can have a monolayer- or bilayer-

like character [26]. We shall present the analytical dispersion relation for the electrons

near the Dirac point, from which it follows that the band structure of the ABA trilayer

indeed looks like a superposition of those characteristic of a monolayer and a bilayer,

although the latter corrseponds to an effective interlayer hopping constant
√

2 times

larger than the true one. Based on this band structure, we calculate both the interband

and intraband (Drude) contributions to the optical conductivity. The most interesting

result is that the optical absorption of a doped ABA trilayer is dominated by a narrow

resonant peak at the frequency corresponding to this effective interlayer hopping energy

(approximately 0.56 eV). It is caused by the fact that the dispersion curves corresponding

to two bands are nearly parallel for a considerable range of wavevectors near the Dirac

point. This effect sometimes is called ”band nesting” [27] in order to distinguish from

van Hove singularities in the single-particle density of states. We will show that the

intensity of this resonant absorption is approximately proportional to the Fermi energy

and, therefore, can be controlled by adjusting the gate voltage applied to the graphene

layer.

2. Theoretical Background

2.1. Band structure

The tight-binding Hamiltonian for non-interacting electrons in the ABA stacked trilayer

involves three A-type and three B-type sites and includes the essential in-plane (t0 ≈
2.7 eV) and interlayer hoppings (t1 ≈ 0.4 eV) as shown in Fig. 1. These two parameters,

connecting atoms that are right on top of each other in adjacent layers, are sufficient

to describe the main features of the band structure, such as the type of dispersion of

the energy bands and their separation, as confirmed by recent DFT calculations [17].

Keeping only t0 and t1 hoppings permits to obtain simple formulae for band gaps,

effective masses and the Fermi velocity. Then the Hamiltonian is given by [18]:

Ĥ = −t0
∑
n,δj

|A1, ~Rn + ~δj〉〈B1, ~Rn|

−t0
∑
n,~δj

|A3, ~Rn + ~δj〉〈B3, ~Rn| − t0
∑
n,~δj

|A2, ~Rn〉〈B2, ~Rn − ~δj|

+t1
∑
n

|A2, ~Rn〉〈B1, ~Rn|+ t1
∑
n

|A2, ~Rn〉〈B3, ~Rn| + H.c. (1)
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Here n = (n1, n2) is the composite index, which determines the atomic positions in

the lattice, ~Rn = n1~g1 + n2~g2, with ~g1 = (
√
3
2
, 3
2
)a0, ~g2 = (−

√
3
2
, 3
2
)a0 being the lattice

vectors. The three vectors that connect the B atom to its three nearest neighbors are
~δ1 = (

√
3
2
,−1

2
)a0, ~δ2 = (−

√
3
2
,−1

2
)a0, and ~δ3 = (0, 1)a0, where a0 is the C-C interatomic

distance. The positions of the A atoms relative to the B atoms in each of the three

layers are shown in Fig. 1.

The energy spectrum of the Hamiltonian (.5) is composed of six energy bands given

by (see Appendix A for details):

E±1

(
~k
)

= ±

√
t21 + |φ

(
~k
)
|2 − t1

√
t21 + 2|φ

(
~k
)
|2 ; (2)

E±2

(
~k
)

= ±
√
|φ
(
~k
)
|2 ; (3)

E±3

(
~k
)

= ±

√
t21 + |φ

(
~k
)
|2 + t1

√
t21 + 2|φ

(
~k
)
|2 , (4)

where

φ(~k) = −t0

[
exp (ikya0) + 2 exp

(
−ikya0

2

)
cos

(
kx
√

3

2
a0

)]
. (5)

The band structure is depicted in Fig. 2. Note that the gap between the bands ±3 and

the Dirac point is 2∆ = 2
√

2t1, while its counterpart in graphene bilayer is just equal

to 2t1. [14]

In the vicinity of K± points [Dirac points, ~k = ±(4π/(3
√

3a0), 0)] the band energies

can be approximated in the following way:

E±1 = ±~2K2

2m1

; E±2 = ±~v́fK ; E±3 = ±
(
~2K2

2m3

+ ∆

)
, (6)

Figure 1. Lattice structure of trilayer graphene with ABA stacking (top view). It

can be seen as a hexagonal Bravais lattice with a six-atom basis (one A and one B

atom for each layer). The right panel shows three nearest neighbours (A atoms) of a

B atom.
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where K =
√
k2y + k2y. Note that the effective masses at the bottom of the bands 1 and

3 are equal within the present model, m1 = m3 = t1/(
√

2v2f ), and the Fermi velocity of

the Dirac-type band coincides with that of monolayer graphene, v́f = 3t0a0/(2~) = vf .
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V
)

K
x
a/2π

∆

Figure 2. Band structure of ABA stacked trilayer graphene throught the Brillouin

zone (left) and near the K+ Dirac point (right), where ∆ =
√

2t1. The kx axis is

scaled by 2π/a, a = a0
√

3 is the lattice constant. After intersecting the K± points the

dispersion curves continue along the KM direction.

2.2. Optical conductivity: interband part

The finite frequency (optical) conductivity is calculated through a standard procedure

using the Kubo formula [29],

σ(ω) =
−2ie2

ωS

∑
~k,l′ 6=l

∣∣∣〈~k, l∣∣∣ V̂x ∣∣∣~k, l′〉∣∣∣2 nf
[
El(~k)

]
− nf

[
El′(~k)

]
~ω − El(~k) + El′(~k) + iΓ

, (7)

where e is the electron charge, S =
3
√
3a20
2

is the unit cell area, nf is the Fermi function,∣∣∣~k, l〉 is the eignestate corresponding to energy El(~k) (l, l′ are the band indices), Γ is
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a damping parameter and V̂x denotes the x-component of in-plane velocity operator,

defined by

~̂V =
it0
~
∑
δj

~δj

[∣∣∣B1, ~Rn

〉〈
A1, ~Rn + ~δj

∣∣∣− ∣∣∣A1, ~Rn + ~δj

〉〈
B1, ~Rn

∣∣∣
+
∣∣∣B2, ~Rn − ~δj

〉〈
A2, ~Rn

∣∣∣− ∣∣∣A2, ~Rn

〉〈
B2, ~Rn − ~δj

∣∣∣
+
∣∣∣B3, ~Rn

〉〈
A3, ~Rn + ~δj

∣∣∣− ∣∣∣A3, ~Rn + ~δj

〉〈
B3, ~Rn

∣∣∣] . (8)

The summation over ~k in Eq. (7) involves wavevectors in the first Brilluion zone, which

is the usual hexagon with side 4π
(3
√
3a0)

. In practice, this summation is replaced by a

2D integration over the triangle formed by the points Γ (0; 0), K ( 4π
(3
√
3a0)

; 0), and M

( π
(3a0)

; π
(
√
3a0)

), and the result is multiplied by twelve.

2.3. Optical conductivity: Drude part

For doped graphene (µ 6= 0) it is necessary to include in the optical conductivity also

the term related to intraband transitions, often referred to as Drude term. Although it

can be calculated through the Kubo formula, it is easier to derive this term using the

Boltzmann transport equation [12, 28]. Thus, the electric current is written as

~J =
4e

(2π)2

3∑
l=1

∫
d~k δn

(l)
~k
~vl(~k) , (9)

where δn
(l)
~k

is the deviation of the carriers distribution from the equilibrium Fermi–Dirac

function, nf [El(~k)]. The former is readily obtained from the Boltzmann equation,

δn
(l)
~k

=
e~E · ~vl(~k)

τ(~k)
−1
− iω

(
−∂nf [El(

~k)]

∂El(~k)

)
, (10)

where ~vl(~k) is the group velocity of the charge carriers in the l-th band and τ(~k) denotes

the carrier relaxation time. The factor of 4 in Eq. (9) is due to the spin and valley

degeneracy.

Substitution of Eq. (10) into Eq. (9) yields the Drude conductivity and for zero

temperature we have:

σD =
4σ0
π

[
3µ

~(γ − iω)
+

2(µ−∆)

~(Γ− iω)
θ(µ−∆)

]
, (11)

where the damping parameters γ and Γ are defined as the inverse of the corresponding

relaxation time at the Fermi level (we make no distinction between bands 1 and 2). This

Drude term has to be added to the optical conductivity (7). Note that the first term is

precisely three times the Drude conductivity of monolayer graphene.

3. Results and Discussion

We shall now concentrate on the frequency dependence of the real part of the derived

optical conductivity, σ′(ω), that determines the absorption, for different values of the
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chemical potential, µ. The spectra of real, σ′(ω), and imaginary, σ′′(ω), parts of the

conductivity for three different values of µ (conveniently expressed in units of t1) are

presented in Figs. 3 and 4, respectively. Note that the first value corresponds to undoped

graphene (µ = 0), the second one is µ = 0.2t1 < ∆ and the last µ > ∆. For intrinsic

trilayer graphene, either ABA or ABC stacked, σ′(ω) tends to 3σ0 ([22, 24]). We clearly

see the effects of doping present as the Fermi step at ~ω = 2µ (for µ > 0) , known in

semiconductors as Burstein–Moss effect [32] and familiar in monolayer graphene [28].

The feature characteristic of trilayer graphene, located at ~ω ≥ ∆, splits into two for

µ > 0 (compare red and blue curves to the black one in Fig. 3 ). But the most impressive

effect of the doping is the onset of the resonant peak at ~ω = ∆, whose intensity grows

strongly with µ.

In order to understand these spectral changes caused by doping, we analyzed all

possible optical transitions listed in Table 1 (note that none of the velocity matrix

elements vanishes, they are all allowed!). As it can be seen from Fig. 2, there are two

Dirac-type and four approximately parabolic bands that arise from six atoms in the unit

cell of the ABA trilayer. Let us consider the allowed transitions that correspond to the

features of the optical conductivity. For the undoped graphene (µ = 0), we have nine

possible transitions, with energy conservation restrictions imposed on some of them (see

Table 1). There are four transitions allowed without any restriction for all frequencies,

namely, l′ = −1 to l = 1 (denoted as −1 → 1, −1 → 2, −2 → 1 and −2 → 2. The

onset of transitons involving bands ±3 is at ~ω >
√

2t1 and ~ω > 2
√

2t1. That is why

there are four possible transitions including −1 → 3 , −2 → 3, −3 → 1 and −3 → 2,

with a threshold frequency ~ω =
√

2t1. Still another possible transition is from −3 to 3,

with a threshold at ~ω = 2
√

2t1, although it is less pronounced as clearly seen in Fig. 3

(bold black curve). With doping the system so as µ = 0.2t1, the behavior of the optical

conductivity is altered, caused by the changes in the allowed transitions with applying

more state–filling restrictions as well as the onset of new transitions.

The general expression for the threshold energy for the l′ → l transition (for the

case l′ < 0, l > 0) is given by:

∆l′→l = El

(
K

(l)
f

)
− El′

(
K

(l)
f

)
,

where K
(l)
f is the Fermi wavevector in the l-th band (the root of equation El

(
K

(l)
f

)
= µ,

or K
(l)
f = 0, if the equation does not have a real root). At the same time, for the case

where l′, l > 0 the expression for the threshold energy is given by

∆l′→l = min
[
El

(
K

(l)
f

)
− El′

(
K

(l)
f

)
, El

(
K

(l′)
f

)
− El′

(
K

(l′)
f

)]
.

There is also an upper cut-off frequency in this case, given by

Ωl′→l = max
[
El

(
K

(l)
f

)
− El′

(
K

(l)
f

)
, El

(
K

(l′)
f

)
− El′

(
K

(l′)
f

)]
,

so that the allowed transition frequencies lie inside the domain ∆l′→l ≤ ~ω ≤ Ωl′→l. It is

possible to obtain simple expressions for the threshold energies using the approximation
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Figure 3. Real part of optical conductivity of ABA stacked trilayer graphene for

T = 1K. Thin dashed line indicates the value 3σ0. The inset shows the real part

of the optical conductivity of an intrinsic ABA stacked trilayer graphene computed

using ab-initio methods [30]. The peak is located where the tight-binding calculation

predicts it.

(6). Thus, we obtain the following values:

∆−1→1 = 2µ, ∆−1→2 = µ+
µ2

√
2t1

, (12)

∆−1→3 = 2
(
µ−
√

2t1

)
θ(µ−

√
2t1) +

√
2t1, (13)

∆−2→1 = µ+

√√
2t1µ, ∆−2→2 = 2µ, (14)

∆−2→3 =
√

2t1 + θ(µ−
√

2t1)×
(
µ−
√

2t1 +

√√
2t1µ− 2t21

)
, (15)

∆−3→1 = 2µ+
√

2t1, ∆−3→2 = µ+
√

2t1 +
µ2

√
2t1

, (16)

∆−3→3 = 2
(
µ−
√

2t1

)
θ(µ−

√
2t1) + 2

√
2t1. (17)

Several transitions can occur only for nonzero µ:

∆1→2 = µ− µ2

√
2t1

, ∆1→3 =
√

2, (18)

∆2→3 =
√

2t1 +
µ2

√
2t1
− µ. (19)

The numerical values of the threshold energies (in units of t1) are given in Table 1

where the numerical values correspond to the exact band structure (see Appendix B)
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Figure 4. Imaginary part of optical conductivity of ABA stacked trilayer graphene

for T = 1K.

because the parabolic / linear approximation becomes to fail for higher values of µ. It

becomes clear from Table 1 that almost only the 1 → 3 and 2 → 3 transitions (not

possible for µ = 0) are responsible for the onset of the resonant peak at ~ω = ∆. We

calculated these contributions to the optical conductivity and found that the intensity

of the 1→ 3 transition exceeds by far that of the other one. It can be understood by the

fact that the dispersion curves E1(K) and E3(K) are nearly parallel for a broad range

of K values (band nesting) and therefore the joint density of states for this transition is

large, as can be seen clearly from Fig. 2. This figure takes into account only the 1→ 3

transition and shows that it is responsible for the intensity of the resonant absorption

band. The increasing intensity of the 1 → 3 transition as µ grows is related to the

growing number of occupied states that are depopulated by absorbing electromagnetic

radiation. This is the principal spectral feature observed in Ref. [24] (where it was

denoted ”band C”), which can be considered as characteristic of ABA graphene [23, 25]

and we return to it below. For heavily doped p−type layers studied in Ref. [24], two weak
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Figure 5. Real and imaginary part of the optical conductivity including only the

1→ 3 transition (T = 1K).

absorption bands (denoted there as A and B bands) were observed at lower frequencies

and attributed to the −3 → −2 and −2 → −1 transitions. In our consideration of

n−type layers these transitions correspond to 1 → 2 and 2 → 3, respectively, both

involving the Dirac-type band. Indeed, they are allowed (even though only for doped

samples) but, according to our results, their intensity is rather low (for instance, we

cannot see any feature at ω/t1 ≈ 0.86, the threshold frequency of 2 → 3 transition for

µ/t1 = 1.6 (see Table 1). Possibly some further effects can enhance transitions to and

from the Dirac-type electronic bands.

The approximately triangular shaped feature in the spectrum for µ = 0 (~ω ≥ ∆)

(that could be anticipated institutively [26]) splits into two sub-bands corresponding to

the −1 → 3 and −3 → 1 transitions. At µ = 0, they have the same energy (= ∆) but

for µ > 0 the former is shifted to higher energy (see Table 1). Note that, by chance,

in Figs. 3 and 4 the features related to the −3 → 1 transition for µ/t1 = 0.2 and

to the −1 → 3 one for µ/t1 = 1.6 appear nearly at the same frequency, ω/t1 ≈ 1.8.
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Figure 6. Relative intensity of the 1 → 3 transition versus Fermi energy, calculated

analytically within parabolic approximation and numerically.

Table 1. Optical transitions and threshold frequencies in units of t1.

Transition µ/t1 = 0 µ/t1 = 0.2 µ/t1 = 1.6 Equation:

-1 → 1 0 2µ/t1 2µ/t1 12

-1 → 2 0 0.22 2.64 12

-1 → 3
√

2
√

2 2µ/t1 −
√

2 = 1.8 13

-2 → 1 0 0.77 3.8 14

-2 → 2 0 2µ/t1 = 0.4 2µ/t1 = 3.2 15

-2 → 3
√

2
√

2 2.15 15

-3 → 1
√

2 1.8 4.8 16

-3 → 2
√

2 1.64 4.05 16

-3 → 3 2
√

2 2
√

2 2µ/t1 = 3.2 17

1 → 2 Not Possible 0.17 0.56 18

1 → 3 Not Possible
√

2
√

2 18

2 → 3 Not Possible
√

2 0.86 19

Such a feature was not observed in Ref. [24] (whose experimental situation qualitatively

corresponds to our case of µ/t1 = 0.2), possibly because it was hindered by Fabri-Perot

interference in the substrate.

The intensity of the 1→3 band as function of µ can be evaluated analytically if we

assume that the matrix element does not depend on K:

I(ω) =
const

ω2S

∑
~k

δ
{
E3(~k)− E1(~k)− ~ω

}{
nf

[
E1(~k)

]
− nf

[
E3(~k)

]}
.

Changing from sum to integration and using the parabolic approximation (6) near the
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Dirac point, in the limit of low energies for E1(~k) and E3(~k) we obtain:

I(ω) = const · m1

2π(~ω)2
L(~ω −∆)

×
∫ µ

0

dE1

{
θ
[
µ− E1(~k)

]
− θ

[
µ− E1(~k)− ~ω

]}
. (20)

Here L(~ω −∆) denotes a Lorentzian replacing the δ− function broadened because of

natural reasons. The integral in Eq. (20) depends on the value of µ, that is, I(ω) ∼ µ

for µ < ∆ and I(ω) = const for µ > ∆. This analytical result is compared to the

numerical data in Fig. 6.

Higher order hopping parameters, in particular, those connecting more distant

atoms in adjacent layers and usually denoted γ3 and γ4 [5, 17], are known to cause

a distortion (trigonal warping) of the low-energy bands and a small electron-hole

asymmetry [17]. Therefore they can slightly affect the intensity and shape of the

resonant absorption band but its position, to a good approximation, is determined by

the t1 hopping [17]. This is confirmed by the results of our ab-initio DFT calculations

for intrinsic graphene, shown in the inset of Fig. 3.

4. Conclusion

In summary, we calculated the spectral dependence of the real and imaginary parts of the

optical conductivity of Bernal-stacked trilayer graphene. Even though the energy bands

of this material look like a superposition of those of a monolayer and a bilayer (with a

larger gap between the Dirac point and higher parabolic band), the optical spectra are

rich and interesting, especially in the case of gated (doped) graphene because all kinds

of interband transitions are allowed. In particular, there is a strong and narrow resonant

band cause by transitions between two ”nested” parabolic bands. The intensity of this

band is controlled by the Fermi level position and attains a maximum for µ ≈ 1.4t1 (Fig.

6), providing a strong light-matter coupling in the atomically thin layer [33]. Although

the physical origin of the resonant absorption is clear and it could be predicted by just

inspecting the band structure of the ABA stacked graphene, its dependence on the Fermi

level is not evident without calculations. It would be interesting to show experimentally

that the intensity of the resonant absorption attains its maximum for the Fermi energy

of µ ≈ 0.6 eV. This can be achieved by combining usual doping and application of

gate voltage [34]. The application of a large gate voltage can slightly modify the band

structure but it can be taken into account by adding appropriate (unequal) constant

potentials in the Hamiltonian (1) for atoms belonging to the different monolayers [24, 35].

The modulation of the peak absorption can be interesting for optoelectronic devices such

as resonant photodetectors with adjustable sensitivity and it is robust with respect to

the temperature. We performed calculations also for T = 300 K and the spectra are

very similar to those presented in the figures, except for the obvious broadening of the

Fermi steps seen in Fig. 3, i.e. the resonant band remains narrow. Compared to bilayer

graphene, the resonant band occurs at a (1.4 times) higher frequency, which broadens
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the range of applications of Bernal-stacked multilayer graphene materials that can be

directly exfoliated from natural graphite. Also, we would like to point out that the Drude

conductivity is three times higher than for monolayer graphene with same doping level,

accordingly, the surface plasmon frequency would be also higher (by a factor of
√

3) [12],

extending the spectral range of possible applications of graphene plasmonics.
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Appendix A

After transforming the Hamiltonian (1) to the momentum space [by representing

|Am, ~Rn〉 = 1√
N

∑
k ψAm,k exp

(
−i~k · ~Rn

)
, |Bm, ~Rn〉 = 1√

N

∑
k ψBm,k exp

(
−i~k · ~Rn

)
,

m = 1, 2, 3 and N is the number of unit cells], its matrix form is:

Ĥ =



0 φ 0 0 0 0

φ∗ 0 t1 0 0 0

0 t1 0 φ 0 t1
0 0 φ∗ 0 0 0

0 0 0 0 0 φ

0 0 t1 0 φ∗ 0


, (.1)

where

φ(~k) = −t0
∑
δj

exp(i~k · ~δj) , (.2)

which is given explicitly by Eq. (5). Note that the relation of this φ to the frequently

defined [2, 28] quantity f(~k) is the following: |φ(~k)|2 = 3 + f(~k). The Hamiltonian (.1)

is written in the basis of the atomic orbital eigenfunctions:

ψ~k =
(
ψA1,k ψB1,k ψA2,k ψB2,k ψA3,k ψB3,k

)T
. (.3)

The ABA trilayer is mirror symmetric with respect to the middle layer, therefore one

can transform the Hamiltonian into a tridiagonal form using a unitary transformation [7,
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8]

Û =



1√
2

0 0 0 − 1√
2

0

0 1√
2

0 0 0 − 1√
2

0 0 1 0 0 0

0 0 0 1 0 0
1√
2

0 0 0 1√
2

0

0 1√
2

0 0 0 1√
2


. (.4)

In the new basis the Hamiltonian reads

Ĥ ′ = ÛĤÛ−1 =



0 φ 0 0 0 0

φ∗ 0 0 0 0 0

0 0 0 φ 0
√

2t1
0 0 φ∗ 0 0 0

0 0 0 0 0 φ

0 0
√

2t1 0 φ∗ 0


. (.5)

This matrix is composed of two blocks containing only intralayer hoppings and an

effective interlayer one,
√

2t1. It can easily be diagonalised yielding Eqs. (2 - 4).

Appendix B

Here we derive the expressions for the characteristic energies presented in Table 1,

beyond the parabolic (linear) approximation for the band spectra. First we consider the

case where µ = 0.2t1, i.e. lies below the bottom of the band E+3(~k). Among the first

three possible transitions from the E−1(~k) to the upper bands, the −1→ 3 transition

threshold remains the same [see Eq. (13)] and similar to the case of µ = 0. Transition

from −1→ 1 become possible if ~ω > 2µ, then for µ = 0.2t1 the allowed energies are

~ω > 0.4t1.

The domain of allowed energies for the the transition −1→ 2 can be obtained as

~ω > E+2 − E−1 =
√
|φ|2 +

√
t21 + |φ|2 − t1

√
t21 + 2|φ|2. Since E+2 =

√
|φ|2 = µ, we

obtain

~ω > µ+

√
t21 + µ2 − t1

√
t21 + 2µ2 = 0.22t1, (.6)

the number corresponds to µ = 0.2t1.

For the second group of transitions from the −2 band, the −2 → 3 threshold

remains as given by Eq. (15). The next one, −2→ 2, can occur for energies higher

than 2µ, namely ~ω > 0.4t1. Transition −2→ 1 is allowed if ~ω > E+1 − E−2 =√
t21 + |φ|2 − t1

√
t21 + 2|φ|2 +

√
|φ|2. Since µ = E+1 =

√
t21 + |φ|2 − t1

√
t21 + 2|φ|2 , by

solving this equation for |φ|2 = µ2 +
√

2t1µ we obtain the relation:

~ω > µ+

√
µ2 +

√
2t1µ = 0.77t1. (.7)
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Finally, for the last group of three possible transitions from E−3 to the three upper

bands, for the −3→ 3 one Eq. (17)] holds beyond the parabolic approximation, −3→ 1

is allowed if ~ω >
√

2t1 + 2µ (then ~ω > 1.8t1), and the −3→ 2 transition is allowed if

~ω > µ+

√
t21 + µ2 + t1

√
t21 + 2µ2 = 1.64t1. (.8)

The non-zero chemical potential gives rise to new transitions that are not possible

in the intrinsic material. The 1→ 3 transition is allowed for the frequencies in the

vicinity of ω ≡
√

2t1/~. The 1→ 2 one occurs in the domain

µ−
√
t21 + µ2 − t1

√
t21 + 2µ2 < ~ω <

√
µ2 +

√
2µt1 − µ, (.9)

For µ = 0.2t1 this corresponds to 0.17t1 < ~ω < 0.37t1.

The situation is similar for the 2→ 3 transition because, in addition to a threshold

energy, there is also a cut-off:√
µ2 + t21 + t1

√
t21 + 2µ2 − µ < ~ω <

√
2t1, (.10)

where the expression in the left hand side is equal to 1.24t1 for µ = 0.2t1.

The case of large chemical potential, (µ = 1.6t1), above the bottom of the band

E+3 corresponds to the situation where the third band is partially filled. For ~ω > 2µ,

the −1 → 1 transition becomes possible. The frequency domain for transition −1 → 2

is similar to the previous case [Eq. (.6)] but for µ = 1.6t1 we have ~ω > 2.64t1.

Transition from−1 to 3 is allowed for ~ω > E+3−E−1 =
√
t21 + |φ|2 + t1

√
t21 + 2|φ|2+√

t21 + |φ|2 − t1
√
t21 + 2|φ|2. From the dispersion relation µ = E+3 we obtain |φ|2 =

µ2 −
√

2t1µ, and ~ω > 2µ−
√

2t1. Notice that this equation is exactly the same as Eq.

(13), obtained within the parabolic approximation.

Among the next three possible transitions, the energy domain for −2→ 1 is given

by Eq. (.7). For µ = 1.6t1 we have ~ω > 3.8t1. The −2→ 2 transition is possible when

~ω > 2µ. For −2→ 3, from the dispersion relation µ = E+3 we have |φ|2 = µ2−
√

2t1µ.

Hence, ~ω > E+3 − E−2 = µ+
√
µ2 −

√
2t1µ = 2.15t1.

The transitions −3→ 1 and −3→ 3 are allowed if ~ω > 2µ+
√

2t1 = 4.8t1 (similar

to previous case) and ~ω > 2µ, respectively. Transition from −3 to 2 is described by

Eq. (.8), then ~ω > 4.05t1.

Finally, 1 → 2 is described by Eq. (.9) (then 0.56t1 ≤ ~ω ≤ 0.6t1); 1 → 3

becomes possible for ~ω ≡
√

2t1 and 2 → 3 for the finite frequency domain defined

by
√
t21 + µ2 + t1

√
t21 + 2µ2 − µ < ~ω < µ −

√
µ2 −

√
2t1µ. For µ = 1.6t1 it means

0.86t1 < ~ω < 1.06t1.
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