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Abstract: An optical filter is one of the indispensable devices in massive and high-speed commu-
nication, optical signal processing, and display. Twist-structure liquid crystals, cholesteric liquid
crystals, blue-phase liquid crystals, and sphere-phase liquid crystals show potential application in
optical filters originating from the periodic nanostructures. Wavelength and bandwidth tuning can
be controlled via temperature, electric fields, light, angle, spatial control, and templating technology.
In this review, we discuss the recent developments of twist-structure liquid crystal filters.
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1. Introduction

Wavelength-selective and band-pass filters are fundamental and essential devices in optical
communication for satisfying the acute need for massive and high-speed communication.
They are the essential components of optical wavelength-division multiplexing and orthogonal
frequency-division multiplexing systems in optical fiber communication [1–3], visible light
communication [4,5], and microwave communication [6]. Liquid crystals (LCs) are promising
materials in the optical communication field due to the advantages of low driving power, low
power consumption, high birefringence, and large electro–optic effect [7–9]. LC is a state of
matter between isotropic liquid and solid phases, possessing both the fluidic characteristics
of liquid and the order properties of crystals [10,11]. The introduction of chirality to the LC
system has an important impact on the properties [11]. Twist-structure liquid crystals (TSLCs)
are a class of variant LCs with twisted LC molecules, consisting of blue-phase LCs (BPLCs),
cholesteric LCs (CLCs), and sphere-phase LCs (SPLCs) [12]. TSLCs show a good application
in optical communication devices, such as wavelength-selective filters, optical attenuators,
optical switches, and beam steerers [13–15]. The wavelength range of TSLCs can be tuned by
doping different concentrations of chiral dopant, forming spatial gradients, designing device
structure, applying temperature, or irradiating the material with ultraviolet light [16–19], which
makes them attractive in tunable optical filters [20–23]. Gao et al. reported the development of
templated TSLCs and summarized the potential photonic applications, including lasing, optical
filters, grating, etc. In this work, we focus on optical filters based on TSLCs, promising stimuli-
responsive materials for wavelength and bandwidth tuning. We introduce recent advances in
TSLC filters tuned by temperature, electricity, light irradiation, incident angle, spatial control,
and templating technology. We demonstrate the basics and photonic properties of TSLCs before
discussing TSLC filters in detail.

2. Photonic Properties of TSLCs

LC is a state of matter between an isotropic liquid state and a crystalline solid state,
possessing the fluidity properties of a liquid and the order characteristics of a crystal [10,11].
Molecules of nematic LCs tend to orient in one direction, considered to be the LC molecular
director. The introduction of chirality to nematic LCs, which promotes the formation of
TSLCs, has an important influence on the properties [11]. The twisting power between
the TSLC molecules can induce several phases of different structures, including CLCs
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with helical superstructures, BPLCs with three-dimensional self-organized structures, and
SPLCs with three-dimensional twist-structures [24].

CLCs are composed of molecules arranged into a helical twist structure, and the
molecules align perpendicularly to the twist axis [25,26]. CLCs exhibit two stable states
at the initial state: the focal conic state and the planar state. In a focal conic texture, the
helical axes are randomly arranged, leading to strong light scattering. The planar texture
exhibits strong selective Bragg reflection due to the uniform orientation of the molecules
(Figure 1a) [27]. It reflects circularly polarized light with the same handedness as the CLCs
helix [28]. Outside the reflection band, both the right- and left-circularly polarized light
are transmitted [29]. The selective Bragg reflection’s peak wavelength λP can be given
by λP = n× P× cosθ, where n is the average refractive index, P is the pitch, and θ is the
angle of incident light [10,30]. At normal incidence, θ is equal to 0◦. CLCs usually show a
blue/red shift on deviating from the normal incidence [31]. The pitch also contributes to
the spectral position of the reflection wavelength, which can be determined by P = 1

[c]×HTP ,
where [c] is the concentration and HTP is the helical twisting power of the chiral dopant [10].
The bandwidth of the reflection spectrum ∆λ can be expressed as ∆λ = (ne − no)P = ∆nP,
where ∆n is the birefringence [29]. The HTP of a chiral dopant is indicative of its ability to
induce twist structures in nematic LCs [10,32]. The pitch of CLC mixtures can be controlled
using temperature, light, and electric fields. By mixing CLC with reactive polymers and
photopolymerization in the presence of a photo-initiator, a polymer-stabilized CLC can
be obtained. An anchoring effect imposed by the polymer network exists in CLCs [29].
Refilling liquid crystals into the polymer template after the washout process can form
LC templates with helical structures [12]. Polymer-stabilized CLC templates have several
advantages, such as an increase in stability, an enhancement in reflectivity, the possibility
of multiple reflection bands, and a flexibly changeable reflection band featured by refilling
different materials.
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BPLCs with two-dimensional twist structures usually exist in narrow temperature
ranges between the isotropic phase (Iso) and chiral nematic phase (N*) [33–35]. As tem-
perature decreases, BP molecules tend to self-organize into three kinds of phases: BP III
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(unknown, maybe an amorphous network of disclination lines or a quasi-crystal), BP II
(simple cubic symmetry), and BP I (body-centered cubic symmetry) (Figure 1b) [36,37].
BP II and BP I cubic structures have been confirmed by Kossel diffraction line analysis
and small-angle X-ray scattering [38,39]. Their periodic lattice structures give rise to many
remarkable properties, such as Bragg reflection, Kerr effect, scattering, and optical ro-
tation [12,40]. Double-twist cylinders and defects coexist in the BPLC lattice, resulting
in a relatively high free energy and narrow temperature range. To solve this problem,
polymers are used to stabilize the lattice superstructures, supporting the cubic structure
by being inserted into the BP disclination lines [33]. Polymer-stabilized BPLCs show
several intrinsic features, including optically isotropic status, sub-millisecond response
time, and a periodic three-dimensional helical structure with a periodicity on the scale of
several hundred nanometers [41]. Polymer-stabilized BPLCs can be triggered by external
stimuli that result in structural changes, such as temperature, light, electricity, humidity,
and force, resulting in the shift of the Bragg reflection wavelength and variation in the
bandwidth [42–46]. According to Bragg’s law, the selective reflection wavelength (λc)
can be correlated with the crystal properties by λc = 2ndhkl , where n =

√
(n2

e + 2n2
o)/3

is the isotropic refractive index, ne and no are the extraordinary and ordinary indices of
refraction, respectively, dhkl represents the periodicity along the [hkl] axis, and h, k, l are
the Miller indices. For the initial cubic state, the central wavelength (λ0) related to the
lattice constant a0 can be expressed as λ0 = 2nd0 = 2na0/

√
h2 + k2 + l2, where d0 is dhkl

in the cubic state [47]. The Bragg reflection bandwidth ∆λ can be given by ∆λ = ∆nP,
where the birefringence is ∆n = ne − no [27]. Polymer-stabilized BPLCs show a Kerr
response to electric fields [48]. In the voltage-off state, the BPLC is optically isotropic, while
at the voltage-on state, the birefringence of BPLC is induced by the electric field. This
inducing process under electric field is defined as the electric-field-induced birefringence
effect. The induced birefringence (∆nind(E)) can be demonstrated by the extended Kerr
equation [49,50]: (∆n)ind = λKE2 = (∆n)s(1− exp [−( E

Es
)

2
]), where λ is the wavelength of

the incident light, K represents the Kerr constant, ∆ns is the saturated induced birefringence,
E represents the intensity of the applied electric field, and Es is the intensity of the saturated
electric field. The ordinary refractive index (no(E)) depending on E can be expressed as
no(E) = niso − (∆n)ind(E)/3, where niso is the refractive index in initial state [50–53].

An SPLC consists of self-organized nanoscale periodic three-dimensional twist struc-
tures (3-DTSs) induced by a chiral dopant, usually observed in a narrow temperature
range between the isotropic and blue phase or isotropic and chiral nematic phase [54–56].
3-DTSs are composed of several planar layers of double-twist LC molecules (Figure 1c). The
twisted angle of the LC molecules on the outermost circumferences gradually decreases
from the equatorial plane to the poles. Disclinations among 3-DTSs and 3-DTSs coexist in
SP, leading to weak stability and fast response. An SPLC has the characteristics of a low
driving voltage, fast switching time, and light scattering. Its theoretical mechanism for
filtering still requires further investigation.

3. Filters Based on TSLCs and Templated-TSLCs

TSLC filters can be triggered by several stimuli to generate structural change, resulting
in a shift of the Bragg reflection wavelength and variation in the bandwidth. The effects of
templating technology, temperature, electricity, light irradiation, incident angle, and spatial
control on TSLC filters are presented below.

3.1. Templating Technology

Templating is one approach that transfers the features of a host medium into a guest
matrix through a set of chemical and physical processes. It is a replication of fundamental
features under structural inversion [57]. A polymer template can be prepared by photopoly-
merizing LC pre-polymers and then washing out the remaining molecule mixtures [58,59].
A variety of LCs, including nematic LCs, chiral nematic LCs, and pre-polymers, are can-
didates for materials refilled into polymer templates [60]. Filters based on templating
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technology have the advantages of high reflectivity, multiple reflection peaks, and a flexibly
changeable photonic band gap (PBG) [27,61].

A multi-layer templated BPLC filter reflecting multi-wavelength without intermediate
dielectric layers was fabricated (Figure 2a) [62]. To obtain the template, the glass substrates
of the cell were separated, and the polymer-stabilized BPLC film was placed into ethanol
to wash out the residual LC, chiral dopant, nonreactive monomers, and the photo-initiator.
After laminating the templates of different reflection wavelengths and refilling nematic
LCs into the multi-layer template, the BPLCs were reconstructed. The templated-BPLC
filter showed a narrow reflection bandwidth (<15 nm), good angular stability, and stable
reflection with a temperature shift.
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spectra of templated-BPLC, CLC, and dual-wavelength LC filter. Reproduced with permission from
Ref. [63]. MDPI, 2021. (ci) Materials used in experiments. (cii) Transmission spectra of multi-chiral
CLC filters with single layer. Reproduced with permission from Ref. [64]. MDPI, 2021.

Compared to the LC filter with a multi-layer structure, a single-layer structure LC filter
could significantly simplify the device structure and streamline the fabrication process.
Hence, a multi-wavelength TSLC filter and a bandwidth-tunable CLC filter of a single-layer
structure were implemented with a multiple wash-out–refilling process [63]. By refilling a
CLC with a different pitch from that of the target template into a BPLC template, a single-
layer LC filter with multi-reflection peaks was obtained (Figure 2b). By refilling a CLC
template with CLCs of adjacent pitch sequentially, a bandwidth-tunable single-layer filter
could be realized. The FWHM of the bandwidth-scalable CLC filter could be continuously
broadened by 96% when compared with that of the original filter.

To improve the maximum reflectance of a single-layer CLC filter, a high-reflectivity
CLC filter reflecting both right- and left-circularly polarized light was proposed [64]. A filter
with hyper-reflectivity was obtained by refilling a left-handed (LH) CLC into a right-handed
(RH) CLC template (Figure 2c). The RH polymer-stabilized CLC precursors consisted of
BPH006, R5011, C3M, TMPTA, and IRG184. The refilling LH CLC mixtures comprised
BPH006 and S811. The hyper-reflectivity was related to the wavelength consistency. Differ-
ent from the single-handed LC filter, the multi-chiral LC filter showed hyper-reflectivity
due to the coexistence of right- and left-handedness.

A single-layer LC filter, multi-wavelength LC filter, multi-phase LC filter, and multi-
chiral LC filter could be realized using the templating technology. The TSLC filter with
templating technology featured high flexibility, high reflectivity, a wide tunable range, and
good stability. The handedness of the template, the phase of the refilling LCs, and the
wash-out–refill process were important factors for achieving a TSLC filter based on the
templating technique.

3.2. Temperature Variation

The reflection bands of the filters associated with the helical pitch, order parameter,
and refractive indices are related to temperature due to the thermodynamic behavior of
the LC molecules [65–67]. The temperature-dependent characteristics of the LC filters
cover the central wavelength and Bragg reflection bandwidth. For BPLCs, the temperature
dependence of the Kerr constant, which is related to the induced birefringence and pitch
length, is of great relevance and of fundamental importance [68,69].

In order to improve the reflectivity, a polarization-independent tunable optical filter
combining LH and RH CLCs as a unit was demonstrated (Figure 3a) [70]. The bandwidth
of the reflection band decreased as the reflection band of CLC-1 red-shifted with decreasing
temperature and that of CLC-2 blue-shifted with increasing temperature. The bandwidth
of the high reflectivity CLC filter could be adjusted from 10 to 70 nm, and the central
wavelength could vary from 573 to 500 nm with the temperature ranging from 23 to 50 ◦C.

In addition to the CLC filter, a near-infrared SPLC filter with a low operating electric
field and large temperature gradient was proposed (Figure 3b) [71]. During the cooling
process from the sphere phase to N*, the structure varied from a 3-DTS to a helical twist
structure. Due to the sensitivity of the 3-DTSs to external stimuli, a central wavelength
tuning range from 1580 nm to 1324 nm with a temperature gradient of 42.7 nm/K was
obtained. In addition, an electrical central wavelength adjustment of over 76 nm with an
operating electric field of 0.3 V/µm was realized.

Considering the effect of temperature on the LC filter, the performance of the sec-
tional polymerization process on the tunable TSLC filters was demonstrated [72]. As the
temperature decreased rapidly, the pitch of TSLCs at the bottom close to the temperature
controller was shortened owing to the helical-twisting power variation, while that at the
top remained due to the long distance from the temperature controller (Figure 3c). The
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reflection bandwidth of the CLC filter and the BPLC filter could be widened by the holding
treatment from 120 nm to 220 nm and from 45 nm to 140 nm, respectively.
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The tuning of the central wavelength and the bandwidth of the TSLCs was based on
the temperature-dependent pitch variation, refractive indices change, and the reorientation
of the LC molecules. Several factors influencing the reflection band had a strong relation-
ship with temperature, including the helical-twisting power of the chiral dopants, elastic
constants, Kerr constant, viscosity, and the order parameters of the LCs. The temperature
responses of the TSLCs were critical for their application in filters.

3.3. Electric Field Modulation

Among various stimuli, the electric field shows good feasibility and high efficiency
in inducing the reorientation of the LC molecules [73]. For BPLCs, three typical and
progressive effects of the electric field are known, including a local reorientation of the LC
director, a distortion of the cubic lattice, and a phase transition to lower ordered phases [74].
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The reflection bandwidth of the polymer-stabilized CLCs with negative dielectric anisotropy
can be changed by direct current (DC) electric fields due to the absorption of cations by the
polymer network [75].

The electrical tuning of the central wavelength and the bandwidth of the CLC band-
pass filters in the infrared (3-5 µm) was reported [76]. The substrates coated with silver
nanowires and graphene mid-wave infrared (MWIR) transparent electrodes were fabri-
cated (Figure 4a). Under a DC field of 110 V, the central wavelength of the filter eventually
reached 4.90 µm in the MWIR band. With a voltage ranging from 0 to 20 V, the reflection
band was broadened and extended to cover a wavelength range of 2500–4200 nm, obtaining
a bandwidth of nearly 2000 nm.
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Figure 4. (a) Red-shifting tuning of polymer-stabilized CLC cells with (ai) silver nanowires and
(aii) graphene electrodes. Reproduced with permission from Ref. [76]. Copyright 2016 Optical
Society of America. (b) Scheme of the proposed polymer-stabilized CLCs with electric field (bi,bii).
Reproduced with permission from Ref. [77]. Copyright 2014 Optical Society of America.

A wavelength shift of 141 nm was realized by electric control on a partly polymerized
chiral LC [77]. The LC filter consisted of a mixture of photopolymerizable LC, non-reactive
nematic LC MDA, and a chiral dopant (Figure 4b). Upon applying an electric field, the
ordinary refractive index of the LC contributed, and the refractive indices of the mixture
decreased. Since the pitch was maintained by the polymer template, the photonic band
edges both programmed a blue shift. The filter featured high reflectivity over the reflection
band and possessed a switching-on time of 50 µs and a switching-off time of 20 µs.

Polymer-stabilized CLCs with negative dielectric anisotropy featuring a large magnitude
(exceeding 1500 nm) and invertible tuning under a DC field were reported (Figure 5a) [78].
The optical response and relaxation behavior upon the application of a DC electric field were
strongly related to the viscoelastic properties of the polymer network. The nonlinear distortion
of the pitch and electromechanical response of the polymer network contributed to the reflection
variation.
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Figure 5. (a) Transmission spectra and cross-sectional images of the polymer-stabilized CLCs. Repro-
duced with permission from Ref. [78]. Copyright The Royal Society of Chemistry 2015. (bi) Molecular
structures of materials. (bii) Electric-field-dependent reflection spectra. Reproduced with permission
from Ref. [79]. NPG Asia Materials, 2020. (ci) Chemical structures of materials. (cii) Transmit-
tance spectra for bandwidth splitting. Reproduced with permission from Ref. [80]. Copyright 2020
WILEY-VCH.

Dynamic control of the reflection band in the monodomain polymer-stabilized BPLCs
upon an electric stimulus was demonstrated [79]. Compared with achiral monomers, chiral
monomers contributed to the stability of the double-twist cylinders due to the intrinsic
chiral structure. The internal structure of the mixture could be well maintained even under
a strong electric field since the polymer network was formed in both disclination lines and
bulk LCs (Figure 5b). The spectral range reached ~216 nm by adjusting the chiral monomer
and LC concentrations in the mixture. Via the application of an electric field, the total
reflection tuning range could be 241 nm, and the switching time was <350 ms.
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A new electro–optic phenomenon that a single selective reflection splits into two dis-
tinct reflections under an electric field was observed in the CLC phase [80]. The distinctive
phenomena originated from the introduction of side-chain liquid crystalline mesogens and
were dependent on the compositions of the mixtures (Figure 5c). The distinguished control
on two CLC elements was demonstrated. The CLCs showed functional opportunities in
several devices, such as spectrum-variant polarization filters.

The electric field could change the refractive indices of the LCs with dielectric anisotropy
by tilting the LC molecules, resulting in the shift of the reflection band. The variation in the
reflection band induced by the electric field included reflection-band splitting, red shift,
and left shift. The value, direction, frequency, and mode of the electric field might have an
influence on filter performance.

3.4. Light Control

Light control is a preferred external stimulus for LCs due to the advantages of remote,
temporal, and spatial manipulation [81,82]. In such LC systems, photoresponsive chiral
switches, mainly composed of chiral centers and photoswitches, are generally doped
into nematic LC materials [82]. Photoswitches undergo configurational changes upon
photoisomerization, such as the reversible trans-cis isomerization of azobenzenes and
menthone derivatives [83,84]. The isomerization leads to the variation in the helical twisting
power, the pitch length, and, consequently, the selective reflection of the LCs [85].

The properties of photoresponsive self-assembled chiral–azobenzene-doped BPLCs were
investigated [86]. During the cooling process, surface alignment could contribute to the induction
of more uniform and diverse BP structures, containing BP II, BP I and BPS-like phases (Figure 6a).
The photoisomerizations of trans→cis and cis→trans occurred when chiral–azobenzene-doped
dopants were irradiated by light with wavelengths of 405 and 450 nm, respectively. The
photoisomerization process contributed to isothermal phase transition and reflection-band
shifting, improving the possibility of all-optical control on BPLCs.
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MDPI, 2020. (bi) Trans and cis isomers of D7AOB molecule. (bii) Bragg reflection spectra of the
ChOH cell. Reproduced with permission from Ref. [25]. Copyright 2021 American Physical Society.

Electric and photo control on an oblique helicoidal cholesteric (ChOH) LC doped
with an azoxybenzene derivative were investigated [25]. Light irradiation caused trans-
cis photoisomerization of azoxybenzene dopants, leading to variations in the pitch and
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diffractive properties of ChOH (Figure 6b). The maximum central wavelength shift of
the Bragg reflection reached about 235 nm by the photoisomerization of 5 wt% achiral
molecules, indicating the ultra-sensitivity of ChOH to light irradiation.

Azobenzenes and menthone derivatives doped LCs underwent isomerization with
light control, resulting in changes in the twist structure, pitch, and birefringence. Photo-
induced manipulation had the advantages of remote control, fast response time, and ease
of addressability. The factors affecting filter performance contained the light irradiation
time, the wavelength of the light stimuli, and the intensity of the light irradiation.

3.5. Angle Change

The selective reflection of BPLCs relates to the periodicity of the cubic lattice. The Bragg
reflection band shifts with the variation in viewing angle [87]. The first-order reflection of a
monodomain BPLC experiences a blue shift, while the second-order reflection undergoes a red
shift with an increase in incident angle [88]. For the planar state of CLCs, the Bragg reflection
spectrum closely correlates with the incident angle of the light [89]. The reflection intensity
decreases as the detection angle gradually deviates away from the Bragg reflection angle [90].

An optical filter consisting of two CLCs in reflection mode was demonstrated. The
filter featured a tunable wavelength and a variable bandwidth [91]. A wavelength-tuning
range of 574 nm–527 nm was achieved by rotating the angle of two CLCs together from 15◦

to 50◦ (Figure 7a). Additionally, a bandwidth variation of 80 nm–10 nm could be obtained
by changing the relative angle between two CLCs from 0◦ to 35◦. The central wavelength
and bandwidth could be adjusted to the desired value according to the requirement.
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from Ref. [91]. Copyright 2011 Optical Society of America. (bi) First-order and (bii) second-order
reflection of the BPLC cell. (biii) Transmission spectra of polymer-stabilized BPLC. Reproduced with
permission from Ref. [88]. Copyright 2013 AIP.

The properties of a monodomain BPLC in angle-dependent reflection were investi-
gated [88]. Different from a CLC with a helical structure, the monodomain BPLC presented
diverse reflection orders at different crystal planes. With an increase in incident angle, the
first-order reflection experienced a blue shift, while the second-order reflection underwent
a red shift (Figure 7b). The characteristics of monodomain BPLC photonic devices with
oblique incidence would be affected by the angular dependency properties.

The properties of the Bragg reflection band, covering the central wavelength and
bandwidth, were associated with the incident angle of the light. The influencing factors on
the filter characteristics included the value of the incident angle, the value of the viewing
angle, the incident planes, and the orientation of the crystal planes. Reflections orders
might be different for various incident angles.

3.6. Spatial Design

Spatial tuning is one appropriate method enabling good maintenance, high stability,
and the wide tunable range of LC devices after polymer stabilization [92,93]. Along the
space variation direction, a continuous linear change of helical pitch takes place [94,95]. The
continuous change originates from the match between the pitch gradient concentration and
the helical pitch determined by the space. Hence, the central wavelength of PBG spatially
changes due to the pitch variation along the direction of LC cell [96].

A polymer-stabilized BPLC with a large pitch gradient and a wide spatially tunable
band covering the visible region was developed (Figure 8a) [92]. The cell was fabricated
by injecting two BPLC mixtures with different chiral concentrations in reverse directions.
The mixtures diffused in the cell and a pitch gradient formed. The spectral tuning range
reached 165 nm covering nearly the entire visible region. The polymer-stabilized BPLC filter
showed the advantages of wide tunability, high reliability, and no extra controlling sources.
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A central wavelength-tunable and bandwidth variable optical filter composed of four
LH and RH CLCs without extra components was reported [96]. The filter consisted of CLC
wedge cells with a lateral continuous pitch gradient (Figure 8b). The central wavelength of
the reflection band could be spatially adjusted from 470 nm to 1000 nm. The bandwidth
underwent a reversible change from 60 nm to 18 nm. The polarization state of the band
pass filter could be made via cell alignment.

The central wavelength and bandwidth of TSLCs could be spatially tuned due to the
pitch gradient distribution in the cell. Filters based on spatial control had the advantages
of wide band, high stability, and continuous tuning. The elements affecting the reflection
band covered the varying chiral concentrations along the spatial position, the cell thickness,
and the refractive indices of LCs.

4. Conclusions

TSLCs show great potential application in optical filters due to low power consump-
tion, relatively low cost, diverse actuation modes, and simple fabrication process. Among
TSLCs, CLCs, BPLCs, and SPLCs dominate the current literature. CLCs exhibit selective
reflection of incident radiation due to the periodic helical structure. The pitch in the sub-
micrometer range of CLCs enables great potential application in mid-wave infrared filters.
Methods for realizing an accurate control of the wavelength and bandwidth of CLCs in
the infrared region are being investigated. BPLCs show structural color caused by the 3D
periodic nanostructure. Optically isotropic, no need for polarizers, alignment-layer free,
and sub-millisecond response time are the advantages. However, the high driving voltage
and hysteresis of BPLCs are still challenges. SPLCs reveal a reflection band originating
from the periodic 3-DTSs. Its sensitivity to external stimuli might contribute to the fast
switching time and low driving voltage. The filtering properties of SPLCs still need further
investigation. The Bragg reflection of TSLCs promotes their application in filters. The
effects of triggers on these TSLC filters, such as temperature, light, and electricity, are dis-
cussed in this review. The factors that affect the tuning of TSLC filters, including templating
technology, temperature, electricity, light irradiation, incident angle, and spatial control,
are presented.
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