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Optical control of insulin release using
a photoswitchable sulfonylurea
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Sulfonylureas are widely prescribed for the treatment of type 2 diabetes mellitus (T2DM).

Through their actions on ATP-sensitive potassium (KATP) channels, sulfonylureas boost

insulin release from the pancreatic beta cell mass to restore glucose homeostasis. A

limitation of these compounds is the elevated risk of developing hypoglycemia and cardio-

vascular disease, both potentially fatal complications. Here, we describe the design and

development of a photoswitchable sulfonylurea, JB253, which reversibly and repeatedly

blocks KATP channel activity following exposure to violet-blue light. Using in situ imaging and

hormone assays, we further show that JB253 bestows light sensitivity upon rodent and

human pancreatic beta cell function. Thus, JB253 enables the optical control of insulin release

and may offer a valuable research tool for the interrogation of KATP channel function in health

and T2DM.
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T
ype 2 diabetes mellitus (T2DM) is a global health-care
epidemic associated with life-changing sequelae ranging
from blindness to cancer1,2. This endocrine disease, which

currently affects 1 in 12 of the adult population worldwide,
involves a disturbance of normal glucose homeostasis due to
failure of the pancreatic beta cell mass to adequately compensate
for increased peripheral insulin resistance3. As such, the rescue of
insulin release through the coaxing of beta cell activity remains a
therapeutically desirable approach for the long-term restoration
of normal glucose levels.

Sulfonylureas, which target ATP-sensitive potassium (Kþ )
(KATP) channels, are a mainstay of diabetes therapy4–6. KATP

channels are hetero-octameric structures composed of four
regulatory sulfonylurea receptor subunits (SUR1) and four Kir6.2
subunits, the latter forming a central ion pore that permits Kþ

efflux7–9. By binding to SUR1, sulfonylureas block the Kir6.2
inward rectifier, leading to cell depolarization and opening of
voltage-dependent Ca2þ channels (VDCC)10,11. The ensuing
Ca2þ influx12,13, along with KATP channel-independent
signals14, drives various downstream processes that ultimately
converge on the exocytosis of insulin15. Elevated circulating insulin
can then act on target tissues to improve glucose uptake, hepatic
glycogenesis and fatty acid synthesis16 (Supplementary Fig. 1).

While sulfonylureas are widely prescribed because of their
effectiveness and relative inexpensiveness, they have a range of
off-target effects that limits their therapeutic use. For example,
sulfonylureas can provoke prolonged episodes of low blood
glucose due to hyperinsulinemia17, elevate cardiovascular disease
risk18 and induce weight gain19. Conversely, there is a lack of
tools for the precise functional dissection of KATP channels
located not only in the pancreas, but also in the brain20,21, heart22

and vascular smooth muscle23. With this in mind, we set out to
combine the glucose-lowering attributes of sulfonylureas with the
exquisite spatiotemporal control conferred by possession of
photoresponsive elements24,25.

Here, we showcase JB253, a ‘fourth-generation’ sulfonylurea
based on glimepiride that bears an azobenzene photoswitch,
endowing KATP channels with remarkable photocontrollable
properties (Fig. 1a). We demonstrate that JB253 offers sensitive,
reversible and repeated manipulation of KATP channel state and
beta cell activity with visible light, yielding optical control over
insulin release. Thus, JB253 may allow the selective targeting of
KATP channels in the pancreas and elsewhere.

Results
Design and synthesis of JB253. Distinct substitution patterns are
found within different classes of arylsulfonylurea drugs: while
there may be a variety of moieties on the aryl-ring, ranging from a
simple methyl group in tolbutamide to more complex structures
such as a linked pyrrolidinone in glimepiride (Fig. 1b), the
terminal nitrogen in sulfonylureas is usually substituted with an
aliphatic group. We reasoned that, to generate a photoswitchable
analogue, the aromatic core of the sulfonylurea drugs could
be extended to an azobenzene. Furthermore, we aimed for a
cyclohexyl substituent on the urea moiety that mimics the
corresponding substituent on glimepiride. Using a simple three-
step procedure commencing with sulfanilamide, N,N-diethylani-
line and cyclohexyl isocyanate, JB253 could be synthesized rapidly
and inexpensively in large quantities via the sulfonamide-azo-
benzene (E)-4-((4-(diethylamino)phenyl)-diazenyl)benzenesulfo-
namide (Fig. 1c; Supplementary Figs 2–4). Initial photochromic
characteristics of JB253 were measured using a ultraviolet/visible
(Vis) spectrophotometer equipped with a monochromator,
affording a single broad band as expected for a push-pull-azo-
benzene-system (lmax¼ 472nm) (Fig. 1d).

Azobenzenes are known to be photoconverted between their
cis- and trans-state by excitation with different wavelengths of
light, or alternatively by illumination and dark-relaxation. Indeed,
JB253 was readily converted to its cis-state by applying
wavelengths ranging from l¼ 400 to 500 nm (peak l¼ 472 nm),
while thermal relaxation to its trans-state occurred rapidly in the
dark. X-ray diffractometry revealed a high degree of structural
similarity between trans-JB253 and glimepiride crystals26 (Fig. 1e)
(see Supplementary Table 1). Whereas glimepiride in solution
rotates freely around its ethylene carbon chain to adopt various
possible binding conformations, JB253 is rigid unless illuminated
and so can only adopt two conformations depending on isomeric
state (that is, trans- or cis-).

Attaching lipophilic azobenzene units normally renders
molecules poorly soluble in water and aqueous buffers, an
obvious drawback for their use in biological systems. JB253,
however, demonstrates excellent water solubility (Z0.1mM)
when diluted from a 50mM stock solution in dimethyl sulfoxide
(DMSO), presumably due to its acidity (pKa (trans-JB253)¼ 4.76;
see Supplementary Fig. 5). These features were a promising entry
point for our subsequent studies using mammalian tissue.

JB253-binding studies. To determine the binding affinity of
JB253 to SUR1 relative to a known sulfonylurea (that is, glime-
piride), [3H]-glibenclamide displacement assays were performed.
JB253 bound SUR1 with a 1,000-fold lower affinity compared
with glimepiride, and this was unaffected by illumination (half-
maximal inhibitory concentration (IC50)¼ 8.3 nM versus 17.6 mM
versus 14.8 mM for glimepiride versus trans-JB253 versus cis-
JB253, respectively) (Fig. 2a). However, owing to the potential for
rapid thermal dark-relaxation during the wash cycles (see below),
we were unable to exclude a role for trans- to cis- isomerization in
strengthening JB253 binding affinity. Therefore, to compare the
activity profiles of trans-JB253, cis-JB253 and glimepiride using a
functionally relevant readout, concentration–response experi-
ments were conducted in mouse islets. The effector concentration
for half-maximum response (EC50) of cis-JB253 for cytosolic
Ca2þ rises was found to be 675 nM, similar to that obtained for
glimepiride in the same system (EC50 glimepiride¼ 399 nM)
(Fig. 2b). The concentration–response curve for glimepiride was
right-shifted in the presence of a saturating concentration of
trans-JB253, demonstrating the presence of competitive agonism
even under dark conditions (Fig. 2b).

Since most sulfonlyureas have been reported to bind and
activate Exchange Protein directly Activated by cAMP 2A
(Epac2A)27, an important mediator of insulin secretion28,29, the
presence of interactions with JB253 was assessed using a Förster
resonance energy transfer (FRET)-based approach. To enable this,
a full-length Epac2-camps biosensor containing the sulfonylurea-
binding site was encoded in HEK293t cells29. Confirming the
existence of sufonylurea–Epac2A interactions, application of either
glimepiride (Fig. 2c) or cis-JB253 (Fig. 2d) decreased FRET to a
similar extent (DR/Ro¼ 0.052 versus 0.064 a.u., glimepiride versus
JB253, respectively; NS, not significant, Student’s t-test).

JB253 allows photoswitching of KATP channels. We sought first
to investigate whether JB253 could yield optical control over
KATP channel activity using a system free from confounding
effects of glucose metabolism. To enable this, KATP channels
were heterologously expressed in HEK293t cells by transfection
with plasmids encoding the Kir6.2 and SUR1 subunits along with
green fluorescent protein. Tolbutamide and diazoxide-sensitive
inward-rectifying Kþ currents could be recorded in transfected
cells, confirming the functional assembly of KATP channels. In the
dark state, JB253 partly reduced Kþ current amplitude within a
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few seconds. This was, however, a fraction of that observed
during 500 mM tolbutamide application (Supplementary
Fig. 6a,b). Subsequent illumination of JB253 with wavelengths
between 400 and 500 nm further closed the channel (Fig. 3a), with
B45–72% block being achieved relative to that recorded using
500mM tolbutamide (Supplementary Table 2). The reversal
potential was close to the expected equilibrium potential for Kþ ,

and this was unaffected by molecule orientation (� 90.0±1.8
versus � 87.8±1.6mV, dark versus illuminated; not significant)
(Supplementary Fig. 6c,d). As such, JB253 possesses the advan-
tageous property of becoming a high-affinity KATP channel
blocker upon illumination.

Using a wavelength of 400 nm, heterologously expressed KATP

channels could be repeatedly opened and closed in JB253-treated
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Figure 1 | Photopharmacology of KATP channels: design, synthesis and characteristics of JB253. (a) The logic of a photoswitchable sulfonylurea: upon

photoisomerization to the cis-state, JB253 becomes more active, closing the KATP channel. Thermal relaxation makes the compound less active or leads to

dissociation, restoring the open form of the channel. Closure of KATP channels leads to depolarization, promoting calcium influx and ultimately insulin

release. (b) Chemical structure of tolbutamide and glimepiride, which served as templates for JB253. (c) Synthesis, structure and switching characteristics

of JB253. Sulfanilamide undergoes diazotization and is trapped with N,N-diethylaniline to yield an azobenzene-sulfonamide, which is converted to JB253 by

cyclohexyl isocyanate. trans-JB253 can be reversibly switched to cis-JB253 with blue light and relaxes thermally. (d) ultraviolet/Vis spectra of JB253

in the dark (black) and during constant illumination with 460nm (blue). (e) Crystal structure of trans-JB253 (CCDC: 1014606) and glimepiride (CSD:

TOHBUN01) showing the structural similarity of both sulfonylureas.
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preparations without obvious desensitization (difference in DI
[pA] between first and last switch¼ 14.9±7.6%) (Fig. 3b;
Supplementary Tables 3 and 4). Upon exposure to 400 nm, rapid
block was observed (ton¼ 0.4 s) (Fig. 3c). When the light source
was shut off, thermal relaxation was fast, returning the KATP

channel to baseline levels within a couple of seconds (toff¼ 1.5 s)
(Fig. 3c; Supplementary Tables 3 and 4). While maximal
photoblock of KATP channels was observed at 460 nm, significant
effects were also obtained with violet light (that is, 405 nm), which
was more compatible with fluorescence imaging of pancreatic
beta cell function (see below). Confirming that JB253 could
photoswitch endogenous KATP channels, hyperpolarizing cur-
rents were reversibly blocked in MIN6 beta cells following
illumination (Supplementary Fig. 7).

Functional interrogation of beta cells within mouse islets.
Stimulus–secretion coupling in beta cells relies on the closure of
KATP channels, Ca2þ influx through VDCC and release of insulin
granules12. We therefore attempted to manipulate beta cell
activity by optically controlling KATP channels with JB253.

Using functional multicellular Ca2þ imaging to monitor cell
activity directly in situ within intact islets30,31, increases in
cytosolic free Ca2þ , assumed largely to emanate from beta cells
under the conditions used here32, could be evoked following
global illumination using a 405-nm laser (Fig. 4a) (n¼ 10
recordings). Just over half (54%) of the Fluo-2-loaded population
responded to illumination with synchronous Ca2þ rises
(Fig. 4a,b). Demonstrating the utility of JB253 for the fine
control of beta cell function, discrete Ca2þ oscillations, thought

to underlie generation of insulin pulses33,34, could be imposed
using repeat exposure to 405 nm (Fig. 4c). As anticipated, high
doses of tolbutamide and diazoxide were able to augment and
suppress, respectively, the effects of JB253 (Fig. 4d,e) (n¼ 4–6
recordings).

The wavelength required to excite Fluo-2 (l¼ 491 nm), a
commonly used Ca2þ indicator, could potentially lead to KATP

channel closure in JB253-treated islets due to cis-isomer
formation. We therefore decided to repeat the above experiments
using the red (l¼ 561 nm)-excited Ca2þ indicator X-Rhod1.
Identical results were obtained for studies with Fluo-2 (Fig. 5a,b)
(63% responsive X-Rhod1-loaded cells) (n¼ 3 recordings),
confirming that the photostationary state of JB253 during brief
(263ms) pulses of 491-nm light was alone insufficient to close
KATP channels in the islet preparation. Likewise, global Ca2þ

oscillations could be induced in JB253-treated islets by more
prolonged illumination with 440-nm and 491-nm laser lines and,
as expected from the electrophysiological recordings, both
wavelengths appeared to activate a slightly larger cell population
(Fig. 5c,d). These observations were unlikely due to KATP channel
closure at 561 nm, since JB253 was unable to photoswitch Kþ

currents at wavelengths 4560 nm (Supplementary Fig. 8).
Demonstrating the spatial precision of JB253, a single islet

from a doublet could be activated using a targeting laser without
significantly stimulating its neighbour (B200mm from center to
center) (Fig. 5e), in part aided by the high molecular extinction
coefficient (38,670mol� 1 cm� 1 at 485 nm; see Supplementary
Fig. 9). Lastly, JB253 did not appear to be cytotoxic to islets, as
necrosis indices showed no significant differences in cell death
versus DMSO alone (Fig. 5f).
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Manipulation of human islet function using JB253. To
underline the translational potential of JB253 for use in man,
Ca2þ -imaging experiments were repeated using isolated human
islets of Langerhans. As observed for their mouse counterparts,
beta cells within JB253-treated human islets responded to 440 and
491 nm with large intracellular Ca2þ rises, and oscillations could
be coaxed simply by turning the laser on and off (Fig. 6a–c).
JB253 effects appeared to be due to KATP blockade, as they could
be mimicked and reversed using tolbutamide and diazoxide,
respectively (Fig. 6c,d).

Optical stimulation of insulin release using JB253. To cement
the link between photocontrol of KATP channels, [Ca2þ ]i and
insulin secretion, islets (from n¼ 9 mice) were incubated in the
presence of JB253 while exposing to either dark (no illumination),

405 nm or 485nm. Insulin release was similar in control experi-
ments (5mM glucose, shown to sensitize beta cells to sulfony-
lurea35) and JB253-treated islets in the dark, suggesting that any
KATP channel block and VDCC activity detected under these
conditions was subthreshold for triggering Ca2þ -activated
exocytosis (Fig. 7). By contrast, JB253-treated islets secreted
almost four- to eightfold more insulin following illumination, and
this could be partially reversed using diazoxide (Fig. 7). When
exposed to 485nm light, JB253 was equipotent to glimepiride at
stimulating insulin secretion (Fig. 7).

Discussion
In the present manuscript, we have described the development
and testing of JB253, a chemical chimera of glimepiride and an
azobenzene, which allows light-induced closure of KATP channels.
In the primary tissue employed here, viz islets of Langerhans, this
translates to activated Ca2þ flux and insulin release.

The principles of photopharmacology, that is, the control of
biological function with small-molecule photoswitches, are now
well established25,36,37. In particular, azobenzene photoswitches
have been employed as photochromic neurotransmitters and
neuromodulators38,39, ion channel blockers24,40, covalently
bound ion channel gates41 and enzyme inhibitors42,43. With
respect to ion channels, however, they have mostly been used to
optically control excitable cells in the mammalian nervous
system, and none have directly targeted KATP channels. These
are ubiquitously expressed channels that contribute to membrane
potential in a number of cell types including hypothalamic and
hippocampal neurons, cardiac myocytes, vascular smooth muscle
and neuroendocrine cells11,20–23,44. Importantly, KATP channels
translate metabolic state to transmembrane potential and, in
pancreatic beta cells, are central to glucose-stimulated insulin
secretion10–12. Since electrical status is generally correlated to
biological output in excitable tissues, JB253 may provide a useful
tool for investigating KATP channel function under a range of
normal and pathological states.

The prevailing view of sulfonylurea action is one of SUR1
binding, KATP channel closure and alterations to beta cell
membrane potential7–9. However, recent studies have also
invoked a KATP channel-independent signalling pathway
whereby sulfonylurea may alter insulin release via Epac2A
interactions27–29. Using radioactive displacement assays in
combination with FRET experiments, JB253 was found to
interact with both SUR1 and Epac2A. While SUR1 affinity for
JB253 was much lower than glimepiride, we were unable to
properly assess the active cis-state due to rapid thermal back-
relaxation. As such, a role for illumination in strengthening any
interaction cannot be excluded, for example, by altering binding
conformation due to isomerization. Nonetheless, JB253 and
glimepiride possess similar EC50 values for intracellular Ca2þ

rises and, when applied at the same concentration, both
compounds stimulated almost identical levels of insulin
secretion. Thus, JB253 possesses a similar activity profile to
glimepiride, most likely due to signalling via pathways generally
acknowledged to underlie sulfonylurea action.

In addition to photopharmacology, optogenetic and artificial
light-sensitive Kþ channels are equally applicable to the remote
control of electrically responsive cells, including beta cells45,46.
However, therapeutic potential in humans is limited by the
requirement for genetic manipulation, high activation irradiances
and the hyperpolarizing effects of recombinantly expressed
Kir6.2. Alternatively, an implantable synthetic optogenetic
transcription device has recently been shown to improve blood-
glucose homeostasis in a mouse model of T2DM via the
expression and secretion of incretin47. However, debate still
exists as to whether incretin-based therapies are associated with
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increased risk of pancreatitis and pancreatic adenocarcinoma48,49.
Nonetheless, similar concepts have recently been extended to
designer fusion molecules and may in the future be adopted for
insulin release50. By contrast, due to its favourable profile as an
exogenously applied sulfonylurea that is sensitive to light, JB253
has advantages both as a research tool and as an anti-diabetic
agent. We note, however, that confirmation of glucose-lowering
effects in rodents is required before studies using JB253 can be
extended to man.

In the context of photodynamic therapy, light penetration in
human tissues has been studied in detail and is now well
understood51. Although, the current activation wavelength of

JB253 (400–500 nm) limits deep tissue penetration, for example,
through the skin, we have recently begun to develop variants that
can be switched at longer wavelengths. In addition, stimulated by
the brisk development of optogenetics52, devices that can deliver
light to target tissues with minimal invasiveness and high spatial
precision have emerged53,54, although their application to the
pancreas is untested.

We therefore speculate that JB253, or related photoswitchable
molecules, which regulate KATP channels, may have an impact on
human medicine and research. A long-standing challenge in
endocrinology has been the inability to properly recreate the
dynamics that underlie pulsatile hormone release, a prerequisite
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for proper downstream organ function55. Furthermore, disparate
biological systems can use similar or identical molecular
components. For example, KATP channels are also expressed in
the heart and brain, including in neuronal populations tasked
with the central regulation of glucose homeostasis and
counterregulatory responses20,56. Photopharmacology has the

ability to target drug activity to the primary site of dysfunction
with high spatial and temporal resolution37. JB253 holds
particular promise in this regard. It is non-cytotoxic and can be
used to repeatedly modulate rodent and human beta cell activity,
the basis for recreating the oscillatory activity known to
orchestrate hormone pulses33,34. Its light dependency means
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Figure 5 | Specific photoswitching of beta cell function in the violet-blue spectrum. (a) JB253-treated cells loaded with the red-shifted Ca2þ

indicator X-Rhod1 (l excitation¼ 561 nm) similarly respond to 405 nm with Ca2þ rises (representative traces from n¼ 3 recordings). (b) As in a, but

imposition of oscillations (representative traces from n¼ 3 recordings). (c) JB253-treated beta cells display large increases in cytosolic Ca2þ following

exposure to 440nm (representative trace from n¼6 recordings). (d) As in c, but following illumination with 491 nm (Tb, tolbutamide; positive control)

(representative trace from n¼ 5 recordings). (e) A single islet can be photoswitched using a targeting laser while leaving its neighbour quiescent

(B200 mm center–center) (representative traces from n¼ 3 recordings). A global laser pulse evokes activity in both islets (grey, raw; red, smoothed).

(f) Incubation of islets with JB253 does not alter cell viability as assessed by calcein-AM and propidium iodide incorporation (NS, not significant versus

DMSO alone, Student’s t-test) (n¼ 28 islets from four animals). Values represent mean±s.e.m.
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that JB253 activity is spatially restricted by illumination,
potentially reducing extra-pancreatic effects. Finally, the ability
to ‘turn on’ or ‘turn off’ JB253 action would allow insulin

secretion to be tailored to peak demand. Therefore, pending
thorough in vivo validation, JB253 and its congeners could
potentially open up new avenues for the treatment of T2DM.

In summary, we have designed and synthesized a light-
sensitive sulfonylurea, JB253, which has a broad spectrum of
application due to conferment of photoswitching on KATP

activity.

Methods
Chemical synthesis. (E)-4-((4-(Diethylamino)phenyl)diazenyl)benzenesulfonamide
(1). Sulfanilamide (2.00 g, 11.61mmol, 1.0 eq.) was dissolved in 2.4M HCl and
cooled to 0 �C. Under vigorous stirring, a solution of NaNO2 (0.96 g, 13.91mmol, 1.2
eq.) in 6ml water was added dropwise until the solution turned pale yellow. The
formed diazonium salt was stirred under ice-cooling for an additional 10min before
it was transferred into a solution of N,N-diethylaniline (1.73 g, 11.61mmol, 1.84ml,
1.0 eq.) in a 1/1 mixture of 1M NaOAc/MeOH. The solution turned to dark red and
was allowed to warm to room temperature under stirring. The crude product was
extracted with EtOAc (3x), and the combined organic layers were washed with brine
and dried over MgSO4. Flash column chromatography (25% EtOAc/i-hexanes)
yielded 1.45 g (4.37mmol) of the desired product as a red powder in 38% yield. 1H
NMR (400MHz, DMSO-d6): d (p.p.m.)¼ 7.95 (d, J¼ 8.6Hz, 2H), 7.88 (d, J¼ 8.6
Hz, 2H), 7.81 (d, J¼ 9.2Hz, 2H), 7.45 (s, 2H), 6.82 (d, J¼ 9.3Hz, 2H), 3.47
(q, J¼ 7.0Hz, 4H), 1.15 (t, J¼ 7.0Hz, 6H). 13C NMR (101MHz, DMSO-d6): d
(p.p.m.)¼ 154.2, 150.8, 143.8, 142.2, 126.9, 125.8, 121.9, 111.1, 44.2, 12.5. High-
resolution mass spectrometry (electrospray ionization): calc. for C16H21N4O2Sþ

(MþH)þ : 333.1380, found: 333.1377. Rt (liquid chromatography–mass spectro-
metry (LC-MS); MeCN/H2O/formic acid¼ 10/90/0.1-90/10/0.1 over
7min)¼ 4.364min. Ultraviolet/Vis (LC-MS): lmax¼ 460 nm.

(E)-N-(Cyclohexylcarbamoyl)-4-((4-(diethylamino)phenyl)diazenyl)benzene-
sulfonamide (JB253). A mixture of (E)-4-((4-(diethylamino)phenyl)diazenyl)
benzenesulfonamide (332mg, 1.0mmol, 1.0 eq.) and Cs2CO3 (1.30 g, 4.0mmol, 4.0
eq.) in acetone (20ml) was refluxed for 1 h before addition of cyclohexyl isocyanate
(125mg, 1.0mmol, 119 ml, 1.0 eq.) diluted in acetone (20ml). The reaction mixture
was refluxed for an additional 3 h, before cooling to B40 �C. The crude solid was
filtered and washed with small amounts of acetone before it was carefully dissolved
in MeOH to yield 450mg (0.98mmol) of JB253 product in 98% yield. 1H NMR
(400MHz, DMSO-d6): d (p.p.m.)¼ 7.83 (d, J¼ 8.5Hz, 2H), 7.78 (d, J¼ 9.1Hz,
2H), 7.69 (d, J¼ 8.5Hz, 2H), 6.80 (d, J¼ 9.3Hz, 2H), 5.62 (br s, 2H), 3.46 (q,
J¼ 7.0Hz, 4H), 3.20 (br s, 1H), 1.86–1.38 (m, 5H), 1.33–0.92 (m, 11H). 13C NMR
(101MHz, DMSO-d6): d (p.p.m.)¼ 172.7 (heteronuclear multiple-bond correlation
(HMBC), see Supplementary Fig. 4), 152.6, 150.2, 148.5, 142.2, 127.4, 125.3, 120.8,
111.0, 47.8, 44.1, 33.5, 25.5, 24.9, 12.5. High-resolution mass spectrometry
(electrospray ionization): calc. for C23H32N5O3Sþ (MþH)þ : 458.2220, found:
458.2219. Rt (LC-MS; MeCN/H2O/formic acid¼ 10/90/0.1-90/10/0.1 over
7min)¼ 5.285min. Ultraviolet/Vis (100 mM in DMSO): lmax¼ 472 nm; (LC-MS):
lmax¼ 468 nm. e405 nm¼ 18,501mol� 1 cm� 1; e485 nm¼ 38,670mol� 1 cm� 1.
Infrared (attenuated total reflectance): wavenumber in cm� 1

¼ 3331, 2928, 2851,
1652, 1626, 1602, 1576, 1537, 1514, 1390, 1349, 1174, 1130, 1086, 1042, 843, 820,
676. m.p.¼ 190 �C.

General chemistry. Flash column chromatography was carried out on silica gel
60 (0.040–0.063mm) purchased from Merck. Reverse phase flash column chro-
matography was carried out on Waters C18 silica gel (0.055–0105mm, 125Å).
Reactions and chromatography fractions were monitored by thin-layer chroma-
tography on Merck silica gel 60 F254 glass plates. The spots were visualized either
under ultraviolet light at 254 nm or with appropriate staining method (iodine,
p-anisaldehyde, KMnO4) followed by heating.

NMR spectra were recorded in deuterated solvents on Varian Mercury 200,
Bruker AXR 300, Varian VXR 400S, Bruker AMX 600 and Bruker Avance III HD
400 (equipped with a CryoProbe) instruments and calibrated to residual solvent
peaks (1H/13C in p.p.m.): DMSO-d6 (2.50/39.52). Multiplicities are abbreviated as
follows: s¼ singlet, d¼ doublet, t¼ triplet, q¼ quartet, br¼ broad and
m¼multiplet. Spectra are reported based on appearance, not on theoretical
multiplicities derived from structural information.

A Varian MAT CH7A mass spectrometer was used to obtain low- and high-
resolution electron impact mass spectra. Low- and high-resolution ESI mass
spectra were obtained on a Varian MAT 711 MS instrument operating in either
positive or negative ionization modes.

Solvents for column chromatography and reactions were purchased in HPLC
grade or distilled over an appropriate drying reagent before use. If necessary,
solvents were degassed either by freeze-pump-thaw or by bubbling N2 through the
vigorously stirred solution for several minutes. Unless otherwise stated, all other
reagents were used without further purification from commercial sources.

Ultraviolet/Vis spectra were recorded on a Varian Cary 50 Bio UV-Visible
Spectrophotometer using Helma Suprasil precision cuvettes (10mm light path).

LC-MS was performed on an Agilent 1260 Infinity HPLC System, MS-Agilent
1100 Series, Type: 1946D, Model: SL, equipped with a Agilent Zorbax Eclipse Plus
C18 (100� 4.6mm, particle size 3.5 micron) RP column.
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Infrared spectra were recorded on a PerkinElmer Spectrum BX-59343
instrument as neat materials. For detection, a Smiths Detection DuraSam-plIR II
Diamond ATR sensor was used. The measured wavenumbers are reported in
cm� 1.

Melting points were measured on an EZ-Melt apparatus (Stanford Research
Systems) and are uncorrected.

Extinction coefficients were measured on a BMG Labtech Omega Series
FLUOstar microplate reader with clear flat-bottom white 96-well plates by full
spectra acquirement in low-Kþ external bath buffer (containing in mM: 3 KCl, 118
NaCl, 25 NaHCO3, 2 CaCl2, 1 MgCl2, 10 HEPES; NaOH to pH 7.4). All JB253-
containing solutions (dilution series, n¼ 4: 10 nM; 100 nM; 1 mM; 10mM; 25mM;
50mM) were background substracted and fitted with a linear slope. Volumes were
100ml each, which resulted in a path length of l¼ 2.94mm. pKa measurements and
data processing were performed using the same instrument and protocol as in the
study by Martinez and Dardonville57. Full absorbance spectra (280–800 nm) were
acquired and background subtracted before spectral differences were calculated.
The total change of maximal positive and maximal negative difference was
calculated and plotted against pH. Sigmoidal fit of the obtained plot gave access to
the pKa.

Crystallography. X-Ray data collection was performed on a Bruker D8Venture at
173K using MoKa-radiation (l¼ 0.71073Å). The APEX2 (v2012.4-3, Bruker AXS
Inc.) software and embedded programs were applied for the integration, scaling
and multi-scan absorption correction of the data. The structures were solved by
direct methods with SIR9758 and refined by least-squares methods against F2 with
SHELXL-9759. All non-hydrogen atoms were refined anisotropically. The C-bound
hydrogen atoms were placed in ideal geometry riding on their parent atoms,
N-bound hydrogen atoms were refined freely. The crystallographic data for JB253
is available free of charge from The Cambridge Crystallographic Data Centre via
www.ccdc.cam.ac.uk/data_request/cif (accession ref. CCDC 1014606).

Electrophysiology. HEK293t cells (obtained from the Leibniz-Institut DSMZ:
#305) were incubated in Dulbecco’s modified Eagle’s mediumþ 10% foetal
bovine serum and used for electrophysiological recordings 24–48 h following
Lipofectamine transfection with plasmids encoding Kir6.2 (Genbank D50581), rat
SUR1 (Genbank L40624) and green fluorescent protein. Whole-cell patch-clamp
experiments were performed using a standard electrophysiology setup equipped
with a HEKA Patch Clamp EPC10 USB amplifier and PatchMaster software
(HEKA Electronik). Micropipettes were generated from ‘Science Products GB200-
F-8P with filament’ pipettes using a vertical puller. Resistance varied between 5 and
7MO. Bath solution contained in mM: 3 KCl, 118 NaCl, 25 NaHCO3, 2 CaCl2, 1
MgCl2, 10 HEPES (NaOH to pH 7.4). Pipette solution contained in mM: 90 K-
gluconate, 10 NaCl, 10 KCl, 1 MgCl2, 10 EGTA, 60 HEPES (KOH to pH 7.3), and
the holding potential was � 60mV. Illumination during electrophysiology and
ultraviolet/Vis experiments was provided by a TILL Photonics Polychrome 5000
monochromator. JB253 was applied at 50 mM, as this concentration was found to
be maximal for stimulating Ca2þ rises.

MIN6 cells (a kind gift from Dr Jun-ichi Miyazaki, Osaka University) were
cultured in Dulbecco’s modified Eagle’s medium supplemented with 15% foetal
bovine serum, 1% glutamine, 2% HEPES buffer, 0.0005% b-mercaptoethanol and
1% penicillin/streptomycin. Cells were seeded onto glass coverslips 24 h before
whole-cell patch-clamp experiments using micropipettes generated from thin-
walled borosilicate capillaries (3–6MO). Bath solution contained in mM: 3 KCl,
118 NaCl, 25 HEPES, 3 MgCl2 and 2 CaCl2. Pipette solution contained in mM:
150 KCl, 3 MgCl2, 5 EGTA, 10 HEPES, 0.3 K2ATP (pH 7.2), and the holding
potential was � 60mV. Illumination was provided using a X-Cite 120 mercury arc
lamp (Lumen Dynamics) with a bandpass filter (470±20 nm). Voltage ramps from
� 20mV to � 120mV (500ms duration) were applied every 5 s to produce
current–voltage relationships in the presence and absence of JB253. All cells lines
were regularly mycoplasma tested.

Mouse islet isolation. Male and female CD1 and C57BL6 mice (8–20 weeks) were
maintained in a specific pathogen-free facility under a 12 h light–dark cycle with ad
libitum access to water and food. Animals were euthanized using a schedule-1
method and pancreatic islets isolated by collagenase digestion. All procedures were
regulated by the Home Office according to the Animals (Scientific Procedures) Act
1986 of the United Kingdom (PPL 70/7349), and study approval granted by the
Animal Welfare and Ethical Review Body of Imperial College. No randomization
was used for animal experimentation, since mice were only used as tissue donors.

Human islet isolation. Human islets were isolated from deceased heart-beating
donors (n¼ 3) at transplantation facilities in Pisa and Edmonton with the relevant
national and local ethical permissions, including consent from next of kin where
required, and cultured in Roswell Park Memorial Institute medium supplemented
with 5.5mM D-glucose, 10% foetal calf serum, 100U/ml penicillin, 100mg/ml
streptomycin and 0.25 mg/ml fungizone (37 �C, 5% CO2). All studies involving
human tissue were approved by the National Research Ethics Committee London
(Fulham), REC #07/H0711/114.

Calcium imaging. Islets were loaded for 30–45min in Fluo2-AM (10 mM) or for 2–
5min with X-Rhod1 (5 mM) diluted with a mixture of DMSO (0.01%, wt/vol) and
pluronic acid (0.001%, wt/vol; all Invitrogen) in a bicarbonate buffer containing in
mM: 120 NaCl, 4.8 KCl, 1.25 NaH2PO4, 24 NaHCO3, 2.5 CaCl2, 1.2 MgCl2
and 5 D-glucose. Functional multicellular Ca2þ imaging was performed using a
Zeiss Axiovert M200 fitted with a Nipkow spinning-disk head (Yokogawa CSU-10)
and a � 10/0.3 numerical apperture objective adjusted for chromatic aberration
(EC Plan-Neofluar, Zeiss). Pulsed excitation (frequency¼ 0.5Hz; exposure¼ 263
ms) was delivered at 491 nm and emitted signals recorded at 500–550 nm with a
back-illuminated 16-bit EM-CCD camera (ImageEM 9100-13; Hamamatsu).
During recording, islets were maintained at 35–36 �C in the presence of 50 mM
JB253 using a custom-manufactured perfusion and heating system (Digital Pixel).
Drugs were introduced through the perfusion system at the indicated time points
and concentrations. Violet light was delivered by a 405±5-nm laser coupled to the
side port of the microscope and configured to fill the back of the objective with
light using an Optospot (Cairn Research). Blue light was delivered using 440±5-
nm and 491±5-nm diode lasers controlled by a laser merge module (Spectral
Applied Research) to allow simultaneous exposure and acquisition. For single islet
targeting, a 473±5 nm laser was coupled to a custom-manufactured dichroic array
(Cairn Research), allowing user-directed steering of a collimated laser spot across
the field of view. Signals were normalized using F/Fmin where F is fluorescence at a
given time point and Fmin is minimum fluorescence.

Cytotoxicity assay. Islets were incubated with either DMSO or JB253 for 1 h
before staining with 3 mM of calcein-AM (live) and 2.5 mM of propidium iodide
(dead). Absorbance/emission was detected at 491/525 and 561/620 nm for calcein
and PI, respectively. The area of dead:live cells was calculated as a unitary ratio and
the observer blinded to treatment identity.

Epac2 imaging. For Epac2 imaging, HEK293t were transfected with the full-length
construct for Epac2-camps containing the cAMP- and sulfonylurea-binding
domains29 (a kind gift from Prof. Jin Zhang, Johns Hopkins University) before
imaging60 using a HEPES-bicarbonate buffer containing in mM: 120 NaCl, 4.8 KCl,
24 NaHCO3, 0.5 Na2HPO4, 5 HEPES, 2.5 CaCl2, 1.2 MgCl2 and 5 D-glucose.
Excitation was delivered at 440 nm and emitted signals captured using cerulean
(530 nm) and citrine (470 nm) filters. FRET was calculated as the ratio of Cerulean
(CFP):Venus (YFP) fluorescence. Signals were normalized using R/Ro, where R is
the ratio at a given time point and Ro is the minimum ratio.

Measurements of insulin secretion from isolated islets. Insulin secretion
was measured from six islets per well, incubated at 37 �C for 30min in 0.5ml of
Krebs-HEPES-bicarbonate solution (containing in mM: 130 NaCl, 3.6 KCl, 1.5
CaCl2, 0.5 MgSO4, 0.5 NaH2PO4, 2 NaHCO3, 10 HEPES and 0.1% (wt/vol) bovine
serum albumin, pH 7.4) containing the indicated glucose concentration and
tolbutamide (100 mM), glimepiride (50 mM), diazoxide (250 mM) and JB253
(50 mM). Illumination (l¼ 405±20 nm and 485±6 nm) was performed using a
Fluostar Optima microplate reader (BMG Labtech) set to deliver 30 s of light
every 2min to the designated wells. Insulin concentrations were determined in
duplicate using specific radioimmunoassay (EMD Millipore).

[3H]-Glibenclamide radioassay. SUR1-expressing HEK293t cells were harvested
and washed twice in assaying buffer containing in mM: 119 NaCl, 4.7 KCl, mM
CaCl2, 1.2 KH2PO4, 1.2 MgSO4, 5 NaHCO3 and 20 HEPES, pH 7.4. In a 96-well
plate, B200,000 cells per well were incubated for 50min with [3H]-glibenclamide
(PerkinElmer) and different concentrations of glimepiride (Sigma-Aldrich) or
JB253. Incubation was terminated by rapid filtration through Whatman GF/C
filters by means of a Brandel MWXR-96 TI harvester and filters were washed three
times with ice-cold assay buffer. Radioactivity was counted 6 h after cell and filter
lysis in 200 ml Rotiszint EcoPlus (Roth) using a Packard microbeta scintillation
counter (PerkinElmer).

Statistical analysis. Data distribution was determined using the D’Agostino
omnibus test. Non-multifactorial pairwise comparisons were made using
the Student’s t-test. Interactions between multiple treatments were assessed
using one-way analysis of variance followed by pairwise comparisons using
Bonferroni’s post hoc test. Nonlinear regression was used to calculate the EC50 of
normalized and log-transformed concentration–response curves. For [3H]-glib-
enclamide displacement assays, data points were fitted to the Hill equation before
calculation of the halfmax value. In all cases, analysis was performed using
Graphpad Prism (Graphpad Software) and IgorPro, and experimental numbers
reported as independent biological replicates. No animals or data were excluded
from the analysis and results were considered significant at Po0.05. Effect sizes
in islets/cells are usually sufficiently large that multiple animals/independent
replication is a more important determinant of power in studies requiring
statistical comparison.
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