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Abstract. We present in this paper a motion computation and inter- 
pretation framework for oceanographic satellite images. This framework 
is based on the use of a non quadratic regularization technique in optical 
flow computation that preserves flow discontinuities. We also show that 
using an appropriate tessellation of the image according to an estimate 
of the motion field can improve optical flow accuracy and yields more 
reliable flows. This method defines a non uniform multiresolution scheme 
that refines mesh resolution only in the neighborhood of moving struc- 
tures. The second part of the paper deals with the interpretation of the 
obtained displacement field. We use a phase portrait model with a new 
formulation of the approximation of an oriented flow field. This allows us 
to consider arbitrary polynomial phase portrait models for characterizing 
salient flow features. This new framework is used for processing oceano- 
graphic and atmospheric image sequences and presents an alternative to 
the very complex physical modelling techniques. 

Keywords"  Optical flow, Non quadratic regularization, Finite element method, 
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1 I n t r o d u c t i o n  

Oceanographic and atmospheric images obtained from environmental  satellite 
platforms present a new challenge for geosciences and computer  vision. The 
wide ranges of remote sensors allow to characterize natural  phenomena through 
different physical measurements.  For example Sea Surface Tempera ture  (SST), 
Alt imetry and Ocean color can be used simultaneously for characterizing vortex 
structures in the ocean. A major  advantage of environmental  remote sensing 
is the regular sampling of the measurements  and their availability. These reg- 
ular temporal  and spatial data  samplings allow to characterize the short range 
evolution of atmospheric and oceanographic processes with image sequence pro- 
cessing. 

In this paper  we focus on dynamic satellite image analysis. The purpose 
of this paper  is to derive a complete framework for processing large oceano- 
graphic and atmospheric image sequences in order to detect global displacements 
(oceanographic streams, clouds motion, ...), or to localize part icular  structures 
like vortices and fronts. These characterizations will help in initializing particular 
processes in a global monitoring system. 



142 

Processing such an image sequence raise some specific problems. Indeed, com- 
puting an apparent motion field to characterize short range evolution must take 
into account discontinuities of the motion field that occur near SST temperature 
fronts and clouds' boundaries. For this purpose we make use of a new regular- 
ization method for solving the optical flow constraint equation which involves a 
non quadratic regularization allowing flow discontinuities. Furthermore, an im- 
portant issue is the reduction of the numerical complexity due to the large size of 
the images (typically 2048 x 1024). The minimization model is handled through 
a finite element method allowing the use of a non uniform domain tessellation. 
This tessellation is obtained with a mesh subdivision model allowing to obtain, 
locally, a finer mesh resolution near moving structures. These structures are de- 
tected and localized by studying the norm of the estimated motion field along 
the direction of the image gradient. Using such a non uniform domain tessella- 
tion yields an accurate optical flow near moving structures and a lower numerical 
complexity. 

The second part of the paper deals with the interpretation of the obtained 
displacement field. A velocity field can be studied from two different view points. 
First, it is a motion field and therefore it can be studied according to the analysis 
of fluid motion. On the other hand, it is a vector field whose topology is described 
by its critical points and its salient features. This approach is more suitable in 
our context since characterizing salient flow features will help us in locating 
interesting structures (like vortices and fronts) which represent physical phe- 
nomena appearing in SST and atmospheric image sequences. We present in this 
paper a new approach for approximating an orientation field and characterizing 
the stationary points of the trajectories obtained from an arbitrary polynomial 
phase portrait. Furthermore the model is always linear, independently of the 
polynomial representation. 

2 N o n  Q u a d r a t i c  O p t i c a l  F l o w  C o m p u t a t i o n  

The differential techniques used for the computation of optical flow are based 
on the image flow constraint equation: 

dI(x,  y, t) 
- I=u + I~v + I~ =0 ,  (1) 

dt 

where the subscripts x, y and t represent the partial derivatives. This equation, 
based on the assumption that the image grey level remains constant, relates the 
temporal and spatial changes of the image grey level I(x ,  y, t) at a point (x, y) 
in the image to the velocity (u, v) at that point [10]. Equation (1) is not suffi- 
cient for computing the image velocity (u, v) at each point since the two velocity 
components are constrained by only one equation; this is the aperture problem. 
Therefore, most of the techniques use a regularity constraint that restrains the 
space of admissible solutions of equation (1) ([1] and references therein). This 
regularity constraint is generally quadratic and therefore enforces the optical 
flow field to be continuous and smooth. But, true discontinuities can occur in 
the optical flow and they are generally located on the boundary between two 
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surfaces representing two objects with different movements. This type of dis- 
continuity occurs for example on temperature front in SST images, and cloud 
boundary in atmospheric images. Recovering this discontinuity is necessary for 
further analysis of oceanographic and atmospheric images. Indeed, locating and 
tracking of temperature fronts in oceanographic images represent an accurate 
estimation of the oceanic surface circulation. These fronts are defined as regions 
where the temperature variation is high. An accurate computation of optical flow 
components near these regions must take into account the flow field discontinuity 
along the temperature front. For this purpose, we defined a non quadratic regu- 
larization scheme preserving flow discontinuities while insuring a unique solution 
of equation (1). Several authors [2, 3] proposed non-quadratic schemes for the 
motion field regularity constraint. These schemes are based on the Graduated 
Non Convexity method, and allow a computation of optical flow components 
that preserves discontinuity but can not handle non uniform tessellation of the 
image which is an important issue when dealing with very large image sequences. 

The proposed method makes use of the L 1 norm (defined by lull = / l u l )  for the 

regularization constraint. The advantage of this norm is that the variation of ex- 
pressions like lull produces singular distributions as coefficients (e.g. Dirac func- 
tions). This property allows to preserve sharp signals as well as discontinuities 
in the space of L 1 functions. Such a property can be used to constrain the set of 
admissible solutions of Eq. (1). Considering the space of functions with bounded 

variation, i.e.: BV~ = { f  =(fl,f2) such that ~ IVfll+lVf21dxdy< + o c } ,  

the optical flow problem can be stated as the minimization of the functional : 

~ 2 --~'~ (I~u 5) 2 dxdy, 

where us and Uy (resp. v~ and v~) represent the partial derivatives of u (resp. v) 
with respect to x and y. 

This minimization problem (2) can also be viewed as a constrained minimiza- 
tion problem where we search for a vector flow field in the space of functions 
with bounded variations BV1, with the constraint of satisfying the optical flow 
stationarity equation (1). 

The solution of the minimization problem (2) is obtained through the Euler 
- Lagrange equations: 

{ ~ u  + (u*~ + vI=X~ + I=I,) = 0 
Dv + (~z,I~ + vi~ + 5 I , )  = 0 (3) 

where D is the nonlinear operator defined by: 

ox 

Equation (3) is nonlinear and therefore must be processed in a particular 
way. An efficient method for solving this kind of nonlinear partial differential 
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equations is to consider the associated evolution equations, or equivalently, the 
gradient descent method [8, 15]. This time-dependent approach means that we 
solve the evolution equation: 

{O~t + D u + ( u I 2 + v I ~ I ~ + l = l t ) = O  
+ Vv + ( u I d u  + vI~ + & , )  = 0 (5) 

and a stationary solution characterizes a solution of Eq. (3). 
This evolution equation is solved through a finite element method allowing 

the use of arbitrary tessellations of the image domain by taking into account an 
index characterizing image motion in order to reduce the numerical complexity 
of the algorithm and increase its accuracy near moving structures (see Section 3). 

3 M e s h  S u b d i v i s i o n  

Computing an optical flow field over an image sequence using a classical ap- 
proach leads to the solution of a large set of linear equations in the case of the 
quadratic regularizer or to an iterative solution for the non quadratic case. In 
both approaches space discretization (i.e. image tessellation) is an important is- 
sue since it defines the accuracy of the solution and the numerical complexity of 
the algorithm. In this section we propose a selective multi-resolution approach. 
This method defines a new approach for coarse to fine grid generation. It allows 
to increment locally the resolution of the grid according to the studied problem. 
The advantage of such a method is its lowest numerical complexity and its higher 
accuracy. Each added node refines the grid in a region of interest and increases 
the numerical accuracy of the solved problem [4]. 

The method is based on a recursive subdivision of a given tessellation of the 
domain. This tessellation must fulfill the conform triangulation requirement of 
the FEM scheme [4], i.e.: any face of any n-simplex 7"1 in the triangulation is 
either a subset of the boundary of the domain, or a face of another n-simplex 
7"2 in the triangulation. This requirement restrains the type of n-simplex that 
can be used for an automatic non-uniform cell subdivision. We consider only 
triangular cells which are well adapted for domain triangulation and allow to 
derive a simple recursive subdivision scheme. 

Given a triangulation T = [.Ji T/ of the image domain, we have to refine 
it only near moving structures. These structures are characterized through w• 
representing the norm of the estimated motion field along the direction of the 
image gradient. Such a characterization is based on the image spatio-temporal 
gradients and does not require the knowledge of the optical flow field. 

Let I represents the image brightness and VI  its gradient vector field, then 
the optical flow equation (1) can be rewritten as [18]: dI OI = + IlVZllwl where 

Wx is the norm of the component ~ of the motion field ~ = (u, v) along the 

direction of V-~. If the flow constraint equation is satisfied (i.e. dI = O) and 
(IVIll r O, we obtain: 

OI/Ot V I  
w--Y= IIVlII liVlll (6) 
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representing the component of the motion field along the direction of the gradient 
in term of the partial derivatives of I.  Although w• does not always characterize 
image motion due to the aperture problem, it allows to locate moving points. 
Indeed, w• is high near moving points and becomes null near stationary points. 

The definition of w• gives the theoretical proof of the motion measure D 
defined by Irani et al [11] and used by several authors [12, 17]: 

D(x, y, t) = E(~,,~,)eW II(x~, Yi, t + 1) - I(x~, Yl, t)l IVI(=~, y~, t)l (7) 

IvI(x , t)l + c 

where W is a small neighborhood and C a constant to avoid numerical insta- 
bilities. This motion measure, defined as residual motion, is a particular form of 
w• where the numerator  and the denominator are summed over a small neigh- 
borhood. 

The subdivision scheme is based on a splitting strategy. We start with a 
coarse tessellation of the image and split each cell T of the triangulation ac- 
cording to the norm w• summed all over the cell: w~. A cell is subdivided 
while w~ is greater than a given threshold and while its area is greater than 
another threshold. Furthermore, each subdivided cell must satisfy the conform 
triangulation requirement. 

4 E x p e r i m e n t a l  R e s u l t s  

We have experimented our method on the "Hamburg Taxi Sequence". In this 
street scene, there were four moving objects at different speeds. We first construct 
an adaptive mesh from the spatio-temporal gradient according to the algorithm 
described in section 3. We set the motion threshold, i.e. w~, to one pixel/frame 
and the cell area threshold to 15 pixels. The obtained mesh and the optical 
flow field are displayed in figure 1. We can observe that the mesh resolution is 
finer near moving objects allowing an important  reduction of the algorithmic 
complexity, since we deal with 499 nodes and 956 triangles yielding an optical 
flow numerical accuracy lower than 0.5 pixel near moving structures. To achieve 
such an accuracy with a classical rectangular mesh, one has to consider 2560 
nodes. The complete processing (i.e. the image gradients and the solution of 
Eq. (5)) takes 20 seconds on a Alpha 3000/500 workstation. 

Our main objective is to derive the surface ocean circulation from a sequence 
of Sea Surface Temperature measurements. These infra-red measurements are 
the most reliable for surface motion estimation and are daily available through 
the NOAA satellites. These measurements are corrupted by the presence of 
clouds, consequently, the data usually considered are composite images obtained 
by considering at each image pixel the maximal value during a period of time. 
Figure 2 shows a SST image which concerns the confluence region near Argentina 
coasts where a combined stream is formed by the Falkland northward flowing 
current (cold water), and the southward flowing Brazilian current (hot water). 
The discontinuities are located in the regions where these two streams are com- 
bined (top of figure 2). The obtained displacement field and mesh used are also 
displayed. 
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Fig. 1. Example of the use of an adaptive mesh to increase the numerical accuracy of 
the computed flow field while reducing the algorithmic complexity of the method. We 
display a frame of the Hamburg Taxi sequence, the associated mesh and the optical 
flow field. 
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Fig. 2. An illustration o~ the adaptive mesh approach for computing optical flow com- 
ponents from an image sequence. This figure displays a frame of the SST image sequence 
of confluence region near Argentina coasts. In this region discontinuities are located in 
the regions where the streams are combined. 

5 E s t i m a t i o n  o f  a P h a s e  P o r t r a i t  

The computat ion of optical flow yields a quanti tat ive measure of the flow field on 
each image point�9 By processing sea surface tempera ture  and atmospheric image 
sequences we are also interested by the nature of motion since some phenomena 
like vortices are characterized through some specific pat terns  of the motion field�9 
The extraction of higher level descriptors from a flow field is naturally crucial 
when studying fluid motion and vector analysis. 

A classical approach is to use qualitative differential equations to characterize 
the orientation flow field by considering it as the velocity field of a particle in a 
dynamic system. Consider a particle governed by the model: 

g(x,y)={~ =P(x'y) (8) 
= Q ( x ,  y) 
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where P(x, y) and Q(x, y) are continuously differentiable functions. The particle 
trajectories are defined by the curves (~o(t), r  t > 0, satisfying: (~l(t), el(t)) = 
(P(~(t) ,  r Q(~o(t), r  

Modeling the orientation flow field by a dynamic system allows to characterize 
the flow field through the particles trajectories and their stationary points. 

Different works were led on linear phase portrait models and their use for 
characterizing oriented texture fields [14, 16, 19]. The main drawback of a linear 
phase portrait is that it can handle only one critical point. Ford and Strick- 
land [6] proposed a nonlinear phase portrait model allowing multiple critical 
point, but this model is computationally expensive and can not be generalized 
to arbitrary polynomials. This paper propose a new approach for approximating 
an orientation field and characterizing the stationary points of the trajectories 
obtained from an arbitrary polynomial phase portrait. Furthermore this model 
is always linear, independently of the polynomial representation. 

Given two vectors A and B, a distance between them may be given by [9]: 

dist(A, B) = IAI IBI Isin(O)[ (9) 

where 0 is the angle subtended by the oriented segments. This distance repre- 
sents also the area of the triangle formed by these oriented segments. Several 
authors [7, 14] used this measure to recover the six parameters of a linear phase 
model by minimizing locally the functional: 

1 12 Sl = ~ ~ IAijl 2 IBij Isin(O~ij - O21j)t u, 
i , jeW 

(io) 

where W is the local region over-which the linear approximation is searched, 01 
represents the linear model and 02 the vector field to approximate. 

The use the of Levenberg-Marquardt method for minimizing such a non 
quadratic functional, leads to a slow convergence rate [14]. In the following, we 
make use of another definition of the area subtended by two oriented segments 
that  leads to the minimization of a quadratic functional. This other definition 
of the distance is obtained from the cross product of the vectors A and B: 

1 IA x B] (ii) dist(A, B) = 2 

Hence, considering a polynomial phase portrait model g(x,y) defined by 

Eq. (8), where P and Q E Q~(~2)  = {p, st p(x,y)= Y~i,j<_,~ aljxlYJ}, we fit 

the model to the given orientation field ft  = (fl ,  f2) (obtained from the optical 
flow field framework) by minimizing locally: 

1 
S2(g)=  2 ~ ] f x g [ 2 ,  (12) 

i ,jEW 

where W is a neighborhood of the image point ( i , j) .  
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This criterion is easier to handle since it is quadratic. In [5] we have proved 
that  recovering the coefficients of the two polynomials P and Q E Q,~(~2) by 
minimizing $2 amounts to an eigenvalue problem. 

This new formulation of the phase portrait  similarity measure allows to derive 
a linear algorithm characterizing a rb i t ra ry  polynomial portraits. 

6 F l o w  P a t t e r n  C l a s s i f i c a t i o n  

Analyzing a flow pattern consists in deriving a symbolic description from the 
model (8) fitted to the given local orientation field. In the case of optical flow, it 
would give a displacement information while in the case of fluid dynamic it will 
characterize the fluid velocity and the coherent structures of the flow. For exam- 
ple, the dynamic of the clouds can be tracked with infrared measurements, one 
can use such an approach in order to obtain a qualitative description of the at- 
mospheric circulation without using a complex physical model of the underlying 
phenomena (see Figure 3). 

The symbolic description of the trajectory of the phase portrait  model was 
extensively used in the case of a linear model. In the general case (i.e. arbi t rary 
polynomials) a classification of the stationary points can be obtained from the 
linearization of the polynomial model [13] but this assumes a location of critical 
points (i.e. to solve an arbitrary polynomial system). Instead we use the Index 
of a vector field to locate and characterize the stationary points. Let g = (P, Q) 
be a vector field defined over a Jordan curve J in the Euclidean plane, with no 
critical point on J. The index of g over J is proportional to the angular variation 
of the vector g(M) (applied at M E J)  as M describes J.  For the system (8), 
the index over an oriented Jordan curve J is given by: 

Index(J) = ~ d arctan -- ~ p2 T Q2 (13) 

A classification of the flow field g can be obtained by computing the index over 
a small circle surrounding an isolated critical point. Since the computation of 
the stationary points of system (8) leads to the problem of solving a system of 
polynomials with arbitrary degree, we choose to compute locally the index of 
g = (P, Q) over the whole flow field: At each point we consider a circle contained 
in the centered window W and we use the following classification: 

- The index of a focus, a center or a node is equal to + l ,  
- The index of a saddle point is - 1 .  

Although this characterization is compendious, it characterizes the most impor- 
tant structures in a fluid flow field: the stationary points. The index measure, 
computed over all the flow, allows to obtain the critical points locations without 
computing the roots of the system (8). Once we locate these points we may use 
the linearization technique to obtain a complete description of the flow field in 
the neighborhood of its stationary points. 

Figure 3 illustrates the complete framework for processing an infrared image 
sequence (Meteosat) of Europe (Courtesy of LMD). A frame of the sequence is 
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Fig. 3. A frame of the infrared image sequence, and the plot of the computed optical 
flow characterizing clouds motion. The black quadrangle represents the vortex detected 
with the index approach. In this case, the given flow field (i.e. the optical flow) was 
approximated with a Q2(/f~ 2) polynomial. 

represented on the left part of the figure. The processing is done in two steps: A 
first step consists in computing the apparent motion field and a second one the 
characterizing the flow patterns. The right part of figure 3, shows the optical flow 
obtained on a given frame. One can easily localize the vortex on the upper left 
corner of the figure from the flow structure. An approximation of this orientation 
field with a Q2(E/2) polynomial phase portrait  model and using the flow pat tern 
classification described in section 6 gives an accurate localization of the vortex. 

7 C o n c l u s i o n  
This research was done within the applicative context of environmental dynamic 
satellite images. We tried to solve some problem arising in processing a sequence 
of images representing the evolution of a physical phenomenon. This computer 
vision approach represents an alternative to the complex modeling of the under- 
lying physical processes. 

We proposed a two stages framework allowing the processing of environmen- 
tal image sequences. The first stage concerns the efficient computation of an 
optical flow field that  preserves flow discontinuities. The later one is concerned 
with the interpretation of the obtained displacement field. 

We are currently studying the comparison between the computer  vision ap- 
proach and the classical method used by oceanographic and atmospheric re- 
searchers which deal with more elaborated models. 
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