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ABSTRACT 

OPTICAL ENGINEERING OF III-NITRIDE NANOWIRE LIGHT-EMITTING 

DIODES AND APPLICATIONS 

By 

Ha Quoc Thang Bui 

Applications of III-nitride nanowires are intensively explored in different emerging 

technologies including light-emitting diodes (LEDs), laser diodes, photodiodes, 

biosensors, and solar cells. The synthesis of the III-nitride nanowires by molecular beam 

epitaxy (MBE) is investigated with significant achievements. III-nitride nanowires can be 

grown on dissimilar substrates i.e., silicon with nearly dislocation free due to the effective 

strain relaxation. III-nitride nanowires, therefore, are perfectly suited for high performance 

light emitters for cost-effective fabrication of the advanced photonic-electronic integrated 

platforms. This dissertation addresses the design, fabrication, and characterization of III-

nitride nanowire full-color micro-LED (μLED) on silicon substrates for μLED display 

technologies, high-efficient ultraviolet (UV) LEDs, and spectral engineering for narrow 

band LEDs. 

In this dissertation, InGaN/AlGaN nanowire μLEDs were demonstrated with highly 

stable emission which can be varied from the blue to red spectrum. Additionally, by 

integrating full-color emissions in a single nanowire, phosphor-free white-color μLEDs are 

achieved with an unprecedentedly high color rendering index of ~ 94. Such high-

performance μLEDs are perfectly suitable for the next generation high-resolution micro-

display applications. Moreover, the first demonstration of two-step surface passivation 

using Potassium Hydroxide (KOH) and Ammonium Sulfide (NH4)2Sx is reported. The 

photoluminescence, electroluminescence, and optical power of the 335 nm AlGaN 



 
 

nanowire UV LEDs show improvements by 49%, 83%, and 65%, respectively. Such 

enhanced performance is attributed to the mitigation of the surface nonradiative 

recombination on the nanowire surfaces. A combination of KOH and (NH4)2Sx treatment 

shows a promising approach for high efficiency and high power AlGaN nanowire UV 

LEDs. 

The LEDs with narrow spectra are highly desirable light sources for precisely 

controlled applications such as phototherapy. In this regard, we have further demonstrated 

narrow spectral nanowire LEDs using on-chip integrated bandpass filters. To achieve 

narrow band spectra, the bandpass filters are designed and fabricated using all-dielectric 

and metal-dielectric multilayers for visible and UV regions, respectively. They are 

fabricated onto LED devices as a single photonic platform to achieve the narrow band 

LEDs for innovative applications like phototherapy for wound healing. 
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STATEMENT OF ORIGINALITY 

 

 

The accomplishments in this dissertation take on peculiar significance in the field of 

photonics, materials science, nanotechnology through addressing last-long issues regarding 

III-nitride full-color LEDs and UV LEDs by using 1D nanowire structures. The nanowire 

LEDs were grown by MBE. The unique contribution of this Ph.D. dissertation includes the 

demonstration of full-color µLEDs in circular shape with diameter less than 50 µm; the 

first demonstration of two-step surface passivation for the enhanced light output power of 

nanowire UV LEDs; and the first reported nanowire LEDs using integrated bandpass 

filters. These LEDs are highly promising for the future monolithic microLED displays, 

AR/VR devices, water/air/surface disinfection, phototherapy, and wound healing. These 

unique contributions are described below: 

We have developed, for the first time, full-color nanowire µLEDs with stable 

emissions in the red, green, and blue wavelength regions. The nanowire µLEDs are in 

circular shape with the diameter less than 50 µm. Moreover, we have reported the first 

demonstration of phosphor-free nanowire white-color µLEDs with unprecedentedly high 

CRI of ~ 94. These high efficiency, high color rendering properties, and low power 

consumption μLEDs are perfectly suitable as an alternative replacement of current display 

technologies. 

We also reported the first experimental demonstration of two-step surface 

passivation using Potassium Hydroxide (KOH) and Ammonium Sulfide (NH4)2Sx. The 

photoluminescence, electroluminescence, and optical power of the 335 nm AlGaN 

nanowire UV LEDs show improvements by 49%, 83%, and 65%, respectively. Such 

enhanced performance is attributed to the mitigation of the surface nonradiative 
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recombination on the nanowire surfaces. A combination of KOH and (NH4)2Sx treatment 

shows a promising approach for high efficiency and high power AlGaN nanowire UV 

LEDs. This study was published and selected as the Editor’s pick in Applied Optics (The 

Optical Society of America). 

 We demonstrated the first narrow band nanowire LEDs using integrated bandpass 

filters. The 550 nm visible bandpass filter using 21 alternative all-dielectric Si3N4/SiO2 

layers and 310 nm UVB bandpass filters using 6 alternative metal-dielectric Ag/SiO2 layers 

have been designed and fabricated. The results show that the integration of visible filters 

could produce emission with a full width at half maximum (FWHM) around 10 nm which 

is about five to eight times smaller than the recorded number from typical LEDs. The UV 

bandpass filter has high transmission up to 70% which is higher than other reported value 

for UV bandpass filters. 

In conclusion, the studies reported in this Ph.D. dissertation have significantly 

contributed to the understanding and developing of high-performance light emitters using 

III-nitride semiconductors. 
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INTRODUCTION 

 

1.1 III-Nitride Nanowire LEDs 

 
 

1.1.1 Overview 

 
Light-emitting diodes (LEDs) can be found almost everywhere in the daily lighting, 

automotive lighting, street lighting, backlight of TV and smartphone screens. Besides these 

main markets, visible and ultraviolet (UV) LEDs have enormous potential applications for 

bio-imaging, light-visible communication, lidar, precise phototherapy, medical 

instruments, displays, water treatment, agriculture, and polymer curing [1-8]. New 

interesting applications such as post-harvest preservation and photobiomodulation from 

LEDs are also being explored day by day [9, 10]. 

An LED basically consists of a p-n junction emitting light when a forward voltage 

is applied between the two ends of the junction. Electrons and holes are the majority 

carriers in the n-type and in the p-type semiconductors, respectively. The n-type and p-type 

semiconductors are created by the doping process, adding impurities. Assuming that all 

dopants are ionized so that the electron concentration (n) is given by number of donors 

(ND), and hole concentration (p) is given by the acceptor concentration (NA). 

When n- and p-type semiconductors are contacted, the electrons from the n-type 

diffuse over to the p-type, and conversely the holes from the p-type diffuse over to the n-

type semiconductor. Consequently, two regions of the opposite charges are built-up, 

positive charges on the n-type and negative charges on the p-type of the p-n junction. This 
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phenomenon is caused by the diffusion current of electrons and holes. At the end, the 

accumulated charges result in an electric potential difference at the p-n junction. 

Meanwhile, the associated built-in electric field, generated by a potential difference 

between two oppositely charged regions, prevents the diffusion current of electrons and 

holes from further happening. At this point, the p-n junction reaches the equilibrium state. 

The junction area becomes a depletion region, relatively free of charge carriers, no mobile 

electrons and holes. The built-in potential forementioned in the p-n junction is called the 

diffusion voltage (VD), given by equation (1.1). A typical p-n junction is illustrated in 

Figure 1.1. The depletion region is also called the active region because the emissive 

photons are generated when the p-n junction under a forward bias. 

 
 
 𝑉𝐷    =  𝑘𝑇𝑒 ln 𝑁𝐴𝑁𝐷𝑛𝑖2  

                                        (1.1) 

 
 
Here, ni is the intrinsic carrier concentration of the semiconductor, NA and ND is the 

acceptor and donor concentration, respectively. T is the absolute temperature and k is 

Boltzmann constant. 

When an external voltage, equal or larger than the diffusion voltage, is applied to 

the p-n junction, electrons and holes are moved across the depletion region and able to 

recombine. The recombination process, which radiates photons, is known as radiative 

recombination. Another competitive process does not radiate photons, known as the 

nonradiative recombination. In the nonradiative recombination, the energy releases as 

vibrations in the crystal lattice. 
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The energy of emissive photons from an LED and the radiation wavelength are 

given by Equation (1.2), The design and fabrication of LEDs are to achieve as high 

radiative recombination as possible and reduce nonradiative recombination. 

 

 
Eg ≈ ℎ𝑐


 (1.2) 

 
 

 

Figure 1.1  The schematic and band energy diagram of a p-n junction. 
 
 
When it comes to the design of an LED, there are two important factors needed to 

be considered including internal quantum efficiency (IQE) and light extraction efficiency 

(LEE) because they finally define the external quantum efficiency (EQE) of an LED. An 

ideal LED can convert the total electric energy to the optical energy as emissive photons. 

Each photon radiating from the active region of a p-n junction is associated with a single 

injected electron. In other words, the IQE of the ideal LED is equal unity. However, there 
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is not the case for real LEDs which always have an IQE lower than 100% due to the 

nonradiative recombination. 

 To obtain a high value of IQE, real LED devices usually employ multi-quantum 

wells (MQW) in the active region to increase the carrier quantum confinement for high 

optical efficiency [11-13]. 

 

 

Figure 1.2  The diagram of an LED heterostructure of three quantum wells. 
 
 
A quantum well can be created by sandwiching a single layer with a lower bandgap 

energy compound such as InGaN by two barrier layers with higher bandgap energy 

materials such as GaN or AlGaN. In this way, MQWs are created by repeating the 

heterostructure of a quantum well. The thickness of the quantum wells and barriers of III-

nitride device heterostructures, grown on the wurtzite crystal structure, is in the nanometer 

range to obtain the high crystal quality and minimize polarization effects. 

The IQE of an LED is defined by the number of photons emitting from the active 

region over the number of electrons injected in the region. If we call τr and τnr the lifetime 

of the electron for radiative recombination and for nonradiative recombination, 

respectively, the probability of an electron for the radiative recombination is τ𝑟−1 and for 

nonradiative recombination is 𝜏𝑛𝑟−1. The IQE value is calculated by equation (1.3). 
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                                 𝜂𝐼𝑄𝐸 = 𝜏𝑟−1𝜏𝑟−1 + 𝜏𝑛𝑟−1                                          (1.3) 

 
 
Moreover, due to the internal reflection and absorption within the LED, just a 

portion of photons created in the active region from radiative recombination escapes into 

the free space. This reduces the LEDs’ optical efficiency. The low LEE reduces the LEDs’ 

performance and it is one of the main hurdles for high performance LEDs, specifically for 

UV LEDs. The LEE is defined by the number of photons escaping into the free space over 

ones created in the active region. The LEE value denoted as LEE is calculated by Equation 

(1.4).  

 
 

 LEE = P/hνPint/hν = PPint                                          (1.4) 

 
 
In that equation, P is the optical power measured in the free space and Pint is the original 

optical power measured in the active region. The LEE plays a critical role to the 

contribution of the EQE of LEDs, given by Equation (1.5). 

 
 

             ηEQE = ηIQE × ηLEE                            (1.5) 
 
 

1.1.2 III-nitride materials 

 
Group III-nitride semiconductors are critical compounds with direct and wide bandgap 

energy. They have excellent unique properties, such as high electron mobility, extreme 

chemical stability, and good thermal conductivity [14]. The direct bandgap energy of III-

nitride compounds allow them to absorb and emit photons easily. Thus, III-nitride 

compound semiconductors are ideal for electronic and photonic devices. Shown in Figure 
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1.3, the energy bandgap of their ternary (AlGaN, AlInN, and GaInN) and quaternary 

(AlInGaN) alloys can be tuned from 0.69 eV (InN) through 3.40 eV (GaN), to 6.20 eV 

(AlN) [15-18]. This range of energies is associated with wavelengths from the mid-infrared 

through the entire visible to deep ultraviolet regions. For that reason, III-nitride compounds 

have received considerable attention and were developed for LEDs and lasers [19, 20]. 

GaN generally can be used as a representative for III-nitride compounds. III-nitride or GaN 

nanowires are used interchangeably in this dissertation. 

 

 

Figure 1.3  The bandgap energy and wavelength versus the lattice constant of III-nitride 
compounds. 

Source: [6]. 
 
 

Due to the lack of the native substrate, conventional III-nitride thin-film 

heterostructures are synthesized on lattice-mismatched materials such as sapphire, carbide, 

or silicon. This causes a poor-quality crystal, high density of dislocation, threading defects, 
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and polarization, which all together severely limit the performance and applications of the 

devices. In this regard, III-nitride nanowire structures have emerged as an alternative 

candidate for LEDs with a better performance and novel features [2, 21-28]. 

Due to the fact that the nanowire structure is 1D (one dimensional) with a high 

surface-area-to-volume ratio, the strain energy caused by the crystalline mismatch of 

different materials in heterostructures can be released efficiently into the side wall of the 

nanowires. Therefore, good quality crystal nanowires can be grown with very low density 

of threading dislocations and stacking faults [29]. In addition, the sufficient p-type doping 

can be implemented, facilitated by the surface Mg dopant incorporation, compared to 

epilayers [30-33], addressing the p-type doping difficulty. Also, nanowire structures can 

be easily integrated into very highly flexible photonics platforms using any kinds of 

substrates, facilitated for novel technologies and applications [23, 34, 35]. 

 

1.1.3 Fabrication methods of III-nitride nanowire LEDs 

 
III-nitride nanowires are created by two methods: top-down and bottom-up. Top-down 

approach utilizes several steps of photolithography and etching to define nanowires from 

an initial planar structure. Masks are required and play an important role in determination 

of the resulting nanowire structures. Sometimes, electron-beam lithography is also used to 

finely define structures at nanoscale [36], enabling precisely direct-writing of nano/micro 

patterns. However, time-consumption and high equipment cost make it unsuitable for mass 

production. Self-assembled metal nano-islands were employed to produce a mask of 

seeding particles on a large area with minimal processing time for the etching process [37, 

38]. The pre- and post-treatment procedures are usually required to reduce defects in GaN 

nanostructures. However, high contaminants, defects, and dislocations in the initial bulk 
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III-nitride materials limit the material quality of the nanowires, leading to the poor 

performance of the device. 

Bottom-up method, on the other hand, provides high crystalline quality of GaN 

nanowires due to epitaxial synthesis occurring in the highly controlled vacuum 

environment, growth temperature, and precursor influx. The high crystal quality of 

heterostructure nanowires can be achieved in this process using epitaxy processes by the 

mechanism of vapor-liquid-solid (VLS) with the support of a metal catalyst or spontaneous 

formation. 

 

1.1.4 Vapor-liquid-solid mechanism 

 

Figure 1.4  Vapor - liquid - solid method for nanowire growth. 
 
 

The VLS mechanism of the growth of nanowire structures was first reported in the 1960s 

by Wagner and Ellis [39]. It generally requires a metal particle such as Au, Ni, Pt, etc. to 

serve as a catalyst from which nanowires are formed and grown. The growth mechanism 

involves three main phases. The first step begins with the formation of droplets on the 
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surface of the substrate, shown in Figure 1.4a. Later, the crystal nucleation is formed in the 

place of the liquid droplets, presented in Figure 1.4b. Finally, when the vapors reach 

supersaturation with respect to the solid phase, the axial growth of nanowires is dominant, 

shown in Figure 1.4c. The low solubility of metal particles in growing semiconductor 

structures is resulted by a low melting temperature eutectic point in the alloy phase 

diagram. This allows VLS growth around the eutectic melting temperature. The position 

and diameter of the growing nanowires depend on the position and size of metal particles. 

Other growth parameters such as the temperature and pressure also have an impact. The 

length of nanowires is usually determined by growth rate and duration time. Due to the 

foreign metal catalyst, the grown nanowires suffer a considerable degree of metal 

contamination, thereby reducing the optical and electrical properties. To prevent the 

contamination, the mechanism of spontaneous formation was explored to grow nanowires. 

 
1.1.5 Spontaneous formation 

 
Group III-nitride nanowires can be also formed spontaneously under the right conditions 

within a nitrogen-rich environment without the presence of any foreign metal catalyst. The 

spontaneous formation is desired for nanostructure growth of high crystalline quality. In 

this growth technique, the foreign metal catalyst is absent and no catalyst droplet presents 

at the top of nanowires, as proposed by Bertness [40]. Instead, the nanowire is grown by 

the differences in the surface energies, sticking coefficient, and diffusion coefficient on the 

crystal plane. In Debnath’s study [41], the diffusion induced mechanism was used to 

explain the MBE growth of GaN nanowires as shown in Figure 1.5. The adatom diffuses 

from the sidewall to the top of the nanowires due to the lower chemical potential. The 

sticking coefficient is much higher on the top of the nanowire than on the sidewall. As a 
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result, Ga atoms attach directly on the top. In other words, the sidewall tends to desorb 

rather than absorb Ga atoms. This supports vertically nanowire growth, particularly when 

the nanowires are growing close to each other. The growth conditions including the 

substrate temperature and nitrogen flux affect the diffusion process and consequently the 

growth rate. The top of the nanowires also absorbs the Ga atoms which have desorbed from 

the nearby nanowires. The nanowires grown by the spontaneous technique result in higher 

crystalline quality, uniformity, and density than those grown by the VLS technique. Thus, 

spontaneous growth technique is excellent for the synthesis of optoelectronic devices. 

 
 

 

Figure 1.5  The spontaneous formation of a nanowire. 
 
 

In the bottom-up approach, metal-organic chemical vapor deposition (MOCVD), 

chemical vapor deposition (CVD), hydride vapor phase epitaxy (HVPE), and MBE are 

widely used techniques. Among them, MBE growth technique has many advantages in 

terms of the high level control of purification, composition, and flexible architecture [42, 

43]. 
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In an MBE system, group III element metal sources for Al, Ga, and In are placed 

in the different effusion cells. The metal sources can be heated at high temperatures in the 

effusion cells to become the metal gases. These metal vapors are then transported into the 

vacuum growth chamber where they react with the nitrogen precursor right on the substrate 

and form III-nitride nanostructures. Ammonia (NH3), or the nitrogen plasma are the 

nitrogen precursors. The growth rate is slower than other epitaxy methods such as MOCVD 

and CVD, but the high purity of crystalline structures and composition controllable 

capability are much better due to the high vacuum growth conditions. 

 
1.1.6 Metal-organic chemical vapor deposition 

 
MOCVD or metalorganic vapor-phase epitaxy (MOVPE) is the conventional epitaxial 

growth technique which is widely used to grow LEDs [13, 44]. Most of the commercial 

planar LEDs are grown by MOCVD. The epitaxial growth of LEDs by MOCVD is 

performed at the high temperature and atmosphere pressure. For instance, III-nitride alloys 

are grown at temperature from 800-1000 C [45]. The precursors in MOCVD come from 

meta-organic compounds. III-elements are usually provided by trimethylgallium (TMG), 

trimethylaluminium (TMA), trimethylindium (TMI) for Ga, Al, and In, respectively. The 

nitrogen precursor is provided by NH3 or nitrogen plasma. The n-type doping and p-type 

doping are implemented by Bis(cyclopentadienyl) magnesium (CP2Mg) and disilene 

(Si2H6). Therefore, the purity of III-nitride structure achieved by MOCVD is theoretically 

lower than from MBE where pure element sources are used. Also, due to the high-pressure 

growth condition, gas carriers of N2 or H2 are needed for the growth process. The different 

gases result in different materials morphology [46]. However, the spontaneous mechanism 

of III-nitride nanowires using MOCVD is not the option for the growth of III-nitride 
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nanowire LEDs. III-nitride nanowires grown with the spontaneous mechanism result in 

relatively poor morphology, observed from SEM images [47, 48]. To address poor 

nanowire LEDs with MOCVD, selective area growth (SAG) has been adopted. The 

substrate has been patterned in advance. The details of SAG are presented in the next 

section. 

 
1.1.7 Selective area growth 

 
SAG is an approach using a pre-patterned wafer to allow GaN nanowires to be grown at a 

highly controllable position and radius. This method could produce a high order uniformity 

of the nanowires, suited well for the fabrication of high-performance devices. The position 

and size of nanowires are defined by a pre-patterned mask. The growth duration controls 

the height of nanowires. The widely used MOCVD and MBE are common tools for the 

growth of GaN nanowires in this technique. While MOCVD offers a faster growth rate, 

MBE growth is better in terms of purity, sophistication of the nanowire structures, and high 

quality crystalline. Silicon, silicon carbide, and sapphire are popular wafers for GaN 

nanowire growth using the SAG technique.  

Several materials of masks and buffer layers have been used to create an initial 

uniform pattern for GaN nanowire growth [49]. The SAG technique is metal contaminant 

free during the growth process, and thus the nanowires can be grown with a high level of 

purity. A layer of GaN or AlN is usually used as the buffer layer for the strain compensation 

before the mask layer is deposited. The patterns on the mask layer usually are defined by 

E-beam lithography or photolithography depending on the diameter of the designed 

nanowires. This is followed by the reactive ion etching (RIE) process to create the openings 

which define the position of the future grown nanowires. The mask layer is usually titanium 
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(Ti), silicon nitride (Si3N4), or silicon dioxide (SiO2). Figure 1.6 presents the basic steps 

for the SAG. A silicon substrate, shown in Figure 1.6a is coated with a SiO2 mask layer in 

Figure 1.6b. The pattern is shown in Figure 1.6c in which the openings and spacing are 

defined by E-beam lithography and RIE. Figure 1.6d illustrates the grown nanowires. 

 
 

 

Figure 1.6  Selective-area growth process on silicon wafer with SiO2 mask. 
Source: [50]. 

 
 
Since the last decade, SAG has been used to grow uniform nanowire arrays in a 

precisely controlled manner of their radius, spacing, density, and height [51]. Stephen et 

al. synthesized GaN nanowires with MOCVD. A layer of 600 nm GaN was deposited as 

the buffer layer before the deposition of 30 nm Si3N4 mask layer. The mask was patterned 

by the interferometric lithography. Si3N4 was deposited on the GaN film by low pressure 

chemical vapor deposition (LPCVD). The height of GaN hexagonal nanowires is about 1 

μm, and the radius is approximately 221 nm. GaN nanowires were then formed by the 

chemical reaction of the precursors of trimethylgallium (TMGa) and ammonia (NH3) 

introduced in the growth chamber. 
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To study the dependence of the growth rate to the lateral size of openings, the SiO2 

mask layer was patterned with variable apertures at a constant pitch of 2.0 μm by E-beam 

lithography and RIE. It was found that the growth rate of GaN nanowires is lower on the 

pre-patterned smaller openings than in the larger ones. This implies the distribution of the 

precursor is relatively low in the small openings. It also states that SAG is independent of 

the thickness of the mask layer of SiO2. 

 
1.1.8 Molecular beam epitaxy growth 

 
Invented over 50 years ago by Arthur and Alfred Y. Cho in Bell Lab [52], MBE technique 

has evolved to one of the critical methods for semiconductor nanostructure synthesis. Over 

decades, MBE has had tremendous improvements, well used for the growth of advanced 

structures such as dot-in-a wire heterostructure for LEDs [53]. The structure of axial 

quantum wells, radical quantum wells, quantum wires, quantum-dots embedded in 

nanowires have been demonstrated by using MBE systems [54]. 

Basically, the MBE system consists of three chambers: intro-chamber, buffer 

chamber, and growth chamber. A wafer is introduced into the intro-chamber. This 

chamber’s pressure subsequently is evacuated to a mTorr level before the valve between 

the intro-chamber and buffer chamber is opened for wafer transferred into the buffer 

chamber. In the buffer chamber, the sample shall be baked out in a high vacuum level. 

Finally, the extremely cleaned sample will be transferred to the growth chamber. 

Nanostructures are grown in the growth chamber under an extremely high vacuum (≤ 10-8 

Torr). 

MBE growth of III-nitride nanowires is employed by directly introducing group-III 

elements from effusion cells and nitrogen into the ready-heated substrate. Given that the 
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growth process occurs in the ultra-high vacuum, the high-quality crystals can be achieved. 

There are two types of MBE, classified by nitrogen precursors. The ammonia-molecular 

beam epitaxy (Am-MBE) uses ammonia while the plasma-assisted MBE (PAMBE) 

employs the nitrogen gas generated by the plasma generator to create the nitrogen plasma. 

The MBE systems are usually equipped with sensors such as reflection high-energy 

electron diffraction (RHEED) or mass spectroscopy for in situ measurements and 

investigations. Therefore, the MBE systems have huge advantages in studying growth 

parameters during the growth process.  

In the Am-MBE system, the nitrogen source is introduced in the form of NH3 gas 

which is broken down at high temperature. However, the decomposition efficiency of NH3 

largely depends on the temperature. To yield a highly efficient NH3 deposition, the growth 

process operates at a high temperature. However, at high temperature, the indium rich III-

nitride compounds are hardly stable since indium largely desorbs. Moreover, the remaining 

NH3 molecules become an erosive contaminant, causing a big issue in MBE growth. To 

deal with contamination problems and indium desorption, the PAMBE system is in favor. 

The nitrogen gas source is introduced and the RF generator is used to create the nitrogen 

plasma including the mix of (N2
+), atoms (N), and ionized atoms (N+). The nitrogen plasma 

is chemically active, and they can react with group-III elements to form III-nitride 

nanostructures. The nitrogen influx can be easily controlled by the power of the plasma 

generator. Therefore, PAMBE is a choice for the growth of high indium nanostructures at 

relatively low temperature and can avoid contaminant residues. For these reasons, high 

crystalline III-nitride nanostructures grown by PAMBE growth can be obtained. Beside 

III-nanowire based LEDs, many research groups have demonstrated lasers [55], 
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photodetector [56] based on III-nitride nanowires with high quality crystals using MBE 

technique [57]. 

PAMBE growth is also employed with a pre-patterned substrate to grow desirable 

nanowires. The size, density, diameter, morphology, and height of the nanowires can be 

greatly controlled by the growth temperature and/or the III/nitride ratio. Importantly, the 

main advantages of MBE growth include the precise control of the influx of precursors, 

high vacuum, and possible low temperature. This supports the growth of InGaN nanowires 

with high indium composition in quantum wells. 

The initial SAG of GaN nanowires with InGaN/GaN quantum wells by PAMBE 

was first reported using the patterned mask of Ti layer [58]. Ti-masks have been widely 

used in GaN nanowire SAG [59, 60]. In that report, the 5 nm Ti film was deposited on a 

3.5 µm GaN thin-film and nanoholes were patterned on the Ti layer using the focused ion 

beam milling. The GaN nanowires were grown at various temperatures from 880 ◦C to 925 

◦C. At 900 ◦C and N2 flux at 1 sccm, the SAG GaN nanowires were grown uniformly of 

183 nm in diameter, 400 nm in space, and 1.5 µm in height. Growth temperature below 

900 ᵒC did not support the GaN nanowire formation, while at higher than 900 ᵒC, the 

growth rate was decreased and the GaN nanowires are smaller in diameter. In addition, 

Schumann et al. have demonstrated SAG of GaN nanowires by PAMBE using SiO2 mask 

[61]. The SiO2 mask layer was deposited on a 10 nm AlN buffer layer from which the 

pattern of openings of 120 nm in diameter and 0.75 µm pitch were written by E-beam 

lithography and RIE, respectively. The growth temperature was set at 815 ◦C, 825 ◦C, and 

835 ◦C. It was found that GaN nanowire arrays are well grown at 825 ◦C. When the growth 

temperature increased to 835 ◦C, GaN nanowires are sparely grown across the substrate. 
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To study the effect of the size of openings on the nanowires, the patterned holes in different 

diameters were employed. The lateral openings with the diameter below 50 nm support the 

growth of a single nanowire in the patterned holes. When the hole diameter increased to 

140 nm, the nanowires were not uniformly grown. More than 85% patterned openings were 

occupied with more than one nanowire in a single opening. Similar results were also 

reported by other studies [62, 63]. 

Using Si3N4 as the mask layer is also common in SAG GaN nanowires by MBE 

[64]. The Si3N4 mask layer was prepared on AlN/Si substrate by the thermal furnace 

process from precursors of dichlorosilane and ammonia. It was found that if the diameter 

of openings is smaller than 500 nm, the nanowires grown are hexagonal and uniform. When 

the openings are larger than 1 µm in diameter, several nanowires were grown within a 

single opening, indicating some nucleation seedings were formed in advance within a 

single opening. The photoluminescence intensity of nanowires of 750 nm or larger in 

diameter is relatively low compared to that recorded from the smaller nanowires. As such, 

larger diameter nanowires result in lower radiative recombination. Moreover, many sub-

band emissions were found in nanowires with a diameter higher than 900 nm. This is 

attributed to the presence of crystalline defects.  

Although SAG by MBE growth has numerous advantages, it requires several steps 

including the deposition of a buffer layer and mask preparation. The whole process needs 

a variety of instruments such as E-beam lithography, RIE systems, and other equipment 

for nitride or oxide mask deposition. Therefore, nanowire growth with the SAG MBE 

technique is not so popular. 
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In this context, the nanowire growth utilizing the natural self-assembly mechanism 

becomes a useful method. By carefully controlled temperature and/or the III/nitride ratio, 

the very high-quality crystal nanowires can effectively be grown on mismatched substrates. 

In our research, Veeco Gen II PAMBE is integrated with an RHEED system for in situ 

investigation. The Al, Ga, and In sources are contained in the separate effusion cells in 

which they can be heated to a high temperature to become the metal gases that are flown 

separately into the growth chamber. The PAMBE system also has effusion cells for the 

introduction of silicon and magnesium dopants to form n-type and p-type semiconductors, 

respectively. The active nitrogen species are supplied by the nitrogen plasma. The growth 

temperature and influx of precursors are used to control uniformity, density, height, 

diameter, shape, and alignment of the nanowires. The formation of the high density of 

nanowires is favored by the low growth temperature since the adatom surface migration 

can be reduced. Moreover, the substrate orientation is used to control the nanowire 

alignment. In taking advantages of the Si dominant industry, III-nitride nanowires usually 

are grown on silicon substrates for the economic reason, mass production, and electronic-

photonic integrated platform [61]. 

 
1.1.9 III-nitride nanowire LEDs 

 
LEDs based on III-nitride nanowire heterostructures have been intensively studied as an 

emerging platform for future solid-state lighting, full-color displays, and medical 

applications. In comparison to the conventional, nanowire-based LEDs present numerous 

advantages of greatly reduced dislocation densities, polarization fields, quantum-confined 

Stark effect (QCSE) due to the effective lateral stress relaxation. However, several existing 

hurdles still limit further enhancement of the quantum efficiency and optical output power 
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of nanowire LEDs. Some of them are attributed to the lack of carrier confinement in the 

active region, non-uniform carrier distribution, electron overflow [27], and surface 

nonradiative recombination [65]. Moreover, the presence of large surface defect densities 

can cause carrier loss in nanowire LEDs. Consequently, currently reported nanowire LEDs 

show a relatively low output power. The focus on design, epitaxial growth, post-treatment, 

and fabrication are needed to achieve high power LEDs in the visible and UV region. The 

emissive color of the III-nitride nanowire LEDs can be tuned by varying constituent 

composition of group-III elements in the active region. Other parameters such as the size, 

space, length of nanowires can also be customized for finely adjusting the emissive 

spectrum for targeted applications. 

 
 

1.2 Applications of III-Nitride Nanowire LEDs 

 
1.2.1 Lighting  

 
LEDs are used everywhere today, but the LED technology is still in its infancy. When the 

price of LEDs is going down and the efficiency is increasing over time, more and more 

lighting systems made of LEDs are prevalent more than ever before. However, the majority 

of potential of LEDs is still untapped [66]. According to a report from the Department of 

Energy in 2017, lighting applications from LEDs will hold 86% in daily lighting by 2035. 

Huge impacts of LEDs are likely to go beyond the lighting application as a replacement of 

conventional incandescent. In fact, environmentally friendly, more LED lighting can save 

energy consumption, benefiting global warming, and reduce carbon footprint. LED lights 

are practical for zero-energy buildings. Furthermore, due to small turn on electric power, 

the integration of an LED lighting system with renewable energy sources like solar cells 
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becomes easy. The ubiquitous renewable energy is a solution to the global warming 

problem. 

As for GaN nanowire LEDs, it might need years to see them in the daily lighting 

before all supported technologies can reach the level of economic competitiveness. 

However, initial applications of GaN nanowire LEDs might be found in special lighting 

environments in theaters and museums, exhibition centers, and showrooms, where the 

quality and design of lighting systems are critical. More importantly, the high flexibility 

and miniaturization of nanowire structures make the LEDs to be a promising candidate for 

many other fields such as µLED displays, precise phototherapy, and bio-imaging. 

 
1.2.2 MicroLED display  

 
Since Apple Inc. acquired LuxVue in 2014, a company developing self-emissive full-color 

microLEDs (µLEDs) for display technologies, the µLED display has received much 

attention worldwide. µLED displays basically use the combined red, green, and blue 

(RGB) µLEDs to be individual pixels. Unlike the organic light-emitting diode (OLED) 

display technology, the µLED display based on inorganic materials does not degrade over 

time. The µLED display technologies using full-color µLEDs are advancing not only 

traditional electronic devices such as TV screens, smartphone screens, but also augmented 

and virtual reality devices. Historically, display technologies underwent several stages 

from cathode ray tube (CRT), liquid-crystal display (LCD), conventional LED, and 

recently organic LED (OLED). In LCD and conventional LED screens, LEDs are used as 

the backlight sources. In an OLED display, individual RGB OLEDs are self-emissive 

pixels. But, due to the limitation of organic materials, the OLED screens suffer burn-in 

effects and the quality of the display reduces over time. µLED display technologies using 
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inorganic III-nitride materials, however, have a longer lifetime, high energy efficiency, 

wide color gamut, high-frequency operation. Thus, the µLED displays are predicted as the 

next ultimate display revolution. 

Extensive efforts to create high quality full-color µLEDs and integrate a huge 

number of RGB µLEDs to form self-emissive individual pixels for µLED displays have 

been reported. Some techniques are based on quantum dots, resonant nanorings, and strain 

engineering [67]. The complicated process and introduction of foreign materials in these 

studies are not in favor of the processing of millions of tiny LEDs. In this regard, monolithic 

technology has been received considerable attention. The high crystal GaN nanowire LED 

structures grown on a silicon wafer have a potential in the demonstration of the µLED 

display. This approach benefits from the integration of electronic platforms to control a 

massive number of the RGB µLEDs. Currently, several companies such as Aledia and Glo 

are developing the nanowire based µLED displays. The integration of transistors into the 

LED wafer to control the µLED individually remains an issue of light modulation of the 

great number of individual LEDs for µLED displays although recently a practical solution 

was introduced [68]. 

 
1.2.3 Phototherapy 

 
Healing effects of sunlight were well-known thousands of years ago from Egypt, India, and 

China [69]. In modern life, phototherapy, the study of light for disease treatment, dated 

back to the early 20th century. Niels Ryberg Finsen was awarded a Nobel Prize in 

Physiology or Medicine in 1903 for his contribution to the treatment of lupus vulgaris 

diseases using the ultraviolet light [70]. Since then, phototherapy using artificial light 

sources has been developing. However, it was not until the invention of laser that 
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phototherapy received much more attention. Laser allows for a high controllability of the 

spectrum and intensity of the illumination. In the late 1960s, Endre Mester, a Hungarian 

physician, conducted several experiments using a low-powered ruby laser illumination at 

694 nm to investigate the carcinogenic effects on mice. Surprisingly, the laser illumination 

resulted in useful effects. The hairs from the shaved-off area were grown more with the 

illumination than the area without a phototherapy treatment [71]. This became a motivation 

for medical science study with artificial light. 

Recently, LEDs have received tremendous attention due to their significant 

advantages including long lifetime, high energy efficiency, flexibility, small size, low cost, 

and chemical and physical stability [72]. Unlike lasers, LEDs are far cheaper, more energy 

efficient, longer lifetime, and higher flexibility, and more availability of wavelengths. Also, 

there is no safety regulation with visible LEDs. The III-nitride LED’s emissions could be 

tuned from the ultraviolet throughout infrared. The broad field of irradiation of LEDs is 

also suitable for a large area illumination. Thus, LEDs are well suited for phototherapy as 

a light source. 

NASA has conducted several experiments on the international space station to 

explore effects of the LED illumination on plants and animals. For example, mice with the 

LED illuminations presented five times faster in healing the wounds in the experiment than 

the mice without illumination. In the microgravity space, red and infrared LEDs at 680 nm, 

730 nm, and 880 nm were recorded to boost the cell growth process [73, 74]. Other case 

studies in the early 2000s showed that the UV LED illumination increases the wound 

healing progress [75]. Ultraviolet, visible, and infrared LEDs overall induce numerous 
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biological effects and help normal wounds and chronic wounds to be healed more 

efficiently [76, 77]. 

The wound healing effects caused by LEDs, in fact, depend on the illumination 

intensity and wavelengths. The interaction of photons and the living tissues causes 

biological effects. If the resulting effects are learnt well in association with the LEDs’ 

illumination wavelengths, phototherapy could become a powerful treatment method for 

many kinds of diseases. The phototherapy treatment could be achieved due to the quantum 

mechanism. The illumination photons are only absorbed in association with the shift of 

electrons between two discrete energy levels in atoms or molecules. Thus, singular energy 

photons could selectively stimulate a certain biochemical reaction. These reactions occur 

by the change of electron states within one molecule or between different molecules. Thus, 

the phototherapy method with multiple wavelength LEDs could become an advanced light 

source for precision phototherapy. For example, wound healing treatment, which requires 

the illumination with a wide range of wavelengths from the UV to visible depending on 

the healing stages [78, 79]. The state-of-the-art combination of a wide variety of narrow 

spectral LEDs from the UV to visible region would be an extremely practical idea for many 

targeted biochemical reactions in wound healing processes. Narrow band LEDs can be 

created by integrated optical bandpass filter structures. Chapter 5 mentions narrow 

bandpass filters in detail. The fabricated bandpass filters can be integrated onto III-nitride 

nanowire LEDs to achieve an ultra-narrow emission. 
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FULL-COLOR INGAN/ALGAN NANOWIRE µLEDS GROWN BY MBE: A 

PROMISING CANDIDATE FOR NEXT GENERATION MICROLED DISPLAYS 

 

 

2.1 Introduction 

 
 

A display using inorganic μLEDs as self-emissive pixels is called the µLED display. This 

display technology has recently been intensively investigated due to its great potential for 

tech gadgets such as Apple watches, smartphone screens, television screens, billboards, 

Google glass, and virtual reality devices. Considerable efforts have been poured into 

research and development to bring µLED display technologies to the market [80-84]. The 

increasing demand for μLED displays in high-tech gadgets has received much attention 

from academia and industry since early last decade. Achieving μLEDs displays requires 

several critical stages [85] consisting of making μLEDs, transferring them to the backplane, 

and precisely controlling individual tiny LEDs [86-88]. The first essential step is to have 

the right RGB μLEDs satisfactory for the µLED display requirements. The μLEDs need a 

long lifespan, superior brightness, high efficiency, and durability. Different approaches for 

making RGB and white color μLEDs to form a full-color micro-pixel in the μLED displays 

were reported [67, 89-91]. The monolithic µLED display based on III-nitride nanowire 

μLEDs is promising since it allows more direct control of the emissive wavelengths of the 

LEDs. The emission wavelength of the nanowire μLEDs can be controlled by changing the 

indium composition in the InGaN active region. This can be executed by adjusting the 

epitaxial growth conditions including the growth temperature and/or In/Ga flux ratios [92-

95]. The energy bandgap of InGaN compounds can be varied from 3.40 eV (GaN) to 0.69 
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eV (InN) [16], covering the full visible region for display applications. Therefore, GaN 

based nanowire μLEDs become a potential candidate for developing novel µLED displays 

[83]. 

Conventional planar GaN based LEDs are used in everyday lighting and automotive 

headlights. However, their poor operating efficiency and efficiency degradation in the 

green to red spectra have limited their potential. The presence of polarization fields [96, 

97], Auger recombination [98, 99], poor hole transport [100], defects/dislocations [101, 

102], and electron leakage and electron overflow [103-105] are the main causes of these 

above drawbacks. In this regard, nanowire heterostructures are intensively studied as an 

alternative candidate for the high efficiency LEDs. Unlike conventional thin-film 

structures, nanowires exhibit numerous distinct advantages, including dramatically 

reduced strain-induced polarization fields and dislocation densities due to the effective 

lateral stress relaxation. Moreover, the micro-size nanowire-based LEDs can be much more 

efficient in heat dissipation due to the reduced current spreading resistance and thereby 

resulting in an increase in injection current levels [106-108]. The performance of the 

nanowire LED is expected to be better than their thin-film counterparts. III-nitride 

nanowire LED is predicted to be far superior to the OLED and planar LED in terms of 

reliability, energy efficiency, moisture resistance, and miniaturization [26]. Therefore, 

nanowire μLEDs have emerged as a promising candidate for display applications. In this 

chapter, we demonstrated InGaN/AlGaN nanowire µLEDs in different sizes using MBE 

growth and conventional steps of micro/nano fabrication. Such nanowire µLEDs exhibit 

strong and stable emissions in visible wavelengths from blue to red colors. Moreover, 
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phosphor-free white-color µLEDs have also been demonstrated with a highly stable 

emission. 

Generally accepted size of µLEDs is from 100 µm or smaller while mini-LEDs and 

conventional LEDs are about 100-300 and larger than 300 µm, respectively [109]. One of 

the first µLEDs was reported by Lin et al, which has an emissive window of 100-200 µm 

[110]. Later, Jiang et al. demonstrated 15×15 blue µLED arrays and each µLED has 12 µm 

in the diameter emissive window for blue emission only, not full color [111]. For full color 

µLEDs on silicon substrates, Liu et al reported µLEDs pixel size of 50 µm and pixel pitch 

of 70 m [84]. The smaller size of full color µLEDs were demonstrated with quantum dot 

color converting technology [112]. Also, 75 µm × 75 µm µLEDs were demonstrated with 

top-down method using conventional nano/micro fabrication process on thin-film planar 

LED structure [113]. Although the size of µLEDs could be reduced down to 10×10 µm2 in 

the lab-demonstrated experiments, the degradation of performance due to surface effects 

can reduce the reliability of the display [114]. Also, the mass production is challenging. 

The commercialization of µLED displays still needs years to be widely seen on the market. 

 

2.2 Experimental Details 

 
 

Vertically aligned InGaN/AlGaN core-shell nanowire μLEDs were grown by PAMBE in 

a Veeco Gen II system. Silicon and magnesium dopants were doped to grow n-GaN and p-

GaN segments, respectively. During the epitaxial growth process, the nitrogen flow was 

kept at 1 sccm and the plasma power was controlled at 350 W. The GaN segments were 

grown at 750 °C, while InGaN/AlGaN quantum wells in the active region were grown at 

lower temperatures, in the range of 580–650 °C to enhance the indium incorporation. The 
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nanowire μLEDs consist of GaN:Si grown on a silicon substrate and the GaN:Mg on the 

top. The ten couples of quantum wells were grown in the active region. Each quantum well 

includes a 3 nm InGaN dot and 3 nm AlGaN barrier. During growth of the AlGaN barrier, 

the AlGaN shell is spontaneously formed, enabling unique core-shell layers [115, 116]. 

The emission color of the μLEDs can be controlled by adjusting the Ga/In flux ratios and 

the substrate temperature during the MBE growth. For instance, the peak emission 

wavelengths can be shifted from red to blue by gradually increasing the growth temperature 

of the InGaN active region from 580 °C to 650 °C with a ramping rate of 10 °C/min. The 

nanowire length is controlled by the growth duration. Further information of the core-shell 

nanowire structures and MBE growth can be found elsewhere [116-120]. 

Figure 2.1a presents the schematic structure of a single InGaN/AlGaN nanowire on 

a Si substrate. Figure 2.1b shows a scanning electron microscope (SEM) image of 

InGaN/AlGaN nanowire LEDs taken under a 45° tilted angle. The SEM shows that the 

nanowires are relatively uniform across the substrate. Figure 2.1c illustrates the 

microscopic image of the fabricated μLEDs. 

The μLED’s emissive window has a diameter of 50 μm, which connects with the 

square electrode pad. The μLEDs were fabricated using standard photolithography, dry 

etching and contact metallization techniques, which are described elsewhere [27, 95, 119, 

121, 122]. During the fabrication process, μLEDs with 30 μm to 100 μm in diameter were 

defined by standard photolithography. The μLEDs with a diameter of 50 μm were chosen 

for characterization. 
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Figure 2.1  (a) Schematic structure of nanowire μLEDs with a ten InGaN/AlGaN quantum 
well heterostructure; (b) the 45° tilted SEM image of InGaN/AlGaN nanowires on Si 
substrate; and (c) optical image of μLEDs. 

 
 

2.3 Results and Discussion 

 
 

Figure 2.2 shows the normalized photoluminescence (PL) spectra of the InGaN/AlGaN 

core-shell nanowires. The measurement was performed at room temperature with a 405 nm 

laser excitation source. It clearly shows that strong red, green, and blue emissions were 

recorded at 645 nm, 550 nm, and 475 nm, respectively. The current-voltage characteristics 

of RGB μLEDs were characterized. The turn-on voltages increase with the decreasing 

indium composition in the active region of the nanowires. The less indium composition, 

the higher energy bandgap, makes the light emissions shift toward the blue region. The 

higher energy band gap makes turn-on voltages increase [6], as clearly shown in Figure 

2.3. The turn-on voltages of the red, green, and blue μLEDs are approximately 1.6 V, 3.5 
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V, and 4.6 V, respectively. The I-V characteristics also indicate that the devices with a low 

resistance and good fabrication processes have been achieved. 

 

 

Figure 2.2  Photoluminescence spectra of the red, green, and blue (RGB) InGaN/AlGaN 
nanowire µLEDs measured at room temperature. 

 

 

Figure 2.3  Current-voltage characteristics of the RGB μLEDs. 
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Figure 2.4  (a) The electroluminescence characteristics of the fabricated blue μLED; (b) 
green μLED; (c) red μLED; and (d) white μLED. The corresponding optical images of these 
μLEDs are presented in the insets. 
  

 
The electroluminescence (EL) spectra of these μLEDs are presented in Figure 2.4. The 

measurements were conducted at room temperature using pulse biasing conditions from 50 

mA to 350 mA to reduce the heating effect. Strong red, green, and blue emissions were 

recorded at 645 nm 550 nm, and 475 nm for the RGB μLEDs, respectively. Illustrated in 

Figure 2.4a, highly stable emissions with negligible shift in peak wavelengths were 

measured for the blue μLED with an injection current from 50 mA to 350 mA, attributed 
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to the greatly reduced QCSE [123] by using nanowire structures. Shown in Figure 2.4b and 

2.4c, the blue shifts of about 1.5 nm was measured for the green and 3 nm for the red 

μLEDs. That values are significantly smaller than those of planar quantum well LEDs 

operating in the same spectral regime. A summary of the peak emissions of the RGB 

μLEDs is shown in Figure 2.5. 

 
III-nitride based planar LEDs operating in the green or longer wavelengths are 

prone to the blue shift with high driving currents due to QCSE [123]. However, using the 

nanowire structure, the RGB μLEDs have stable center wavelengths at 645 nm in red, 550 

nm in green, and 475 nm in blue due to the negligible QCSE, meaning that the lattice 

mismatch induced strain and efficiency droop are free [124].  

 

 

Figure 2.5  The peak emissions of red, green, and blue μLEDs measured under different 
injection currents from 50 mA to 350 mA. 
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We have also demonstrated white-color μLEDs with strong emission by 

engineering the emission wavelength of the core-shell nanowire structure. The white light 

emission covers an approximately entire range of the visible spectrum from 450 nm to 800 

nm. Moreover, the white-color μLED exhibits a stable emission with a small blue shift of 

~ 4 nm for injection currents from 50 mA to 350 mA. The stable emission characteristics 

of the phosphor-free white-color μLEDs are further illustrated in the 1931 Commission 

International l’Eclairage chromaticity diagram in Figure 2.6.  

 

 

Figure 2.6  The 1931 Commission International l’Eclairage chromaticity diagram presents 
a stable white light emission of the phosphor-free white-color InGaN/AlGaN nanowire 
μLED. 

 
 
The x and y values are derived to be in the ranges of ~0.351‒0.362 and 0.391‒

0.398, respectively. The phosphor-free white-color μLEDs exhibit nearly a neutral white 
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light emission, with correlated color temperature of ~ 4850 K. Additionally, a very high 

color rendering index (CRI) of ~ 94 was measured for this phosphor-free white-color 

μLED, which is extremely difficult to achieve using planar LED structures. 

Currently, phosphor-based white LEDs have CRI values in the range of 80–86 

[125-128]. With some special design of phosphor converters, the CRI of these types of 

white LEDs can reach 90–97 [129-133]. However, the complicated fabrication process of 

these white LEDs and the device reliability are major concerns. To the best of our 

knowledge, up to this moment, the CRI value for white-color μLEDs have not yet been 

reported, possibly due to the complexity of the device fabrication for such μLED devices. 

In this regard, our full-color and phosphor-free white-color μLEDs are highly desirable for 

the next generation μLED display technology. 

 
 

2.4 Conclusion 

 
 

We have successfully demonstrated μLEDs using InGaN/AlGaN core-shell nanowire 

heterostructures grown on silicon substrates by MBE. Strong and stable emission from full-

colors and white-color were recorded from these μLEDs. The color properties of the 

μLEDs can be optimized by controlling the spectral distribution of the μLEDs. Using 

nanowire structures, we have achieved phosphor-free white LEDs with unprecedentedly 

high CRI of ~ 94. The high performance and stable operation of the RGB μLEDs show 

promise in monolithic μLED displays. Generally, the high cost of current displays is a 

bottleneck for the market growth. Due to the progressive demand for electronic devices, it 

is expected to provide lucrative growth opportunities for the micro-display market. In this 

regard, using the selective area growth approach, RGB subpixel μLEDs can be integrated 
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on the same chip, eliminating the current pick-and-place process, which requires precisely 

controlling procedures. Therefore, high efficiency, high color rendering properties, and low 

power consumption μLEDs using GaN nanowire heterostructures are perfectly suitable as 

an alternative replacement of current display technologies. 
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AlGAN NANOWIRE ULTRAVIOLET LEDS 

 
 

3.1 Introduction 

 
Ultraviolet light with wavelength from 10 nm to 400 nm is the electromagnetic waves 

staying in between the X-ray and visible region. Ultraviolet light is well known with 

considerable applications in water and wastewater sanitation [4], disinfection [1, 7, 134], 

polymer curing [135], non-destructive investigation [136], food technology [3], agriculture 

[5]. The conventional UV light sources are mostly based on mercury vapor lamps and gas 

discharge lamps. These lamps are bucky, high energy consumption, short lifetime, limited 

in wavelengths, and non-flexibility. Therefore, the search for a new type of UV light 

sources is essential for bringing benefits of the UV technology to human life. UV LEDs 

have been emerging not only as a replacement of the conventional UV light sources, but 

also as a drive force for UV based novel applications. Compared to conventional UV light 

sources, UV LEDs offer many advantages such as compactness, fast turn-on, low energy 

consumption, long lifetime, high flexibility, and environmentally friendly. The UV LED 

helps to cut the cost of UV light source production and provide a wide range of novel 

applications. 

Figure 3.1 presents numerous applications from AlGaN UV LEDs. In this chapter, 

the study focuses on UV LEDs operating at wavelengths from 290 nm to 330 nm. These 

UV LEDs are very useful because, as UVB region, they are beneficial for vitamin D 

deficiency [137] and widely used in phototherapy [138], in bacteria disinfection [1], and 

money validation [139]. 
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Figure 3.1  Applications of ultraviolet light in different wavelength regions. 
 
 

Among some materials for UV LEDs such as ZnO [140], III-nitride alloys are the 

most promising candidate for UV emitters and AlGaN is the material of choice due to its 

inherently wide tunable bandgap energy. When the bandgap energy of AlxGa1-xN varies in 

the range of 3.40 eV (GaN) to 6.20 eV (AlN), the corresponding wavelengths are from 207 

nm to 365 nm, respectively [15]. The energy bandgap of AlxGa1-xN is estimated from the 

formula: 

 

 𝐸 = 𝑥𝐸𝐴𝐼𝑁 + (1 − 𝑥)𝐸𝐺𝑎𝑁 − 𝑏𝑥(1 − 𝑥)      (1.6) 

 

Where bowing parameter, b = 0.94 is chosen [141]. 

The UV LEDs have been found for a wide variety of potential applications in 

healthcare, water purification, disinfection, and spectroscopy [142]. However, as shown in 
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Figure 3.2, current UV LEDs have low EQE due to a low IQE and LEE [27, 143]. The 

reported EQE of UV LEDs operating below 300 nm is smaller than 10%, preventing UV 

LEDs from becoming a replacement for the bulky mercury-based UV lamp for tremendous 

practical applications. Therefore, the successfully developed high-efficiency AlGaN UV 

LEDs are considered the next disruptive technology for solid-state lighting after the visible 

white LEDs. 

 
 

 

Figure 3.2  The low EQE of UV LEDs, adopted before 2011 and additionally updated 
values. 
Source: [135] 

 
 
Given in Equation (1.5), EQE is directly proportional to IQE and LEE. To have a 

high value of EQE, the idea is to increase IQE and LEE. To improve IQE is strictly related 

to several factors such as crystalline quality, carrier density in the active region, heat effect, 
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polarizations, and current spreading. All these factors are remaining issues in the synthesis 

of the LED structure and fabrication processes [2], but we can improve EQE through LEE. 

Due to the multiple internal reflection and high absorption, UV LEDs suffer from 

low LEE, especially from planar UV LEDs. UV LEDs emit photons from the active region 

in two modes: transverse magnetic (TM) and transverse electric (TE) fields. The TM 

emissions are photons propagating along in a horizontal direction. Photons in the TM mode 

emission have the electric fields parallel to the axial nanowire. The TE mode, on the other 

hand, propagates along the vertical directions with oscillating electric fields parallel with 

the plane of the substrate (c-plane). Since the TM mode emissions become dominant in 

high Al-rich III-nitride composition UV LEDs, the increasing internal reflection and 

absorption become an issue, reducing LEE. 

 

 

Figure 3.3  The TM and TE mode of the light emission in nanowire LEDs. 
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There are several methods to improve LEE. The patterned substrates [144], rolled 

up nanotubes [145], surface roughing [146] and photonic crystal patterns [147] have been 

used to enhance the LEE of UVB LEDs. With nanowire UV LEDs, the nanowires could 

be implemented as a photonic structure when using periodic nanowires to increase the LEE 

[148]. Herein, we present the numerical investigation of the periodic nanowire structure as 

a photonic crystal to improve the LEE.  

 
 

3.2 Simulation and Experiment 

 
 

We show the method for optical enhancement of nanowire UV LEDs using periodic 

photonic structures and demonstrate AlGaN nanowire UV LEDs with MBE growth. The 

AlGaN nanowire heterostructures were grown on <111> Si substrates by the PAMBE 

system under nitrogen rich conditions. Figure 3.4 depicts the schematic structure of the 

GaN/AlGaN UVB LEDs on Si substrate and the photonic crystal of square nanowires in 

finite-difference time-domain (FDTD) Lumical simulation. The LEE values from 19 

random photonics crystals of nanowires were also calculated for the comparison.  

 

 

Figure 3.4  (a) The illustration of the AlGaN UVB nanowire on silicon substrate; and (b) 
an array of LED nanowires. 
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The LED device of a rectangle array of the nanowires with the size of 2.5 μm × 2.5 μm, 

shown in Figure 3.4b. The device is enclosed by perfectly matched layers (PML) to absorb 

the emission photons without any unexpected reflection off the boundaries [149]. The PML 

has sigma and kappa factors of auxiliary attenuation coefficient set at 0.25 and 2, 

respectively. The meshing was set at 0.25 nm [150]. The light source is a single Gaussian 

spectral dipole. It is inserted in the middle of the device and at the active region of the 

center nanowires. The dominant TM mode polarization in UV LEDs is taken into account 

in the simulation [148]. To optimize nanowire parameters of UVB LEDs for the highest 

output power, the radius of nanowires and center-to-center (c-c) spacing are varied from 

49–69 nm and 165 nm – 200 nm, respectively. The calculated LEE values of square 

photonic crystals and random nanowires are presented in Figure 3.5. 

 
3.3 Results and Discussion 

 
 

 
Figure 3.5  (a) The contours of LEE of the 290 nm; (b) 320 nm LEDs with the changing 
diameter versus c-c spacing; and (c) LEE values of LEDs with the random nanowire 
structures. 
 
 

Different arrangements of LED nanowires were studied. The numeral investigation 

shows that the UV LEDs based on periodic nanowire structures result in a LEE as high as 
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~ 90% and 92% for 290 nm and 320 nm UV LEDs, respectively. LEE from the UVB LEDs 

made of random nanowires is relatively as low as  56%, but it is still higher than the value 

recorded from the AlGaN planar counterpart at the similar emission. 

The contours show that the LEE of 290 nm UVB LEDs is as high as 90% in Figure 

3.6a, which was acquired at a c-c spacing of ~186 nm and nanowires’ diameter of 125 nm. 

Similarly, LEE of ~92% was calculated for 320 nm UV LEDs when the diameter of the 

nanowires is from 125 to 130 nm and the c-c spacing value is from 170 nm and 190 nm, 

shown in Figure 3.6b. The LEE of both types of the UV LEDs are higher than that recorded 

from 19 random structures. The enhanced LEE values especially from the lateral sides of 

the nanowires arise due to the mode coupling within the nanowires. During the generation 

of coupled modes, photons propagating horizontally through the nanowires can be easily 

extracted. The simulation of different nanowires’ morphology points out the optimal 

diameter as well as the spacing between nanowires for the highest LEE. 

Based on simulation results, the MBE growth was controlled for achieving AlGaN 

nanowires with diameter in the range of maximum LEE. The distance between nanowires 

only can be controlled with SAG which is one of our future work. The diameter and density 

of the nanowires in this study were controlled by the substrate temperature and Al/Ga flux 

ratios. The nanowire height was defined by the growth duration. The Al/Ga ratio and/or 

growth temperature conditions were used to control AlGaN nanowires.  

The SEM of AlGaN nanowires is shown on Figure 3.6 where they are relatively 

uniform across the substrate. The nanowires consist of 250 nm n-GaN in the bottom, 

followed by 100 nm n-AlGaN segment and 60 nm quantum well (QW) active region. On 

the top of the quantum well is 100 nm p-AlGaN and 10 nm p-GaN. The samples then were 
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fabricated. The device fabrication of AlGaN UVB nanowire LEDs began with the 

planarization and passivation. The whole fabrication process is presented in Figure 3.7. 

 

 

Figure 3.6  The 45 tilted SEM image of the AlGaN UV LED 
 
 

 

 

Figure 3.7  The fabrication of nanowire UVB LEDs on silicon substrate. 
 

 
The nanowire array was spin-coated with the polyimide resist, illustrated in Figure 

3.7a. This was followed by O2 dry etching to expose the top portion of the nanowires, 
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shown in Figure 3.7b. The metal contact layers including 5 nm Ni/5 nm Au /150nm (ITO) 

were then deposited to form the top metal contacts. 10 nm Ti/100 nm Au and metal-grid 

10 nm Ni/100 nm Au layers were then evaporated on the backside of the Si substrate and 

top of ITO to form the contacts in both sides, shown in Figure 3.7c. 

Optical properties of UV LEDs were examined using a 266 nm laser diode as the 

excitation source. The duration, maximum energy, and repetition rate of the laser pulse 

were set at 7 ns, 4 uJ, and 7.5 kHz, respectively. To eliminate light intensity from the laser 

source, a long pass filter (> 270 nm) was placed in front of the spectrometer. The 

normalized PL spectra of multiple AlGaN UVB nanowire LEDs measured at room 

temperature show emissive peaks at 290 nm, 300 nm, 320 nm, and 330 nm, presented in 

Figure 3.8. 

 

 

Figure 3.8  Photoluminescence of nanowire LEDs with the peak wavelengths of 290 nm, 
300 nm, 320 nm, 330 nm at room temperature, respectively. 
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As seen from the corresponding plots, these emissive peaks match the designed 

wavelengths of the light excited from the nanowire LEDs. Expected Al composition in the 

AlGaN wells was achieved by keeping the growth process at different temperatures and/or 

changing the flux ratio of Al/Ga. A higher Al percentage achieves a shorter wavelength of 

UVB LEDs. Thus, emissions from 290 nm to 330 nm were realized as increased Al 

composition in the active regions. 

The EL spectra from device area of 500×500 μm2 were measured at room 

temperature using the Ocean Optics spectrometer (USB 2000) at injection currents from 

50 mA to 400 mA under pulsed biasing conditions (~1% duty cycle) to minimize the 

junction heating effect. 

 

 

Figure 3.9  (a) The electroluminescence of the AlGaN nanowire UVB LED with emission 
at 320 nm under injection currents from 50 mA to 400 mA by step 50 nm; and (b) variation 
of peak wavelengths at different current injection levels. 

 
 
The EL spectra exhibit a singular peak at around 320 nm which corresponds to the 

emission from the AlGaN quantum well, shown in Figure 3.9a. Additionally, illustrated in 

Figure 3.9b, the emission peaks are similar, as the injection currents were increased from 
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50 mA to 400 mA. The EL spectra show the negligible blue shift under that range of 

injection currents. The very small shift of about 1.5 nm emphasizes the absence of the 

internal polarization field due to the effective strain relaxation. It can be observed that the 

device shows a stable and strong emission at 320 nm regardless of injection currents 

without any noticeable emission due to the deep level defects in AlGaN [151, 152]. 

The current-voltage characteristic of the UVB LEDs is depicted in Figure 3.10. The 

fabricated UVB LEDs by MBE growth presents a relatively low resistance with an 

excellent current-voltage characteristic. The defect density, QCSE, and polarization field 

are minimized in the nanowires, resulting in perfect performance of the UV LEDs with a 

very low leakage current of <1mA at a reverse voltage of  -6V. The sharp increase of the 

current in the forward bias confirms the excellent current-voltage characteristic with a low 

resistance. The leakage current can be attributed to the leakage paths due to the inadequate 

insulation between the nanowires and polyimide resist as well as carrier nonradiative 

recombination occurred on the surface of the nanowires [37]. 

 

Figure 3.10  Current–voltage characteristic of the AlGaN nanowire LED. 
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3.4 Conclusion 

 
 
In summary, high performance AlGaN nanowire UVB LEDs grown on silicon substrate 

have been demonstrated. The LEE of the UVB LEDs with square photonic crystals is 

significantly improved, compared to the random nanowires. The UV LEDs hold the strong 

EL intensity with an unnoticeable blue shift. This study has a contribution to addressing 

some of the major issues existing in planar UV LEDs to improve EQE of AlGaN UVB 

LEDs. These high efficiency AlGaN nanowire UVB LEDs are highly potential for novel 

practical applications.  
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HIGH EFFICIENCY NANOWIRE UVA LEDS BY SURFACE PASSIVATION 

 

4.1 Introduction 

 
 
Previously mentioned in Chapter 3, as a solid-state light source, UV LEDs have several 

advantages over the traditional mercury-vapor UV lamps such as compactness, high 

mechanical and chemical stability, low power consumption, and long lifetime [135]. The 

AlGaN compound has drawn significant attention for making UV LEDs because their wide 

direct bandgap energy can be finely tuned from 6.20 eV (AlN) to 3.40 eV (GaN) [17, 18] 

by varying the Al and/or Ga contents. The corresponding emission wavelengths of AlGaN 

LEDs virtually cover the entire UV regime from 206 nm to 365 nm. Similar to the visible 

LEDs which have with numerous practical applications such as general lighting [24, 153], 

displays [28, 109, 154], agriculture [155] and food processing [3], the UV LEDs can be 

considered for a wide variety of potential applications including airborne surface 

disinfection [60], water purification [156], food processing [10], medical applications 

[157], nondestructive inspection, photopolymer curing, and spectroscopy [8, 158]. 

However, due to the lack of the native substrate, AlGaN thin-film UV LEDs are usually 

grown on lattice-mismatched substrates such as silicon, sapphire, or silicon carbide. The 

differences in the lattice constants and thermal coefficients between the substrate material 

and AlGaN make the grown structures usually present high threading dislocations (TDs) 

[159, 160]. The difference in crystal constants between AlN and GaN also causes high 

mismatched induced polarization and TDs within AlGaN epilayers [161-164]. Moreover, 
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inefficient p-doping in Al-rich AlGaN due to the high Mg activation energy remains a 

bottleneck in achieving high efficiency AlGaN UV LEDs [165-167]. These drawbacks lead 

to significantly low IQE [168]. Furthermore, internal absorption and high internal total 

reflection reduce the LEE of such AlGaN UV LEDs [28, 135, 169, 170]. Although 

significant efforts to improve IQE [171, 172] and LEE [173, 174], the overall EQE of the 

planar UV LEDs given by Equation (1.5) (EQE = IQE×LEE) is still very low, compared 

with the visible LED’s [8, 175]. For instance, the EQE of UV LEDs with the emission 

wavelengths around 300 nm can reach up to nearly 10%. However, the EQE of UV LEDs 

with emission wavelength below 300 nm decreases dramatically from less than 4% to 

~0.04% [160], which is extremely low for practical applications [176-178]. In this context, 

AlGaN nanowire structures have emerged as a promising replacement owing to their 

advanced properties. III-nitride nanowires present nearly free dislocations and reduced 

piezoelectric polarization [22, 179] owing to their effective strain relaxation. Furthermore, 

MBE grown AlGaN nanowires have demonstrated a reasonable p-type [33], LEE [180], 

effective thermal dissipation, and reduced polarization. Consequently, high efficiency 

AlGaN UV LEDs can be achieved with the nanowire structures [181].  

However, because of the high surface to volume ratio, the surface states such as 

dangling bonds [182] and surface Fermi level [183, 184] greatly contribute to high surface 

nonradiative recombination of the nanowire LEDs [185, 186], thereby reducing the 

performance of the AlGaN nanowire UV LEDs [22]. The surface passivation is used to 

reduce surface defects, deactivate surface dangling bonds to improve the overall power 

efficiency, reliability, and durability of the AlGaN UV LEDs. 
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4.2 Surface Passivation with Si3N4 and SiO2 

 
 

The Si3N4 and SiO2 are common surface passivation materials in semiconductors. They 

have been used for many semiconductor devices including GaN Schottky diodes, 

heterostructure field effect transistors, and metal-insulator semiconductor (MIS) structures 

[187]. The surface passivation with Si3N4 and SiO2 has been reported for gaining an 

enhancement of the photoluminescence intensity for the GaN surface and reducing the 

leakage current [187]. When Si3N4 passivation was used, the band-bending of the GaN 

heterostructures was reduced [188], proved by the X-ray photoelectron spectroscopy (XPS) 

characterization. A layer of Si3N4 passivation prepared by sputtering has seen an increase 

in the operation stability of GaN LEDs at high temperature [189]. However, another study 

has indicated that hydrogen-free Si3N4 deposition conditions should be implemented 

otherwise the reduced emission efficiency of the passivated GaN LED [190]. When SiO2 

was used for GaN nanowire surface passivation, the blue LEDs result in an increase in 

optical power and reduction in the leakage current [191]. Despite the limited understanding 

of the underlying mechanism of passivation, the enhancement of optical and electrical 

properties of the GaN devices could be attributed to the diminished dangling bondings and 

oxides in the UV LEDs [22]. 

GaN nanowire LEDs grown on Si substrates obtain a high material quality, 

dislocation free, polarization free due to the laterally released strain towards the nanowire 

sidewalls. However, due to the high surface-to-volume ratio of nanowires, the surface 

nonradiative recombination caused by the surface defects is high, reducing the total optical 

efficiency of the LEDs. Furthermore, donor bound excitons proximity the surface [192] 

and band energy bending because of the Fermi level pinning at the surface [193] are other 
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issues. In this study, we numerically studied the passivation of the GaN nanowire LEDs 

with Si3N4 or SiO2 layers to increase the optical power efficiency and reduce the leakage 

current. 

 
 

4.3 Surface Passivation with KOH and (NH4)2Sx 

 
 

Wet chemical surface passivation is a relatively simple method. It has been demonstrated 

to reduce the surface nonradiative recombination from III-nitride devices. Biswas et al. 

performed AlGaN nanowire surface treatment with phosphoric acid (H3PO4) [194]. They 

found that the suppression of the surface states increases the performance and carrier 

lifetime of nanowire UV LEDs. Moreover, Zhao et al. reported that Octadecylthiol and 

Ammonium Sulfide (NH4)2Sx passivation could mitigate Shockley-Read-Hall nonradiative 

recombination in InGaN/GaN disk-in-nanowire LEDs [22]. (NH4)2Sx was used to passivate 

the nanowires with an aim at deactivating dangling bonds, adjusting Fermi level pinning, 

and protecting the nanowires from being oxidized again. Sun et al. found that Potassium 

Hydroxide (KOH) solution treatment can improve AlGaN UV LED’s luminescence by the 

removal of the natural oxides and Al-rich AlGaN shell layer on nanowires’ surface [115, 

195]. Nguyen et al. also reported that using (NH4)2Sx solely can increase the efficiency of 

white InGaN/GaN dot-in-a-wire LEDs [122]. 

 
 

4.4 Surface Passivation of AlGaN Nanowire Ultraviolet LEDs 

 
 
First, we have numerically investigated SiO2, Si3N4, and (NH4)2Sx surface passivation for 

III-nitride nanowire LEDs using the FDTD method. The simulated results show that 
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nanowire UV LEDs with (NH4)2Sx passivation have the highest LEE. Therefore, (NH4)2Sx 

is selected for further experimental process. The passivation with a combination of KOH 

and (NH4)2S has been conducted on AlGaN nanowire UVA LEDs. The performance of the 

335 nm AlGaN nanowire LEDs after passivation is significantly increased. 

 
4.4.1 Simulation 

 
Nanowire LEDs are assumed to be filled up with the passivation layers of SiO2, Si3N4, and 

(NH4)2Sx. We calculated the LEE of the GaN nanowire LEDs using the commercial FDTD 

Lumerical software. The FDTD method solves the Maxwell equations for electromagnetic 

waves in real time-space. 

 

 

Figure 4.1  The FDTD simulation implemented with square nanowire structures. 
 
 

The thickness of Si3N4 and SiO2 were adjusted to fill the entire empty space 

between the nanowires. A dipole light source at 335 nm was inserted in the active region 

of the LED nanowire. The passivation calculation in three different nanowire 
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arrangements: random, square, and hexagonal structures. The refractive indices of Si3N4, 

SiO2, and (NH4)2Sx are 2.14, 1.48, and 1.47, respectively. Figure 4.1 shows the FDTD 

simulations structure. The LEE was recorded with the detectors around the structure and 

simulation time was set up to 2000 picosecond. The obtained findings from the simulation 

are helpful in the design and implementation of experiments. 

 

Figure 4.2  The illustration of LEE of nanowire LEDs after Si3N4, SiO2, and (NH4)2Sx 
passivation. 
 
 

The dipole light source is considered a non-polarization. We just evaluated the 

passivation based on the achieved LEE. The LEE values were recorded from 41% to 42.2% 

for these surface passivation materials. As shown in Figure 4.2, the (NH4)2Sx surface 

passivation offers the highest LEE of 42.2%. Therefore, (NH4)2Sx was chosen for 

subsequent passivation experiments. By far, surface passivation with Si3N4, SiO2 have 

experimentally demonstrated in several reports using common deposition techniques like 

atomic layer deposition (ALD), plasma enhanced chemical vapor deposition (PECVD), 
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sputtering, or E-beam evaporator. However, the passivation using (NH4)2Sx is relatively 

limited. Also, although chemical surface treatment is highly beneficial, studies are largely 

limited in using only one chemical. To the best of our knowledge, an acid e.g. H3PO4 or a 

base e.g. KOH has an etching effect for the smooth surface [196], but AlGaN is subjected 

to reoxidation. Thus, Sulfide based chemicals was used to form a sulfur atomic layer on 

the surface, preventing the adsorption of oxygen [197]. In this work, the combination of 

KOH followed by (NH4)2Sx surface passivation causes an enhancement in the electrical 

and optical properties of AlGaN nanowire UV LEDs. Compared to the as grown UV LEDs, 

passivated UV LEDs show a fascinating performance. 

 
4.4.2 Experiment 

 
KOH and (NH4)2Sx surface passivation treatment has been found to be improved in the 

electrical and optical performance of AlGaN nanowire UV LEDs. Based on calculated 

intensity, enhancements in photoluminescence at 335 nm (49%), optical output power 

(65%), and electroluminescence (83%) recorded from fully passivated LED5 with respect 

to the as-grown nanowire LED1. These enhancements are attributed to the reduced 

nonradiative recombination on the nanowire surfaces. This study provides a potential 

surface passivation approach for producing high-power AlGaN nanowire LEDs operating 

in the UV spectrum. 

 
4.4.3 AlGaN nanowire growth  

 
The AlGaN UV LEDs nanowires were grown on Si (111) under nitrogen-rich conditions 

using a Veeco GEN II PAMBE system. Illustrated in Figure 4.3(a), the nanowire LED 

structure includes following segments: Si-doped n-type GaN (200 nm)/ n-Al0.36Ga0.64N 
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(150 nm)/ i-Al0.17Ga0.83N (30 nm)/ p-Al0.36Ga0.64N layer (50 nm)/ Mg-doped p-GaN (20 

nm). During the AlGaN nanowire heterostructure growth process, the nitrogen flow rate 

was kept at 1 sccm and plasma power was set at 400 W. The GaN and AlGaN segments 

were grown at 780oC and at 800-850oC, respectively. The Al composition in the active 

region and cladding layers can be varied by Al/Ga flux ratio and controlling the substrate 

temperature. The growth rate of GaN and AlGaN layers are of ~3 and ~2 (nm/min), 

respectively. 

Five AlGaN UVA LED samples denoted as LED1, LED2, LED3, LED4, and LED5 

were developed and characterized. LED1 as the reference sample, is an as-grown AlGaN 

nanowire UVA LED. LED2 has a similar structure to LED1, but it was treated only with 

KOH (30% at 50 oC) for 30 min. LED3 and LED4 were passivated with KOH for 30 min, 

followed by (NH4)2Sx (40-48% concentration at 50 oC) for 10 min and 20 min, respectively. 

LED5 was first treated in KOH for 30 min, followed by (NH4)2Sx passivation for 30 min.  

The photoluminescence characterization was performed on these five UVB LEDs, 

while the electroluminescence, optical power, and current-voltage characteristics were 

conducted on LED1, LED3, and LED5. Since LED2, LED3, and LED4 have similar 

passivation patterns, we chose LED3 to present for these three LEDs. The LED samples 

were then dried in N2 and fabricated following our standard fabrication process. The 

nanowire LED samples were filled up with polyimide by spin coating. Then, polyimide 

was etched by RIE to expose the top of the nanowires for forming the p-type contact. The 

photolithography process was deployed to define the devices’ size and electrode position. 

The detailed fabrication process could be found elsewhere [198]. 
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Figure 4.3 illustrates the schematic structure of the AlGaN nanowire LEDs and 

SEM image of highly uniform nanowire LEDs depicting uniform nanowires across the Si 

wafer. The height of the nanowires is of ~450 nm, and their diameter is in the range of 100-

120 nm. 

 

Figure 4.3  (a) The schematic structure of the AlGaN nanowire UVA LED on Si substrate; 
and (b) an SEM image of nanowires under 450 tilted with the height of nanowires around 
450 nm. 
 

 
4.4.4 Photoluminescence characteristics 

 
Figure 4.4 shows the room temperature photoluminescence (PL) characterization of all five 

AlGaN nanowire-based UVA LEDs (with and without surface passivation). The 

measurements were carried out using a 266 nm laser source as the optical excitation. Three 

distinct peaks are clearly shown at 365 nm, 335 nm, and 295 nm. The peak emission at 365 

nm originates from n- and p-GaN segments, while the main peak at 335 nm is the emission 

from the Al0.17Ga0.83N active region. The shortest peak at 295 nm related to the emission 

from the n- and p-Al0.36Ga0.64N cladding layers. The PL spectra also show a slight shoulder 
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at 312 nm, which stems from the defect associated radiative recombination normally 

observed in doped AlGaN [151, 198, 199]. 

 

Figure 4.4  The PL spectra of as-grown nanowire UV LED1 and passivated nanowire UV 
LED2, LED3, LED4, and LED5. 

 
 
We have found that KOH and (NH4)2Sx surface treatments could improve the PL 

intensities of the nanowire UVA LEDs. LED5 yields the highest PL intensity, while as-

grown UVA LED1 produces the lowest PL intensity. LED5 presents an increase in PL 

emission by 49%, compared to as-grown LED1. With a similar 30 min KOH treatment, a 

longer (NH4)2Sx treatment makes the UVB LEDs stronger PL intensities. Particularly, 

LED2, LED3, and LED4 were treated with (NH4)2Sx for 10, 20, and 30 min, respectively, 

the PL intensity of LED4 is higher than that of LED3 and the PL intensity of LED3 is 

higher than LED2’s. The PL intensity enhancement is not significant for the LEDs treated 
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in (NH4)2Sx for longer than 30 min. Therefore, LED5 was selected as the last set of the 

experiment for the presenting in this study. 

The enhanced PL intensities are observed for all dominant peaks at 365 nm, 335 

nm, and 295 nm, which are associated with n- and p-GaN segments, Al0.17Ga0.83N active 

region, and Al0.36Ga0.64N cladding layers. The PL intensity improvement is attributed to 

the suppression of the native oxides and defects on the surface of the nanowires. These 

reduced surface defects in turn suppress nonradiative recombination on the surface of the 

nanowires [184] thanks to the neutralized surface bonds [200, 201], the removal of the 

outermost oxides, and reduction of the surface nonradiative recombination velocity [200]. 

The results agree well with other studies reported for the enhanced PL intensities of AlGaN 

[194, 202] and InAs nanowires using KOH and (NH4)2Sx passivation techniques [201]. A 

combination of KOH and (NH4)2Sx treatment shows a significant improvement in PL 

intensity in UVA LEDs, compared to those only treated with KOH or (NH4)2Sx. The native 

oxide/defect on the nanowire surfaces could be significantly removed with KOH treatment 

[202]. However, after being treated in KOH, the nanowires are subjected to be oxidized 

again. (NH4)2Sx treatment could form a sulfur atomic layer on the surface, preventing the 

adsorption of oxygen. Moreover, it is capable of deactivated dangling bonds on the 

nanowire surface. Therefore, the combination of KOH and (NH4)2Sx is an efficient surface 

passivation approach to AlGaN nanowires. 

 

4.4.5 Electroluminescence characteristics 

 
Figure 4.5 shows the room temperature the EL spectra of UV LED1, LED3, and LED5 

measured under 8 V forward bias condition. The EL spectra display a single emission peak 

at 335 nm. LED5 produces the strongest EL emission among these UVA LEDs. As grown 
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LED1 exhibits the lowest EL intensity; and LED3 shows a modest relative improvement 

in EL intensity compared to LED1. The EL enhancement of 83% recorded from LED5 

compared with LED1 is attributed to the effective surface treatment with a combination of 

30 min KOH and 30 min (NH4)2Sx. Obviously, from the characterization of these three 

UVA LEDs, the longer (NH4)2Sx treatment results in a better EL emission by suppressing 

the impact of surface states on the radiative recombination in nanowire LEDs [200]. 

 

Figure 4.5  The EL spectra of UV LED1, UV LED3 with 30 min KOH and 10 min (NH4)2Sx 
surface treatment, and UV LED5 with 30 min KOH and 30 min (NH4)2Sx surface treatment. 
 
 
4.4.6 Current-voltage and optical power characteristics 

 
The I-V characteristics and optical power of LED1 and LED5 are presented in Figure 4.6. 

Illustrated in Figure 4.6a, LED5 shows an improved forward I-V characteristic and low 

series resistance, compared to LED1. The improved electrical properties are attributed to 

reduced p-GaN contact resistivity due to the removal of interfacial oxides, and surface 
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defects from p-GaN layer after KOH and (NH4)2Sx treatment [22, 202]. Therefore, the wet 

chemical passivation of KOH combined with (NH4)2Sx can increase the reliability and 

energy efficiency of AlGaN n-i-p nanowire UVA LEDs. 

 

 

Figure 4.6  (a) The current-voltage characteristics; and (b) optical power of LED1 and 
LED5. 

 
 
Figure 4.6b depicts the relative optical power of LED1 and LED5 as a function of 

the injection currents. The optical power of LED5 displays an increase by 65% compared 

to that of LED1. Figure 4.6b shows that the optical power of LED1 achieves slight increase 

upon the injected currents while that of LED5 presents a dramatic increase with the 

injection current increment, suggesting the high effectiveness of passivated AlGaN 

nanowire UV LEDs with KOH and (NH4)2Sx. 

 
 

4.5 Conclusion 

 
 
The simulation results from Si3N4, SiO2, and (NH4)2Sx surface passivation of AlGaN 

nanowire LEDs with the FDTD method indicate (NH4)2Sx passivation is highly potential 
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with LEE up to nearly 42%. The simulation guides the experiment. We have demonstrated 

that wet chemical passivation using KOH and (NH4)2Sx as a promising method to improve 

the performance of nanowire UVA LEDs grown by MBE. Our study shows that a sufficient 

surface passivation could increase the EL, the optical power, PL, and I-V characteristics of 

the AlGaN nanowire UVA LEDs at 335 nm by approximately 83%, 65%, 49%, and 43%, 

respectively. Such electrical and optical enhancements are attributed to the reduction of 

surface nonradiative recombination. A combination of KOH and (NH4)2Sx treatment shows 

promising approach to high efficiency, high power AlGaN nanowire UV LEDs. 
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NARROW BAND LEDS AND APPLICATIONS 

 
 

5.1 Introduction 

 
Artificial light sources with a narrow band emission are extremely important for many 

applications. Laser is well known as an ultra-narrow band light source. However, LEDs 

have been widely used since they exhibit significant advantages including safety, energy 

efficiency, flexibility, compact, chemical and physical stability, and long lifespan [95]. In 

addition, the emission wavelengths could be tuned from the ultraviolet to infrared regions. 

However, the spectrum of LEDs is relatively broad, limiting their practical applications. 

Currently, the EL spectra of III-nitride LEDs have a full width at half maximum (FWHM) 

or spectral linewidth, which is dependent on the injection current, of approximately 30-90 

nm in visible LEDs [13, 28, 37] and around 10-30 nm in UV LEDs [161, 203, 204]. For 

reduced side effects of applications in life science, polymer curing, displays, and 

phototherapy, narrow band LEDs become desirable. For example, DNA and RNA 

molecules have an optical maximum absorption at 260 nm while proteins i.e., tyrosine and 

tryptophan have an intrinsic absorbance peak at 280 nm. Based on that knowledge, 

scientists have developed a method to evaluate the purity of DNA in the testing sample 

using polymerase chain reactions (PCR). Which is known as the A260/A280 ratio, in which 

A is the absorbance [205]. 

In addition, narrow band LEDs generate light within a particular small bandwidth 

and highly potential in attempts to technical applications or visual acuity. Narrow band 

LEDs allow the applied science of color to be used for the development of high quality, 
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flexibility, optical-electronic platforms for narrow spectrum luminaires without using 

external bandpass filters. Narrow band LEDs, thus, would benefit specific demands in 

healthcare, scientific research, manufacturing industry, and disinfection, and other 

sophisticated lighting applications in art exhibition, cleanrooms, surgery rooms. For 

instance, 405 nm visible LEDs can continuously disinfect airborne and surface at the same 

time of lighting, leading to healthy environments for human beings [206]. 

Narrow band LEDs can be fabricated by adding a bandpass filter, quantum dots, 

nanostructures, photonic crystal gratings, or phosphors [207, 208] into LED structures. 

Among them, all-dielectric and metal dielectric multilayers are common types of bandpass 

structures [209]. All-dielectric structures work well for visible wavelengths while the latter 

is for the UV region. The operational principle of these bandpass filters is based on Fabry-

Perot interferometer. The filters allow the desired passband to be transmitted by blocking 

wavelengths in both sides, wavelengths shorter and longer than the passband. The 

suppression bands are resulted by the destructive interference of multipath enhanced 

reflection into the transmitted side. The metal-dielectric multilayers also reduce unwanted 

wavelengths by the absorption. If the more metal layers are used, the transmission is 

reduced. Therefore, the number of the metal layers is limited up to a few layers for a 

reasonable transmissivity [210-212]. 

 
 

5.2 Importance of Narrow Band LEDs 

 
 

The prevalence of narrow band LEDs is rapidly growing in the demand of numerous 

applications from lighting to life science and medicine. Narrow band LEDs allow 

sophisticated applications in terms of the spectral emissions. 
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In optogenetics, LEDs play an extremely important role in our life due to the low 

cost, long lifetime, highly flexibility, low electric power consumption, and huge 

applications. The spectral emission of III-nitride LEDs is easily tuned in a wide range of 

wavelengths from the ultraviolet to infrared. LEDs are predicted to become dominant light 

units for optogenetics. Optogenetics is the field in which light is used to control neurons 

on or off for the study of insight into the brain activity and neurological diseases’ 

physiology. The activated or deactivated ion channels are controlled using the interaction 

of light with light-sensitive proteins, allowing deeper understanding of the biological and 

physiological functions or the working mechanism of the nerve cells. This method is also 

an extremely useful tool to study and treat brain-related diseases like Parkinson’s and 

Autism. The triggering wavelength light sources used in optogenetics typically are within 

the visible region. The power of visible existing LEDs is high enough for most of the 

optogenetic applications. 

The stimulation of the neurons is implemented by actuators, light-sensitive 

proteins. These proteins have been injected into the brain of a host. Widely used proteins 

include Channelrhodopsin-2, which is activated with a light stimulation to turn a neuron 

on, and Halorhodopsin used to silence a neuron. New types of proteins, sensitive to 

different wavelengths, have been continuously introduced [213]. Each of these proteins or 

opsins has a unique peak absorbance. For example, Channelrhodopsin-2 can pump the 

metal ions inward when activated under 450–470 nm blue light irradiation. Light-driven 

ion channel Halorhodopsin protein is used to silence neuronal activity. It is turned on with 

632 nm red light illumination to pump chloride inward the cell’s membrane [214]. Another 

sensitive protein, Archaerhodopsin allows protons to move outward if illuminated with 580 
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nm light [215, 216]. Therefore, narrow band LED based light sources would be an optimal 

lighting unit for studies in optogenetics. Especially, when implant LED devices are needed 

for wireless supplied energy [217, 218]. 

In photo curing, UV and visible LEDs have been used considerably in dental 

restoration [219] and hold great promise in industrial curing [220, 221]. In dental 

restoration, light-cured composites like Camphorquinone (2,3-bornanedione) are used 

widely [222]. They are exposed to visible light for photopolymerization. Common LED 

light curing units have become dominant since 2007 [223]. The LED curing efficiency is 

recorded higher than that from the conventional light sources [224]. Although high power 

blue LEDs have considerable advantages, the heating effect is still an issue. The heating 

problem could be reduced by using the narrow band LEDs for the avoidance of unwanted 

photons. Typically, the resin and initiators are based on the Camphorquinone material 

system, which has an absorbance peak at 468 nm. Therefore, narrow band LEDs with 

center wavelength 468 nm yield the most efficiency of curing. Narrow band LEDs have 

proven as a better light source compared to normal LEDs for curing effect [225]. Other 

photoinitiators being developed for dental restoration have a similar curing mechanism. 

They are optimally excited under a certain wavelength [226] to be broken out into free 

radicals, supporting the monomer polymerization. 

In phototherapy, the advent of the laser light source 1960s, phototherapy became a 

medicine approach for many skin-related diseases. As stated in the section 1.2.3, 

phototherapy was already a well established method in healthcare. The list of diseases that 

can be cured with the phototherapy is continuously explored. Controlling the spectrum and 

intensity of the illumination is the key of the treatment. Today, LEDs are becoming a 
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critical light source for phototherapy in newborn jaundice, psoriasis, and vitiligo [69, 227]. 

Numerous studies indicate that wavelengths between 305 nm and 315 nm cause the most 

effective therapy for psoriasis and vitiligo [228-230], reducing acute and chronic risk. In 

jaundice treatment, bilirubin molecules absorb light highest at peak of 460 nm to change 

the molecular structure from trans- to cis-isomers [231]. As a result, narrow band LEDs 

around 460 nm with an abrupt attenuation at shorter and longer wavelengths can reduce 

side effects to the infants [232, 233]. Most of the existing phototherapy instruments for 

jaundice such as the Lullaby LED phototherapy system developed by GE Healthcare are 

based on LEDs. LED based phototherapy has also found impacts on oral mucositis where 

880 nm [234] or 670 nm [235] irradiation are used for the treatment. Especially in wound 

healing, a wide range of wavelengths from the UV to red regions is needed during the 

treatment depending on stages of the wound healing. Such rapidly increased phototherapy, 

the narrow band LEDs would play an essential role in the future. In this work, narrow band 

LEDs were made on the purpose of wound healing phototherapy. 

 
 

5.3 Methods to Obtain Optical Narrow Band LEDs 

 
 

Narrow band LEDs can be produced by the integration of a bandpass filter into an LED 

structure. The emission from the normal LED will transmit through the integrated bandpass 

filter and the spectrum at the end is within a narrow band of wavelengths. The optical 

bandpass filter, as an enabling device, one of the most common optical components. It 

possesses a narrow transmission band of wavelengths by blocking the shorter and longer 

wavelength regions in both sides of the passband. The conventional bandpass filters are 

achieved by combining a short pass and long pass filter. The overlapping region of these 
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two passbands results in the passband of wavelength. However, in such a way, the passband 

is usually broad. Also, this method hardly achieves any desired passband because of the 

difficulty of finding materials for the right longwave pass and shortwave pass filters in the 

combination. These issues can be addressed with the interference bandpass filter. 

Based on the interference phenomenon, the bandpass interference filter is very 

flexible in the design for nearly any narrow passband emission. In the visible wavelengths, 

the all-dielectric multilayers are commonly used while in the UV wavelengths, metal-

dielectric multilayers are commonly used as UV bandpass filters. 

 

5.3.1 All-dielectric multilayer bandpass filters 

 
The structure of all-dielectric multilayers is one of the most common bandpass filters. It 

operates basically on the principle of the Fabry-Perot interferometer [209]. An all-dielectric 

filter structure consists of alternative high and low optical index dielectric transparent thin-

film layers to take advantage of the interference. The simplest and the original Fabry-Perot 

filter includes two metal mirrors, which are separated by an air gap, called a cavity [210]. 

The all-dielectric single cavity bandpass filter, however, replaces the air gap with a 

transparent dielectric layer which is sandwiched by two parallel coating layers with a 

higher optical index. These parallel coating layers play the role of the mirrors whose 

reflection sides face each other. The incident light undergoes multiple reflections between 

the reflecting surfaces. The thickness of the cavity and the angle of incidence of the light 

beam define the interference of the reflected beams; construction or destruction. The 

reflected light rays experience constructive interference when the cavity optical thickness 

is equal to an integral of a half wavelength. In other words, the bandpass interference filter 

is designed to reduce the reflection of the expected passband wavelengths. Such all-
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dielectric thin-film multilayers offer enormous design flexibility in designing visible and 

near-infrared bandpass filters. 

The all-dielectric bandpass filters are usually a pair of high and low transparent 

dielectric. For example, the pairs of SiO2/Si3N4, SiO2/TiO2, ZnS/Na3AlF6 are widely used 

for visible bandpass filters. The advantages of all-dielectric bandpass filter is that it can 

produce nearly any passband with an exceedingly narrow bandwidth.  

 

 

Figure 5.1  The structure of a single cavity metal-dielectric bandpass filter. 

 

 
  

                          𝑚𝜆 = 2𝑑𝑐𝑜𝑠𝜃 
 

(5.1) 

 
 
In which d is the optical thickness, m = 0, 1, 2, and 𝜃 is the angle of incidence. 
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The all-dielectric single cavity filter usually obtains a relatively broad passband emission. 

To achieve a narrower passband, multiple cavity multilayers are used. The thickness of 

layers is changed to achieve an optical matching. Given that the interference depends on 

the wavelengths and difference of the light path. Thus, the passband characteristics of the 

filter depend on the wavelength and angle of incidence. 

The structure of alternative dielectric multilayers could be deposited on a wide 

range of substrates such as silicon, sapphire, glass, and fused silica, using different coating 

techniques including PECVD, sputtering, E-beam evaporator, and so on. The bandpass 

filter structure could be applied for photodetectors, lasers, LEDs, solar cells, and cameras 

although there are some limitations related to the spectral shift by different angles of 

incidence and operating temperature needed to be taken into account. 

 
5.3.2 Metal-dielectric multilayer bandpass filters 

 
The all-dielectric bandpass filters work well for the visible and near-infrared bandpass 

filters, but the metal-dielectric multilayers are the favorable structure for the UV filters. 

Although all-dielectric bandpass filters were demonstrated for UV bandpass filters [236], 

the lack of low and high index pairs of the dielectrics in the UV wavelength makes it hard 

to develop UV bandpass filters for any desired wavelength. To achieve the out-of-band 

rejection, several all-dielectric structures need to be combined for overlapping stop bands. 

Occasionally, an absorptive metal layer is added to block unwanted wavelengths and the 

consequent transmission band is low. Also, the fabrication of all-dielectric with an 

additional metal coasting is complex. In many applications such as UV detectors, it is 

expected that if light is not transmitted, it should be absorbed rather than reflected. 
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For that reason, the structure of the metal-dielectric multilayer bandpass filter is 

dominantly used in the ultraviolet. The metal-dielectric filter presents an excellent 

capability of blocking the out-of-band wavelengths and allows for a desired passband 

transmission. The transmission spectrum is typically not a rectangular shape due to gradual 

cut-on and cut-off slopes. Also, the narrow band of the metal-dielectric bandpass filter 

could be obtained by increasing the thickness of the dielectric layers so that the 

construction of multiple beams could happen at higher interference modes [209]. However, 

if the dielectric layers are too thick, the roughness of the layer will increase in the 

deposition. The high rough surface will widen the spectrum of the filter while the high 

scattering increasing to corresponding larger thickness reduces the bandpass transmission 

[209]. 

In real filter devices, the number of layers of a metal-dielectric UV bandpass filter 

is chosen by considering the compensation of the transmissivity and narrow band width for 

particular applications. The thickness of the dielectric and metal layers are adjusted to tailor 

the performance of the bandpass filters across the UV region. For example, aluminum is 

highly reflective down to 200 nm so it can be combined with a dielectric such as Al2O3 and 

SiO2 for development of UV bandpass filters operating in the whole UV region. Silver can 

also be used to develop the UV bandpass filter, not below 310 nm due to its highly 

absorbance at wavelengths below that region. The metal-dielectric filters were reported in 

solar-blind ultraviolet detectors, sensors. For example, two cavity Ag/SiO2 multilayer has 

demonstrated 320 nm bandpass, which enables a suppression of visible and infrared 

wavelengths [237]. When the thickness of Ag metal layers is fixed and silica thickness is 

varied, the passband spectrum shifts into the longer wavelength. If the silica thickness is 
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fixed and Ag thickness is increased, the transmission is low and the passband becomes 

narrower. Such properties of Ag/SiO2 agree with another report using Al/Al2O3 [212]. 

When the Al2O3 thickness is varied from 37, 48, and 56 nm, the passband shifts from 200 

to 300 nm. In addition, the two-pair Al/Al2O3 filter results in a higher transmission but 

broader spectral linewidth, compared to that recorded from the three-pair filter. 

Both all-dielectric and metal-dielectric multilayer coatings can be fabricated by 

deposition techniques, namely E-beam evaporator, ALD, MOCVD, PECVD, sputtering, 

physical vapor deposition (PVD), etc. 

 
 

5.4 AlGaN/AlN Nanowire Far-UVC Narrow Band LEDs for Disinfection 

 
 
Narrow band far-ultraviolet C (200-230 nm) LEDs (far-UVC LEDs) are strongly 

detrimental to airborne and surface pathogens while minimally invasive to human health. 

They can be used as a disinfectant to suppress the outbreak of infectious diseases with 

minimum safety concerns. Herein, we investigate a design of the AlGaN/AlN nanowire 

structure in combination with a bandpass filter for a narrow band far-UVC LED at 222 nm 

center wavelength. The LED achieves an ultra-narrow FWHM of ~12 nm after introducing 

a metal-dielectric Fabry-Perot optical bandpass interference filter with three periods of 

Al/MgF2/Al layers. The electrical and optical properties of the nanowire LEDs show the 

high performances with an IQE up to 80% and the maximum power exceeding 10 mW at 

60 mA current injection. This narrow band far-UVC LED is a promising candidate for 

airborne and surface disinfection in occupied spaces to prevent the spread of contagious 

diseases such as COVID pandemic. 
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III-nitride compounds have gained momentum in the research and development of 

LEDs. Far-UVC LEDs, however, suffer from challenges of inefficient Mg-doped p-type 

activation, high spontaneous polarization, and piezoelectric polarization induced by lattice 

mismatch between AlN and GaN. Due to a high density of threading dislocations (over 

108/cm2) resulted by a very high Al amount in AlGaN, far-UVC LED epitaxial layers are 

very limited in the quantum efficiency.  

Nanowire structures with several advantages have emerged as a promising 

candidate for highly efficient far-UVC LEDs. First, unlike thin-film counterpart, since the 

induced strain energy of nanowires can release effectively into its sidewall, grown 

nanowires can attain a low level of threading dislocations and total polarization [38, 238], 

thereby minimizing defects and QCSE [239], compared to the thin-film UV LEDs. Second, 

due to the high surface area-to-volume ratio, the diffusion of atomic Mg acceptors at the 

nanowire’s surface could easily happen, beneficial for a highly doping concentration in 

AlGaN/AlN nanowires [30]. Third, nanowire structure LEDs outperforms their thin-film 

counterpart LEDs in terms of the LEE [173]. Finally, high quality crystalline nanowires 

could be realized on a wide variety of substrates including cost-beneficial Si wafers [179].  

Airborne and surface disinfection are promising applications from far-UVC LEDs 

among their various applications in water/air purification, UV curing, phototherapy, 

biology, and neuroscience [1, 7, 142]. In airborne and surface disinfection in occupied 

spaces, far-UVC LEDs at 222 nm is preferable because 222 nm photons are almost 

absorbed by the human’s dead skin cell layer, thereby being surely harmless to humans 

[240]. In this section, nanowire far-UVC LEDs at 222 nm are investigated with an 

advanced numerical device simulation method to the nanowire LED structure, simple 
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enough for an easily epitaxial MBE growth in the empirical research. Advanced Physical 

Models of Semiconductor Devices (APSYS) software is used to study the performance of 

the UV nanowire LED in this study. The far-UVC LED structure consists of a single 

quantum well in the Al0.855Ga0.145N active region. APSYS is a commercial computational 

simulator which has been widely used in LED design and validation. Its solvers utilize the 

self-consistent solutions of many quantum mechanics equations including Schrodinger, 

Poisson, carrier transport, current continuity, quantum mechanical wave, and photon rate 

equations with suitable boundary conditions. Simulation results yield necessary parameters 

for the evaluation of the LED through its energy band diagram, IQE, current-voltage 

characteristic, output power, etc. 

In terms of airborne surface disinfection, a far-UVC narrow spectrum is highly 

desirable because it can avoid harmful impacts on humans [241] when these wavelengths 

do not penetrate deep into the living cells in the dermis and epidermis layers [242-244]. 

Generally, UVC LEDs usually possess a FWHM of >25 nm. Therefore, to produce a 

narrow spectrum, an integrated bandpass interference filter is necessary to achieve narrow 

band far-UVC LEDs. A filter is designed from a Fabry-Perot structure having the stack of 

Al/MgF2 layers. A starting structure includes three periods of Al/MgF2/Al layers. 

OpenFilters, an open-source software, is used to optimize the bandpass filter by adjusting 

the thickness of each layer. The maximum transmission is achieved over 50% with a 

FWHM of ~12 nm. With two simulation tools, APSYS and OpenFilters, a simple effective 

AlGaN/AlN nanowire structure has been demonstrated for high performance 222 nm 

narrow band far-UVC LEDs for surface disinfection applications. 
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5.4.1 Device structure and simulation parameters 
 
Because the growth of a high crystalline quality of Al-rich AlGaN LEDs with multi-

quantum wells is challenging, so a simple n-i-p LED structure was designed for the far-

UVC LED. This single quantum well nanowire LED is expected to be grown with a high 

crystalline quality.  

 

 

Figure 5.2  The schematic structure of the AlGaN/AlN nanowire far-UVC LEDs. 
 
 

For the simulation study, the advanced numerical device simulation with APSYS 

software is applied to investigate the performance of the n-i-p AlGaN/AlN nanowire UV 

LED at 222 nm. The LED nanowire schematic consists of 300 nm n-AlN/ 40 nm i-AlGaN/ 

100 nm p-AlN/ 20 nm p-Al0.95Ga0.05N, which is considered to be grown on a (111) silicon 

wafer, as shown in Figure 5.2. The n-AlN layer is the Si-doped (nD = 2x1018 cm-3). The Si 

energy activation is set at 15 meV [245]. The active region is an intrinsic Al0.855Ga0.145N 

of 40 nm. The p- region is a Mg doped p-AlN (NA = 2x1018 cm-3) with the thickness of 100 

nm. Finally, a thin p-Al0.95Ga0.05N (NA= 1020 cm-3) is employed on the top of the nanowire 

to form an ohmic contact. The Mg activation energy for p-AlN and p-Al0.95Ga0.05N is set 



74 

 

at 630 meV and 608.5 meV, respectively [245]. To obtain 222 nm emission, 85.5% of AlN 

composition in AlxGa1-xN is calculated from the formula: Where b = 1 is chosen [246]. 

 

 EAlGaN = xEAlN + (1-x)EGaN – bx(1-x) (5.2) 
 

The radiative recombination coefficient is set at 2.13×10-11 cm3/s, Auger 

recombination coefficient 2.88×10-30 cm6/s and the Shockley-Read-Hall (SRH) 

recombination lifetime 15 ns. The interface charge densities are considered to be 50%. The 

LED chip size is 300 μm2. 

 
5.4.2 Results and discussions 

 
The energy band diagram and IQE of an AlGaN/AlN nanowire UV LED are essential 

characteristics for providing an insight into inherent nanowire properties. 

 
 

Figure 5.3  (a) Energy band diagram; and (b) IQE of the AlGaN nanowire far-UVC LED. 
 
 

Figure 5.3a shows the calculated band-energy diagram of the n-i-p AlGaN/AlN 

nanowire far-UVC LED at 60 mA injection current. The inset shows that at the n-AlN/i-
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AlGaN interface, closely toward the n-side, the conduction band is bended down while the 

valence band is curved up. Due to the single quantum well and nanowire structure, the 

strain induced piezoelectric polarization is small, and only the spontaneous polarization 

mainly affects the performance of the device. In order words, the hole and electron carriers 

are accumulated in the same side of the quantum well, so their wave functions are likely 

overlapped, leading to a high radiative recombination rate. Therefore, the IQE is as high as 

~80% at 60 mA injection current, as shown in Figure 5.3b. The IQE increases from 65% 

at 10 mA to reach a maximum value of 80% at 60 mA without efficiency droop. 

 
5.4.3 Current-voltage characteristic and output power 

 

 

Figure 5.4  (a) Current-voltage characteristic; and (b) output power of the AlGaN/AlN 
nanowire far-UVC LED. 
 
 

The current-voltage (I-V) characteristic and the output power are quantitatively 

determined and presented in Figure 5.4. An exponential increase in the injection currents 

as a function of the forward voltage is shown in the curve of Figure 5.4a. When the applied 

voltage is smaller than 5.3 V, the injected current is almost no change. However, a small 
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increase by ~ 0.1 V to 5.45 V in the operation voltage leads to an exponential rise in the 

injection current, from below 5 mA to more than 60 mA, indicating a relatively small 

resistivity value of the far-UVC LED [6]. For example, the bias voltage at 5.35 V (VT), 

defined as the threshold voltage, produces a current of 5 mA, and at 5.45 V, the current of 

60 mA are recorded, respectively. Figure 5. 4b shows a linear dependence of the output 

power on the injection current. The output power increases from 1.75 mW to 10 mW with 

increasing current from 10 mA to 60 mA. 

An optical bandpass filter is a structure that eliminates most wavelengths, except a 

narrow interval with a very high transmission. The narrow spectral LED is ideal for 

airborne and surface disinfection applications since the precise stimulation could be 

achieved when targeted molecules or pathogens merely interact with photons at particular 

energy levels. The LEDs integrated with a bandpass filter would create  narrow band LEDs. 

The bandpass filter is usually developed from a number of metal/dielectric/metal layers. It 

is based on the typical metal-dielectric Fabry-Perot interferometer. Shown in Figure 5.5a 

is the design of a bandpass interference filter, consisting of three Al/MgF2/Al periods after 

the optimization by OpenFilters software [247]. Al and MgF2 are common materials for 

UV bandpass filters. MgF2 transparent in a wide range from 210 nm to 10 m [209] is used 

as the spacer, and aluminum plays a role as mirrors. Al metal is superior reflective in the 

far-UVC wavelength, compared to other common reflective metals [248]. The designed 

bandpass filter includes three MgF2 layers sandwiched by four parallel Al layers. The 

thickness of the filter is of ~265 nm, shown in Figure 5.5a. This bandpass filter is easily 

fabricated and it results in a relatively high transmission, up to 50% at 222 nm with a 

FWHM of ~12 nm, presented in Figure 5.5b. The numerically realized bandpass filter 
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shows promising for narrow far-UVC LEDs. The far-UVC LEDs pave the way for 

effectively disinfecting airborne and surface pathogen organisms without harmful effects 

i.e. phototoxicity in occupied spaces. For example, 222 nm UV LEDs having the FWHM 

of 12 nm, the emissive spectrum is from 209.5 nm to 234.5 nm. Photons in that range of 

wavelengths are highly absorbed by the layer of dead skin cells, so they will be harmless 

to living skin cells. Compared to the longer wavelengths such as 254 nm, 222 nm far-UVC 

LEDs are safer in disinfection since 245 nm UV LED is able to penetrate deep into the 

dermis, causing detrimental health problems [249]. 

 
 

Figure 5.5  (a) The bandpass filter of three periods of Al/MgF2/Al layers; and (b) the 
obtained narrow spectrum from the filter at 222 nm. 

 
 

We have designed a simple n-i-p AlGaN nanowire far-UVC LED, with a single 

quantum well for the emission at 222 nm, targeting for airborne and surface disinfection. 

The IQE of 80%, corresponding output power of 10 mW, and an excellent I-V 

characteristic suggest a remarkable design for AlGaN/AlN nanowire far-UVC LEDs. Such 

far-UVC LED chips are also able to be integrated with a bandpass UV filter for a narrow-
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spectral emission. The FWHM of the obtained narrow band far-UVC LED is as small as 

~12 nm, superior to its current broadband counterparts for the airborne and surface 

disinfection. To that end, the integration of an on-chip optical bandpass filter with the LED 

structures is proposed. The emission of that LED would be very narrow, suitable for 

precision applications including phototherapy. 

An on-chip optical filter is manipulated dedicatedly to make narrow band LEDs. 

The integration of optical filters with a normal LED chip allows a narrow spectrum for 

exactly practical precision treatment. The ultra-narrow band spectra of ultraviolet, visible, 

and infrared LEDs can be achieved by means of deposition of Al/Al2O3 and Si3N4/SiO2 

thin-film multilayers, respectively. With this technique, narrow UV and visible region can 

be sorted out. Before the fabrication of the optical filters, computer-assisted simulations 

from OpenFilters software have been done. 

 
 
5.5 Narrow Band LEDs for Chronic Wound Healing Phototherapy 

 
 
The chronic wound causes a significant burden to patients, physicians, healthcare systems, 

and societies, affect tens of millions of people, and cost billions annually [250, 251]. 

Several existing methods for wound care are almost drugs and wound dressings in 

combination with other advanced techniques such as negative pressure, electric 

stimulation, ultrasound, etc [252]. Phototherapy as an alternative method becomes a 

promising tool for wound treatment when LEDs become highly flexible in terms of the 

spectrum, power, and design. A smart light system based on LEDs was funded by European 

Commission in 2015 for the wound healing purpose [253]. The findings show that 620-750 

nm red spectrum triggers layers of the skin for the growth of keratinocytes and fibroblasts 



79 

 

while the blue 450-495 nm wavelengths enable dominantly antibacterial effects of the skin 

surface [254]. 

Wound healing is a complex but physiologically coordinated process. The wound 

healing typically experiences three stages: inflammation, proliferation, and remodeling. 

Each stage is associated with considerable behaviors and functions from cells, proteins, 

macromolecules, and signal molecules. If a wound is prevented from healing due to some 

risk factors, it will become the delayed healing wound or chronic wound. Some possible 

risk factors are antibiotic resistant infection, diabetes, obesity, malnutrition, bedsores, and 

weakened immune system [255, 256]. As a result, chronic wounds are, but not limited to, 

those infected with antibiotic-resistant bacteria, and associated with diabetes, venous 

insufficiency, bedsores, poor circulation, and weakened immune system [257]. Currently, 

antibiotic-resistant chronic wounds have received much attention due to the challenges and 

threats to the public health and economy [251, 256].  

Recently, LEDs have been extensively studied as an alternative treatment for 

wound healing without side effects compared to antibiotics [258]. To implement a 

phototherapy treatment for wound healing, it requires an illuminating light source, which 

covers a wide range of wavelengths from the ultraviolet to infrared during the treatment. 

Also, the LED light sources could finely emit photons in very different narrow band 

wavelengths for specifically induced healing functions in each healing stage. If external 

bandpass optical filters are applied to create the narrow wavelength illuminations from 

normal LEDs, the phototherapy’ light source is highly probably bulky and expensive. Such 

challenges limit the efficiency of the phototherapy devices and prevent them from 
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ubiquitous applications in hospitals and at home. Therefore, demand for narrow band LEDs 

light sources is very critical for wound healing treatment with phototherapy. 

For that reason and to the best of my knowledge, the combination of visible and 

ultraviolet narrow band LEDs would be the first-ever demonstrated for wound healing. The 

narrow band LEDs could also be used in other phototherapy light units. These units enable 

selectively stimulating multi-biological effects in different wound healing processes. In 

detail, antibiotic-resistant bacteria in chronic wounds such as Methicillin-resistant 

Staphylococcus aureus (MRSA) can be eliminated by UV illuminations. Three main stages 

of inflammation, cell proliferation, and remodeling in wound healing processes could be 

facilitated with visible and UV illuminations later. Because currently available 

phototherapy devices, which are limited in a few wavelength irradiations, are not designed 

for wound healing treatment, the narrow band LEDs based on III-nitride nanowires will be 

the best option for chronic wouns phototherapy. 

 
5.5.1 Impacts of visible and near-infrared light to wound healing 

 
Besides UV light, photons in 400-760 nm visible and near-infrared (760-1000 nm) 

wavelengths show therapeutic effects on wound healing which were proven in studies 

based on model, animals, and preliminary clinical trials [259-261]. In this section, healing 

effects of three primitive colors: red, green, and blue, are studied. Normally, a low 

irradiation can stimulate cell proliferation, wound closure, and scarless healing. 

Surprisingly, a short time intense exposure of the visible light into bacterial-antibiotic 

resistant infected wounds has resulted in a significant reduction of a bacteria colony [260]. 
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a) Red and infrared phototherapy: In 2002, NASA conducted a pilot research into the 

space. Illuminations with red and near-infrared wavelengths (650-1000 nm) were found 

very important in helping healing wounds. [262]. As the long wavelengths, red and near-

infrared photons, in one hand, can penetrate deep into the dermis layer [263] and trigger 

molecules and proteins in the low dermis layer; on the other hand, they are carcinogenic 

free and do not cause mutagenic effects. Red light is known as a metabolism promoter. It 

induces cells to produce more energy with production of more adenosine triphosphate 

(ATP) by bringing about biochemical effects related to mitochondria [264]. The more 

energy the cells acquire, the better a wound can be healed. The red-light irradiation also 

produces the cell proliferation no matter what a wound has been treated with and without 

steroids [265]. A study on incisional and burn wounds of mice has shown that 760 nm LED 

irradiation can accelerate the healing process. Compared with the reference wounds which 

lacked a phototherapy treatment, the wounds treated with the red light enhance epithelial 

migration, suggesting red light illumination for post-operative wound repair [266]. In vitro 

study, an irradiation at 636 nm makes diabetic wounded cells hastened wound closure, 

increased cell proliferation, and normalized cellular function. 

 
b) Green light: Green LED phototherapy has been found to offer beneficial mechanisms 

for wound healing [267]. Migratory and proliferative mediators, known as signals for the 

healing process, have been significantly expressed in excision wounds from mice a few 

days after irradiations with green LEDs. In-vitro studies show that green light could 

stimulate human fibroblasts to highly secrete mRNA, cytokine proteins, and HaCat 

keratinocytes. Min-Woo Cheon et al. implemented 525 nm green LEDs on wounds of male 

Sprague Dawley rats. The findings present clear evidence of the cell proliferation and 
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reepithelization enhanced in the wound bed, and at the same time, the neighboring 

environment is found to have an increase in the cell proliferation [268]. It was found that 

genes related to wound healing, i.e. presents G protein-coupled receptors (GPR) class are 

upregulated after 520 nm (green) irradiation. The GPR class is known as the highly related 

factor to wound healing process [269]. This is the biological beneficial effects of green 

LEDs illumination. Green light also induces stem cells by the activation of signaling the 

pathway stem cell [270]. In the remodeling stage, green light has potential for sealing 

wounds with less scars by the formation of crosslinking within tissues and between tissues 

with the surface. 

 
c) Blue wavelength: Blue light (450 -500 nm) is widely used to treat neonatal jaundice, a 

yellow skin disease in newborns, due to the capability of blue light irradiation in reducing 

the level of bilirubin in the blood [271]. In wound healing, like red and green, blue light 

has received considerable attention. Several studies have confirmed blue light is of 

antimicrobial effects. Many supporting factors such as anti-inflammatory and keratin 

expression associated with wound healing promotion were found after blue light treatment 

[272, 273]. Several antibiotic-resistant bacterial strains including MRSA can be killed 

under 460-470 nm blue LED irradiation [76, 274-276]. Furthermore, blue LED 

illumination can shorten wound healing process by stimulating a higher keratin expression 

and enhanced epithelialization [277, 278]. The LED irradiations at 420 nm have been found 

to facilitate the keratin expression, increased metabolism, and fibroblast proliferation 

[279]. Such biological behaviors are related to wound healing effects. The expression of 

keratin was also found with 470 nm blue treatment [277]. After six days of treatment, full-

thickness wounds have shown an improvement in healing [280], indicating the healing 
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biological effects from blue LEDs. Blue LED irradiations on different types of mice have 

been studied by Giada Magni et al. [281]. The immediate hemostasis and an acceleration 

of wound healing was presented. The blue light irradiation enables immediate hemostasis 

by evidence of rapidly observed coagulation with non-linear microscopic imaging [281]. 

These findings suggest that UV and visible LED phototherapy provides a safe and cost-

effective approach for wound healing treatment. 

 
5.5.2 Impacts of ultraviolet light to wound healing 

 
Ultraviolet light is well known for its infection due to the ionization effects [282-286]. In 

medical significance UV light is divided into three regions: UVC (200-280 nm), UVB 

(280–320 nm) and UVA (320-400 nm). Although prolonged UV exposure can damage the 

skin, a short-term UV irradiation in a controlled dose results in positive effects in chronic 

wound healing wound sites [75, 77, 287].  

Chronic wounds infected with antibiotic resistant bacteria can be treated with UV 

therapy. For example, S. aureus and E. faecalis superbugs in wound sites can be killed or 

deactivated by 254 nm UV irradiation in a matter of seconds [288]. The sterile effect of 

UV light is mainly from UVC, but the UVB and UVA illumination has also contributed to 

killing bacteria in wounds [289]. Bacteria are killed or inactivated by direct or indirect 

mechanisms. The direct damage of UV light to the bacteria’s nucleic acids or DNA [290] 

or the intermediate agents including radicals and reactive oxygen species (ROS). The 

bactericidal effect of the UV irradiation is also verified via a study of the intravenous 

infusion. In addition to the germicide, other biological effects by UV light irradiation have 

been reported. An enhancement of cell signals has been seen by UVA irradiation. The 

boosted immune system and increased vascular endothelial factor receptor-2 signaling 
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have been seen from UVB illumination [291]. UV radiations could facilitate angiogenesis 

[292]. An increase in leukocytes infiltration, VEGF expression, and erythema reduction is 

recorded as well [293].  

It turns out that UV exposure can lead to various biological consequences, 

correspondingly photons at different wavelengths, critical for wound healing. It is 

attributed to the different depth levels of penetration into the skin layers. As a result, UV 

narrow band LEDs are possible for phototherapy lighting units for wound treatment 

regardless of side effects. 

 
a) UVA: UVA (320-400 nm) has the longest wavelength in the UV region, and it can 

penetrate deeper into the skin, compared to UVB and UVC. UVA at 341 nm can penetrates 

60 µm into the dermis layer while 314 nm UVB penetrate only 19.4 µm, and 290 nm UVB 

goes to the depth at 10.9 µm at the layers of the epidermis [294]. The wound healing 

facilitation by UVA modality comes from a precise UVA irradiation in order to induce a 

variety of biological effects in support of the wound healing process. Vascular endothelial 

growth factors (VEGF) as angiogenic factors in the proliferative stage are significantly 

increased after the UVA treatment [294]. Stroma cells in the dermis can be controlled via 

UVA irradiation with the evidence of growth factors for keratinocyte proliferation and 

fibroblasts [295]. UVA is also able to stimulate erythema [296], one of the first 

inflammatory responses in the wound healing process. UVA‐induced signaling factors 

implicate the helpful UVA irradiation in the cell proliferation [296, 297]. UVA irradiation 

is able to activate mast cells (MC), hypergranulation, and induce histamine release ex-vivo 

[298]. Such wound healing effects induced by UVA irradiation clearly indicate the healing 

effects. 
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b) UVB: UVB (280-320 nm) can penetrate to the lowest level of the epidermis and can 

help a wound heal efficiently. It is widely known that UVB illumination support vitamin 

D synthesis. Vitamin D deficiency is one of the reasons delaying healing chronic wound 

illnesses [298-300]. UVB LEDs have been found in support of the synthesis of Vitamin D 

in human skin more efficiently than the sunlight [137]. Moreover, UVB irradiation also 

increases in neutrophils moving into a lesion. Neutrophils function as phagocytes that eat, 

digest, and destroy pathogen microorganisms. An increase in the filtration of leukocytes 

and reduction in erythema are also observed after UVB irradiation [293]. A moderate dose 

UVB illumination is able to express T-Cells, surface markers, and cytokines [301]. It 

means UVB exposure could be used for immune upregulation and inflammation. In 

addition, a moderate dose of UVB irradiation can cause a considerable increase in VEGFRs 

and human keratinocytes in the epidermis [302]. The high presence of secreted VEGFs 

consisting of the deposition of collagen, angiogenesis, and epithelization has been reported 

after UVB illumination [303, 304]. Another study shows that acute UVB irradiation is 

likely to create a supporting environment for the formation of capillary (small blood 

vessels). Such a proangiogenic environment comes from the downregulation of 

thrombospondin-1 [304], supporting angiogenesis growth. The role of UVB in wound 

healing is also supported as the epithelialization in slow-healing wounds [305], and 

angiogenesis [292] are enhanced after the exposure. Antimicrobial effects of UVB were 

also reported in several papers [306-308]. Based on the reported benefits, UVB LED 

irradiation is clearly to benefit wound healing treatment. 

c) UVC: UVC (200–280 nm) light is an ionized radiation so that UVC illumination is likely 

to directly damage DNA and RNA molecules. It also can produce free radicals and ROS 
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throught intermediate events. The germicidal properties of UVC were well reported [156, 

290]. A single UVC exposure enables a reduction over 90% of fungal burden and bacteria 

culture on a burn wound [309]. UVC illumination is found to reduce the bacterial colony 

in antibiotic-resistant infected wounds [75, 287]. Many antibiotic resistant bacterial strains 

such as MRSA, vancomycin-resistant enterococcus (VRE), and Pseudomonas can be killed 

or inhibited by UVC exposure. One report presented that aspergillus, pseudomonas 

aeruginosa, and mycobacterium abscessus are inhibited after 3-15s UVC irradiation. 

Importantly, keratinocytes and other cells are seldomly damaged by such a short period of 

exposure like that [244, 310]. Immediately germicidal effects of UVC irradiation are 

superior to common antibiotics [290]. Consequently, UVC narrow band LEDs could be 

used for phototherapy for chronic wounds caused by bacterial infections. 

 
5.5.3 Design and fabrication of visible bandpass filters 

 
To have narrow band LEDs, the idea is to add a bandpass filter which has maximum 

transmission within the central wavelength of the LEDs. Historically, the design of an 

optical bandpass filter is sophisticated and implemented using graphical methods. Today, 

however, this becomes easier with computer-assisted calculation methods using software. 

The design of optical filters using computers was first demonstrated by Baumeister 60 

years ago [311]. Since then, many methods have been explored to realize optical filters for 

any special applications. In this work, OpenFilters software is used. It is an open-source 

license, released by Stéphane Larouche and Ludvik Martinu under GNU General Public 

License software [247]. The software utilizes the step and transfer matrix method to 

optimize the structure of filters. The designed bandpass filters are based on Fabry-Perot 
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multiplayer interferometer. The all-dielectric and metal-dielectric multilayers are used for 

visible and ultraviolet LEDs, respectively. 

Initially, the bandpass visible filters have been designed with pairs of Si3N4/SiO2 

multilayers. These materials are transparent in visible wavelengths and the difference of 

their optical index is favorable for the reflection. 

 

 

Figure 5.6  The bandpass filters at 400 nm violet, 450 nm blue, 545 nm green, and 660 nm 
red transmission designed with OpenFilters. 

 
 
The structure of initial bandpass filters includes 96 alternative layers of Si3N4/SiO2 

pairs. The performance of this Si3N4/SiO2 filter results in very high performance, the 

transmission over 90%. Figure 5.6 shows the transmission calculated for red, green, and 

blue optical filters. Their bandpass multilayer structures were achieved by varying in the 
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thickness for ultra-narrow spectra at 400 nm, 450 nm, 545 nm, and 660 nm. These 

wavelengths correspond to violet, blue, green, and red colors. 

Moreover, based on the Si3N4/SiO2 material system, we designed bandpass filters 

operating in almost every wavelength in the visible region. Figure 5.7a illustrates seventeen 

visible bandpass spectra consisting of 400, 405, 410, 420, 450, 470, 530, 535, 550, 560, 

575, 590, 600, 630, 650, 660, and 670 nm. Such optical bandpass filters are developed from 

96 alternative Si3N4/SiO2 multilayers. 

 

 

Figure 5.7  (a) The normalized narrow spectra of calculated bandpass filters at different 
visible wavelengths from the simulations. 

 
 
Figure 5.8 shows the absorption, transmission, and reflection of sixteen bandpass 

filters forementioned. The bandpass filters with wavelengths longer than 450 nm have an 

ultra-narrow passband and nearly 100% transmission.  
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Figure 5.8  The overall transmission, absorption, and reflection of visible bandpass filters. 
 
 
Although the bandpass filter constructed by a high number of layers obtains an 

extremely narrow passband, the device deposition of many layers at nanoscale accuracy is 

quite difficult. In an attempt at the fabrication of narrow band LEDs, narrow bandpass 

filters are integrated into the typical visible LEDs which typically have the FWHM in the 

range of 50 and 80 nm. Taking this into account, the integrated bandpass filters only need 

to operate in a short range of wavelengths within the LED’s spectrum so that the spectrum 

of LEDs passing through the filter becomes a narrower band spectrum. For example, a 550 

nm bandpass filter is evaluated for its bandpass performance only in the range of 500 to 

600 nm. Even the 550 nm bandpass filter could not block all the out-of-band wavelengths, 

it still has full value to be integrated into the green LED for obtaining a narrow band 

emission. 

The value of transmission, absorption, and reflection of the filter are presented in Table 5.1 

in the next page. 
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Table 5.1  The Transmission, Absorption, and Reflection of Optical Bandpass Filters 
Designed with 96 layers of Si3N4/SiO2. 

 

No. Wavelength (nm) Transmission Absorption Reflection 

1. 400 0.785594 0.213909 4.97E-04 

2. 405 0.847422 0.152577 1.23E-06 

3. 410 0.87004 0.129783 1.77E-04 

4. 420 0.89973 0.100072 1.98E-04 

5. 450 0.974772 0.025208 1.97E-05 

6. 470 0.992596 7.40E-03 3.29E-06 

7. 530 0.994475 5.51E-03 1.72E-05 

8. 550 0.997217 2.78E-03 8.76E-07 

9. 560 0.999204 7.96E-04 4.85E-08 

10. 575 0.998914 1.09E-03 2.57E-07 

11. 590 0.999633 3.67E-04 1.46E-08 

12. 600 0.998801 8.06E-04 3.93E-04 

13. 630 0.999874 1.25E-04 1.08E-06 

14. 650 0.999294 7.06E-04 4.45E-08 

15. 660 0.999842 1.53E-04 5.03E-06 

16. 670 0.999365 8.69E-05 5.48E-04 

 
 

Besides, the bandpass filter including 96 layers of Si3N4/SiO2, a bandpass filter 

consisting of 21 alternative Si3N4/SiO2 layers acting as a bandpass filter was designed and 

fabricated. The structure of the bandpass filter is presented in Table 5.2, and the total 

thickness of the filter is 1,853 nm. 
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Table 5.2  The Detailed Thickness of the Bandpass Filter with 21 Alternative Si3N4/SiO2 
Layers Grown on a 0.5 mm Fused Silica Substrate 

 
No Materials Thickness (nm) 

1 Si3N4 73 

2 SiO2 90 

3 Si3N4 62 

4 SiO2 83 

5 Si3N4 60 

6 SiO2 84 

7 Si3N4 63 

8 SiO2 88 

9 Si3N4 171 

10 SiO2 74 

11 Si3N4 55 

12 SiO2 77 

13 Si3N4 56 

14 SiO2 77 

15 Si3N4 245 

16 SiO2 77 

17 Si3N4 56 

18 SiO2 77 

19 Si3N4 53 

20 SiO2 176 

21 Si3N4 56 
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The calculated transmission spectrum of the 21 layer bandpass filter is presented in 

Figure 5.9. The transmission of the calculated Si3N4/SiO2 bandpass filter is over 95%. 

 

 

Figure 5.9  The spectrum of the real green LED, and transmission of the bandpass filter 
with 21 layers of Si3N4/SiO2 on a fused silica substrate. 

 
 
For comparison, the EL spectrum of a real green µLED device, which has been 

reported in Figure 2.4b, is also illustrated again in Figure 5.9. The FWHM of transmission 

spectrum of the bandpass filter achieves a very narrow band of 10 nm, nine times smaller 

than comparing FWHM of 90 nm from the real green LED, presented in Chapter 2. 

Also, the transmission spectrum with different angles of incidence was studied. In 

addition to high transmission of the expected passband, the filter results in a good angular 

variation. When the incident angle with respect to the normal to the surface increases, the 

center wavelength of the emission spectra of the filter shifts into the shorter region, shown 
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in Figure 5.10. The emission peaks change from 550 nm to 510 nm in respect to incident 

light from 0 to 45 degree in respect to the normal to the filter’s plane, respectively. 

 

 
 

Figure 5.10  The transmission spectra of the Si3N4/SiO2 filter under 0, 15, 30 and 45 degree. 
 
 
The angular tolerance of the designed filter is 0.98 nm/degree, which is defined as 

the ratio of the wavelength shift to the incident angles. From the figure, the transmission 

of the filter reduces in conjunction with increasing angles of incidence. Herein, under 45-

degree incident angle, the transmission of the filter is around 80% while under normal 

incidence (perpendicular to the filter’s plane), the transmission is over 90%. The reduced 

transmission is less than 10% over the 45 degree variation of incident angles. Although the 

shift of passband spectrum is a drawback of the interference-based filers, this can benefit 

in some cases. When the bandpass can be tuned by an adjustment of the angle of the 

incident light as long as the transmission is still high for practical uses. 
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All-dielectric visible bandpass filters have been fabricated with various tools 

depending on the accuracy and materials available in the instruments. In this work, 

Si3N4/SiO2 multilayers were deposited using a PECVD Oxford PlasmaLab 100 system. 

The substrate’s temperature is kept at 350 C during the deposition process. For Si3N4 

coatings, the precursors are silane (SiH4) inflow at 220 sccm, N2 plasma at 1000 sccm, and 

NH3 at 10 sccm. The precursors for the deposition of SiO2 include SiH4 at 265 sccm gas, 

N2 gas flow is at 500 sccm, and N2O plasma is at 1000 sccm. The pressure in the growth 

chamber is approximately 1800 mTorr. The deposition rate is at 72.38 nm/m and 189.4 

nm/m for Si3N4 and SiO2, respectively. The fabricated structure of the filter can be seen in 

the cross-sectional SEM image, shown in Figure 5.11. In the structure, the 9th and 15th 

layers of Si3N4 are 171 nm and 245 nm – the two thickest layers in the structure. They 

noticeably appear on the SEM image, respectively. 

 

  

Figure 5.11  The cross-sectional SEM image of 21 alternative Si3N4/SiO2 layers as a 550 
nm bandpass filter. The thickness of each layer is presented in Table 5.2. 
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The performance of the 550 nm Si3N4/SiO2 bandpass filter was evaluated using a 

reference light source made of off-the-shelf white LEDs. The spectrum of the reference 

light source is the red curve in Figure 5.12. The green curve is the transmitted spectrum of 

the 550 bandpass filter. 

 

 
Figure 5.12  The performance of the 550 nm bandpass filter consisting of 21 alternative 
Si3N4/SiO2 layers deposited with PECVD. 

 
 
It is seen that the bandpass filter permits a passband around 550 nm to transmit with 

the highest intensity, compared to others. The passband is very narrow around 550 nm. 

There is another peak of emission close to 650 nm and the shoulders appear in a range of 

400-500 nm region. The spectral features are alike with the calculated spectrum. Because 

the bandpass filter is to be integrated into green LEDs, the performance of the filter from 

500 to 600 nm is interestedly, illustrated in Figure 5.13. The transmission T of the bandpass 

filter is given by equation 5.3, in which I and I0 is the transmitted and incident intensity, 

respectively. 
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 𝑇 = 𝐼𝐼0 (5.3) 

 

In this case, the transmission of the filter is the result of the transmitted intensity 

divided by the incident intensity of the reference LED light source. The transmission of the 

bandpass filter is approximately 80%, illustrated in Figure 5.13. The FWHM of the filter 

is 12 nm, larger than that of the designed filter (10 nm). The wider bandwidth of the 

experimental filter is attributed to incident light beams coming under a range of angles 

while the simulated spectrum is calculated under only for perpendicular incidence. The 

inset of Figure 5.13 shows the fabricated filter on the fused silica substrate. The total 

thickness of the substrate and filter is 501,853 µm in which 500 µm substrate and 1.853 

µm filter. 

 

 

Figure 5.13  The transmission of the 550 nm bandpass filter consisting of 21 alternative 
Si3N4/SiO2 multilayers. 
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5.5.4 Design and fabrication of UV bandpass filters 

 
The UV bandpass Fabry-Perot interference filters were designed from metal-dielectric 

alternative Ag/SiO2 multilayers. Metal Ag can be used for UV bandpass filters with 

wavelength down to 300 nm [209]. Given that the number of metal layers of the UV 

bandpass structure is limited for a high transmission. Three pairs of Ag/SiO2 were designed 

for two 310 nm UV bandpass filters. The thickness of Ag layers is set at 10 nm and 20 nm 

for filter 1 and filter 2, respectively. The SiO2 layers are the same in both filters and they 

play a role of cavities where multiple beam reflections of light between two reflecting Ag 

layers. The detailed layers of two filters are illustrated in Figure 5.14. The total thickness 

of filter 1 and filter 2 is 163.4 nm and 193.4 nm, respectively. 

 

 

Figure 5.14  The structure of two 310 nm bandpass filters of six alternative Ag/SiO2 layers. 
 
 

The transmission characteristics of these filters are calculated by OpenFilters 

software. Filter 1 with 10 nm Ag layers achieves the transmission over 70% while filter 2 

with 20 nm Ag layer obtains nearly 40% transmission. The lower transmission of filter 2 
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is caused by the higher absorption of Ag with its increasing thickness. However, filter 2 

results in a narrower passband compared to filter 1. In metal-dielectric multilayer bandpass 

filters, the thicker metal layer of a UV filter results in a narrower passband but the 

transmission is low. In practical applications, a tradeoff between transmission and the 

narrow band needs to be considered. 

 

 
Figure 5.15  The illustration of designed spectra of 310 nm bandpass filters including 6 
alternative Ag/SiO2 layers. 
 

 

The two filters were implemented using an E-beam evaporator, Orion-8E by AJA 

International. The thickness can be coated at 0.1 nm accuracy. The deposition rate could 

be controlled by the high voltage and electron current. The Ag and SiO2 coatings were 

deposited in an ultra-high vacuum chamber, approximately at 10-7 Torr on 0.5 mm thick 

double polished fused silica substrates. The substrate has over 90% transmission at 310 

nm. Figure 5.16 shows the cross-sectional SEM image of filter 1. Although the SEM image 

does not clearly detail each layer of the bandpass filter structure, the total measured 
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thickness of filter 1 is of 162 nm, close to the value from the designed structure (163.4 nm). 

The passband of the filter 1 and filter 2 measured with a deuterium StellarNet UV light 

source and the results are presented in Figure 5.17. 

 
 

 

Figure 5.16  The cross-sectional SEM image of Ag/SiO2 bandpass filter 1. 
 
 

 

Figure 5.17  Intensity of the deuterium light source, 310 nm bandpass filter 1, and filter 2. 
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The filters block almost all the visible wavelengths and allow a maximum 

transmission around 310 nm. The transmission spectra of two fabricated filters are shown 

in Figure 5.18. The transmission is calculated by equation 5.3. 

 

 

Figure 5.18  The transmission of 310 nm UV bandpass filter 1 with 10 nm Ag and filter 2 
with 20 nm Ag. The inset shows the real filter 1 on a 0.5 mm thick fused silica wafer. 

 
 

It can be seen from Figure 5.17 that the filter 1 of 10 nm Ag has a high transmission 

over 70% at 310 nm central wavelength while filter 2 with 20 nm Ag bandpass filter obtains 

only approximately 35% transmission. The thicker metal layer, the lower transmission and 

a narrower spectral linewidth. 

We also investigated new material systems including six alternative layers of 

Al/Al2O3 and Al/MgF2 for UV bandpass filters. The performance of designed 310 nm 

bandpass filters based on alternative Al/Al2O3 and Al/MgF2 in Figure 5.19. Due to Al metal 

is highly reflective down to 200 nm, it is an ideal material for UV bandpass filters. The 
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spectra achieve a relatively narrow band emission with a FWHM of 26 nm, having the cut-

on and cut-off wavelengths around 290 nm and 316 nm, respectively. The narrow passband 

of the filters is inversely proportional to the transmission. Both bandpass filters achieve a 

transmission over 35% at 310 nm. 

 

 

Figure 5.19  (a) The transmission spectra of 310 nm Al/MgF2 bandpass filters; and (b) that 
of the Al/Al2O3 bandpass filter. The insets show detailed layers of these filters. 

 
 

5.6 Conclusion 

 
 
In conclusion, in this chapter, we have presented a simple design of AlGaN/AlN far-UVC 

LEDs at 222 nm central wavelength. The simulated EL spectrum is narrow of 12 nm 

FWHM. This simple structure of far-UVC LEDs could be grown with MBE technique. If 

the EL spectrum of experimental LEDs is not narrow, a 222 nm bandpass filter, made of 6 

alternative layers of Al/MgF2 could be integrated for narrow band far-UVC LEDs. 

Disinfection with 222 nm far-UVC LEDs is safe for humans and thus it could be the future 

efficient technology for reducing contagious diseases. 
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In addition, the 550 nm visible bandpass filter using 21 alternative all-dielectric 

Si3N4/SiO2 layers and 310 nm UVB bandpass filters using 6 alternative metal-dielectric 

Ag/SiO2 layers have been designed and fabricated. The calculated and experimental 

performance of the filters are highly matched. The visible filter results in a FWHM around 

10 nm, five to eight times smaller than the recorded number from typical LEDs. The UV 

bandpass filters have the broader FWHM and lower transmission, compared to visible 

bandpass filters. However, the UV LEDs typically achieve a narrow spectral linewidth so 

that the integration of an UV bandpass filter into UV LEDs would create an expected 

narrow band emission. Due to the absorption of metal Ag layers, the transmission of the 

UV bandpass filters is approximately 30-70% and the FWHM is around 70 nm. FWHM is 

larger than that of UV LEDs, but the filters could block wavelengths in both sides of the 

central peak so it could make UV LEDs to have a narrower spectrum. More importantly, 

the UV bandpass filter can block all visible wavelengths, and this feature is very important 

for order photonic platforms such as solar-blind detectors, machine vision, and 

hyperspectral cameras. These visible and UV bandpass filters are ready to be integrated 

into LEDs for narrow band LEDs. The narrow band LEDs have huge applications in 

disinfection and chronic wound healing treatment using phototherapy. 
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CONCLUSIONS AND FUTURE WORK 

  
The wide direct tunable bandgap energy, high carrier mobility, and thermal and mechanical 

properties of III-nitrides are critical for optoelectronics devices. High quality nanowires 

grown on silicon substrates by MBE techniques have demonstrated the promising solutions 

for advanced photonic platforms for lighting, next generations of displays, disinfection, 

phototherapy and so on. Accelerating the development of better LED devices for 

environmentally friendly technologies is essential for science, technology, and whole 

societal development.  

In this dissertation, PAMBE was successfully employed to grow III-nitride 

nanowires for visible and UV LEDs towards numerous applications in lighting, display 

technologies, disinfection, and phototherapy. In the future, an attempt to increase the MBE 

growth rate of III-nitrides will be implemented. Although PAMBE growth technique is 

superior to other synthesis methods in terms of crystalline quality and structure complexity, 

the MBE growth rate is still low (~ 1Å/s), compared to other popular synthesis techniques 

such as MOCVD. The low rate of MBE growth limits its popularity in the industry. The 

growth rate of MBE needs to be higher than currently established status to gain benefits in 

terms of the economic point of view. The more efficient approaches of synthesis of III-

nitride nanostructures will result in economic advantages. The faster MBE growth rate of 

III-nitride nanowires is desirable. Therefore, one of the duties and responsibilities for the 

ongoing research focuses on improving MBE growth rate. 

By changing the composition of Ga/In ratio and growth temperature during the 

MBE growing process, optimal conditions of III-nitride nanowires on silicon substrates 
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were realized for visible full-color, white-color, and UV LEDs. Tuning the indium 

composition of the quantum wells (10%–50%) in the structure of dot-in-wire InGaN/GaN 

heterostructures for full-color µLEDs and phosphor-free white-color LEDs have 

successfully demonstrated on silicon substrates, paving the way for monolithic µLED 

display technologies. These RGB µLEDs with central wavelengths at 645, 550, and 475 

nm achieved consistent emissions under injection currents up to 350 mA. It means the 

QCSE, one of the challenges of LEDs, has been addressed. The combination of different 

quantum wells with indium composition varied in such a range, the developed white-color 

LEDs without using phosphors resulted in a desirable color gamut of color rendering index 

> 92. Phosphor-free white-color LEDs are environmentally friendly, reducing carbon 

footprint, and help to accelerate the next generation solid-state lighting. Such visible 

µLEDs are perfectly suited for advanced photonics applications such as the next generation 

display technology. The solving of some remaining issues of nanowire visible LEDs such 

as Green Gap, low efficiency of III-nitride green LEDs, would gain benefits to the lighting 

technology. A special attention will be paid to increase the efficiency of green LEDs. 

III-nitrides are only the material system that can be tuned compositionally for a 

wide range of emissions from UV to IR regions, but EQE of III-nitride green LEDs is still 

insufficient. Some of the reasons are the difficulty of the epitaxial growth of indium rich-

InGaN nanowire LEDs and the large polarization field in the quantum wells, mitigating the 

radiative recombination. For these reasons, significant attention to utilizing polarization 

effects and realized growth conditions at a lower temperature may improve the efficiency 

of true green LEDs. In addition, an investigation of the impact of photonic crystals from 

different nanowire arrangements could be used to improve LEE. Some of our recent 
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research has shown that periodic photonic crystals of patterned nanowires lead to a better 

performance. The hexagonal nanowire arrangement is the best for increasing EQE of 

LEDs. Adopting this idea of photonic crystals to green LEDs would create the differences 

in sufficient green LEDs. 

Moreover, because the phosphore-free white LEDs are promising for many 

advanced applications, especially in visible light communication (VLC), the integration of 

a lighting system for a communication purpose would become a disruptive technology. The 

nature of high mobility of electrons, III-nitride have been used for visible communications. 

Lighting and high-speed communication integration by harvesting nanowire phosphor-free 

white-color LEDs would be one of the directions for our research in coming years and 

being a part of that trend is exciting. 

In terms of UV LEDs, MBE growth conditions for high performance AlGaN 

nanowire UV LEDs have been mastered so that we have demonstrated AlGaN nanowire 

UVB and UVA LEDs from 290 nm to 335 nm emission. The performance of UV LEDs 

has seen an improvement with utilized photonic crystals and surface passivation of the 

nanowires. The discovered FDTD simulation’s results show that ordered nanowires or 

periodic nanowire structures resulted in a better quality of nanowire UV LEDs in terms of 

LEE. For example, UVB at 290 nm achieved a high LEE of ~ 90% and 92% for emissions 

at 290 nm and 320 nm, respectively – higher than that from the random nanowire structures.  

Likewise, nonradiative recombination caused by surface defects is reduced with 

surface passivation for demonstrated 335 nm nanowire UVA LEDs. That using KOH, 

followed by (NH4)2Sx treatment could improve the performance of nanowire UV LEDs at 

335 nm central wavelengths was realized. The increases in the EL, optical power, PL, and 
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I-V characteristics of the 335 nm AlGaN nanowire UV LED after the passivation treatment 

by 83%, 65%, 49%, and 43%, respectively. Such electrical and optical enhancements are 

attributed to the reduction of the surface nonradiative recombination. A combination of 

KOH and (NH4)2Sx treatment shows a promising approach for high efficiency and high 

power AlGaN nanowire UV LEDs. In the future, our research is continued on UV LEDs 

with surface passivation and photonic crystal, not for UVA and UVB LEDs but for far-

UVC LEDs. Because 222 nm UVC LEDs are ideal healthy disinfectant, eliminating 

contagious diseases spreading in the air and surfaces. The 222 nm UVC LEDs can be used 

in man-occupied rooms without nearly concern so that the growth of 222 nm UVC LEDs 

is going be focused and investigated for the disinfection properties in airborne and 

foodborne pathogens. The simple structure of AlGaN/AlN far-UVC LED has been 

designed and more structures of far-UVC LEDs and the experimental research will be 

needed in the future. We are doing research and realizing different nanowire structures as 

well as MBE conditions for far-UVC AlGaN LEDs. It is likely to use photonic crystals for 

a sufficient LEE, polarization effects in design, and different doping conditions like alpha 

doping to improve the hole transport and gain high hole careers in p-type semiconductor 

segments. 

Lastly, narrow band LEDs are well suited to biological, medical, and water 

purification applications due to the selective capability of the interaction with living 

matters such as bacteria, cells, viruses, and macromolecules. Thus, narrow band LEDs are 

a novel lighting technology. They can enable new significant applications in advancing 

phototherapy instruments, safety disinfection systems, and biological imaging. In Chapter 

5, we presented numerous bandpass filters on fused silica substrates for visible narrow band 
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LEDs with over 90% transmission and the FWHM is approximately 12 nm. Based on the 

same Fabry-Perot bandpass interference principle, narrow band LEDs in almost 

wavelengths could be achieved. The 550 nm narrow band LEDs have been fabricated with 

popular all-dielectric multilayers of Si3N4/SiO2 using PECVD. The characteristics of 

experimental filters are similar to the expected outcome designed by OpenFilters. In 

addition, UV bandpass filters based on metal-dielectric multilayers have been 

demonstrated. Due to the absorption of metals, the number of layers is limited in three or 

four layers and thus the narrow band of the UV filters is not as good as that of visible 

bandpass filters. 

Based on this established work of narrow band LEDs at 550 nm and 310 nm, we 

will develop and fabricate more bandpass filters in visible and UV regions and integrate 

them into the LEDs towards the production of narrow band LEDs targeted specific 

applications. The integration of an on-chip bandpass filter to obtain narrow band LEDs is 

doable by the deposition of the multilayer structure of the bandpass filter on nanowire 

LEDs. The 310 nm UV narrow band UV LEDs and 550 nm visible narrow band LEDs 

have been demonstrated in this dissertation by the deposition of multilayer bandpass 

structure. New narrow band LEDs at different wavelengths are desirable for many more 

applications. Therefore, the development of narrow band LEDs at other wavelengths and 

higher transmission especially in the UV region would receive attention. The structure of 

the designed alternative Al/Al2O3 and Al/MgF2 would be fabricated and compared their 

performance to the Ag/SiO2 bandpass filters. 

Our research has demonstrated high performance visible and UV LEDs which have 

been reported in several articles [34, 95, 115, 119, 312]. Taking advantage of the MBE 
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system, and the team’s expertise, the production of the advanced narrow band LEDs in the 

ultraviolet and visible wavelengths, suitable for disinfection and wound healing treatment 

will be reachable. The expected wavelengths can be obtained by the precisely manipulated 

III-nitride nanowires using MBE growth in terms of the material compounds, morphology, 

size, and spacing of nanowires by means of controlling the elemental composition, surface 

morphology, surface passivation, and design. We continue to contribute to photonics 

science and technology via research and development of new materials, structure, and 

engineering. 

In summary, the advent of the LED has changed the way we light up the world and 

it continues to change the world we live in. When essential roles of LED could continually 

be explored, the use of LED will enable critical technologies and science in manufacture, 

inspection, communication, disinfection, water treatment, medicine requires ongoing 

efforts, pouring resources and LED based technologies will have greater impacts on the 

whole society in the next decade. 
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