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We consider the control of molecular dynamics using tailored light fields, based on a phase space 
theory of control Ty. J. Yan ef al., J. Phys. Chem. 97, 2320 ( 1993)]. This theory enables us to 
calculate, in the weak field (one-photon) limit, the globally optimal light field that produces the 
best overlap for a given phase space target. We present as an illustrative example the use of 
quantum control to overcome the natural tendency of quantum wave packets to delocalize on 
excited state potential energy curves. Three cases are studied: (i) a “molecular cannon” in 
which we focus an outgoing continuum wave packet of I2 in both position and momentum, (ii) 
a “reflectron” in which we focus an incoming bound wave packet of I,, and (iii) the focusing 
of a bound wave packet of Na, at a turning point on the excited state potential using multiple 
light pulses to create a localized wave packet with zero momentum. For each case, we compute 
the globally optimal light field and also how well the wave packet produced by this light field 
achieves the desired target. These globally optimal fields are quite simple and robust. While our 
theory provides the globally optimal light field in the linear, weak field regime, experiment can 
in reality only provide a restricted universe of possible light fields. We therefore also consider the 
control of molecular quantum dynamics using light fields restricted to a parametrized functional 
form which spans a set of fields that can be experimentally realized. We fit the globally optimal 
electric field with a functional form consisting of a superposition of subpulses with variable 
parameters of amplitude, center time, center frequency, temporal width, relative phase, and 
linear and quadratic chirp. The best fit light fields produce excellent quantum control and are 
within the range of experimental possibility. We discuss relevant experiments such as ultrafast 
spectroscopy and ultrafast electron and x-ray diffraction which can in principle detect these 
focused wave packets. 

I. INTRODUCTION 

Theoretical studies indicate that molecular dynamics 
(of chemical reactions, for example) can be guided and 
controlled by light fields whose temporal and frequency 
properties are properly tailored.i4 For detailed discussion, 
see the reviews by Brumer and Shapiro,’ Rabitz,6 Ri~e,~ 
and Warren, Rabitz, and Dahleh.’ 

Most of the theoretical methods which have been de- 
veloped to control molecular dynamics are based on a 
wave-function formalism which involves calculating the 
coupled quantum dynamics of the relevant degrees of free- 
dom of the problem. Additionally, it is usually assumed 
that the system is initially in a pure state. Recently, we 
have cast the theory of optimal control of molecular dy- 
namics in a phase space formalism based on the evolution 
of the density matrix.’ This formulation allows the inclu- 
sion of mixed states (thermal ensembles or molecules in 
solution, for example) and provides a unified theory for 
quantum, classical, or semiclassical implementations of 
molecular dynamics. 

In our previous work,9 we showed that in the weak 
field or linear control regime, the globally optimal fields, as 
well as a variety of locally optimal control fields, for a 
given phase space target can be calculated from the solu- 
tion of an eigenequation. As we shall review in more detail 

in Sec. II, the kernel of the eigenequation depends only on 
properties of the molecule and target, so it can be com- 
puted without reference to the field. The largest eigenvalue 
of this equation is, in the weak field limit, the globally 
optimal yield, and the eigenfunction corresponding to that 
eigenvalue is the globally optimal field.’ 

We have previously demonstrated the utility of this 
approach through application to excited state control of a 
model system consisting of shifted harmonic oscillators. 
We illustrated for this case that broadening the scope (and 
realism) of the material system to include the effects of 
temperature and of solvent does not necessarily eliminate 
the possibility of control. A substantial amount of control 
is still retained at room or higher temperatures, even when 
vibrational and/or electronic relaxation or dephasing is in- 
troduced through the presence of a model Brownian oscil- 
lator solvent.9”0 

The proper theoretical representation of experimen- 
tally realizable molecular control requires consideration of 
both realistic molecular systems and experimentally realiz- 
able light fields. In the present work, we extend the appli- 
cations of the density matrix formulation of optimal con- 
trol. We first consider realistic molecular potentials, taking 

as illustrations the focusing of outgoing continuum I, wave 
packets (a “molecular cannon”), the focusing of bound 
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state I2 wave packets with nonzero incoming momentum 
(a “molecular reflectron”), and the focusing of Na, wave 
packets at the turning point of the potential using multiple 
phase-locked light pulses. 

The optimal weak fields predicted by our formalism 
are unrestricted with respect to their functional form. In 
general, however, experimentally realizable light fields are 
drawn from a much smaller universe. We therefore show in 
this work that fits of the globally optimal fields by experi- 
mentally reasonable functional forms produce fields that 
are able to control the molecular dynamics almost as well 
as their forebears. 

The structure of the paper is as follows. Section II 
reviews the density matrix formalism of optimal control in 
the weak field limit and its application to the phase and 
configuration space control of molecular systems involving 
two electronic surfaces. In Sec. III, the globally optimal 
weak field control problem is illustrated for the three real- 
istic molecular cases described above. In Sec. IV, control 
by a parametrized field is considered. The unrestricted 
fields from Sec. III are fitted to an experimentally reason- 
able functional form, and the degree of control achieved 
with these fitted parametrized fields is compared to the 
globally optimal unrestricted results. In addition, we dis- 
cuss how to optimize the yield within a restricted universe 
of parametrized fields. Finally, Sec. V presents a summary 
of the key points of the paper, discusses possible experi- 
ments to observe wave-packet focusing using both ultrafast 
spectroscopy and ultrafast electron and x-ray diffraction, 
and concludes. 

II. WEAK FIELD CONTROL OF MOLECULAR 
DYNAMICS 

A. General theory 

As in our previous work,9 we consider a molecule with 
a time-independent Hamiltonian HM which interacts with 
a time-dependent electric field e(t). The Hamiltonian for 
the entire system is then given by 

H(t)=H,-De(t), (1) 

where D is the transition dipole moment of the material. 
As before, we express the control theory in a density ma- 
trix formulation.’ This formulation allows a convenient 
representation of mixed states” such as those which occur 
at nonzero temperatures or in solutions. The evolution of 
the density matrix of the system, p(t), is governed by the 
Liouville equation* ’ 

p(t)=Y Wo)p(to>, (2) 

where Y is the Green function associated with H(t) [Eq. 
(l)], and to is a time before the interaction with the light 
field. 

We foAmulate the control problem in terms of a target 
operator A. Chosen appropriately, this target operator, de- 
fined in phase space, can describe any desired outcome for 
a system.6’9”2-‘4 The objective is to tlnd the optimal light 
field such that the density matrix of the system, after in- 
teraction with this light field, has maximal overlap with the 

target operator at a specified time, tf. In more formal 
terms, we define the yield of the control process as9 

A(tf) =Tril&(tf> I. (3) 

Our goal, then, is to maximize A (tf). 
In this paper, we work in the limit of weak light fields, 

in which the control outcome [A( t,)] is proportional to the 
external field intensity. That is, we consider only single- 
photon control processes in the limit that first-order per- 
turbation theory is valid. In the wave-function formalism, 
the interaction of the wave function with the field is linear, 
and we apply first-order perturbation theory, while in the 
density matrix formalism, the interaction is bilinear. The 
weak field limit, depending on the system being studied, 
can be valid with quite intense electric fields. In fact, most 
spectroscopic measurements are performed in this limit. 

We have shown that calculating the optimal electric 
field which maximizes A ( tf) is straightforward. Through a 
perturbation theory treatment, the density matrix to sec- 
ond order in the control field is given by” 

,d2’(tf) = (i/fi)2 
r s 

T2 

dr2 to drl Y&-T~) 

x~‘o(72-71)~~0(71-to) 

Xp(foM72k(7*). (4) 

Here, so is the Green function corresponding to the time- 
independent material Hamiltonian HM rather than the full 
(time-dependent) Hamiltonian H and therefore depends 
only on-a time difference rather than two independent val- 
ues of time, as does the Green function in Eq. (2), i.e.,” 

~o(t)B=e-~~t/~~eiH~t/~, (5) 

where 6 is an arbitrary operator. In ET (4), 9 refers to 
the material dipole commutator,” gO=Dob-60. The 
initial time to is taken to be - 03 under the assumption that 
the system is initially in a steady state (e.g., thermal’equi- 
librium or a molecular eigenstate) such that the initial 
density matrix p ( to = - CO ) commutes with the molecular 
Hamiltonian HIM at to, [HM,p(to)]=O. In this case, 

~o(n-to)P(to) =p(to)* 
In the weak field limit, the yield [Eqs. (3) and (4)] can 

be expressed as - ~ 

A( tf) =K2 
ff 

s, s 

72 
dT2 dr1 MOf--72,72-71) 

to ~ 

Xd72k(71). (6) 

Here, the function M depends only on the material and the 
target and is given by 

M(hh) = -Tr[A”~o(t2>~~o(t~)~~( - 00 > 1. (7) 

Expanding Eq. (7) gives an expression that can be recast 
as 

MWd =2 Re[(D(O>Al(t,+t,>D(t,)) 

-(a(tl+tz>D(tl)D(O))l (8) 
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with 

i(T) =&2&) ~p~~fi~~-f%P~fi 

and 

(9) 

D(T) CDS,,(~) ~e’~fl’~&-‘~fl’~. (10) 

In Eq. 8, (6) =Tr[bp( to)] denotes an average over the 
initial material ensemble, p( to= --co ) . 

We wish to find the optimal field, E( 7)) that maximizes 
the yield A(tf) [Eq. (3)] under the constraint that the 
energy of the field, Jdr 2(~)/2, remains constant. We 
therefore consider the functional optimization of 5P6*9~12 

s ” d&(T) 
t0 

(11) 

with respect to the field E( 7). The term with the parameter 
/z (a Lagrange multiplier) is introduced to enforce the 
energy constraint. The final equation for the optimal weak 
field can be obtained more directly by recasting the yield 
A (tf) &. (6)] in a symmetrized form (see Appendix A) 

A(q)=; j-1 d7 j-r d+ MS(~,~‘)~(7)~(+), (12) 

with the symmetrized material response function, M”, de- 
fined by 

A!P(T,T’) =Ms(T’,T) E+r2M(+-J-T’), 33-r’. 
(13) 

Substituting Eq. ( 12) into Eq. ( 11)) and considering the 
variational equation 6J( tf> = 0 with respect to a small vari- 
ation in the field, SE(T), we fmally obtain the following 
eigenequation for the optimal weak field’ 

s 

‘f 
d+ M’(~,Y)E(~‘) =/k(7). 

to 
(14) 

Substituting this equation into Eq. ( 12), we find that the 
eigenvalue a (the Lagrange multiplier) is the yield of our 
control objective normalized by the incident field energy.’ 

Equation (14) is a homogeneous Fredholm equation” 
and can be recast numerically into a matrix diagonalization 
by representing the symmetrized material function and the 
field on discretized time grids. The number of nontrivial 
solutions to the linear control eigenequation [Eq. (14)] 
depends on the nature of the target and the molecular 
system, such as whether it is a pure or mixed state, as well 
as the complexity and dimension of the molecular dynam- 
ics and the Franck-Condon transition. In the general 
mixed state case, there can be multiple local optimal solu- 
tions. l6 The largest eigenvalue of the symmetrized matrix is 
the globally optimal yield, and the eigenfunction corre- 
sponding to it is the globally optimal weak electric field.’ 

B. Application to two-state systems 

The equations presented so far are general for any ma- 
terial system beginning in a steady state (e.g., in thermal 
equilibrium). We now specialize the equations to a molec- 
ular system with two adiabatic electronic states, 18) and 

1 e), our goal being to control the dynamics on either of the 
two states in a specified manner. In this case, 

H~=H,Ig)(gI+(H,+~,)Ie)(el, (13 

D=pcL[ le)kl+ Id@1 I. (16) 

Here, H,, is the adiabatic Hamiltonian governing the mo- 
lecular nuclear dynamics in electronic state n=g or e, p is 
the electronic transition dipole moment (depending in gen- 
eral on the molecular nuclear coordinates) which couples 
the two electronic states, and weg is the difference between 
the potential energy minima of the two states, i.e., weg 
= T,J#i, where T, is the electronic term value. Since weg is 
usually large compared with the characteristic nuclear fre- 
quencies, we will later remove it by applying the rotating 
wave approximation (RWA). The molecular system is as- 
sumed to be initially in a steady state (e.g., in thermal 
equilibrium or a specified vibronic level) of the ground 
electronic manifold with 

POO) =pgoo= - a ) Idkl . (17) 

The target operator A^ is given by 

2=i,ln)(nI, n=g or e, (18) 

where d,, is an operator in the nuclear space of the ele_c- 
tronic surface it. The yield A ( tf) is then the overlap of A, 
with either an excited state phase space wave packet (p,) 
following, e.g., a weak pump field, or a ground state phase 
space wave packet (p,) created by, e.g., a weak field Ra- 
man excitation. 

For this two surface model, the material function takes 
the form 

-J4(f2Jl) = 
I 

2 Re(D(0)A(tz+tl)D(t,)) if n=e 

-2 Re(A(t2+tl> D(tl) D(0)) if n=g 

=2 Re[M,(tz,tl)exp(--iW,gtl)l. (19) 

Thus, the two terms in Eq. (8) can be related to excited 
and ground state molecular control, respectively. Using the 
definitions of the operators given above, the material func- 
tions specific to excited and ground state control, M, and 
&fg, respectively, are found to be 

~e(f~,fl)=Tr[~~~(o)~e(~2+tl>iu,(tl)~~(~o)l (20) 

and 

Mg(f2,h) = --Tr[A^,(t2+tl)CL,,(tl)~U,(0)P,(to)l, 
(21) 

where 

For the remainder of this paper, we shall specialize to 
the case of excited state control via a resonant electronic 
light-matter interaction and apply the RWA for the weak 
control field. This approximation is made by neglecting the 
integration of highly oscillatory contributions due to the 
electronic transition. We therefore write the light field e(t) 
in the form 
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e(f)=E(t)e-ioeBf+~(t)eioe$, (23) 

where E(t) is a slowly varying complex function, which in 
general contains a time dependent excess excitation fre- 
quency which causes for the molecular nuclear dynamics 
on the excited state. Substitution of Fqs. ( 18)-(20) and 
(23) into Rq. ( 12) gives an equation for the yield within 
the RWA (see Appendix A) 

‘f 
A@)= dr =.I- s ‘f 

dr’ M;(T,T’)E?~~(T)E(T’). (24) 
B b 

Here, @(r,r’) is the symmetrized Hermitian form of M, 
[rather than a real symmetric form as in Eq. (13)] 

Mf(T,T’) = [Mf(7-‘,7-)]* 

&i-2Me(tf-T,T-T’>, T’(T. (25) 

In Eq. (24), it is not necessary to explicitly take the real 
part of the right-hand side since the Hermitian nature of 
L@ automatically guarantees that the result is real. As 
described above [cf. Eq. (14)], we can calculate the glo- 
bally optimal field from an eigenequation, which for the 
two-state system discussed here takes the form’ 

s 

‘f 
dr’ M$-,#)E(T’) =~E(T). (26) 

r0 

If Mf and E are represented on discretized time grids, Eq. 
(26) becomes a conventional matrix eigenvalue equation 

I~~(t))=exp[--i(H,--E,r~)t/~l l&W)). (30) 

In Eq. (30), E,,~P is the energy of vibronic level I Y”) in the 
ground electronic lg) state and I @(t) ) can be thought as 
the wave function in the electronic I e) state resulting from 
a 6(t) pulse excitation. The true excited wave function 

I$Jt>) (or p,(t)= IICte(t))($e(t) I> can be obtained by a 
convolution of &!(t) with the electric field E(t) 

M;fE=LE (27) 

in which the largest eigenvalue /z is the globally maximal 
yield, and thus, the corresponding eigenvector is the glo- 
bally optimal field for the control problem.’ We note that 
Eq. (26) is valid for the slowly varying envelope of the 
optimal control field, while Eq. (14) gives the complete 
non-RWA field. The envelope can be calculated from the 
diagonalization of a matrix Mf which is of much smaller 
dimension than MS since a larger time step can be used. 

l),(t) =A-’ d7 E(r)$‘ji(t--7). 

In order to quantify the degree to which the optimal 
field succeeds in meeting the objective, we define an 
“achievement function” a(t) by 

a(t)= 

In conclud@g this section, we specify the Gaussian 
control target A,, which will be used throughout the re- 
mainder of this paper. Consider control of a single mode 
molecular system, e.g., a diatomic molecule in which we 
consider or$y the vibrational coordinate. A general Gauss- 
ian target A, can be characterized by a set of five parame- 

-- 
ters, P, 4, wpp, wgq, and wP4( = w&, to represent the cen- 
ters, variances, and phase space orientation of the target 
wave packet with respect to momentum and position. In 
the Wigner phase space representation, the target operator 
A^, has the form9P’7 

(28) A w4-w) +jj s : ds e-@“‘A(q+s/2,q--s/2) 
co In Eq. (28), p,(t) is the density matrix (or phase space 

wave packet) created on the excited state by an arbitrary 
excitation field E(t) and is given formally by the corre- 
sponding matrix element, p,(t>=(elp(t) le), of Eq.-(2). 
This achievement function satisfies the inequality 
O<a(t) (1. The value of the achievement function at the 
target time, a (tf), is a measure of how well the controlled 
phase space wave packet, created by the interaction of the 
molecule with the optimal field, overlaps the desired target, 
and can be thought of as the normalized expectation value 
of the target operator over the density matrix pe(tf). 

Krause et a/.: Optical control of molecular dynamics 6565 

C. Hilbert-Schrodinger formulation 

In the previous subsections, we developed formal ex- 
pressions for the weak field optimal control of molecular 
dynamics in a density matrix formulation. These results 
allow the study of optimal control, e.g., in the presence of 
solvents and at finite temperatures,9 as well as prescribing 
a route to classical and semiclassical treatments. In this 
subsection, we consider the optimal control of molecular 
dynamics in the pure state case and recast our previous 
results in terms of Schrijdinger wave-function dynamics in 
Hilbert space. For clarity, we consider the optimal control 
of molecular dynamics in the excited electronic state I e), 
as described in the last subsection. We assume that the 
molecular system is initially in a vibrational eigenstate 

PgOo) = I -0 (y” I in the electronic ground lg) state. In 
this case, the corresponding unsymmetrized molecular 
control response function, M, of Rq. (20), becomes 

with &!(O> =p I Y”) and 

1 
=g exp 

( 
-& b,(P-F)2+w,,(q-4>2 

--2Wp,(P-+) (4-q) 1 
1 

with ,C= ( wPPwqq- w&> 1’2. In Eq. (32), A(x,x’) 
= (X I A,] x’) is the target operator in the configuration 
space representation, which can be obtained by the Fourier 
transform of the Wigner representation, A,. We have17 
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A(x,x’) = (2~w,)-“~ exp[iF(x-x’)/fi] 

xexp 
( 

-& [ (~+~‘-2q3~/4+(C/??)~ 
49 

X (x-x’)2-i(wpdfi)(x+x’-2q) (x-x’)] . 

(33) 

The prefactors in Eqs. (32) and (33) are chosen such that 
the target wave packet is normalized 

Tr &= 
Is 

dp dq A w&w) = 
I ~~ 

dx A(x,x) = 1. 

(34) 

The procedure for computing the optimal electric field 
is now straightforward. One first calculates &(x,t) 
= (x I &(t> ) by propagating @(x,0) = (x I ,U I Y”) on the 
excited state surface, as in Eq. (30). The configuration 
space form of the target is calculated using Eq. (33) for a 
speciiied Gaussian target, and the integral in Eq. (29) is 
calculated for a square grid of t, and t2 values. The sym- 
metrized version of Me is then constructed [Eq. (25)] and 
diagonalized. The largest eigenvalue from this diagonaliza- 
tion is the highest possible yield, and the corresponding 
eigenvector is the globally optimal electric field. Note that 
changing the target often only requires performing the 
overlap integration in IQ. (29 ) and the diagonalization; 
the time-consuming calculation of @(x,t) need not be re- 
peated. The excited-state wave function +Jt) in the pres- 
ence of weak field can then be calculated for any given 
E( r> via Eq. (3 1). This field E(t) can be, e.g., the globally 
optimal field as mentioned above or a parametrized opti- 
mal field as discussed in Sec. IV. The achievement function 
a(t) [Eq. (28)] can be calculated in the wave-function 
formulation as 

aW=[(W) lAl~W>)l”~ 

=(IdxI 
dx’ ~~(x,t)A(x,x’)tCle(~‘,t) . 

1 

l/2 

(35) 

In this equation, we normalize 1Cl,(t) at all times by 
[Tr pe(tf)]-ln= ewf) I Mf) > - 1’2, the square root of 
the total population on the excited state at the target 
time, ff. 

Finally, we specialize to the minimum uncertainty case 
in which C= ( wPPwqq- wjq) 1’2=fi/2. In this case, the con- 
trol target of Eq. (32) is a pure stateI and its ConfIguration 
space representation A (x,x’) has the form 

A(x,x’) =CD(x)+*(x’) 

with” 

(36) 

Q(x) = (2z-wqq)‘B”4 exp - 1 
1 - (2i/fi) wPq 

4w (x-a2 
44 

+&f(x-@/S . 1 (37) 

Focused Incoming 

FIG. 1. Potential energy curves for the I2 ground X and excited B states. 
The target in configuration space for the molecular -on and the mo- 
lecular reflectron are displayed as well. The zero of energy is chosen to be 
the X state miniium. 

The achievement function a(t) [Eq. (35)] can therefore be 
further simplified as 

a(~)=I(@14e,(~))I =I s d~@*(x)llr,(x,t)I (38) 

which explicitly shows that the achievement function is 
just the overlap of the target wave function with the mo- 
lecular state wave function created by the electric field 

E(t). 

Ill. MOLECULAR CANNONS AND REFLECTRONS 

Section II has given the framework for calculating glo- 
bally optimal weak field control, both in the general case 
and for the specific case of excited state control in a two- 
level system. In this section, we apply these methods to 
three illustrative examples. These examples for simplicity 
use targets which are minimum uncertainty phase space 
distributions, as described below, but we emphasize that 
any target can be expressed as an operator in phase space. 

A. A molecular cannon: Focusing of an outgoing 
continuum I2 wave packet 

In this example, we consider the focusing of a disso- 
ciative wave packet at a particular instant of time. We term 
this process a molecular cannon, because the result will be 
focusing matter into outgoing projectiles, i.e., the atoms 
formed from dissociated molecules, having at a particular 
time a narrow probability distribution (within the uncer- 
tainty principle limit) in both interatomic distance and 
interatomic velocity. As we shall see in the following, the 
resulting globally optimal weak field [i.e., the eigenfunction 
solution to Eq. (26) with the largest eigenvalue] for this 
molecular cannon process is a simple field with an appro- 
priate chirp. A similar, although nonoptimized, scheme to 
focus continuum wave packets during photodissociation 
using chirped light pulses has been proposed independently 
by Heller.” We use I2 as an example, assuming that it is 
initially in I v” =0), the ground vibronic level, and con- 
sider only the vibrational coordinate. In Appendix B, we 
describe the potentials used for the X and B states, which 
are displayed in Fig. 1. In particular, the difference in en- 
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FIG. 2. Amplitude of the symmetrized material response function 
Mz(r,r’) [Eq. (25)] for I2 cannon excited state control. The upper limits 
of the time axes are the target time tr. 

ergy between the potential energy minimum of the X state 
and that of the B state, w,s, is 15 769 cm-’ (Ref. 20). We 
further, for simplicity, make the Condon approximation 
and neglect the dependence of the X++B transition dipole 
on the internuclear distance and thus assume that y is 
constant. 

The target for the molecular cannon is defined as a 
phase space wave packet on the B state centered in position 
at q=5.84 A, with the center of the outgoing momentum, 
F> 0, corresponding to a kinetic energy, $/(2m), of 0.05 
eV, where m is the reduced mass of I2 . The variances of the 
target are given by the formulas w,=&Y( 2mw), wpp 
=mw#i/2, and w =0, with w=250 cm-‘. In this case, we 
have ( wPPw+,- wz) “‘=S/2 and the target is of minimum 
uncertainty, as described by Eqs. (36) and (37). The mean 
energy of this target, relativ: to the zero of the B state 
potential energy curve, is Tr[AH,I =4720 cm-‘, compared 
to the B state dissociation energy of 438 1 cm-‘. The target 
time tf is chosen to 1100 fs. 

In Fig. 2, we show the amplitude in the time domain of 
the symmetrized material function, i@ [Eqs. (25) and 
(29)] for the molecular I, cannon. This function consists 
of a single broad peak. Thus, we expect an optimal electric 
field consisting of a single pulse, and Fig. 3 shows that this 
is indeed the case. The optimal field is a single pulse with a 
full width at half-maximum (FWHM) of -225 fs. This 
pulse is clearly not a simple Gaussian since it is not sym- 
metric. We will return to a consideration of parametrizing 
the functional form of this pulse in the next section. 

To show both the temporal and frequency structure of 
the optimal field more clearly, we use a Wigner transform 
of E(t) 

J- 

m 

Fw(t,w) =2 Re d7 e-‘T?P(t+~/2) 
0 

xE(t-T/2) W(T), (39) 

where W(r) is a window function that reduces the inter- 
ference normally present in the standard Wigner trans- 
form, in which W( 7) = 1.‘2P21 For the cannon, we employ a 

E (b) 
n 
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FIG. 3. Globally optimal electric field for I, cannon excited state control 
obtained by diagonalizing Mf in Fig. 2. (a) Intensity IE( t) 1’ for the 
globally optimal field. The intensity for the best-fit field, as described in 
Sec. IV, is also shown (dotted line). The units of the intensity are arbi- 
trary as long as the weak field limit applies. (b) Wigner representation 
calculated from Eq. (39) with a correlation time rC of 70 fs. 

Gaussian window function of the form W(r) =exp( -?/ 
<), where rc is a correlation time taken to be on the order 
of the pulse width. One can show that the effect of this 
window function is to act as a filter in the frequency do- 
main as well as in the time domain such that interference 
effects which span a time longer than rc are suppressed. 
[We note that the window function W(T) does alter the 
spectral bandwidth of the pulse. However, for pulses with 
significant chirps such as the one shown here, the effect is 
not dramatic.] The Wigner transform of the cannon opti- 
mal field is displayed in Fig. 3 (b). The time-frequency 
structure of the globally optimal field reveals a significant 
positive chirp, the average frequency increasing with time. 
A sizable linear chirp is seen in the figure, and there is 
certainly a quadratic chirp present as well, visible as a 
parabolic curvature of the pulse. The pulse has a rather 
wide bandwidth, ranging from just above the B state dis- 
sociation energy ( -20 000 cm-‘) to energies greater than 
21 000 cm-‘. Note that the spectral bandwidth for the 
intensity of a transform-limited 225 fs pulse is only 65 
cm-r, so the extra bandwidth of the optimal field again 
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FIG. 4. (a) Achievement function a(r) [Eq. (28)] for the cannon globally optimal field shown in Fig. 3. The achievement function for the best-fit field 
calculated as described in Sec. IV is also shown (dotted line). Gnly the last 500 fs of the time duration is shown; for earlier times, a(t)zO. (b) 
Configuration space wave function &JR,0 showing the dynamics of the molecule under the influence of the globally optimal field. The remaining panels 
show the time-dependent density matrix p(u,R,t) as calculated from the Wigner representation of the configuration space wave functions of (b). To 
clarify the physical interpretation, we display the density matrix as a function of internuclear velocity rather than momentum. The times at which p is 
plotted are (c) 293 fs, (d) 647 fs, (e) 802 fs, (f) 1100 fs. In panels (c)-(f), the phase space target A(a,R) is also shown. 

implies the presence of a substantial frequency chirp. 
The achievement function, a(t) [Eqs. (28) or (38)], 

for the globally optimal field is shown in Fig. 4(a). The 
achievement is near zero for most of the pulse, and then 
rapidly rises to its final value of 0.92 over the final 100 fs. 
The reason for this is clearly evident from Fig. 4(b) , where 
we plot the wave packet, $JR,t), created by the optimal 

field. While the field is on, a very broad wave packet is 
created at small values of R. After the pulse ends, this 
broad wave packet propagates freely to larger R and pro- 
gressively narrows until a large overlap with the target is 
reached at the target time. The Wigner phase space repre- 
sentation of this wave packet, shown in Figs. 4( c&4(f), 
gives a similar picture. This representation is defined by 
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ds e-@“p(q+s/2,q-s/2,t), 

(40) 

where F is the density matrix in configuration space, which 
for a pure state t,b(x,t) is given by 

P(w’,t) = &?(x,t> lcl: WA. (41) 

In the Wigner representation, one can see not only the 
breadth of the packet in configuration space, but also the 
breadth in momentum space as well. Further, the projec- 
tions of the Wigner representation on either the p or q axis 
give information about the wave function in configuration 
or momentum space, respectively. More explicitly, 

s 4 ,dm,t) = I h(q) I 2 (42) 

s dq &vu) = 1 &(P) I 2, (43.) 

where $Jp) is the wave function in momentum space and 
can be calculated from the Fourier transform of $ie(q). 
Figure 4(c) shows p (p,q) at an early time in the dynamics, 
shortly after the field has been turned on. One can see that 
even at this initial stage, substantial spreading in both po- 
sition and momentum has taken place. As the field contin- 
ues to excite amplitude to the excited state, the wave 
packet spreads even more, as shown in Fig. 4(d), and 
develops considerable interference. After the field is turned 
off, the higher energy (and momentum) components begin 
to catch up with the lower energy components that were 
created at earlier times, as can be seen in Fig. 4(e). As the 
phase space wave packet approaches the target time, the 
widths in both configuration and momentum begin to nar- 
row, the interference begins to disappear, and the optimal 
overlap with the target phase space wave packet is 
achieved [Fig. 4(f)]. Thus, quantum control has reversed 
the natural tendency of a quantum wave packet to spread, 
permitting the focusing of matter at a chosen time into 
nearly a minimum uncertainty wave packet centered at a 
chosen position and momentum. 

An approximate classical picture of the physics in- 
volved in this process can also be divined. We have formu- 
lated the problem such that the molecule has a certain 
amount of time to create an unbound continuum wave 
packet at a particular center position with a particular cen- 
ter momentum. The lower energy (and momentum) com- 
ponents of the continuum wave packet will take relatively 
longer times to reach the position of the target, and the 
higher energy components will take shorter times. Thus, to 
achieve the maximum overlap with the target, a pulse with 
a substantial positive chirp is required so that the higher 
frequencies in the pulse arrive at later times. In fact, that is 
exactly what we find in this case, as Fig. 3 (b) shows. Clas- 
sical mechanics cannot, of course, account for the interfer- 
ence visible in Fig. 4. We are currently analyzing the effects 
of this interference on the dynamics to see under what 
circumstances, if any, a classical implementation of the 
control equations is adequate to predict the optimal field. 

o Excited state 
q Ground state 

1 2 3 4 5 6 7 

R (4 

FIG. 5. Simulation of IZ molecular cannon by ultrafast electron diirac- 
tion with 2X 10’ detected electrons. The simulated signal is shown after 
transformation to coordinate space. 

To conclude our discussion of the cannon, we consider 
the experimental observation of the focused state. Tech- 
niques such as ultrafast pump-probe and pump-dump spec- 
troscopy, which will be useful for the two systems we de- 
scribe below, are not as likely to be effective for the cannon. 
When the internuclear separation is large, it is difficult to 
characterize the focused wave packet by the conventional 
techniques of molecular spectroscopy because the Franck- 
Condon overlaps with nearby electronic states will be poor. 
Thus, only the atomic spectra of the fragments are observ- 
able, and, unfortunately, these spectra will not show a 
strong dependence on the internuclear separation at large 
separations. 

However, the substantial difference between the inter- 
nuclear distance on the initial ground electronic state and 
the distance at which focusing takes place on the excited 
electronic state can in principle be detected by ultrafast 
electron22f23 and x-ray diffraction.24*25 We illustrate this ef- 
fect in preliminary simulations of electron scattering from 
the I2 molecular cannon, as shown in Fig. 5. The simula- 
tions were performed for the ground state and for the time- 
evolved wave packet at the final time tf. In these simula- 
tions, it was assumed that the electrons were energetic 
(Born approximation) and that the atomic scattering fac- 
tors are valid for the molecule. The time duration of the 
electron pulse was ignored. Monte Carlo sampling was em- 
ployed to average over the orientation of the molecule. 
These calculations are meant to be illustrative of the qual- 
itative trends that can be expected in experiments, and not 
to make detailed predictions of experimental results; how- 
ever, they do indicate that it may be possible to observe the 
focused wave packet with ultrafast diffraction. The simu- 
lation of ultrafast x-ray diffraction experiments gives sim- 
ilar results. More accurate calculations are underway and 
will be reported in future work.26 Ultrafast spectroscopy 
and diffraction experiments are under development in our 
laboratory26y27 to detect quantum control of molecular dy- 
namics such as in the examples discussed in this paper. 

J. Chem. Phys., Vol. 99, No. 9, 1 November 1993 

Downloaded 07 Mar 2001 to 128.151.176.185. Redistribution subject to AIP copyright, see http://ojps.aip.org/jcpo/jcpcpyrts.html



6570 Krause et a/.: Optical control of molecular dynamics 

B. A molecular reflectron: Focusing of an incoming 

wave packet of I2 

In the previous section, we demonstrated the focusing 
of an unbound outgoing wave packet. We will now show 
that bound incoming wave packets can be focused as well. 
This process is analogous to a charged particle reflectron in 
which a reflecting potential is designed to focus a pulse of 
ions or electrons of known properties. In the molecular 
reflectron we describe here, the potentialon which the mat- 
ter pulse moves is known and fixed, and so the objective is 
to fmd the electric field that produces a time-dependent 
matter pulse which is focused at a chosen time about a 
particular position and momentum. Once again, we study 
as an example the I2 B-X (Y”=O) transition. In this case, 
though, the target wave packet on the B surface is centered 
in position at q=3.72- A and has an incoming momen- 
tum centered at p< 0, corresponding to a kinetic energy of 
F2/(2m) =0.05 eV. The variances of the target phase space 
wave packet are chosen to be the same as in the cannon 
case and the target time is set to tf=550 fs. This problem 
is sufficiently similar to the cannon that we only present a 
brief description of the results, highlighting the differences 
between the reflectron and the cannon. 

The amplitude of the material function Mf for this 
problem shows essentially the same single pulse structure 
of its cannon counterpart. Similarly, the optimal electric 
field for this problem consists of a single pulse of - 100 fs 
FWHM duration, as displayed in Fig. 6(a). The Wigner 
transform of the field, as shown in Fig. 6(b), has the same 
basic structure as that of the cannon, with two significant 
differences. First, the center frequency of the reflectron 
pulse is -2OCO cm-’ less than that for the cannon. Thus, 
the reflectron operates within the bound vibrational levels 
of the I2 B state. The mean energy of the reflectron taTget, 
as measured from the zero of the B state, is Tr[AHs] 
=2867 cm-‘, which is 1853 cm-’ lower than that of the 
cannon target and lower than the B state dissociation en- 
ergy by 1514 cm-‘. Second, Fig. 6(b) shows a negative 
chirp for the reflectron pulse, contrasting with the positive 
chirp for the cannon pulse. 

The achievement function, a(t), for the reflectron 
pulse is similar to that for the cannon. The value of the 
achievement for the reflectron at tf is 0.97. However, the 
evolution of the configuration space wave packets, as dis- 
played in Fig. 7, shows that there is a different mechanism 
operating in the reflectron. The wave packet reflects off the 
softer outer wall at large internuclear distances, and then 
focuses shortly thereafter on the return trip. The phase 
space picture shows that the wave packet at the target time 
tf does indeed have significant negative momentum. 

The chirp of the globally optimal field for the reflec- 
tron has the opposite sign of that for the cannon globally 
optimal field. The negative chirp means that the higher 
energy components of the wave packet on the B state are 
created first for the reflectron, while the lower energy com- 
ponents actually take a shorter time to reach the target 
state. The reason for this behavior is that the higher energy 
states in the anharmonic excited state potential correspond 
to longer vibrational periods. Since essentially all compo- 
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FIG. 6. Globally optimal electric field for I2 reflectron excited state con- 
trol. (a) Intensity [E(t) 1’ of the globally optimal field. The intensity for 
the best-fit field, as described in Sec. IV, is also shown (dotted line). (b) 
Wigner representation calculated from Eq. (39) with a correlation time T, 
of 35 fs. 

nents of the reflectron wave- packet are bound, the higher 
energy portion accesses flatter regions of the B state poten- 
tial, where the forces are smaller, so that the wave packet 
spends a longer time with low velocity before reflecting. 
This is in direct contrast to the continuum cannon wave 
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FIG. 7. Conliguration space wave function qll,(R,t) showing the dynamics 
of the molecule under the influence of the globally optimal field. 
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PIG. 8. Potential energy curves for the Nas ground X and excited A 
states. The configuration space form of the target is displayed. The zero of 
energy is chosen to be the X state minimum. 

packet where turning points do not have an important ef- 
fect. Therefore, for the reflectron, the higher energy por- 
tions of the wave pack&, which take longer to return to the 
target area, must be :reated earlier than the lower energy 
portions. It is imp01 tant to emphasize that none of this 
information is built into the process of solving for the op- 
timal field. The theory described above automatically finds 
the globally optimal field, sometimes with unexpected re- 
sults, and it is then up to us to understand the physical 
mechanism by which the optimal field operates. 

C. Focusing of a bound state wave packet of Na, 

For our third example, we focus a wave packet on the 
excited A state of Na2 in the bound region of phase space at 
a turning point of the potential. The potential energy 
curves for the two states of Na, are modeled as Morse 
potentials calculated from the experimental parameters 
listed by Bardsley et d2’ and are plotted in Fig. 8. In this 
system, w,s is equal to 14 680.4 cm-‘. Again, we assume 
that the molecule is initially at the v”=O of the ground 
electronic state and set the transition dipole moment equal 
to one. The target wave packet is chosen to have an average 
momentum of zero and its position is centered at 4.46 A. 
The variances of the target are calculated using o= 122 
cm -l, and the target is of minimum uncertainty. The av- 
erage energy of the target, measured with respect to the 
zero of the A state potential energy surface is 1132 cm-‘. 
The target time tf is set to 900 fs. 

The symmetrized material function for this system 
shows 3X3 peaks, corresponding to an optimal electric 
field of three pulses. The actual optimal electric field does 
indeed contain three pulses, as Fig. 9 (a) shows. In the time 
domain, the three pulses become progressively narrower, 
and are separated by -295 fs, corresponding to the vibra- 
tional period of the target on the A potential surface at the 
target energy. (Three pulses is the maximum number that 
can be supported by the chosen duration of the interaction, 
tf- to=900 fs, assuming that the pulses are separated by 
the vibrational period of 295 fs.) 

For the globally optimal Na, field, we construct a 
Wigner transform using a Gaussian weight function W(t), 
as in the cannon and the reflectron. The Wigner transform 
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FIG. 9. Globally optimal electric field for Na, excited state control. (a) 
Intensity 1 E(t) 1’ of the globally optimal field. The intensity for the best- 
fit field, as described in Sec. IV, is identical on the scale of this figure. (b) 
Wigner representation calculated from Eq. (39) with a correlation time 7, 
of 58 fs. 

of the globally optimal field, as displayed in Fig. 9(b), 
shows a simple structure in which the center of each pulse 
in both frequency and time, the temporal widths, and the 
frequency bandwidths can be easily seen. From this figure, 
we note that the temporal widths of the pulses become 
progressively smaller, and that the size of the chirp (i.e., 
the amount of change in the frequency distribution during 
the pulse) also decreases in successive pulses. These three 
pulses are phase locked, which results in mutual coherent 
interference in the standard Wigner transform. By setting 
the correlation time rC in the Wigner transform to be suf- 
ficiently long, we have, for clarity, suppressed the interfer- 
ence among the three pulses. 

The achievement function a(t) for this system, as de- 
fined in Eq. (28) and calculated from Eq. (35), shows 
there are three peaks, corresponding to the three sequential 
pulses in the optimal electric field, and that the final value 
of the achievement is 0.98. The intensities of the three 
peaks are in the approximate ratio of 1:4:9, arising from 
amplitude ratios of 1:2:3 due to constructive interference of 
the wave packets created by the three light pulses. This 
ratio would be exact if the ground and excited state poten- 
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FIG. 10. (a) Achievement function a(t) [Eq. (28)] for the Na, globally 
optimal field shown in Fig. 9. The achievement function for the best-fit 
field calculated as described in Sec. IV is also shown (dotted line). (b) 
configuration space wave function qe(R,t) showing the dynamics of the 
molecule under the intluence of the globally optimal field. 

tials were harmonic oscillators9 The use of phase-locked 
pulses to create constructive interference of this type has 
been demonstrated experimentally by Scherer, Fleming 
and co-workers.4 Figure 10(b) shows the evolution of the 
time-dependent wave function in coordinate space for this 
process, illustrating that amplitude is transferred to the 
excited state by the constructive interference of the three 
pulses. Such constructive interference is an effective 
method for reaching the selected target and, as this glo- 
bally optimal field shows, the chirps can be chosen to ne- 
gate the effects of the spreading of the wave packet. 

IV. TOWARD EXPERIMENTALLY REALIZABLE LIGHT 
FIELDS: FITTED AND OPTIMIZED PARAMETRIZED 
FIELDS 

The techniques described above allow a straightfor- 
ward calculation of the globally optimal fields, in the weak 
field limit, that give the optimal overlap with targets de- 
fined in phase space. Experimentally, however, light fields 
can only be produced within a restricted universe of feasi- 
ble fields. In this section, we will show that by describing 
this experimentally accessible universe of light fields by an 

equation with variable parameters, we can either fit the 
globally optimal unrestricted field by the parametrized 
form, or find the experimental field within the parame- 
trized universe which maximizes the yield. The simple 
structure of the globally optimal fields described in the 
previous section suggests that simple functional forms will 
be successful in representing these fields. Fits to a param- 
etrized description of the optimal electric field have also 
been discussed by Rice and co-workers29 and Somloi and 
Tannor13 for the control of I2 photodissociation yields. 

We choose for illustrative purposes to parametrize the 
light field as a coherent superposition of chirped Gaussian 
pulses with the following form: 

E(t)= lx EjW, 
i 

where 

(44) 

Ej(t)=Ajexp[-(t--t/)2/(21?~)]k~p[--i~~(t)]. 

(45) 

The phase function qj(t) can be expanded in a Taylor 
series to give 

(Pi(t)= j; fy (t-ip. 
t=‘, 

(46) 

We keep the first four terms of Eq. (46), and denote the 
time derivatives of q,(t) by simpler coefficients to give 

This procedure results in a time dependent frequency given 

by 

@j(t) ~~j(t>=c5i+C~(t--tj) +$/2(t--tj)2. (48) 

Thus, each pulse_Ei ( f) has amplitude Ai, mean phase @I, 
temporal center tj, and excess carrier frequency Zj. We 
note that the true carrier frequency is weg+Zj, [cf. Eq. 
(23)], in which w,x is the frequency corresponding to the 
difference in energies between the potential energy minima 
of the ground and excited electronic states. The second- 
and third-order terms of the Taylor series expansion of 
~j(t> allow for the possibility of chirp through the linear 
chirp parameter c; and the quadratic chirp parameter cy. 
The temporal FWHM of the pulse is independent of the 
phase and thus of the chirp and is given by TEUrHM 
= (In 16) 1’21j. In the unchirped or transform-limited case 
(c; = cy = 0), the FWHM in the spectral domain is given 
by Clnw,,=ln 16/T,,,. One can choose other func- 
tional forms for the individual pulses,3o and the methods 
described below will be equally applicable. 

The functional form for the light field described above 
requires seven parameters for each component pulse. In 
order to determine the success of this functional form in 
representing the globally optimal fields, we fit the unre- 
stricted optimal fields of the previous section by Eqs. (44)- 
(47). As we expect, the field constructed from such a fit 
does not give as high a yield as that of the unrestricted 
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TABLE I. Best-fit Gaussian pulse parameters for Iz molecular cannon 

optimal field. 

Parameter 

A 
T 

r 

I 
c3+0, 

C' 

C'> 

Best-fit value 

1.0 

532 fs 

130 fs ( Tmvn,=220 fs) 
. . . 

20200 cm-’ 

2.3 cm-‘/fs 

1.3X 10~‘cm-‘/fs* 

globally optimal field, although as we shall show it still 
does very well for the cases considered here. 

A. Nonlinear fit 

The fit of the unrestricted field by the functional form 
described above is performed as follows. 

( 1) The temporal amplitude of the fizld, 1 E(t) I, is 
used for an initial fit of the parameters Aj, tj , and rj for a 
specitied number of pulses. Initial guesses for these param- 
eters for this portion of the fit can be estimated directly 
from plots such as Fig. 9 (a). 

(2) The parameters calculated in ( 1) are held fixed, 
and the phase parameters @j , fj, c$ , and cy are fit for each 
field Ej( t> separately. The initial guesses for the phase $jj 
are chosen as the phase of the pulse at the center time tj. 

The initial guesses for Gj and the linear chirp can be found 
dizectly from the power spectrum of the jth pulse, 
1 Ej(W) 1 2, where 

~~(w)=(~TTT)-~'~ 
I 

* dtP'Ej(t). (49) 
-co 

In the absence of the quadratic chirp (ci = 0) , the power 
spectrum of the fib field, 1 Ej( 0) I , is a Gaussian 
with center frequency 55. and width CkznvnM 
= (In 16)‘/21X’[1 + (dr.) ] 2 211’2. This equation can be 
solved to give /he initial g$e,‘, for the linear chirp, ci . The 
initial guess for the quadratic chirp is cho_sen to be 0, and 
the initial guess for Ej is the FWHM of Ej(O). 

(3) With the results from ( 1) and (2) as an initial 
guess, the full field is fitted, allowing all seven parameters 
to vary. 

The nonlinear fit is performed using a standard imple- 
mentation of the Levenberg-Marquardt method (nonlin- 
ear least-squares fitting) 31 modified to handle a complex 
function of real parameters. 

B. Results 

1. I, cannon 

The parameters for the best fit to the I, molecular 
cannon globally optimal field are given in Table I, and a 
plot of the amplitude of the corresponding field is shown in 
Fig. 3(a). For this field, we see that the best fit does not 
appear to be a particularly good representation. A single 
Gaussian pulse is clearly unable to reproduce the asymme- 
try of the globally optimal field. The difference between the 
globally optimal and best fit fields appears less dramatic 
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FIG. Il. Wigner representation of the best fit of the globally optimal field 
by a Gaussian @?qs. (45)-(47) and Table I] for the I, molecular cannon. 

when considering the Wigner representations shown in 
Figs. 3 (b) and 11. A substantial chirp is obvious in both 
plots, and the parameters of Table I show that both the 
linear and quadratic chirps are important. 

As measured by the achievement function, which is 
shown in Fig. 4(a), the relative yield of the best-fit field is 
quite good. The best-fit field gives an achievement which is 
94% that of the globally optimal field. This result is an 
indication of the robustness of the globally optimal solu- 
tion, in that it is not necessary to reproduce perfectly the 
globally optimal field in order to obtain substantial control 
over the molecular dynamics. For the cannon, the success 
of the best-fit results suggests that it is important that the 
field reproduce the linear chirp of the optimal field, while 
the exact frequency bandwidth of the field at any given 
time (which varies significantly over the duration of the 
optimal field) is not as critical. The importance of the 
chirp, as evident from an analysis of the best-fit field, is in 
accord with our qualitative classical description of the 
physics of the molecular cannon in the previous section. 

2. I2 reflectron 

The parameters for the best fit to the globally optimal 
field for the reflectron are presented in Table II. The pri- 
mary difference, as we have discussed in the previous sec- 
tion, is that the linear chirp is negative for the reflectron, 
but of the same order of magnitude as the linear chirp for 

TABLE II. Best-fit Gaussian pulse parameters for 1s molecular reflectron 

optimal field. 

Parameter 

A 
T 

r 
@ 

a-o, 
c’ 

C” 

Best-fit value 

1.0 
235 fs 

90 fs ( Tmt.t,= 150 fs) 
. . . 

18 580 cm-’ 
-4.3 cm-‘/fs 

- 1.1 X lo-’ cm-‘/fs’ 
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100 200 300 400 500 

t (fs) 

FIG. 12. Wigner representation of the best fit of the globally optimal field 
by a Gaussian [Eqs. (45)-(47) and Table II] for the I2 molecular 
reflectron. 

the cannon. This is not surprising, since the magnitude of 
the chirp is related to the slope of the excited potential in 
the Franck-Condon region. In Fig. 6(a), we display the 
best-fit Gaussian field for the reflection problem. As with 
the cannon, a Gaussian is not a perfect representation of 
the amplitude of the optimal field. However, in examining 
the Wigner representation of the best-fit field, as shown in 
Fig. 12, we flnd that the overall structure is again similar to 
the globally optimal solution, although the spectral width 
at any given time does ditfer noticeably. The achievement 
function for the best-fit field shows, however, that the best- 
fit field is able to create a wave packet that overlaps the 
target almost as effectively as the optimal field, giving a 
final achievement of 97% of the achievement of the glo- 
bally optimal field. As with the cannon, the ability of the 
parametrized field to reproduce the chirp appears to be a 
critical factor. 

3. Na, wave-packet focusing 

The parameters for the fit of the Na, globally optimal 
field shown in Fig. 9 (a) are presented in Table III. The fit 
to the globally optimal field is excellent, and shows no 
significant differences either in intensity or in the Wigner 
time-frequency representation from the globally optimal 
field on the scale of the plots in Fig. 9. Figure 10(a) shows 
that the achievement functions for the globally optimal and 
best-fit fields are almost identical. The final achievement of 

the best-fit field, as defined by a(tf>, is 99.95% that of the 

globally optimal field. Such agreement indicates that the 

Gaussian pulses are an excellent representation of the glo- 

bally optimal field in the Naz system. This result is not 

surprising, since the region of the Naz potential sampled is 

very close to harmonic. 

As in the preceding cases, the parametrized fit to the 

optimal field is a convenient description of the properties of 

the field. In particular, the parameter values confirm sev- 

eral observations that can be made from the plots of the 

globally optimal field shown in Fig. 9. The three phase- 

locked pulses do become successively narrower (from the 

FWHM of 39 fs in the first pulse to 3 1 fs in the final pulse). 

The absolute values of the negative linear chirps in the 

three pulses also successively decrease. The quadratic 

chirps are positive, as shown in Table III, and have little 

effect on the field, due to the short duration of the pulses. 

The ratio of 1:4:9 of the peaks in the achievement func- 

tion for the Na2 wave-packet focusing is indicative of the 

same type of coherent addition of amplitude on the upper 

state seen in our previous work on the shifted harmonic 

oscillator system.g The three phase-locked pulses have ap- 

proximately the same area,32 J dtl@Jt)/$[ aAilTi, as 

can be calculated from the parameters in Table III. This 

implies that each pulse creates the same amplitude on the 

excited potential surface. The maximum achievement can 

be reached only if the newly created amplitude interferes 

constructively with the portion that has been created by 

the previous pulse or pulses. As in the harmonic oscillator 

system,g and as seen in experiment,33 complete construc- 

tive interference requires a sequence of phase-locked 

pulses. However, unlike the harmonic potential, the Na, 

potential on which the wave packets move is slightly an- 

harmonic. Thus, a wave packet created on the upper state 

does not return to exactly its original form after traversing 

the potential. A proper negative chirp, as discussed in the 

reflectron case, is required to compensate for the dispersion 

of the wave packet. This chirp allows the wave packet at 

the inner turning point to interfere nearly perfectly con- 

structively with the amplitude brought to the excited state 

by the next pulse. The globally optimal weak field, which is 

founds naturally by the theory we have presented, automat- 

ically produces the phase locking and chirp, allowing the 

maximum weak field achievement to be realized. 

TABLE III. Beat-fit Gaussian pulse parameters for Na, optimal field. 

Parameter Pulse 1 Pulse 2 Pulse 3 

Aj 0.78 0.91 1.0 = 
ti 164 fs 459 fs 753 fs 

ri 23 fs (TFWHM=39 fs) 20 fs (T-=34 fs) 19 fs (Tm=31 fs) 

@j 0” 51” loo” 
cji+Weg 15 713 cm-1 15 713 0-l 15 713 cm-’ 

C; -7.9 cm-‘/fs -6.5 cm-‘/fs -2.6 cm-‘/fs 
c? I 1.2X 10-2cm-1/fsz 1.9X lo-‘cm-‘/fs* - i.9x 10~2cm-1/fs2 
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C. Nonlinear optimization 

While the nonlinear fitting procedure we describe 
above gives us a good representation of the unrestricted 
field in the parameter space of Gaussian pulses, there is no 
guarantee that the resulting set of parameters is that set 
which gives the maximum yield. To find the maximum 
yield possible within our parametrized functional space, it 
may be necessary, especially when we move beyond the 
weak field limit, to optimize the yield with respect to vari- 
ation of the parameters, using the results of the nonlinear 
fit as our initial guess for the parameters. 

Such an optimization is straightforward to carry out. 
We fust define a yield function that depends on the param- 
eters of the field, which we designate A ( tf;p), where p 
represents the set of parameters used to define the field. 
Therefore, we may rewrite Eq. (24) as 

A(tf ;P) 

*r 
= 

s I 
dr 

ff 
dr’ M~(r,r’)~(r;p)E(r’;p). 

to *o 

(50) 

Our goal is then to search the space of parameters fi, such 
that they maximize A(tf;f?) under the constraint that the 
total incident field energy remains constant. This con- 
straint forces us to work in a parameter space that does not 
allow the amplitudes of the constituent pulses to increase 
without limit. To do this, we impose a constraint on the 
energy of the field of the form 

s 
” dTlE(@) 12=1. (51) 
to 

The imposition of this constraint is performed through 
a quadratic penalty function, so that the function of the 
parameters /3 that we maximize is [cf. Eq. ( 11)) noting that 
J dT&T)/2=J drjE(T) 1’ in the RWA] 

2 

J(tf ;P) =A(tf ,P> --Y 
U 

‘f 
d7-1-m-m 12- 1 , (52) 

r, ) 

where y is an adjustable positive constant. As y becomes 
larger, the constraint is more rigidly satisfied. However, the 
exact value of y is problem dependent. In general, we begin 
with a value of y that is - 1% of the value of the yield for 
the initial guess of the parameters and then minimize the 
function in Eq. (52). Provided that this minimization is 
successful [in the sense that a finite value of A ( tf ;p> is 
found], the value of y is multiplied by 10, the fi values from 
the previous minimization are used as initial guesses in the 
minimization with the new value of 7, and new values of p 
are calculated. This procedure is repeated until the values 
of fi do not change. 

We perform the minimization using the standard con- 
jugate gradient method.31 Gradient methods require 
knowledge of the partial derivatives of the function with 
respect to the parameters. Fortunately, these derivatives 
are easy to obtain since the material function ikff is inde- 

pendent of the parameters. Thus, the partial derivatives of 
the functional J(tf ,p) with respect to parameters p are 
given by 

Wt,;P) Wt,;P> 

ap = ap 

(53) 

where 

awt, ;P> 

afl 
=2Re [ dr Jtr dr’Mf(r,r’) 

x W(d) 

afl 
E(r’;P). 

Thus, given an M: function and a functional form for 
E( t;/I>, all the derivatives necessary to implement the con- 
jugate gradient method can be calculated analytically. 

Krause et a/.: Optical control of molecular dynamics 6575 

We have performed the nonlinear optimization de- 
scribed here for the three systems discussed above. In all 
three cases, we have found that the parameter values 
change insigmficantly from those found in the nonlinear 
least-squares fit. The results for these systems (for which 
there is only a single eigenvalue of Mf that differs signifi- 
cantly from zero) can be explained by a more detailed 
examination34 of the weak field control equations than is 
appropriate here. However, for other systems in which 
there is more than one nonzero eigenvalue of the material 
function, nonlinear optimization can give a parametrized 
field with a significantly higher achievement than that of a 
field calculated from a nonlinear fit.34 

V. SUMMARY, DISCUSSION, AND CONCLUSION 

We have used realistic molecular potentials to demon- 
strate that simple and robust light fields with experimen- 
tally feasible parameters can be used to control wave- 
packet motion in diatomic molecules. The calculations 
presented herein are based on the density matrix formula- 
tion of molecular control theory developed by Yan et ~1.’ 
This theory gives the globally optimal weak electric field as 
the eigenvector of a matrix that depends only on the de- 
sired target and the dynamics of the molecule in the ab- 
sence of the external field, and thereby on the underlying 
molecular potential energy surfaces and transition dipole 
moments. In general, targets for control of quantum dy- 
namics can always be specified in a phase space represen- 
tation, and we have chosen to do that here. 

We have demonstrated the application of this theory to 
three example systems: an I, molecular cannon, an I2 mo- 
lecular reflectron, and a multipulse Na2 wave-packet fo- 
cuser. In each case, we use quantum control to overcome 
the natural tendency for quantum wave packets to spread. 
The cannon focuses an outgoing wave packet in the I2 B 
state continuum to form, at a specified time, a narrow 
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(minimum uncertainty) distribution centered about a cho- 
sen position and momentum. The umestricted~globally op- 
timal field that produces this wave packet shows a substan- 
tial positive chirp, consistent with a classical physical 
picture in which the lower energy portions of the contin- 
uum wave packet on the B state are created first because 
they take longer to reach the target state than the higher 
energy components. 

The reflectron focuses an incoming wave packet in the 
bound region of the I, B state, at a chosen time with a 
chosen minimum uncertainty distribution in both position 
and momentum. In this case, the globally optimal electric 
field has a substantial negative chirp, such that the higher 
energy portion of the wave packet is created before the 
lower energy portion. This result is consistent with a phys- 
ical picture in which the high energy (but still bound) 
portions of the wave packet take longer to reach the target 
state due to their longer vibrational periods on the anhar- 
manic potential energy curve. 

ments (as measured by how well the controlled wave 
packet overlaps the target wave packet) that are close to 
those of the unrestricted globally optimal fields. That it is 
not necessary to reproduce the exact forms of the globally 
optimal fields in order to obtain high achievements illus- 
trates the robustness of these fields. We have also shown 
that it is in general possible to optimize the fitted parame- 
ters with respect to the achievement, which may lead to 
higher yields. 

In the strong field regime, the use of chirped pulses has 
proved useful, both theoretically2Y32’354 and experimen- 
tally,41A in the control of population inversion in multi- 
level molecular and atomic systems or in a dephasing or 
inhomogeneous medium. The effect of the chirp is related 
to the adiabatic following of the material population dy- 
namics by the field in order to achieve an effective r pulse 
for either sequential population inversions in multilevel 
systems36*38,3g or for locking of the population inver- 
sion.32Y352- Recently, chirped pulses have also been used 
to study the dynamics of molecules in solution,4547 where 
it was shown that experiments using optical coherence 
with chirped pulses can yield unique information about the 
nature of the system-bath coupling. In the present work, 
we have demonstrated that chirped pulses can be used to 
focus a molecular wave packet about a given point in phase 
space at a specified target time. The use of a (nonoptimal) 
positively chirped field to create a localized dissociative 
molecular wave packet has also been proposed indepen- 
dently by Heller.lg In our molecular cannon, the chirped 
pulse is a natural result of our optimal control eigenequa- 
tion. We did not have to assume a priori that the control 
field is chirped. 

We believe that the simplicity and robustness of the 
globally optimal weak fields presented here, in contrast to 
the complexity and nonrobustness of many of the fields 
derived from iterative (and often strong field) quantum 
control calculations, may not be accidental. One reason 

may be the simple nature of the minimum uncertainty tar- 
gets we have chosen here. Another reason may be that the 
fields we calculate are extremal eigenfunctions of a Her- 
mitian matrix. As an analogy, one can consider the spec- 
trum of the Schriidinger equation, in which the extremal 
(in this case minimum energy or ground state) eigenfunc- 
tion is always the simplest, in the sense that it has the 
fewest nodes (e.g., the harmonic oscillator, particle in a 
box, or hydrogen atom ground states). It can be expected 
that iterative solutions of the control problem for compli- 
cated systems will tend to converge toward ZocaZZy optimal 
solutions, which may lack the simplicity and robustness of 
the globally optimal electric fields. However, the strong 
fieldregime is of great interest because it allows dynamical 
behavior not possible with weak fields. We explore these 
issues in more detail elsewhere.34 

The weak field theoretical approach discussed in this 
paper can be used to treat other aspects of quantum control 
as well. For strong field calculations, the globally optimal 
eigenfunction (or a superposition of the highest yield 
eigenfunctions) can be the starting point for iterative cal- 
culations. Solutions for quantum control involving multi- 
ple interactions with the light field can be constructed from 
globally optimal solutions of single field interactions. 

In the case of Na, molecular wave-packet focusing, the 
minimum uncertainty target wave packet is created by a 
globally optimal superposition of three wave packets, each 
brought to the excited A state by a separate phase-locked 
pulse in the electric field. The pulses occur with time delays 
equal to the vibrational period of the molecule at the target 
energy, so that coherent addition of the amplitudes excited 
from the ground state can occur. All three pulses are 
chirped in such a way as to best cancel the dispersive ef- 
fects of the anharmonicity of the potential which otherwise 
lead to spreading of the wave packet. It is also possible to 
create “squeezed states”48”0 of matter in either position or 
momentum. We will discuss this point elsewhere.34 

We have further demonstrated, for each case’ consid- 
ered, that the globally optimal fields can be well fit by a 
parametrized electric field which should be experimentally 
realizable. The best-fit fields are shown to give achieve- 

We wish to conclude this paper with a brief discussion 
of how the focusing presented in this paper might in prin- 
ciple be observed experimentally. Observation of focused 
wave packets in the bound internuclear distance regions of 
excited state potentials is possible through ultrafast pump- 
probe spectroscopy, provided that an excited state is avail- 
able with a reasonable Franck-Condon overlap in the in- 
ternuclear region in which the wave packet is focused. 
Under these circumstances, pump-probe spectroscopy at 
the proper probe frequency will give a measure of the 
achievement, since it gives a signal which is related to the 
distribution of internuclear distances sampled by the time- 
dependent wave function. Similar considerations apply to 
pump-dump spectroscopy, in which the dump pulse re- 
turns the system to the ground electronic state. We note 
that many elements of these type of experiments are 
present in the ultrafast pump-probe experiments of several 
groups 51-54 on such systems as I,, NaI, and Na2, as well as 
in the I2 pump-dump experiments with phase-locked pulses 
of Scherer, Fleming and co-workers,4*33,55 and the recent 
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TABLE IV. Potential parameters for Iz potential energy curves. 

T, (cm-‘) 

r, Lb 
D (cm-‘) 
a0 (cm-‘) 

=I 

10-5cs (1-l As) 

10m6c6 (cm-’ A6) 
10-xcu (cm-’ As) 

R, CA) 

s.t, (WI 

A! B 

0 15 769.0 

2.666 3 3.024 8 

12440.1 4 381.29 
307 284.0 138 234.0 

- 3.842 87 -4.631 21 

1.976 74 2.301 42 

0.0012 3.68 
0.13 1.24 
0.60 0.39 

3.797 6 -3.703 168 

0.768 076 -1.098 45 

O3 transient pump-dump experiments of Chen and co- 
workers.56 

As we mentioned in the discussion of the molecular 
cannon, ultrafast electron and x-ray diffraction in principle 
can be used to probe focused atomic wave packets which 
are likely to be inaccessible to ultrafast spectroscopy. For 
the cannon, preliminary simulations show that ultrafast 
diffraction techniques might be able to image the focused 
state, even when that state has a large internuclear separa- 
tion. Experiments are currently in preparation in our 
group to attempt to observe quantum control as described 
here via both ultrafast spectroscopy27 and ultrafast diffrac- 
tion.26 
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APPENDIX A: CONTROL OBJECTIVE IN TERMS OF 
THE SYMMETRIZED MOLECULAR FUNCTION 

In this Appendix, we present a detailed derivation of 
Eq. (24). The derivation of Eq. ( 12) from Eq. (3) is sim- 
ilar. We begin by substituting Eqs. ( 19) and (23) into the 
integrand of Eq. (6). We have 

M(tf-72,‘r2-71>E(72>E(71) 

=2 ReCMe(t~-~2,~2-q) [E*(r2Md 

Only the first term in the above equation will survive after 
the temporal integration, since the other three terms con- 
tain o,~. These highly oscillatory factors will make a neg- 
ligibly small contribution to the temporal integration com- 
pared to that from the first term. The neglect of these 
highly oscillatory terms is known as the RWA with respect 
to the electronic or optical transition. We have, therefore, 
in the RWA 

A ( tf) = 2.tiw2 Re 
ff 

Jo s 
drz 72 drlMe 

to 

x (tf-‘r2,72-71)~(72>E(71). (AZ) 

By changing the order of the integration and exchanging 
the dummy integration variables, r2 and rl, Eq. (A2) can 
be recast as 

A(t,)=2K2Re c dT2 j-z dwK 

x (tf-71,71-72)E*(71)E(T22) 

=2kv2 Re [ dr2 Jz dT,@ 

x (tf-71,71-72)E(71)E*(72). 

Adding Eqs. (A2) and (A3), we obtain 

2A(tf) =2 Re c dT2 JtF d~1Mf(~2,~1) 

XE*(T2)E(r1), 

with 

(A3) 

(A4) 

M372J1) =fi-2iM,(~f-72,72-71h 7i>71 

ikf~(T2,T~)=?i-2@(tf-T~,T~-T2), T2<Tl 

(A51 

Equations (A5) are equivalent to Eq. (25). Since Mf is 
Hermitian, we can omit the Re sign in Eq. (A4) and 
thereby recover Eq. (24). 

APPENDIX B: POTENTIAL ENERGY CURVES-FOR I, 

We express the form of the potential for both the 
ground X and the excited B states as 

V(r) 

I 

V<-(r), r-c Rc-SL 

j-1 (+Rc)/SLI V,(r) 
= +C1-f[(rRc)/~L]3V>(~), Rc-sL<r;Rc+sL 

V>(r), r>R,+s~. 
(Bl) 

Here, V, (r) is used for small diatomic distances:57 

V,(r)=ao(l-r/re)2[1-al(rJr)‘J(1~r/re)], (B2) 

and V, (r) for large diatomic distances?’ 

V,(r)i&-(s+$+$). (B3) 

These two functions are bridged smoothly (up to the sec- 
ond derivative) across the region [Rc-sL,Rc+sL] via the 
smoothing function 

f(s)=0.5-; (15--1Os2+3s4). V34) 

The constants r, in Eq. (B2) and Do in Eq. (B3) are the 
potential minimum and the dissociation energy, respec- 
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tively. The other parameters in Eqs. (B2) and (B3) are 
obtained by a nonlinear fit to the available experimental 
Rydberg-Klein-Rees (RKR) points in Refs. 20 and 59. 
Together with the bridging position R, and smoothing 
length sL, these parameters are tabulated in Table IV for 
both the X and the B state potentials. This fit to the I, 
potential gives an accuracy of < 1 cm-’ for all of the avail- 
able RKR points on both the X and B states. 
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