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We analyze the features of the graphene mono- and multilayer reflectance in the far-infrared region as a
function of frequency, temperature, and carrier density taking the intraband conductance and the interband
electron absorption into account. The dispersion of plasmon mode of the multilayers is calculated using
Maxwell’s equations with the influence of retardation included. At low temperatures and high electron densi-
ties, the reflectance of multilayers as a function of frequency has the sharp downfall and the subsequent deep
well due to the threshold of electron interband absorption and plasmon excitations.
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Monolayer and bilayer graphenes1–3 are gapless two-
dimensional �2D� semiconductors4–6 whereas its three-
dimensional �3D� predecessor, graphite, is a semimetal.7–9

Hence, the dimensionality effects for the unique substance
can be studied.10 Monolayer graphene has a very simple
electron band structure. Near the energy �=0, the energy
bands are cones �1,2�p�= ±vp at the K points in the 2D Bril-
louin zone with the constant velocity parameter v
=108 cm/s. Such a degeneration is conditioned by symmetry
because the small group C3v of the K points has a two-
dimensional representation.

While the carrier concentration decreases in the field gate
experiment, the graphene conductivity at low temperatures
goes to the finite minimal values.1,2 Much theoretical
efforts11–14 have been devoted to evaluate the minimal con-
ductivity in different approaches. Theoretical15–17 and experi-
mental researches show that the main mechanism of the car-
rier relaxation is provided by the charged impurities and
gives the collision rate �−1�2�2e4nimp /��g

2�, where �g is the
dielectric constant of graphene, � is the characteristic elec-
tron energy �of the order of the Fermi energy or tempera-
ture�, and nimp is the density of charged impurities per unit
surface. Plasmons in graphene are considered in Refs.
18–20; surface wave propagation along graphene located at
interfaces between two dielectrics is studied in Ref. 21. The
optical visibility of both monolayer and bilayer graphene is
studied in Ref. 22 focusing on the role of the underlying
substrate.

In the present Brief Report, we analyze the spectroscopy
of the graphene monolayer and multilayers in the infrared
region. In order to calculate the reflection coefficient for the
multilayers, we follow the method used in Ref. 23 and de-
termine the spectrum of electromagnetic excitations—
plasmons. We use the appropriate boundary conditions at in-
terfaces and the complex conductivity � as a function of
frequency �, temperature T, and chemical potential 	. The
chemical potential of ideal pure graphene equals zero at any
temperature. With the help of the gate voltage, one can con-
trol the density and type �n or p� of carriers varying their
chemical potential.

The general expression for the conductivity used here is

obtained in our previous paper18 and is valid under a restric-
tion that the collision rate of carriers is less than the fre-
quency and spatial dispersion of the electric ac field, �−1


� ,kv. In limiting cases, our result coincides with the for-
mulas of Ref. 24. For high frequencies, when one can also
ignore the spatial dispersion of the ac field, ��kv ,�−1, the
complex conductivity �see Eq. �8� in Ref. 18� is given by
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Here, the first term corresponds to the intraband electron-
photon scattering processes. One can obtain it from the
Drude-Boltzmann expression �for a case 1/�=0� and write
explicitly

�intra��� = i
2e2T

���
ln�2 cosh�	/2T�� . �2�

The second term in Eq. �1�, where →0 is the infinitesimal
quantity determining the bypass around the integrand pole,
owes its origin to the direct interband electron transitions.
The real part of this contribution is reduced to the expression
for the absorbed energy due to the interband transitions.
Since there is no gap between the conduction band and va-
lence band, these two terms can compete and the interband
contribution becomes larger at high frequencies ��T ,	. In
the opposite case, the intraband contribution plays the lead-
ing role.

The difference of the Fermi functions in the second inte-
grand equals

G��� =
sinh��/T�

cosh�	/T� + cosh��/T�
.

Extracting the principal value of the integral, we arrive at the
integral without singularities and write the interband conduc-
tivity in the form available for numerical calculations,

PHYSICAL REVIEW B 76, 153410 �2007�

1098-0121/2007/76�15�/153410�4� ©2007 The American Physical Society153410-1

http://dx.doi.org/10.1103/PhysRevB.76.153410


�inter��� =
e2

4��G��/2� −
4�

i�
�

0

+�

d�
G��� − G��/2�

�2 − 4�2 	 .

�3�

Here, the first term is given asymptotically by

G��/2� = 
tanh��/4T� , 	 
 T

��� − 2	� , 	 � T ,
� �4�

where the step function ���−2	� expresses the condition for
the interband electron transitions at low temperatures. The
integral in Eq. �3� represents the imaginary interband correc-
tion to the intraband conductivity. With the help of Eq. �4�,
we find for low temperatures �T
	�
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e2
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���� − 2	� −

i

2�
ln

�� + 2	�2

�� − 2	�2 + �2T�2	 .

�5�

This expression shows that the interband contribution plays
the leading role comparatively with the intraband term
around the absorption threshold ��2	, where the logarith-
mic singularity is cut off with temperature �or scattering rate
while considered�.

By using the gate voltage, one can control the density of
electrons �n0� or holes �−n0�. Then, the chemical potential is
determined by the condition

n0 =
2

���v�2�
0

+�

��f0�� − 	� − f0�� + 	��d� . �6�

From this expression and Fig. 1�a�, one can see that the
chemical potential goes to zero while the temperature in-
creases.

In order to calculate the graphene reflectance, we apply
Maxwell’s equations

��� · E� − �2E = �0
�2

c2 E +
4�i�

c2 j , �7�

where �0 is the ion contribution into the dielectric constant
and j is the conductivity current. We consider the case of the
p polarization, when the field E lies in the xz plane and the

current j has only the in-layer x component �see Fig. 1�b��.
�i� Optics of a monolayer. Consider the graphene mono-

layer at z=0 with �0=�g deposited on the substrate �z�0�
with the dielectric constant �0=�s. In the vacuum, z�0, the
ac field is given by the sum of incident and reflected waves
and by the transmitted wave in the substrate. In the geometry
considered, the current in the graphene monolayer can be
written in the form

jx = ��z�Ex. �8�

Making use of the Fourier transformations with respect to
the x coordinate, E�eikxx, we rewrite the Maxwell equations
�Eq. �7�� as follows:

ikx
dEz
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−

d2Ex

dz2 − �0
�2

c2 Ex =
4�i�

c2 jx,

ikx
dEx
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+ kx

2 − �0
�2

c2 �Ez = 0. �9�

The boundary conditions for these equations at z=0 are
the continuity of the field component Ex and the jump of the
electric-induction z component �Ez at the sides of the mono-
layer,

�s�Ez�z=+0 − �Ez�z=−0 = 4��
−0

+0

���,kx,z�dz . �10�

The carrier density is connected to the current in Eq. �8�
according to the continuity equation

���,kx,z� = jx��,kx,z�kx/� .

Substituting Ez from the second equation in Eq. �9� into Eq.
�10�, we find the second boundary condition
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�11�

where ks=��s�� /c�2−kx
2, kz

i =��� /c�2−kx
2.

Using the boundary conditions, we find the reflection am-
plitude

r =
1 − C

1 + C
, �12�

where C=kz
i�4����� /�+ ��s /ks��.

The reflection coefficient �r�2 calculated with the help of
Eqs. �1�–�6� and �12� for normal incidence is shown in Figs.
2 and 3 as a function of frequency, temperature, and carrier
concentration. Notice that the carriers have a pronounced
�intraband� effect on reflectance only at low frequencies
where the dimensionless parameter e2 max�T ,	� /�c� is of
the order of unity. With increasing temperature, the carriers
occupy a more expanded energy interval, but the chemical
potential decreases. This results in the nonmonotonic behav-
ior of reflectance as a function of temperature shown in Fig.
3.

The optical properties of the graphene bilayer can be con-
sidered in a similar way. Here, we do not present the corre-
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FIG. 1. �Color online� �a� Chemical potential �in K� as a func-
tion of temperature at carrier densities noted at curves. �b�
Multilayer sample and geometry of wave scattering.
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sponding results, and we investigate another 3D example—
the graphene multilayers.

�ii� Spectroscopy of graphene multilayers. Let the multi-
layers cross the z axis at points zn=nd, where d is the dis-
tance between the layers �see Fig. 1�b��. Such a system can
be considered as a model of graphite since the distance d
=3 Å in graphite is larger than the interatomic distance in the
layer. So, we describe the carrier interaction in the presence
of ac electric field with the help of self-consistent Maxwell’s
equations �Eq. �7��. For the x component of the field Ex, they
give

� d2

dz2 + ks
2 + 2ksD�

n

�z − nd�	Ex = 0, �13�

where D=2i�����ks /�g� and ks=��g�� /c�2−kx
2.

For the infinite number of layers in the stack, the solutions
of Eq. �13� represent two Bloch states

e1,2�z� = e±ikznd�sin ks�z − nd� − e�ikzd sin ks�z − �n + 1�d��,

nd � z � �n + 1�d , �14�

with the quasimomentum kz determined from the dispersion
equation

cos kzd = cos ksd − D sin ksd . �15�

The dispersion equation describes the electric field excita-
tions of the system, i.e., plasmons. The quasimomentum kz
can be restricted to the Brillouin half-zone 0�kz�� /d, if
the parameter D is real. In the general case, while taking the
interband absorption into account, we fix the choice of the
eigenfunctions in Eq. �14� by the condition Im kz�0 so that
the solution e1 decreases in the positive direction z. In the
long-wave approximation, kz ,ks
1/d, the dispersion equa-
tion �Eq. �15�� takes the form

kz
2

ks
2 = 1 + 4�i

����
��gd

. �16�

Reflectance from the multilayers that occupied the semi-
space z�0 can be calculated similarly to the reflectance of a
monolayer. The electric field is given by the decreasing so-
lution e1 inside the sample and by the sum of incident and
reflected waves in the vacuum, z�0, with the same value of
the component kx.

Using the boundary condition, Eq. �11�, with the dielectric
constant of graphene �g instead of �s, we find the reflected
amplitude

r =
i sin�ksd� − Z

i sin�ksd� + Z
,

where

Z = �g

kz
i

ks
�cos�ksd� − e−ikzd� ,

kz
i is the normal component of wave vector in the vacuum,

and kz is the quasimomentum determined by the dispersion
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FIG. 4. �Color online� Reflectance from the graphene monolayer
with the carrier density n0=1010 cm−2 �left� and multilayers with
n0=1011 cm−2 in a layer and distance d=3 Å between layers �right�;
temperatures are noted at curves and the incidence angle is 80°.
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FIG. 2. �Color online� Reflectance from the graphene monolayer
with carrier densities n0=108 cm−2 �left� and n0=1010 cm−2 �right�
versus the frequency at temperatures noted at the curves: normal
incidence.
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equation �Eq. �15�� at fixed values of � and kx.
In Fig. 4, the reflection coefficient calculated for multilay-

ers is shown in comparison with the reflection coefficient of
the monolayer. The left panel in this figure differs from the
right one in Fig. 2 only in the incidence angle, which is now
taken to be 80° in order to emphasize the multilayer features.
The main of them is the sharp downfall of reflectance at low
temperatures �see the right panel in Fig. 4�. This is the
threshold effect of the direct interband transitions at ��2	,
which is sharp when temperature T→0 �see Eq. �4��. Just at
the downfall, the reflectance has the deep well which disap-
pears while the temperature increases. This is an effect of
plasmon excitations. As one can see from Eq. �16�, the plas-
mon excitations with the real kz are possible if the imaginary
part of conductivity is negative. This can be realized if the
interband contribution described by the second term in Eq.
�5� is larger than the intraband term. Contrary to the mono-

layer, the peculiarities of reflectance from multilayers take
place at larger frequencies ��2	 because they are governed
by the dimensionless parameter �e2 /��g	d�ln�	 /kBT�, where
kB is the Boltzmann constant. Notice that observations of the
absorption threshold provide a direct method of carrier den-
sity characterization of graphene n0= �	 /�v�2 /�.

In conclusion, we have developed the detailed micro-
scopic theory of the graphene mono- and multilayer spec-
troscopy. We have shown that the nonmonotonic temperature
behavior of reflectance from the monolayer in the infrared
region is expected. We have argued that at low temperatures
and high electron densities, the reflectance from multilayers
has the sharp downfall with the subsequent deep well. They
are caused by the direct interband electron transitions.
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